1
|
Haraguchi A, Gonda M, Nakayama K, Fujiwara K, Hakozaki J, Nakamura S, Kusakisako K, Ikadai H. Effect of a Blood Meal on Plasmodium Oocyst Growth Using the Enema Injection Method. Vector Borne Zoonotic Dis 2025. [PMID: 40329887 DOI: 10.1089/vbz.2024.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025] Open
Abstract
Objective: Anopheles mosquitoes transmit Plasmodium parasites through blood feeding. The oocyst stage in mosquitoes is crucial for Plasmodium transmission. Oocysts can form without a blood meal or the midgut passage and utilize nutrients from additional blood feeding. However, it remains unclear the impact of a blood meal during infection on oocysts. The present study evaluated how a blood meal during infection impacts oocyst growth to better understand oocyst development. Methods: We used a novel method for Plasmodium infection known as enema injection, which involves injecting Plasmodium berghei (ANKA strain) into the midgut lumen of Anopheles stephensi mosquitoes (STE2 strain) via the anus, traversing the midgut wall without a blood meal. We compared the size of oocysts in mosquitoes infected by enema injection alone, hemocoel injection alone, and each infection method combined with uninfected blood feeding, as well as those only with infected blood feeding. Results: By enema injection with Plasmodium ookinetes, oocysts formed solely in the mosquito's midgut. Oocysts from enema-injected mosquitoes were similar in size to those from hemocoel-injected mosquitoes. Oocysts from mosquitoes infected by enema injection combined with uninfected blood feeding were larger than oocysts from mosquitoes infected by enema injection alone. However, the size of oocysts from mosquitoes infected by hemocoel injection was not affected by the presence or absence of blood feeding. Conclusion: Enema injection with Plasmodium ookinetes is applicable to Anopheles mosquitoes. Using the enema injection method, we suggest that a blood meal during infection might facilitate oocyst growth within the midgut.
Collapse
Affiliation(s)
- Asako Haraguchi
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Moeka Gonda
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Kazuhiko Nakayama
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Kanta Fujiwara
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Jun Hakozaki
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Japan
- Department of Animal Health TechnologyYamazaki Professional College of Animal Health Technology, Shoto, Japan
| | - Sakure Nakamura
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Kodai Kusakisako
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Hiromi Ikadai
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Japan
| |
Collapse
|
2
|
Henderson Sousa F, Ghaisani Komarudin A, Findlay-Greene F, Bowolaksono A, Sasmono RT, Stevens C, Barlow PG. Evolution and immunopathology of chikungunya virus informs therapeutic development. Dis Model Mech 2023; 16:dmm049804. [PMID: 37014125 PMCID: PMC10110403 DOI: 10.1242/dmm.049804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Chikungunya virus (CHIKV), a mosquito-borne alphavirus, is an emerging global threat identified in more than 60 countries across continents. The risk of CHIKV transmission is rising due to increased global interactions, year-round presence of mosquito vectors, and the ability of CHIKV to produce high host viral loads and undergo mutation. Although CHIKV disease is rarely fatal, it can progress to a chronic stage, during which patients experience severe debilitating arthritis that can last from several weeks to months or years. At present, there are no licensed vaccines or antiviral drugs for CHIKV disease, and treatment is primarily symptomatic. This Review provides an overview of CHIKV pathogenesis and explores the available therapeutic options and the most recent advances in novel therapeutic strategies against CHIKV infections.
Collapse
Affiliation(s)
- Filipa Henderson Sousa
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, UK
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Amalina Ghaisani Komarudin
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong Science Center, Cibinong, Kabupaten Bogor 16911, Indonesia
| | - Fern Findlay-Greene
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, UK
| | - Anom Bowolaksono
- Cellular and Molecular Mechanisms in Biological System (CEMBIOS) Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - R. Tedjo Sasmono
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong Science Center, Cibinong, Kabupaten Bogor 16911, Indonesia
| | - Craig Stevens
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, UK
| | - Peter G. Barlow
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, UK
| |
Collapse
|
3
|
Guerrero-Arguero I, Tellez-Freitas CM, Weber KS, Berges BK, Robison RA, Pickett BE. Alphaviruses: Host pathogenesis, immune response, and vaccine & treatment updates. J Gen Virol 2021; 102. [PMID: 34435944 DOI: 10.1099/jgv.0.001644] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human pathogens belonging to the Alphavirus genus, in the Togaviridae family, are transmitted primarily by mosquitoes. The signs and symptoms associated with these viruses include fever and polyarthralgia, defined as joint pain and inflammation, as well as encephalitis. In the last decade, our understanding of the interactions between members of the alphavirus genus and the human host has increased due to the re-appearance of the chikungunya virus (CHIKV) in Asia and Europe, as well as its emergence in the Americas. Alphaviruses affect host immunity through cytokines and the interferon response. Understanding alphavirus interactions with both the innate immune system as well as the various cells in the adaptive immune systems is critical to developing effective therapeutics. In this review, we summarize the latest research on alphavirus-host cell interactions, underlying infection mechanisms, and possible treatments.
