1
|
McGregor BL, Markwardt CF, Davis TM. Investigating ungulate site use as a driver of Culicoides (Diptera: Ceratopogonidae) emergence from larval habitats. JOURNAL OF MEDICAL ENTOMOLOGY 2025; 62:641-647. [PMID: 39946207 DOI: 10.1093/jme/tjaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/10/2024] [Accepted: 01/14/2025] [Indexed: 05/15/2025]
Abstract
Culicoides (Diptera: Ceratopogonidae) Latreille biting midges are the vectors of several viruses of veterinary significance. The larvae of some biting midge species develop in semiaquatic habitats that are affected by the activity of vertebrates. However, the importance of vertebrate animal activity in biting midge density has not been satisfactorily quantified. The goal of this study was to investigate the impact that three different hooved animals representing agricultural (cattle), wild (cervids), and intermediate (bison) animal populations have on the density and emergence of Culicoides from larval habitats. Trail cameras recorded vertebrate activity at eight sites at the Konza Prairie Biological Station with cattle, cervids, and/or bison, which was paired with larval substrate sampling to investigate midge density. The total time spent by all 3 target animals over the previous month and the average time spent by bison were significantly positively correlated with overall biting midge emergence. Species-specific analyses revealed significant positive associations of C. crepuscularis Malloch with several cattle variables including number of cattle days and events and average number of cattle, while more bison variables were found to be significant for C. haematopotus Malloch (bison days and bison events, negative associations) and C. variipennis Coquillett (negative associations for bison days and average number of bison; positive relationship with average bison time). Significant results for cervids included negative associations of C. crepuscularis with average cervid time and C. variipennis with cervid days. These results show that different ungulates impact midge abundance and emergence in different ways, improving our understanding of midge population drivers.
Collapse
Affiliation(s)
- Bethany L McGregor
- Arthropod-Borne Animal Diseases Research Unit, USDA-ARS, Center for Grain and Animal Health Research, Manhattan, KS, USA
| | - Chip F Markwardt
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Travis M Davis
- Arthropod-Borne Animal Diseases Research Unit, USDA-ARS, Center for Grain and Animal Health Research, Manhattan, KS, USA
| |
Collapse
|
2
|
Acosta A, Barrera M, Jarrín D, Maldonado A, Salas J, Camargo G, Mello B, Burbano A, DelaTorre E, Hoffman B, Dietze K. Linking vector favourable environmental conditions with serological evidence of widespread bluetongue virus exposure in livestock in Ecuador. Sci Rep 2025; 15:14382. [PMID: 40274904 PMCID: PMC12022061 DOI: 10.1038/s41598-025-95918-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Despite existing knowledge of bluetongue disease (BT) in Latin America, little information is available on its actual spread and overall burden. As a vector-borne disease, high-risk areas for BT coincide with environmental conditions favourable for the prevailing vector. In Ecuador, information on the presence of BT is limited to singled out virological findings. In this study, we obtained serological evidence for BT virus exposure from the passive surveillance system of the National Veterinary Service, which monitors reproductive-vesicular diseases, including FMD and BT, as part of differential diagnosis. Bioclimatic factors relevant to Culicoides development as the main vector and host abundance at the parish level were considered as risk factors and analysed using a logistic regression model. The results reveal widespread evidence of bluetongue virus exposure, geographically aligning with favourable vector ecosystems within a temperature range of 12-32 °C. Key variables for predicting high-risk BT areas include cattle population, maximum temperature of the warmest month, minimum temperature of the coldest month, temperature seasonality, and precipitation of the driest month. This analysis, the first of its kind for an Andean country with diverse ecosystems, provides a foundation for initial strategic approaches for targeted surveillance and control measures, considering a One Health approach.
Collapse
Affiliation(s)
- Alfredo Acosta
- Friedrich-Loeffler-Institut, Greifswald, Germany.
- Preventive Veterinary Medicine Department, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil.
- Department of Epidemiology, Disease Surveillance and Risk Assessment, Swedish Veterinary Agency, SVA, Ulls väg 2B, 75189, Uppsala, Sweden.
| | - Maritza Barrera
- Veterinary Department, Faculty of Veterinary Sciences, Universidad Técnica de Manabí, Portoviejo, Ecuador
| | - David Jarrín
- Agencia de Regulación y Control Fito y Zoosanitario-Agrocalidad, Quito, Ecuador
| | - Alexander Maldonado
- Agencia de Regulación y Control Fito y Zoosanitario-Agrocalidad, Quito, Ecuador
| | - Johanna Salas
- Agencia de Regulación y Control Fito y Zoosanitario-Agrocalidad, Quito, Ecuador
| | - Guilherme Camargo
- Preventive Veterinary Medicine Department, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Beatriz Mello
- Preventive Veterinary Medicine Department, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Alexandra Burbano
- Agencia de Regulación y Control Fito y Zoosanitario-Agrocalidad, Quito, Ecuador
| | - Euclides DelaTorre
- Agencia de Regulación y Control Fito y Zoosanitario-Agrocalidad, Quito, Ecuador
| | | | - Klaas Dietze
- Friedrich-Loeffler-Institut, Greifswald, Germany
| |
Collapse
|
3
|
Amaya-Mejia W, Pavan L, Lilly M, Swei A, Dirzo R, Sehgal RNM. Determinants of vector-borne avian pathogen occurrence in a mosaic of habitat fragmentation in California. Parasit Vectors 2025; 18:110. [PMID: 40089710 PMCID: PMC11909916 DOI: 10.1186/s13071-025-06742-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND As habitat fragmentation increases, ecological processes, including patterns of vector-borne pathogen prevalence, will likely be disrupted, but ongoing investigations are necessary to examine this relationship. Here, we report the differences in the prevalence of Lyme disease (Borrelia burgdorferi sensu lato, s.l.) and haemoproteosis (Haemoproteus spp.) pathogens in avian populations of a fragmented habitat. B. burgdorferi s.l. is a generalist pathogen that is transmitted by Ixodes pacificus vectors in California, and Haemoproteus is an avian parasite transmitted by Culicoides vectors. METHODS To determine whether biotic (avian and mammalian abundance) or abiotic characteristics (patch size and water availability) correlated with infection prevalence change, we screened 176 birds sampled across seven sites in oak woodland habitat in northern California. RESULTS While biotic factors correlated with an increase in both pathogens, infection prevalence of Haemoproteus spp. was only associated with individual-level traits, specifically foraging substrate and diet, and B. burgdorferi s.l. was associated with community-level characteristics, both total mammal and, specifically, rodent abundance. Proximity to water was the only abiotic factor found to be significant for both pathogens and reinforces the importance of water availability for transmission cycles. Larger patch sizes did not significantly affect infection prevalence of Haemoproteus, but did increase the prevalence of B. burgdorferi. CONCLUSIONS These results highlight that while environmental factors (specifically habitat fragmentation) have a limited role in vector-borne pathogen prevalence, the indirect impact to biotic factors (community composition) can have consequences for both Haemoproteus and B. burgdorferi prevalence in birds. Given the pervasiveness of habitat fragmentation, our results are of broad significance.
