1
|
Hönes GS, Geist D, Wenzek C, Pfluger PT, Müller TD, Aguilar-Pimentel JA, Amarie OV, Becker L, Dragano N, Garrett L, Hölter SM, Rathkolb B, Rozman J, Spielmann N, Treise I, Wolf E, Wurst W, Fuchs H, Gailus-Durner V, Hrabe de Angelis M, Führer D, Moeller LC. Comparative Phenotyping of Mice Reveals Canonical and Noncanonical Physiological Functions of TRα and TRβ. Endocrinology 2024; 165:bqae067. [PMID: 38889231 DOI: 10.1210/endocr/bqae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/14/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Thyroid hormone (TH) effects are mediated through TH receptors (TRs), TRα1, TRβ1, and TRβ2. The TRs bind to the DNA and regulate expression of TH target genes (canonical signaling). In addition, they mediate activation of signaling pathways (noncanonical signaling). Whether noncanonical TR action contributes to the spectrum of TH effects is largely unknown. The aim of this study was to attribute physiological effects to the TR isoforms and their canonical and noncanonical signaling. We conducted multiparameter phenotyping in male and female TR knockout mice (TRαKO, TRβKO), mice with disrupted canonical signaling due to mutations in the TR DNA binding domain (TRαGS, TRβGS), and their wild-type littermates. Perturbations in senses, especially hearing (mainly TRβ with a lesser impact of TRα), visual acuity, retinal thickness (TRα and TRβ), and in muscle metabolism (TRα) highlighted the role of canonical TR action. Strikingly, selective abrogation of canonical TR action often had little phenotypic consequence, suggesting that noncanonical TR action sufficed to maintain the wild-type phenotype for specific effects. For instance, macrocytic anemia, reduced retinal vascularization, or increased anxiety-related behavior were only observed in TRαKO but not TRαGS mice. Noncanonical TRα action improved energy utilization and prevented hyperphagia observed in female TRαKO mice. In summary, by examining the phenotypes of TRα and TRβ knockout models alongside their DNA binding-deficient mutants and wild-type counterparts, we could establish that the noncanonical actions of TRα and TRβ play a crucial role in modulating sensory, behavioral, and metabolic functions and, thus, contribute to the spectrum of physiological TH effects.
Collapse
Affiliation(s)
- Georg Sebastian Hönes
- Department of Endocrinology, Diabetes and Metabolism and Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Daniela Geist
- Department of Endocrinology, Diabetes and Metabolism and Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Christina Wenzek
- Department of Endocrinology, Diabetes and Metabolism and Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Paul Thomas Pfluger
- Research Unit NeuroBiology of Diabetes, Helmholtz Zentrum München, Neuherberg 85764, Germany
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg 85764, Germany
- German Center for Diabetes Research, Neuherberg 85764, Germany
- Division of Neurobiology of Diabetes, TUM School of Medicine, Technical University of Munich, Munich 80333, Germany
| | - Timo Dirk Müller
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg 85764, Germany
- German Center for Diabetes Research, Neuherberg 85764, Germany
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University (LMU) Munich, Munich 80336, Germany
| | - Juan Antonio Aguilar-Pimentel
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Oana Veronica Amarie
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Lore Becker
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Natalia Dragano
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Lillian Garrett
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Sabine Maria Hölter
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Birgit Rathkolb
- German Center for Diabetes Research, Neuherberg 85764, Germany
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians University (LMU) Munich, Munich 81377, Germany
| | - Jan Rozman
- German Center for Diabetes Research, Neuherberg 85764, Germany
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Nadine Spielmann
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Irina Treise
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians University (LMU) Munich, Munich 81377, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich 80336, Germany
- Chair of Developmental Genetics, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Martin Hrabe de Angelis
- German Center for Diabetes Research, Neuherberg 85764, Germany
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
- Chair of Experimental Genetics, TUM School of Life Science Weihenstephan, Technical University of Munich, Freising 85354, Germany