Collapse
Affiliation(s)
- Israel Guerrero-Arguero
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA.,Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - K Scott Weber
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Bradford K Berges
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Richard A Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Brett E Pickett
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| |
Collapse
|
4
|
Weaver SC, Forrester NL, Liu J, Vasilakis N. Population bottlenecks and founder effects: implications for mosquito-borne arboviral emergence. Nat Rev Microbiol 2021; 19:184-195. [PMID: 33432235 PMCID: PMC7798019 DOI: 10.1038/s41579-020-00482-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2020] [Indexed: 01/31/2023]
Abstract
Transmission of arthropod-borne viruses (arboviruses) involves infection and replication in both arthropod vectors and vertebrate hosts. Nearly all arboviruses are RNA viruses with high mutation frequencies, which leaves them vulnerable to genetic drift and fitness losses owing to population bottlenecks during vector infection, dissemination from the midgut to the salivary glands and transmission to the vertebrate host. However, despite these bottlenecks, they seem to avoid fitness declines that can result from Muller's ratchet. In addition, founder effects that occur during the geographic introductions of human-amplified arboviruses, including chikungunya virus and Zika virus, can affect epidemic and endemic circulation, as well as virulence. In this Review, we discuss the role of genetic drift following population bottlenecks and founder effects in arboviral evolution and spread, and the emergence of human disease.
Collapse
Affiliation(s)
- Scott C Weaver
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| | | | - Jianying Liu
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nikos Vasilakis
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
5
|
Guerrero-Arguero I, Høj TR, Tass ES, Berges BK, Robison RA. A comparison of Chikungunya virus infection, progression, and cytokine profiles in human PMA-differentiated U937 and murine RAW264.7 monocyte derived macrophages. PLoS One 2020; 15:e0230328. [PMID: 32163514 PMCID: PMC7067478 DOI: 10.1371/journal.pone.0230328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/27/2020] [Indexed: 11/29/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes rash, fever and severe polyarthritis that can last for years in humans. Murine models display inflammation and macrophage infiltration only in the adjacent tissues at the site of inoculation, showing no signs of systemic polyarthritis. Monocyte-derived macrophages are one cell type suspected to contribute to a systemic CHIKV infection. The purpose of this study was to analyze differences in CHIKV infection in two different cell lines, human U937 and murine RAW264.7 monocyte derived macrophages. PMA-differentiated U937 and RAW264.7 macrophages were infected with CHIKV, and infectious virus production was measured by plaque assay and by reverse transcriptase quantitative PCR at various time points. Secreted cytokines in the supernatants were measured using cytometric bead arrays. Cytokine mRNA levels were also measured to supplement expression data. Here we show that CHIKV replicates more efficiently in human macrophages compared to murine macrophages. In addition, infected human macrophages produced around 10-fold higher levels of infectious virus when compared to murine macrophages. Cytokine induction by CHIKV infection differed between human and murine macrophages; IL-1, IL-6, IFN-γ, and TNF were significantly upregulated in human macrophages. This evidence suggests that CHIKV replicates more efficiently and induces a much greater pro-inflammatory cytokine profile in human macrophages, when compared to murine macrophages. This may shed light on the critical role that macrophages play in the CHIKV inflammatory response.