Collapse
Affiliation(s)
- Wilmer Amaya-Mejia
- University of California, Los Angeles, California, USA.
- San Francisco State University, San Francisco, California, USA.
| | - Lucas Pavan
- Stanford University, Stanford, California, USA.
| | - Marie Lilly
- Columbia University, New York, New York, USA
- San Francisco State University, San Francisco, California, USA
| | - Andrea Swei
- San Francisco State University, San Francisco, California, USA
| | | | | |
Collapse
|
4
|
Cooper VM, Buckner EA, Jiang Y, Burkett-Cadena N. Laboratory and field assays indicate that a widespread no-see-um, Culicoides furens (Poey) is susceptible to permethrin. Sci Rep 2025; 15:4698. [PMID: 39922977 PMCID: PMC11807162 DOI: 10.1038/s41598-025-89520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/05/2025] [Indexed: 02/10/2025] Open
Abstract
The recent emergence of Oropouche virus (OROV) highlights the importance of understanding insecticide susceptibility in the genus Culicoides (Diptera: Ceratopogonidae). In addition to the vector of OROV, this genus contains many other species that are biting nuisances and vectors of pathogens that affect humans, livestock, and wildlife. With adulticides as the primary method of Culicoides control, there is growing concern about insecticide resistance, compounded by the lack of tools to monitor Culicoides susceptibility. We adapted the Centers for Disease Control and Prevention (CDC) bottle bioassay and field cage trial methods, typically used to monitor insecticide susceptibility in mosquitoes and formulated adulticide efficacy, to evaluate permethrin susceptibility in the widely distributed coastal nuisance species, Culicoides furens. Permethrin caused 100% mortality in C. furens in field and laboratory assays. We identified a diagnostic dose (10.75 µg) and time (30 min) that resulted in 100% mortality in CDC bottle bioassays. Additionally, we determined that no-see-um netting is an effective mesh for field cage trials, allowing for the accurate assessment of Culicoides susceptibility to ultra-low volume applications of formulated adulticides like Permanone 30-30, a widely used adulticide. These methodologies offer essential tools for assessing Culicoides susceptibility, which is crucial for managing populations of Culicoides and preventing the spread of OROV and other pathogens.
Collapse
Affiliation(s)
- Vilma M Cooper
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL, USA.
| | - Eva A Buckner
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL, USA
| | - Yongxing Jiang
- Indian River Mosquito Control District, 5655 41st St, Vero Beach, FL, 32967, USA
| | - Nathan Burkett-Cadena
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL, USA
| |
Collapse
|
5
|
Osborne CJ, Su T, Silver KS, Cohnstaedt LW. Variable gut pH as a potential mechanism of tolerance to Bacillus thuringiensis subsp. israelensis toxins in the biting midge Culicoides sonorensis. PEST MANAGEMENT SCIENCE 2024; 80:4006-4012. [PMID: 38527917 DOI: 10.1002/ps.8104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/04/2024] [Accepted: 03/24/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND Toxins of Bacillus thuringiensis subsp. israelensis (Bti) are safer alternatives for controlling dipteran pests such as black flies and mosquitoes. The biting midge Culicoides sonorensis (Diptera: Ceratopogonidae) is an important pest of livestock in much of the United States and larval midges utilize semi-aquatic habitats which are permissive for Bti product application. Reports suggest that Bti products are ineffective at killing biting midges despite their taxonomic relation to black flies and mosquitoes. Here, we investigate the toxicity of a Bti-based commercial insecticide and its active ingredient in larval Culicoides sonorensis. A suspected mechanism of Bti tolerance is an acidic larval gut, and we used a pH indicator dye to examine larval Culicoides sonorensis gut pH after exposure to Bti. RESULTS The lethal concentration to kill 90% (LC90) of larvae of the commercial product (386 mg/L) was determined to be almost 10 000 times more than that of some mosquito species, and no concentration of active ingredient tested achieved 50% larval mortality. The larval gut was found to be more acidic after exposure to Bti which inhibits Bti toxin activity. By comparison, 100% mortality was achieved in larval Aedes aegypti at the product's label rate for this species and mosquito larvae had alkaline guts regardless of treatment. Altering the larval rearing water to alkaline conditions enhanced Bti efficacy when using the active ingredient. CONCLUSION We conclude that Bti is not practical for larval Culicoides sonorensis control at the same rates as mosquitos but show that alterations or additives to the environment could make the products more effective. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cameron J Osborne
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Tianyun Su
- EcoZone International, Riverside, CA, USA
| | | | - Lee W Cohnstaedt
- Foreign Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, USA
| |
Collapse
|
6
|
Blosser EM, McGregor BL, Burkett-Cadena ND. A photographic key to the adult female biting midges (Diptera: Ceratopogonidae: Culicoides) of Florida, USA. Zootaxa 2024; 5433:151-182. [PMID: 39645758 DOI: 10.11646/zootaxa.5433.2.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Indexed: 12/10/2024]
Abstract
The biting midges (Diptera: Ceratopogonidae: Culicoides) are a diverse group of blood-feeding flies that includes numerous pest and vector species. Major gaps exist in our knowledge of the biology and ecology of the majority of Culicoides spp., due in part to a lack of keys for identifying the biting midges of a given region. In Florida, USA, The Sand Flies of Florida (Blanton and Wirth, 1979) has been a foundational resource for biting midge identification since its publication. The identification keys to the 47 biting midge species (and one subspecies) in The Sand Flies of Florida are not illustrated, however, and frequently rely upon microscopic features (spermathecae, antennal sensory pattern, number of teeth on mandible) as discriminating characters. Here we provide an updated photographic key to 49 nominal species of Culicoides from Florida, USA. The revised key orders characters so that species of nuisance, medical or veterinary importance can be reliably identified without slide mounting, an aspect that should facilitate ecological field work. Synoptic tables summarize the taxonomic affinity, distribution, abundance, seasonality, and medical / veterinary importance of the Culicoides spp. from Florida, compiled from published sources.