| | - Dagmar Führer
- Department of Endocrinology, Diabetes and Metabolism and Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Lars Christian Moeller
- Department of Endocrinology, Diabetes and Metabolism and Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| |
Collapse
|
2
|
Lademann F, Rijntjes E, Köhrle J, Tsourdi E, Hofbauer LC, Rauner M. Hyperthyroidism-driven bone loss depends on BMP receptor Bmpr1a expression in osteoblasts. Commun Biol 2024; 7:548. [PMID: 38719881 PMCID: PMC11078941 DOI: 10.1038/s42003-024-06227-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Hyperthyroidism is a well-known trigger of high bone turnover that can lead to the development of secondary osteoporosis. Previously, we have shown that blocking bone morphogenetic protein (BMP) signaling systemically with BMPR1A-Fc can prevent bone loss in hyperthyroid mice. To distinguish between bone cell type-specific effects, conditional knockout mice lacking Bmpr1a in either osteoclast precursors (LysM-Cre) or osteoprogenitors (Osx-Cre) were rendered hyperthyroid and their bone microarchitecture, strength and turnover were analyzed. While hyperthyroidism in osteoclast precursor-specific Bmpr1a knockout mice accelerated bone resorption leading to bone loss just as in wildtype mice, osteoprogenitor-specific Bmpr1a deletion prevented an increase of bone resorption and thus osteoporosis with hyperthyroidism. In vitro, wildtype but not Bmpr1a-deficient osteoblasts responded to thyroid hormone (TH) treatment with increased differentiation and activity. Furthermore, we found an elevated Rankl/Opg ratio with TH excess in osteoblasts and bone tissue from wildtype mice, but not in Bmpr1a knockouts. In line, expression of osteoclast marker genes increased when osteoclasts were treated with supernatants from TH-stimulated wildtype osteoblasts, in contrast to Bmpr1a-deficient cells. In conclusion, we identified the osteoblastic BMP receptor BMPR1A as a main driver of osteoporosis in hyperthyroid mice promoting TH-induced osteoblast activity and potentially its coupling to high osteoclastic resorption.
Collapse
Affiliation(s)
- Franziska Lademann
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Eddy Rijntjes
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institut für Experimentelle Endokrinologie, Berlin, Germany
| | - Josef Köhrle
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institut für Experimentelle Endokrinologie, Berlin, Germany
| | - Elena Tsourdi
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany.
| |
Collapse
|
3
|
Xu J, Cai X, Miao Z, Yan Y, Chen D, Yang Z, Yue L, Hu W, Zhuo L, Wang J, Xue Z, Fu Y, Xu Y, Zheng J, Guo T, Chen Y. Proteome-wide profiling reveals dysregulated molecular features and accelerated aging in osteoporosis: A 9.8-year prospective study. Aging Cell 2024; 23:e14035. [PMID: 37970652 PMCID: PMC10861190 DOI: 10.1111/acel.14035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/17/2023] Open
Abstract
The role of circulatory proteomics in osteoporosis is unclear. Proteome-wide profiling holds the potential to offer mechanistic insights into osteoporosis. Serum proteome with 413 proteins was profiled by liquid chromatography-tandem mass spectrometry (LC-MS/MS) at baseline, and the 2nd, and 3rd follow-ups (7704 person-tests) in the prospective Chinese cohorts with 9.8 follow-up years: discovery cohort (n = 1785) and internal validation cohort (n = 1630). Bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry (DXA) at follow-ups 1 through 3 at lumbar spine (LS) and femoral neck (FN). We used the Light Gradient Boosting Machine (LightGBM) to identify the osteoporosis (OP)-related proteomic features. The relationships between serum proteins and BMD in the two cohorts were estimated by linear mixed-effects model (LMM). Meta-analysis was then performed to explore the combined associations. We identified 53 proteins associated with osteoporosis using LightGBM, and a meta-analysis showed that 22 of these proteins illuminated a significant correlation with BMD (p < 0.05). The most common proteins among them were PHLD, SAMP, PEDF, HPTR, APOA1, SHBG, CO6, A2MG, CBPN, RAIN APOD, and THBG. The identified proteins were used to generate the biological age (BA) of bone. Each 1 SD-year increase in KDM-Proage was associated with higher risk of LS-OP (hazard ratio [HR], 1.25; 95% CI, 1.14-1.36, p = 4.96 × 10-06 ), and FN-OP (HR, 1.13; 95% CI, 1.02-1.23, p = 9.71 × 10-03 ). The findings uncovered that the apolipoproteins, zymoproteins, complements, and binding proteins presented new mechanistic insights into osteoporosis. Serum proteomics could be a crucial indicator for evaluating bone aging.