Collapse
Affiliation(s)
- Israel Guerrero-Arguero
- Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Taalin R. Høj
- Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, Utah, United States of America
| | - E. Shannon Tass
- Department of Statistics, College of Physical and Mathematical Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Bradford K. Berges
- Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Richard A. Robison
- Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, Utah, United States of America
| |
Collapse
|
6
|
Zhang HL, Dong HL, Zhang YN, Xu LL, Deng CL, Li XF, Li XD, Ye HQ, Yuan ZM, Qin CF, Zhang B. Visualization of chikungunya virus infection in vitro and in vivo. Emerg Microbes Infect 2020; 8:1574-1583. [PMID: 31682177 PMCID: PMC6844386 DOI: 10.1080/22221751.2019.1682948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chikungunya virus (CHIKV), a mosquito-borne alphavirus, has become an important re-emerging pathogen with its rapid spread to many non-endemic areas. The lack of effective vaccines and antiviral agents is largely attributed to the elusive infection and dissemination dynamics in vivo. In this study, we designed and developed a novel, replication-competent, CHIKV reporter virus (CHIKV-iRFP) encoding a near infrared fluorescent protein (iRFP). In vitro and in vivo characterization demonstrated that CHIKV-iRFP retained similar replication and virulence phenotypes to its parental virus. Neonatal BABL/c mice and IFNAR−/− A129 mice were highly susceptible to CHIKV-iRFP infection. Following intracranial (i.c.) inoculation, CHIKV-iRFP efficiently replicated and disseminated into whole body, resulting in rapid death in an age-dependent manner. Remarkably, upon footpad injection, CHIKV-iRFP readily disseminated from footpad to head and whole skeleton, with a specific tropism for bone marrow. Taken together, this novel reporter virus provides a powerful tool to track real time CHIKV replication and to test the in vivo efficacy of vaccines and antiviral therapeutics.
Collapse
Affiliation(s)
- Hong-Lei Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Hao-Long Dong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Ya-Nan Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Lin-Lin Xu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Cheng-Lin Deng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Xiao-Feng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, People's Republic of China.,Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiao-Dan Li
- School of Medicine, Hunan Normal University, Changsha, People's Republic of China
| | - Han-Qing Ye
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Zhi-Ming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, People's Republic of China.,Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, Tianjin, People's Republic of China
| |
Collapse
|
7
|
Carter JR, Taylor S, Fraser TS, Kucharski CA, Dawson JL, Fraser MJ. Suppression of the Arboviruses Dengue and Chikungunya Using a Dual-Acting Group-I Intron Coupled with Conditional Expression of the Bax C-Terminal Domain. PLoS One 2015; 10:e0139899. [PMID: 26580561 PMCID: PMC4651551 DOI: 10.1371/journal.pone.0139899] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 09/18/2015] [Indexed: 11/19/2022] Open
Abstract
In portions of South Asia, vectors and patients co-infected with dengue (DENV) and chikungunya (CHIKV) are on the rise, with the potential for this occurrence in other regions of the world, for example the United States. Therefore, we engineered an antiviral approach that suppresses the replication of both arboviruses in mosquito cells using a single antiviral group I intron. We devised unique configurations of internal, external, and guide sequences that permit homologous recognition and splicing with conserved target sequences in the genomes of both viruses using a single trans-splicing Group I intron, and examined their effectiveness to suppress infections of DENV and CHIKV in mosquito cells when coupled with a proapoptotic 3' exon, ΔN Bax. RT-PCR demonstrated the utility of these introns in trans-splicing the ΔN Bax sequence downstream of either the DENV or CHIKV target site in transformed Aedes albopictus C6/36 cells, independent of the order in which the virus specific targeting sequences were inserted into the construct. This trans-splicing reaction forms DENV or CHIKV ΔN Bax RNA fusions that led to apoptotic cell death as evidenced by annexin V staining, caspase, and DNA fragmentation assays. TCID50-IFA analyses demonstrate effective suppression of DENV and CHIKV infections by our anti-arbovirus group I intron approach. This represents the first report of a dual-acting Group I intron, and demonstrates that we can target DENV and CHIKV RNAs in a sequence specific manner with a single, uniquely configured CHIKV/DENV dual targeting group I intron, leading to replication suppression of both arboviruses, and thus providing a promising single antiviral for the transgenic suppression of multiple arboviruses.