Collapse
Affiliation(s)
- Erik M Blosser
- University of Florida; Florida Medical Entomology Laboratory; Vero Beach; Florida; USA; Sutter-Yuba Mosquito and Vector Control District; Yuba City; CA; USA..
| | - Bethany L McGregor
- University of Florida; Florida Medical Entomology Laboratory; Vero Beach; Florida; USA; USDA; Arthropod-Borne Animal Diseases Research Unit; Manhattan; KS; USA.
| | | |
Collapse
|
7
|
Hudson AR, McGregor BL, Shults P, England M, Silbernagel C, Mayo C, Carpenter M, Sherman TJ, Cohnstaedt LW. Culicoides-borne Orbivirus epidemiology in a changing climate. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:1221-1229. [PMID: 37862060 DOI: 10.1093/jme/tjad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 10/21/2023]
Abstract
Orbiviruses are of significant importance to the health of wildlife and domestic animals worldwide; the major orbiviruses transmitted by multiple biting midge (Culicoides) species include bluetongue virus, epizootic hemorrhagic disease virus, and African horse sickness virus. The viruses, insect vectors, and hosts are anticipated to be impacted by global climate change, altering established Orbivirus epidemiology. Changes in global climate have the potential to alter the vector competence and extrinsic incubation period of certain biting midge species, affect local and long-distance dispersal dynamics, lead to range expansion in the geographic distribution of vector species, and increase transmission period duration (earlier spring onset and later fall transmission). If transmission intensity is associated with weather anomalies such as droughts and wind speeds, there may be changes in the number of outbreaks and periods between outbreaks for some regions. Warmer temperatures and changing climates may impact the viral genome by facilitating reassortment and through the emergence of novel viral mutations. As the climate changes, Orbivirus epidemiology will be inextricably altered as has been seen with recent outbreaks of bluetongue, epizootic hemorrhagic disease, and African horse sickness outside of endemic areas, and requires interdisciplinary teams and approaches to assess and mitigate future outbreak threats.
Collapse
Affiliation(s)
- Amy R Hudson
- Center for Grain and Animal Health Research, USDA Agricultural Research Service, 1515 College Ave., Manhattan, KS 66502, USA
| | - Bethany L McGregor
- Center for Grain and Animal Health Research, USDA Agricultural Research Service, 1515 College Ave., Manhattan, KS 66502, USA
| | - Phillip Shults
- Center for Grain and Animal Health Research, USDA Agricultural Research Service, 1515 College Ave., Manhattan, KS 66502, USA
| | | | - Constance Silbernagel
- Center for Epidemiology and Animal Health, USDA APHIS, 2150 Centre Ave, Bldg B, Fort Collins, CO 80526, USA
| | - Christie Mayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University (CSU), 1601 Campus Delivery, Fort Collins, CO 80526, USA
| | - Molly Carpenter
- Department of Microbiology, Immunology, and Pathology, Colorado State University (CSU), 1601 Campus Delivery, Fort Collins, CO 80526, USA
| | - Tyler J Sherman
- Diagnostic Medicine Center, Colorado State University (CSU), 2450 Gillette Drive, Fort Collins, CO 80526, USA
| | - Lee W Cohnstaedt
- The National Bio and Agro-Defense Facility, USDA Agricultural Research Service (ARS), 1980 Denison Ave., Manhattan, KS 66505, USA
| |
Collapse
|
8
|
Osborne CJ, Cohnstaedt LW, Silver KS. Outlook on RNAi-Based Strategies for Controlling Culicoides Biting Midges. Pathogens 2023; 12:1251. [PMID: 37887767 PMCID: PMC10610143 DOI: 10.3390/pathogens12101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Culicoides are small biting midges with the capacity to transmit important livestock pathogens around much of the world, and their impacts on animal welfare are likely to expand. Hemorrhagic diseases resulting from Culicoides-vectored viruses, for example, can lead to millions of dollars in economic damages for producers. Chemical insecticides can reduce Culicoides abundance but may not suppress population numbers enough to prevent pathogen transmission. These insecticides can also cause negative effects on non-target organisms and ecosystems. RNA interference (RNAi) is a cellular regulatory mechanism that degrades mRNA and suppresses gene expression. Studies have examined the utility of this mechanism for insect pest control, and with it, have described the hurdles towards producing, optimizing, and applying these RNAi-based products. These methods hold promise for being highly specific and environmentally benign when compared to chemical insecticides and are more transient than engineering transgenic insects. Given the lack of available control options for Culicoides, RNAi-based products could be an option to treat large areas with minimal environmental impact. In this study, we describe the state of current Culicoides control methods, successes and hurdles towards using RNAi for pest control, and the necessary research required to bring an RNAi-based control method to fruition for Culicoides midges.