Collapse
Affiliation(s)
- Jinjian Xu
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
| | - Xue Cai
- School of Life SciencesWestlake UniversityHangzhouChina
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
| | - Zelei Miao
- School of Life SciencesWestlake UniversityHangzhouChina
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
| | - Yan Yan
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
| | - Danyu Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
| | - Zhen‐xiao Yang
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
| | - Liang Yue
- School of Life SciencesWestlake UniversityHangzhouChina
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
| | - Wei Hu
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
| | - Laibao Zhuo
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
| | - Jia‐ting Wang
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
| | - Zhangzhi Xue
- School of Life SciencesWestlake UniversityHangzhouChina
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
| | - Yuanqing Fu
- School of Life SciencesWestlake UniversityHangzhouChina
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
| | - Ying Xu
- Shenzhen Bao'an Center for Chronic Diseases ControlShenzhenChina
| | - Ju‐Sheng Zheng
- School of Life SciencesWestlake UniversityHangzhouChina
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
| | - Tiannan Guo
- School of Life SciencesWestlake UniversityHangzhouChina
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
| | - Yu‐ming Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
4
|
Abstract
Bone marrow contains resident cellular components that are not only involved in bone maintenance but also regulate hematopoiesis and immune responses. The immune system and bone interact with each other, coined osteoimmunology. Hashimoto's thyroiditis (HT) is one of the most common chronic autoimmune diseases which is accompanied by lymphocytic infiltration. It shows elevating thyroid autoantibody levels at an early stage and progresses to thyroid dysfunction ultimately. Different effects exert on bone metabolism during different phases of HT. In this review, we summarized the mechanisms of the long-term effects of HT on bone and the relationship between thyroid autoimmunity and osteoimmunology. For patients with HT, the bone is affected not only by thyroid function and the value of TSH, but also by the setting of the autoimmune background. The autoimmune background implies a breakdown of the mechanisms that control self-reactive system, featuring abnormal immune activation and presence of autoantibodies. The etiology of thyroid autoimmunity and osteoimmunology is complex and involves a number of immune cells, cytokines and chemokines, which regulate the pathogenesis of HT and osteoporosis at the same time, and have potential to affect each other. In addition, vitamin D works as a potent immunomodulator to influence both thyroid immunity and osteoimmunology. We conclude that HT affects bone metabolism at least through endocrine and immune pathways.
Collapse
Affiliation(s)
- Jialu Wu
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, P.R. China
| | - Hui Huang
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, P.R. China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, P.R. China.
| |
Collapse
|
5
|
Wölfel EM, Lademann F, Hemmatian H, Blouin S, Messmer P, Hofbauer LC, Busse B, Rauner M, Jähn-Rickert K, Tsourdi E. Reduced Bone Mass and Increased Osteocyte Tartrate-Resistant Acid Phosphatase (TRAP) Activity, But Not Low Mineralized Matrix Around Osteocyte Lacunae, Are Restored After Recovery From Exogenous Hyperthyroidism in Male Mice. J Bone Miner Res 2023; 38:131-143. [PMID: 36331133 DOI: 10.1002/jbmr.4736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Hyperthyroidism causes secondary osteoporosis through favoring bone resorption over bone formation, leading to bone loss with elevated bone fragility. Osteocytes that reside within lacunae inside the mineralized bone matrix orchestrate the process of bone remodeling and can themselves actively resorb bone upon certain stimuli. Nevertheless, the interaction between thyroid hormones and osteocytes and the impact of hyperthyroidism on osteocyte cell function are still unknown. In a preliminary study, we analyzed bones from male C57BL/6 mice with drug-induced hyperthyroidism, which led to mild osteocytic osteolysis with 1.14-fold larger osteocyte lacunae and by 108.33% higher tartrate-resistant acid phosphatase (TRAP) activity in osteocytes of hyperthyroid mice compared to euthyroid mice. To test whether hyperthyroidism-induced bone changes are reversible, we rendered male mice hyperthyroid by adding levothyroxine into their drinking water for 4 weeks, followed by a weaning period of 4 weeks with access to normal drinking water. Hyperthyroid mice displayed cortical and trabecular bone loss due to high bone turnover, which recovered with weaning. Although canalicular number and osteocyte lacunar area were similar in euthyroid, hyperthyroid and weaned mice, the number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL)-positive osteocytes was 100% lower in the weaning group compared to euthyroid mice and the osteocytic TRAP activity was eightfold higher in hyperthyroid animals. The latter, along with a 3.75% lower average mineralization around the osteocyte lacunae in trabecular bone, suggests osteocytic osteolysis activity that, however, did not result in significantly enlarged osteocyte lacunae. In conclusion, we show a recovery of bone microarchitecture and turnover after reversal of hyperthyroidism to a euthyroid state. In contrast, osteocytic osteolysis was initiated in hyperthyroidism, but its effects were not reversed after 4 weeks of weaning. Due to the vast number of osteocytes in bone, we speculate that even minor individual cell functions might contribute to altered bone quality and mineral homeostasis in the setting of hyperthyroidism-induced bone disease. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Eva Maria Wölfel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Lademann