Collapse
Affiliation(s)
- James R. Carter
- Department of Biological Sciences, Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Samantha Taylor
- Department of Biological Sciences, Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Tresa S. Fraser
- Department of Biological Sciences, Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Cheryl A. Kucharski
- Department of Biological Sciences, Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - James L. Dawson
- Department of Biological Sciences, Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Malcolm J. Fraser
- Department of Biological Sciences, Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| |
Collapse
|
8
|
Nuckols JT, Huang YJS, Higgs S, Miller AL, Pyles RB, Spratt HM, Horne KM, Vanlandingham DL. Evaluation of Simultaneous Transmission of Chikungunya Virus and Dengue Virus Type 2 in Infected Aedes aegypti and Aedes albopictus (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2015; 52:447-51. [PMID: 26334820 PMCID: PMC4581484 DOI: 10.1093/jme/tjv017] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 01/22/2015] [Indexed: 05/13/2023]
Abstract
The simultaneous transmission of chikungunya virus (CHIKV) and dengue viruses (DENV) has been a major public health concern because of their sympatric distribution and shared mosquito vectors. Groups of Aedes aegypti (L.) and Aedes albopictus (Skuse) were orally infected with 1.5 × 10(5) PFU/ml of CHIKV and 3.2 × 10(6) FFU/ml of DENV-2 simultaneously or separately in inverse orders and evaluated for dissemination and transmission by qRT-PCR. Simultaneous dissemination of both viruses was detected for all groups in Ae. aegypti and Ae. albopictus while cotransmission of CHIKV and DENV-2 only occurred at low rates after sequential but not simultaneous infection.
Collapse
Affiliation(s)
- J T Nuckols
- Joint Vaccine Acquisition Program, Medical Countermeasure Systems, United States Army, 1564 Freedman Drive, Fort Detrick, MD 21702
| | - Y-J S Huang
- Biosecurity Research Institute, Kansas State University, 1041 Pat Roberts Hall, Manhattan KS 66506. Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, L-222 Mosier Hall, Manhattan KS 66506
| | - S Higgs
- Biosecurity Research Institute, Kansas State University, 1041 Pat Roberts Hall, Manhattan KS 66506. Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, L-222 Mosier Hall, Manhattan KS 66506
| | - A L Miller
- Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd., Galveston TX 77555-0436. Assay Development Services Division, Galveston National Laboratory, University of Texas Medical Branch, 301 University Blvd., Galveston TX 77555-0610
| | - R B Pyles
- Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd., Galveston TX 77555-0436. Assay Development Services Division, Galveston National Laboratory, University of Texas Medical Branch, 301 University Blvd., Galveston TX 77555-0610
| | - H M Spratt
- Department of Preventative Medicine and Community Health, University of Texas Medical Branch, 301 University Blvd., Galveston TX 77555-1157
| | - K M Horne
- Biosecurity Research Institute, Kansas State University, 1041 Pat Roberts Hall, Manhattan KS 66506
| | - D L Vanlandingham
- Biosecurity Research Institute, Kansas State University, 1041 Pat Roberts Hall, Manhattan KS 66506. Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, L-222 Mosier Hall, Manhattan KS 66506.
| |
Collapse
|
9
|
Kenney JL, Brault AC. The role of environmental, virological and vector interactions in dictating biological transmission of arthropod-borne viruses by mosquitoes. Adv Virus Res 2014; 89:39-83. [PMID: 24751194 DOI: 10.1016/b978-0-12-800172-1.00002-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Arthropod-borne viruses (arboviruses) are transmitted between vertebrate hosts and arthropod vectors. An inherently complex interaction among virus, vector, and the environment determines successful transmission of the virus. Once believed to be "flying syringes," recent advances in the field have demonstrated that mosquito genetics, microbiota, salivary components, and mosquito innate immune responses all play important roles in modulating arbovirus transmissibility. The literature on the interaction among virus, mosquito, and environment has expanded dramatically in the preceding decade and the utilization of next-generation sequencing and transgenic vector methodologies assuredly will increase the pace of knowledge acquisition in this field. This chapter outlines the interplay among the three factors in both direct physical and biochemical manners as well as indirectly through superinfection barriers and altered induction of innate immune responses in mosquito vectors. The culmination of the aforementioned interactions and the arms race between the mosquito innate immune response and the capacity of arboviruses to antagonize such a response ultimately results in the subjugation of mosquito cells for viral replication and subsequent transmission.
Collapse
Affiliation(s)
- Joan L Kenney
- Arbovirus Research Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Aaron C Brault
- Arbovirus Research Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, Colorado, USA.
| |
Collapse
|