Collapse
Affiliation(s)
- Cameron J. Osborne
- Department of Entomology, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA;
| | - Lee W. Cohnstaedt
- Foreign Arthropod-Borne Animal Diseases Research Unit, National Bio- and Agro-Defense Facility, Agricultural Research Service, United Stated Department of Agriculture, Manhattan, KS 66502, USA
| | - Kristopher S. Silver
- Department of Entomology, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
9
|
Allen SE, Vigil SL, Furukawa-Stoffer T, Colucci N, Ambagala A, Pearl DL, Ruder MG, Jardine CM, Nemeth NM. Abundance and diversity of Culicoides Latreille (Diptera: Ceratopogonidae) in southern Ontario, Canada. Parasit Vectors 2023; 16:201. [PMID: 37316934 DOI: 10.1186/s13071-023-05799-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Culicoides Latreille (Diptera: Ceratopogonidae) is a genus of hematophagous midges feeding on various vertebrate hosts and serving as a vector for numerous pathogens important to livestock and wildlife health. North American pathogens include bluetongue (BT) and epizootic hemorrhagic disease (EHD) viruses. Little is known about Culicoides spp. distribution and abundance and species composition in Ontario, Canada, despite bordering numerous U.S. states with documented Culicoides spp. and BT and EHD virus activity. We sought to characterize Culicoides spp. distribution and abundance and to investigate whether select meteorological and ecological risk factors influenced the abundance of Culicoides biguttatus, C. stellifer, and the subgenus Avaritia trapped throughout southern Ontario. METHODS From June to October of 2017 to 2018, CDC-type LED light suction traps were placed on twelve livestock-associated sites across southern Ontario. Culicoides spp. collected were morphologically identified to the species level when possible. Associations were examined using negative binomial regression among C. biguttatus, C. stellifer, and subgenus Avaritia abundance, and select factors: ambient temperature, rainfall, primary livestock species, latitude, and habitat type. RESULTS In total, 33,905 Culicoides spp. midges were collected, encompassing 14 species from seven subgenera and one species group. Culicoides sonorensis was collected from three sites during both years. Within Ontario, the northern trapping locations had a pattern of seasonal peak abundance in August (2017) and July (2018), and the southern locations had abundance peaks in June for both years. Culicoides biguttatus, C. stellifer, and subgenus Avaritia were significantly more abundant if ovine was the primary livestock species at trapping sites (compared to bovine). Culicoides stellifer and subgenus Avaritia were significantly more abundant at mid- to high-temperature ranges on trap days (i.e., 17.3-20.2 and 20.3-31.0 °C compared to 9.5-17.2 °C). Additionally, subgenus Avaritia were significantly more abundant if rainfall 4 weeks prior was between 2.7 and 20.1 mm compared to 0.0 mm and if rainfall 8 weeks prior was between 0.1 and 2.1 mm compared to 0.0 mm. CONCLUSIONS Results from our study describe Culicoides spp. distribution in southern Ontario, the potential for spread and maintenance of EHD and BT viruses, and concurrent health risks to livestock and wildlife in southern Ontario in reference to certain meteorological and ecological risk factors. We identified that Culicoides spp. are diverse in this province, and appear to be distinctly distributed spatially and temporally. The livestock species present, temperature, and rainfall appear to have an impact on the abundance of C. biguttatus, C. stellifer, and subgenus Avaritia trapped. These findings could help inform targeted surveillance, control measures, and the development of management guides for Culicoides spp. and EHD and BT viruses in southern Ontario, Canada.
Collapse
Affiliation(s)
- Samantha E Allen
- Wyoming Game and Fish Department, Veterinary Services, Laramie, USA.
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada.
- Canadian Wildlife Health Cooperative, Ontario Veterinary College, University of Guelph, Guelph, Canada.
| | - Stacey L Vigil
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, USA
| | - Tara Furukawa-Stoffer
- Canadian Food Inspection Agency, National Centre for Animal Diseases, Lethbridge, Canada
| | - Nicole Colucci
- Canadian Food Inspection Agency, National Centre for Animal Diseases, Lethbridge, Canada
| | - Aruna Ambagala
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, Canada
| | - David L Pearl
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Mark G Ruder
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, USA
| | - Claire M Jardine
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
- Canadian Wildlife Health Cooperative, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Nicole M Nemeth
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, USA
- Department of Pathology, University of Georgia, Athens, USA
| |
Collapse
|
10
|
Matthews ML, Covey HO, Drolet BS, Brelsfoard CL. Wolbachia wAlbB inhibits bluetongue and epizootic hemorrhagic fever viruses in Culicoides midge cells. MEDICAL AND VETERINARY ENTOMOLOGY 2022; 36:320-328. [PMID: 35266572 PMCID: PMC9540819 DOI: 10.1111/mve.12569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Culicoides midges are hematophagous insects that transmit arboviruses of veterinary importance. These viruses include bluetongue virus (BTV) and epizootic hemorrhagic fever virus (EHDV). The endosymbiont Wolbachia pipientis Hertig spreads rapidly through insect host populations and has been demonstrated to inhibit viral pathogen transmission in multiple mosquito vectors. Here, we have demonstrated a replication inhibitory effect on BTV and EHDV in a Wolbachia (wAlbB strain)-infected Culicoides sonorensis Wirth and Jones W8 cell line. Viral replication was significantly reduced by day 5 for BTV and by day 2 for EHDV as detected by real-time polymerase chain reaction (RT-qPCR) of the non-structural NS3 gene of both viruses. Evaluation of innate cellular immune responses as a cause of the inhibitory effect showed responses associated with BTV but not with EHDV infection. Wolbachia density also did not play a role in the observed pathogen inhibitory effects, and an alternative hypothesis is suggested. Applications of Wolbachia-mediated pathogen interference to impact disease transmission by Culicoides midges are discussed.