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Haniyeh Hemmatian
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria.,Vienna Bone and Growth Center, Vienna, Austria
| | - Phaedra Messmer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria.,Vienna Bone and Growth Center, Vienna, Austria
| | - Lorenz C Hofbauer
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Rauner
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Katharina Jähn-Rickert
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred Scheel Cancer Career Center Hamburg, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elena Tsourdi
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| |
Collapse
|
6
|
Li H, Wang C, Jin Y, Cai Y, Sun H, Liu M. The integrative analysis of competitive endogenous RNA regulatory networks in osteoporosis. Sci Rep 2022; 12:9549. [PMID: 35680981 PMCID: PMC9184474 DOI: 10.1038/s41598-022-13791-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/27/2022] [Indexed: 11/09/2022] Open
Abstract
Osteoporosis (OP) is a common bone disease of old age resulting from the imbalance between bone resorption and bone formation. CircRNAs are a class of endogenous non-coding RNAs (ncRNAs) involved in gene regulation and may play important roles in the development of OP. Here, we aimed to discover the OP‑related circRNA-miRNA-mRNA (ceRNA) network and the potential mechanisms. Six microarray datasets were obtained from the GEO database and the OP‑related differentially expressed genes (DEGs), circRNAs (DECs), and miRNAs (DEMs) were screened out from these datasets. Then, combined with the prediction of the relationships between DEGs, DEMs, and DECs, a ceRNA network containing 7 target circRNAs, 5 target miRNAs, and 38 target genes was constructed. Then the RNA-seq verification by using total RNAs isolated from the femurs of normal and ovariectomized Wistar rats indicated that MFAP5, CAMK2A, and RGS4 in the ceRNA network were closely associated with osteoporosis. Function enrichment analysis indicated that the target circRNAs, miRNAs, and genes were involved in the process of MAPK cascade, hormone stimulus, cadherin binding, rRNA methyltransferase, PI3K-Akt signaling pathway, and Vitamin digestion and absorption, etc. Then a circRNA-miRNA-hub gene subnetwork was constructed and the qRT-PCR analysis of human bone tissues from the femoral head was used to confirm that the transcription of hsa_circR_0028877, hsa_circR_0082916, DIRAS2, CAMK2A, and MAPK4 showed a significant correlation with osteogenic genes. Besides, the two axes of hsa_circR_0028877/hsa-miR-1273f/CAMK2A and hsa_circR_0028877/hsa-miR-1273f/DIRAS2 conformed to be closely associated with OP. Additionally, by constructing a drug-target gene network, RKI-1447, FRAX486, Hyaluronic, and Fostamatinib were identified as therapeutic options for OP. Our study revealed the potential links between circRNAs, miRNAs, and mRNAs in OP, suggesting that the ceRNA mechanism might contribute to the occurrence of OP.
Collapse
Affiliation(s)
- Hao Li
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Yue Jin
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Yuanqing Cai
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian, 116011, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China.
| | - Mozhen Liu
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian, 116011, China.
| |
Collapse
|
7
|
Lademann F, Tsourdi E, Hofbauer LC, Rauner M. Bone cell-specific deletion of thyroid hormone transporter Mct8 distinctly regulates bone volume in young versus adult male mice. Bone 2022; 159:116375. [PMID: 35240348 DOI: 10.1016/j.bone.2022.116375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/23/2022]
Abstract
Thyroid hormones are critical regulators of bone metabolism. Their cellular import is guided through transporter proteins, including the monocarboxylate transporter 8 (MCT8). Conditional Mct8 knockout in osteoblast and osteoclast precursors leads to trabecular bone gain in 12-week-old male mice. Given that thyroid hormones regulate both skeletal development and bone maintenance, we investigated the effect of bone cell-specific Mct8 deletion in 6-week-old (young) and 24-week-old (adult) male mice. Mct8 ablation in osteoclast precursors led to trabecular bone gain at the spine in 6-week-old animals compared to age-matched controls, whereas adult animals displayed a shift towards trabecular bone loss in both femur and vertebra. Mct8 deficiency in osteoprogenitors increased osteoblast numbers and trabecular bone mass at the spine of young mice, without skeletal differences between adult knockout mice and littermate controls. In contrast, young mice lacking Mct8 in late osteoblasts/osteocytes exhibited lower trabecular bone volume at the spine and femur compared to respective controls, but no differences were detected at 24 weeks of age. In vitro studies of osteoblasts with Dmp1-Cre promotor driven Mct8 deletion showed no significant alterations of osteogenic marker gene expression and mineralization capacity suggesting that MCT8 is not crucial for osteoblast maturation. Overall, we observed mild effects with conditional Mct8 knockout on bone microarchitecture and bone turnover especially during growth implying a secondary role for MCT8 as a thyroid hormone transporter in bone.