Collapse
Affiliation(s)
- Megan L. Matthews
- Department of Biological SciencesTexas Tech UniversityLubbockTexasUSA
| | - Hunter O. Covey
- Department of Biological SciencesTexas Tech UniversityLubbockTexasUSA
| | - Barbara S. Drolet
- Arthropod‐Borne Animal Diseases Research Unit, USDA‐ARSManhattanKansasUSA
| | | |
Collapse
|
11
|
Allen SE, Vigil SL, Jardine CM, Furukawa-Stoffer T, Colucci N, Ambagala A, Ruder MG, Nemeth NM. New Distribution Records of Biting Midges of the Genus Culicoides (Diptera: Ceratopogonidae) Latreille, Culicoides bergi and Culicoides baueri, in Southern Ontario, Canada. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1467-1472. [PMID: 35468207 DOI: 10.1093/jme/tjac047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Some species of Culicoides Latreille (Diptera: Ceratopogonidae) can be pests as well as pathogen vectors, but data on their distribution in Ontario, Canada, are sparse. Collecting this baseline data is important given ongoing, accelerated alterations in global climate patterns that may favor the establishment of some species in northern latitudes. Culicoides spp. were surveyed using UV light traps over two seasons in 2017 and 2018 at livestock farms in southern Ontario, Canada. Two Culicoides spp. not previously recorded in Canada were identified, C. bergi and C. baueri, representing new country and provincial records. Unlike some congenerics, these two species are not currently recognized as vectors of pathogens that pose a health risk to humans, livestock or wildlife in North America. However, the possibility that these Culicoides species may have recently expanded their geographic range, potentially in association with climate and/or landscape changes, warrants ongoing attention and research. Furthermore, our results provoke the question of the potential undocumented diversity of Culicoides spp. in Ontario and other parts of Canada, and whether other Culicoides spp. may be undergoing range expansion. The current and future distributions of Culicoides spp., and other potential vectors of human, agricultural, and wildlife health significance, are important to identify for proper disease risk assessment, mitigation, and management.
Collapse
Affiliation(s)
- S E Allen
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 419 Gordon St, Guelph N1G 2W1, Canada
- Canadian Wildlife Health Cooperative, Ontario Veterinary College, University of Guelph, 419 Gordon Street, Guelph N1G 2W1, Canada
| | - S L Vigil
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, 589 D. W. Brooks Drive, Athens, GA 30602, USA
| | - C M Jardine
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 419 Gordon St, Guelph N1G 2W1, Canada
- Canadian Wildlife Health Cooperative, Ontario Veterinary College, University of Guelph, 419 Gordon Street, Guelph N1G 2W1, Canada
| | - T Furukawa-Stoffer
- Canadian Food Inspection Agency, National Centre for Animal Diseases, 225090 Township Road 9-1, Lethbridge, AB T1J 0P3, Canada
| | - N Colucci
- Canadian Food Inspection Agency, National Centre for Animal Diseases, 225090 Township Road 9-1, Lethbridge, AB T1J 0P3, Canada
| | - A Ambagala
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, 1015 Arlington St, Winnipeg, MB R3E 3P6, Canada
| | - M G Ruder
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, 589 D. W. Brooks Drive, Athens, GA 30602, USA
| | - N M Nemeth
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, 589 D. W. Brooks Drive, Athens, GA 30602, USA
- Department of Pathology, University of Georgia, 501 D. W. Brooks Drive, Athens, GA 30602, USA
| |
Collapse
|
12
|
Dorak SJ, Varga C, Ruder MG, Gronemeyer P, Rivera NA, Dufford DR, Skinner DJ, Roca AL, Novakofski J, Mateus-Pinilla NE. Spatial epidemiology of hemorrhagic disease in Illinois wild white-tailed deer. Sci Rep 2022; 12:6888. [PMID: 35477968 PMCID: PMC9046210 DOI: 10.1038/s41598-022-10694-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/05/2022] [Indexed: 11/08/2022] Open
Abstract
Epizootic hemorrhagic disease (EHD) and bluetongue (BT) are vector-borne viral diseases that affect wild and domestic ruminants. Clinical signs of EHD and BT are similar; thus, the syndrome is referred to as hemorrhagic disease (HD). Syndromic surveillance and virus detection in North America reveal a northern expansion of HD. High mortalities at northern latitudes suggest recent incursions of HD viruses into northern geographic areas. We evaluated the occurrence of HD in wild Illinois white-tailed deer from 1982 to 2019. Our retrospective space-time analysis identified high-rate clusters of HD cases from 2006 to 2019. The pattern of northward expansion indicates changes in virus-host-vector interactions. Serological evidence from harvested deer revealed prior infection with BTV. However, BTV was not detected from virus isolation in dead deer sampled during outbreaks. Our findings suggest the value of capturing the precise geographic location of outbreaks, the importance of virus isolation to confirm the cause of an outbreak, and the importance of expanding HD surveillance to hunter-harvested wild white-tailed deer. Similarly, it assists in predicting future outbreaks, allowing for targeted disease and vector surveillance, helping wildlife agencies communicate with the public the cause of mortality events and viral hemorrhagic disease outcomes at local and regional scales.
Collapse
Affiliation(s)
- Sheena J Dorak
- Illinois Natural History Survey - Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S. Oak Street, Champaign, IL, 61820, USA.
| | - Csaba Varga
- Department of Pathobiology, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Mark G Ruder
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Peg Gronemeyer
- Illinois Natural History Survey - Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S. Oak Street, Champaign, IL, 61820, USA
| | - Nelda A Rivera
- Illinois Natural History Survey - Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S. Oak Street, Champaign, IL, 61820, USA
| | - Douglas R Dufford
- Illinois Department of Natural Resources, One Natural Resources Way, Springfield, IL, 62702, USA
| | - Daniel J Skinner
- Illinois Department of Natural Resources, One Natural Resources Way, Springfield, IL, 62702, USA
| | - Alfred L Roca
- Department of Animal Sciences, University of Illinois Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL, 61801, USA
| | - Jan Novakofski
- Illinois Natural History Survey - Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S. Oak Street, Champaign, IL, 61820, USA
- Department of Animal Sciences, University of Illinois Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL, 61801, USA
| | - Nohra E Mateus-Pinilla
- Illinois Natural History Survey - Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S. Oak Street, Champaign, IL, 61820, USA.
- Department of Pathobiology, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA.
- Department of Animal Sciences, University of Illinois Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL, 61801, USA.
| |
Collapse
|
13
|
Foxi C, Satta G, Puggioni G, Ligios C. Biting Midges (Ceratopogonidae, Culicoides). ENCYCLOPEDIA OF INFECTION AND IMMUNITY 2022:852-873. [DOI: 10.1016/b978-0-12-818731-9.00005-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
14
|
Perspectives on the Changing Landscape of Epizootic Hemorrhagic Disease Virus Control. Viruses 2021; 13:v13112268. [PMID: 34835074 PMCID: PMC8618044 DOI: 10.3390/v13112268] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 12/28/2022] Open
Abstract
Epizootic hemorrhagic disease (EHD) is an insect-transmitted viral disease of wild and domestic ruminants. It was first described following a 1955 epizootic in North American white-tailed deer (Odocoileus virginianus), a species which is highly susceptible to the causative agent of EHD, epizootic hemorrhagic disease virus (EHDV). EHDV has been detected globally across tropical and temperate regions, largely corresponding to the presence of Culicoides spp. biting midges which transmit the virus between ruminant hosts. It regularly causes high morbidity and mortality in wild and captive deer populations in endemic areas during epizootics. Although cattle historically have been less susceptible to EHDV, reports of clinical disease in cattle have increased in the past two decades. There is a pressing need to identify new methods to prevent and mitigate outbreaks and reduce the considerable impacts of EHDV on livestock and wildlife. This review discusses recent research advancements towards the control of EHDV, including the development of new investigative tools and progress in basic and applied research focused on virus detection, disease mitigation, and vector control. The potential impacts and implications of these advancements on EHD management are also discussed.
Collapse
|
15
|
Erram D, Burkett-Cadena N. Oviposition of Culicoides insignis (Diptera: Ceratopogonidae) under laboratory conditions with notes on the developmental life history traits of its immature stages. Parasit Vectors 2021; 14:522. [PMID: 34627349 PMCID: PMC8501582 DOI: 10.1186/s13071-021-05025-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Culicoides insignis is a confirmed vector of bluetongue virus (BTV) throughout the American tropics and a possible vector of epizootic hemorrhagic disease virus (EHDV) in Florida. Despite its importance, fundamental information on the biology and ecology of this vector species is lacking. In this study, we examined the oviposition of C. insignis under laboratory conditions, monitored the development of immature stages and attempted colonization of this species. METHODS Live C. insignis females were collected from the field using CDC-UV-LED traps, allowed to blood-feed on live chicken and given various natural substrates for oviposition in two-choice assays. The eggs deposited were transferred to 0.3% agar slants, and the hatched larvae were provided a diet of Panagrellus redivivus Linnaeus nematodes and the development of all immature stages was monitored. RESULTS Culicoides insignis females exhibited an overall oviposition preference for dishes containing mud from their larval habitat as gravid females deposited a significantly higher number of eggs on these dishes (35.3 eggs/female) than on controls (17.7 eggs/female). The ovipositing females also deposited a higher percentage of eggs on substrates with habitat mud and other organically enriched muds (≥ 75.2%) compared to controls (31.0%). The larvae developed successfully to adulthood on the nematode diet, exhibiting high overall larval survival rates (85.0%). Sex ratios of the F1 generation were male biased, approximately 3:1 (male:female). Captive mating could not be induced in the F1 adults. CONCLUSIONS Mud from the larval habitat and other organically enriched muds provide strong oviposition cues to C. insignis under laboratory conditions. Further studies will be needed to identify the key biotic/abiotic factors influencing midge oviposition in the field. The agar/nematode method is effective for the rearing of C. insignis larvae. However, further studies will be needed to address the issue of male-biased sex ratios in the progeny and to examine the mating habits/cues of C. insignis in nature, which may provide clues towards inducing captive mating in the F1 adults.
Collapse
Affiliation(s)
- Dinesh Erram
- Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, 200 9th St. SE, Vero Beach, FL, 32962, USA.
| | - Nathan Burkett-Cadena
- Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, 200 9th St. SE, Vero Beach, FL, 32962, USA
| |
Collapse
|
16
|
Modeling Abundance of Culicoides stellifer, a Candidate Orbivirus Vector, Indicates Nonrandom Hemorrhagic Disease Risk for White-Tailed Deer ( Odocoileus virginianus). Viruses 2021; 13:v13071328. [PMID: 34372534 PMCID: PMC8310359 DOI: 10.3390/v13071328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Hemorrhagic diseases in white-tailed deer (Odocoileus virginianus) are caused by orbiviruses and have significant economic impact on the deer ranching industry in the United States. Culicoides stellifer is a suspected vector of epizootic hemorrhagic disease virus (EHDV), with recent field evidence from Florida, but its natural history is poorly understood. Studying the distribution and abundance of C. stellifer across the landscape can inform our knowledge of how virus transmission can occur locally. We may then target vector management strategies in areas where viral transmission can occur. (2) Methods: Here, we used an occupancy modeling approach to estimate abundance of adult C. stellifer females at various physiological states to determine habitat preferences. We then mapped midge abundance during the orbiviral disease transmission period (May–October) in Florida. (3) Results: We found that overall, midge abundance was positively associated with sites in closer proximity to large-animal feeders. Additionally, midges generally preferred mixed bottomland hardwood and agricultural/sand/water habitats. Female C. stellifer with different physiological states preferred different habitats. (4) Conclusions: The differences in habitat preferences between midges across states indicate that disease risk for deer is heterogeneous across this landscape. This can inform how effective vector management strategies should be implemented.
Collapse
|
17
|
A Duplex Fluorescent Microsphere Immunoassay for Detection of Bluetongue and Epizootic Hemorrhagic Disease Virus Antibodies in Cattle Sera. Viruses 2021; 13:v13040682. [PMID: 33921013 PMCID: PMC8071417 DOI: 10.3390/v13040682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 01/19/2023] Open
Abstract
Bluetongue virus (BTV) causes internationally reportable hemorrhagic disease in cattle, sheep, and white-tailed deer. The closely related, and often co-circulating, epizootic hemorrhagic disease virus causes a clinically similar devastating disease in white-tailed deer, with increasing levels of disease in cattle in the past 10 years. Transmitted by Culicoides biting midges, together, they constitute constant disease threats to the livelihood of livestock owners. In cattle, serious economic impacts result from decreased animal production, but most significantly from trade regulations. For effective disease surveillance and accurate trade regulation implementation, rapid, sensitive assays that can detect exposure of cattle to BTV and/or EHDV are needed. We describe the development and validation of a duplex fluorescent microsphere immunoassay (FMIA) to simultaneously detect and differentiate antibodies to BTV and EHDV in a single bovine serum sample. Performance of the duplex FMIA for detection and differentiation of BTV and EHDV serogroup antibodies was comparable, with higher sensitivity than commercially available single-plex competitive enzyme-linked immunosorbent assays (cELISA) for detection of each virus antibody separately. The FMIA adds to the currently available diagnostic tools for hemorrhagic orbiviral diseases in cattle as a sensitive, specific assay, with the benefits of serogroup differentiation in a single serum sample, and multiplexing flexibility in a high-throughput platform.