Collapse
Affiliation(s)
- Franziska Lademann
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Germany
| | - Elena Tsourdi
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Germany
| | - Martina Rauner
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Germany.
| |
Collapse
|
8
|
Lademann F, Mayerl S, Tsourdi E, Verrey F, Leitch VD, Williams GR, Bassett JHD, Hofbauer LC, Heuer H, Rauner M. The Thyroid Hormone Transporter MCT10 Is a Novel Regulator of Trabecular Bone Mass and Bone Turnover in Male Mice. Endocrinology 2022; 163:bqab218. [PMID: 34669927 PMCID: PMC8598386 DOI: 10.1210/endocr/bqab218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Indexed: 11/19/2022]
Abstract
Thyroid hormones (TH) are essential for skeletal development and adult bone homeostasis. Their bioavailability is determined by specific transporter proteins at the cell surface. The TH-specific transporter monocarboxylate transporter 8 (MCT8) was recently reported as a regulator of bone mass in mice. Given that high systemic triiodothyronine (T3) levels in Mct8 knockout (KO) mice are still able to cause trabecular bone loss, alternative TH transporters must substitute for MCT8 function in bone. In this study, we analyzed the skeletal phenotypes of male Oatp1c1 KO and Mct10 KO mice, which are euthyroid, and male Mct8/Oatp1c1 and Mct8/Mct10 double KO mice, which have elevated circulating T3 levels, to unravel the role of TH transport in bone. MicroCT analysis showed no significant trabecular bone changes in Oatp1c1 KO mice at 4 weeks and 16 weeks of age compared with wild-type littermate controls, whereas 16-week-old Mct8/Oatp1c1 double KO animals displayed trabecular bone loss. At 12 weeks, Mct10 KO mice, but not Mct8/Mct10 double KO mice, had decreased trabecular femoral bone volume with reduced osteoblast numbers. By contrast, lack of Mct10 in 24-week-old mice led to trabecular bone gain at the femur with increased osteoblast numbers and decreased osteoclast numbers whereas Mct8/Mct10 double KO did not alter bone mass. Neither Mct10 nor Mct8/Mct10 deletion affected vertebral bone structures at both ages. In vitro, osteoblast differentiation and activity were impaired by Mct10 and Mct8/Mct10-deficiency. These data demonstrate that MCT10, but not OATP1C1, is a site- and age-dependent regulator of bone mass and turnover in male mice.
Collapse
Affiliation(s)
- Franziska Lademann
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Steffen Mayerl
- Department of Endocrinology, University of Duisburg-Essen, University Hospital Essen, D-45147 Essen, Germany
| | - Elena Tsourdi
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Francois Verrey
- Institute of Physiology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Victoria D Leitch
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - Lorenz C Hofbauer
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Heike Heuer
- Department of Endocrinology, University of Duisburg-Essen, University Hospital Essen, D-45147 Essen, Germany
| | - Martina Rauner
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, D-01307 Dresden, Germany
| |
Collapse
|
9
|
Zhu S, Pang Y, Xu J, Chen X, Zhang C, Wu B, Gao J. Endocrine Regulation on Bone by Thyroid. Front Endocrinol (Lausanne) 2022; 13:873820. [PMID: 35464058 PMCID: PMC9020229 DOI: 10.3389/fendo.2022.873820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND As an endocrine organ, the thyroid acts on the entire body by secreting a series of hormones, and bone is one of the main target organs of the thyroid. SUMMARY This review highlights the roles of thyroid hormones and thyroid diseases in bone homeostasis. CONCLUSION Thyroid hormones play significant roles in the growth and development of bone, and imbalance of thyroid hormones can impair bone homeostasis.
Collapse
Affiliation(s)
- Siyuan Zhu
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yidan Pang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jun Xu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xiaoyi Chen
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Changqing Zhang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Junjie Gao, ; Bo Wu, ; Changqing Zhang,
| | - Bo Wu
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Junjie Gao, ; Bo Wu, ; Changqing Zhang,
| | - Junjie Gao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
- *Correspondence: Junjie Gao, ; Bo Wu, ; Changqing Zhang,
| |
Collapse
|