Collapse
|
18
|
McGregor BL, Erram D, Alto BW, Lednicky JA, Wisely SM, Burkett-Cadena ND. Vector Competence of Florida Culicoides insignis (Diptera: Ceratopogonidae) for Epizootic Hemorrhagic Disease Virus Serotype-2. Viruses 2021; 13:v13030410. [PMID: 33807536 PMCID: PMC7998304 DOI: 10.3390/v13030410] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 01/28/2023] Open
Abstract
Epizootic hemorrhagic disease virus (EHDV; family Reoviridae, genus Orbivirus) is an arthropod-borne virus of ungulates, primarily white-tailed deer in North America. Culicoides sonorensis, the only confirmed North American vector of EHDV, is rarely collected from Florida despite annual virus outbreaks. Culicoides insignis is an abundant species in Florida and is also a confirmed vector of the closely related Bluetongue virus. In this study, oral challenge of C. insignis was performed to determine vector competence for EHDV serotype-2. Field-collected female midges were provided bovine blood spiked with three different titers of EHDV-2 (5.05, 4.00, or 2.94 log10PFUe/mL). After an incubation period of 10 days or after death, bodies and legs were collected. Saliva was collected daily from all females from 3 days post feeding until their death using honey card assays. All samples were tested for EHDV RNA using RT-qPCR. Our results suggest that C. insignis is a weakly competent vector of EHDV-2 that can support a transmissible infection when it ingests a high virus titer (29% of midges had virus positive saliva when infected at 5.05 log10PFUe/mL), but not lower virus titers. Nevertheless, due to the high density of this species, particularly in peninsular Florida, it is likely that C. insignis plays a role in the transmission of EHDV-2.
Collapse
Affiliation(s)
- Bethany L. McGregor
- Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA
- Correspondence: ; Tel.: +1-785-477-1259
| | - Dinesh Erram
- Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL 32962, USA; (D.E.); (B.W.A.); (N.D.B.-C.)
| | - Barry W. Alto
- Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL 32962, USA; (D.E.); (B.W.A.); (N.D.B.-C.)
| | - John A. Lednicky
- Department of Environmental & Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, USA;
| | - Samantha M. Wisely
- Department of Wildlife Ecology and Conservation, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Nathan D. Burkett-Cadena
- Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL 32962, USA; (D.E.); (B.W.A.); (N.D.B.-C.)
| |
Collapse
|
19
|
McGregor BL, Connelly CR, Kenney JL. Infection, Dissemination, and Transmission Potential of North American Culex quinquefasciatus, Culex tarsalis, and Culicoides sonorensis for Oropouche Virus. Viruses 2021; 13:v13020226. [PMID: 33540546 PMCID: PMC7912852 DOI: 10.3390/v13020226] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 01/14/2023] Open
Abstract
Oropouche virus (OROV), a vector-borne Orthobunyavirus circulating in South and Central America, causes a febrile illness with high rates of morbidity but with no documented fatalities. Oropouche virus is transmitted by numerous vectors, including multiple genera of mosquitoes and Culicoides biting midges in South America. This study investigated the vector competence of three North American vectors, Culex tarsalis, Culex quinquefasciatus, and Culicoides sonorensis, for OROV. Cohorts of each species were fed an infectious blood meal containing 6.5 log10 PFU/mL OROV and incubated for 10 or 14 days. Culex tarsalis demonstrated infection (3.13%) but not dissemination or transmission potential at 10 days post infection (DPI). At 10 and 14 DPI, Cx. quinquefasciatus demonstrated 9.71% and 19.3% infection, 2.91% and 1.23% dissemination, and 0.97% and 0.82% transmission potential, respectively. Culicoides sonorensis demonstrated 86.63% infection, 83.14% dissemination, and 19.77% transmission potential at 14 DPI. Based on these data, Cx. tarsalis is unlikely to be a competent vector for OROV. Culex quinquefasciatus demonstrated infection, dissemination, and transmission potential, although at relatively low rates. Culicoides sonorensis demonstrated high infection and dissemination but may have a salivary gland barrier to the virus. These data have implications for the spread of OROV in the event of a North American introduction.
Collapse
Affiliation(s)
- Bethany L. McGregor
- Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA;
| | - C. Roxanne Connelly
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA;
| | - Joan L. Kenney
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA;
- Correspondence: ; Tel.: +1-970-221-6465
| |
Collapse
|
20
|
Inter-annual home range fidelity of wild and ranched white-tailed deer in Florida: implications for epizootic hemorrhagic disease virus and bluetongue virus intervention. EUR J WILDLIFE RES 2021. [DOI: 10.1007/s10344-020-01448-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
McGregor BL, Blackburn JK, Wisely SM, Burkett-Cadena ND. Culicoides (Diptera: Ceratopogonidae) Communities Differ Between a Game Preserve and Nearby Natural Areas in Northern Florida. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:450-457. [PMID: 32743667 DOI: 10.1093/jme/tjaa152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Indexed: 06/11/2023]
Abstract
Culicoides Latreille biting midges are small hematophagous flies that feed on a variety of vertebrate animals. White-tailed deer (Odocoileus virginianus), a farmed species in the United States, can occur at high densities on farms. This elevated density of available hosts may result in greater abundance of midges and greater potential for disease transmission on farms than natural ecosystems. This research aimed to determine whether Culicoides abundance varied between a game preserve in Gadsden County, Florida, a site bordering the preserve ('adjacent'), a site 3.5 km away ('moderate'), and a site 13 km away ('distant'). CDC light traps were set one night per week at the preserve, adjacent site, and moderate site in 2016 and at all four sites in 2017. Total abundance was greatest at the preserve and second greatest at the adjacent site both years. Average abundance of female Culicoides stellifer (Coquillett) was an order of magnitude greater on the preserve (x¯=24.59 in 2016, 17.95 in 2017) than at any other site (x¯≤1.68 in 2016, x¯≤1.03 in 2017), whereas the greatest average abundance of Culicoides venustus Hoffman was found at the adjacent site (x¯=5.15 in 2016, x¯=1.92 in 2017). Distance from the preserve significantly affected overall average abundance for both species (P < 0.001), although pairwise significance varied. Species diversity was lowest on the preserve and highest at the moderate site both years. These data suggest that high densities of animals may increase transmission potential on high fence preserves and in adjacent areas by contributing to high densities of vector species.
Collapse
Affiliation(s)
- Bethany L McGregor
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL
- Current affiliation: USDA, Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, KS
| | - Jason K Blackburn
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL
- Emerging Pathogens Institute, University of Florida, Gainesville, FL
| | - Samantha M Wisely
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville FL
| | | |
Collapse
|
22
|
Shults P, Cohnstaedt LW, Adelman ZN, Brelsfoard C. Next-generation tools to control biting midge populations and reduce pathogen transmission. Parasit Vectors 2021; 14:31. [PMID: 33413518 PMCID: PMC7788963 DOI: 10.1186/s13071-020-04524-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/05/2020] [Indexed: 02/06/2023] Open
Abstract
Biting midges of the genus Culicoides transmit disease-causing agents resulting in a significant economic impact on livestock industries in many parts of the world. Localized control efforts, such as removal of larval habitat or pesticide application, can be logistically difficult, expensive and ineffective if not instituted and maintained properly. With these limitations, a population-level approach to the management of Culicoides midges should be investigated as a means to replace or supplement existing control strategies. Next-generation control methods such as Wolbachia- and genetic-based population suppression and replacement are being investigated in several vector species. Here we assess the feasibility and applicability of these approaches for use against biting midges. We also discuss the technical and logistical hurdles needing to be addressed for each method to be successful, as well as emphasize the importance of addressing community engagement and involving stakeholders in the investigation and development of these approaches.
Collapse
Affiliation(s)
- Phillip Shults
- Texas A&M University, 370 Olsen Blvd, College Station, TX, 77843, USA.
| | - Lee W Cohnstaedt
- USDA-ARS Arthropod Borne Animal Disease Research Unit, 1515 College Ave, Manhattan, KS, 66502, USA
| | - Zach N Adelman
- Texas A&M University, 370 Olsen Blvd, College Station, TX, 77843, USA
| | | |
Collapse
|
23
|
González MA, Dilger E, Ronderos MM, Spinelli GR, Courtenay O, Hamilton JGC. Significant reduction in abundance of peridomestic mosquitoes (Culicidae) and Culicoides midges (Ceratopogonidae) after chemical intervention in western São Paulo, Brazil. Parasit Vectors 2020; 13:549. [PMID: 33160407 PMCID: PMC7648319 DOI: 10.1186/s13071-020-04427-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND We assessed the impact of two sand fly insecticide interventions (insecticide spraying and insecticide-impregnated dog collars) on the peridomestic abundance and distribution of mosquitoes (Culicidae) and biting midges (Ceratopogonidae) in western São Paulo (Brazil) in a long-term (42-month) evaluation. Both of these dipteran groups are vectors of diseases of medical and veterinary relevance to humans and domestic animals in Brazil. METHODS The interventions in the 3-arm stratified randomised control trial were: pheromone + insecticide (PI) (chicken roosts were sprayed with microencapsulated lambda-cyhalothrin; pheromone lure has no effect on the Diptera pests studied here); dog-collars (DC) (dogs fitted with deltamethrin-impregnated collars); and control (C) (unexposed to pyrethroids) were extended by 12 months. During that time, adult mosquitoes and midges were sampled along 280 households at three household locations (inside human dwellings, dog sleeping sites and chicken roosts). RESULTS We collected 3145 culicids (9 genera, 87.6% Culex spp.) distributed relatively uniformly across all 3 arms: 41.9% at chicken roosts; 37.7% inside houses; and 20.3% at dog sleeping sites. We collected 11,464 Culicoides (15 species) found mostly at chicken roosting sites (84.7%) compared with dog sleeping sites (12.9%) or houses (2.4%). Mosquitoes and Culicoides were most abundant during the hot and rainy season. Increased daytime temperature was marginally associated with increased mosquito abundance (Z = 1.97, P = 0.049) and Culicoides abundance (Z = 1.71, P = 0.087). There was no significant association with daily average rainfall for either group. Household-level mosquito and midge numbers were both significantly reduced by the PI intervention 56% [incidence rate ratio, IRR = 0.54 (95% CI: 0.30-0.97), P ≤ 0.05] and 53% [IRR = 0.47 (95% CI: 0.26-0.85), P ≤ 0.05], respectively, compared to the control intervention. The abundance of both dipteran groups at dog sleeping sites was largely unaffected by the PI and DC interventions. The PI intervention significantly reduced abundance of mosquitoes inside houses (41%) and at chicken roosting sites (48%) and reduced midge abundance by 51% in chicken roosting sites. CONCLUSIONS Sprayed insecticide at chicken roosting sites reduced the abundance of mosquitoes and midges at the peridomestic level while dog collars had no effect on numbers for any group.
Collapse
Affiliation(s)
- Mikel A. González
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Bailrigg, LA1 4YG Lancashire UK
- Present Address: Departamento de Sanidad Animal, Instituto Vasco de Investigación y Desarrollo Agrario (NEIKER), Derio, Bizkaia Spain
| | - Erin Dilger
- Zeeman Institute and School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL UK
| | - María M. Ronderos
- División Entomología, Museo de La Plata, Paseo del Bosque s/n, 1900 La Plata, Buenos Aires Argentina
| | - Gustavo R. Spinelli
- División Entomología, Museo de La Plata, Paseo del Bosque s/n, 1900 La Plata, Buenos Aires Argentina
| | - Orin Courtenay
- Zeeman Institute and School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL UK
| | - James G. C. Hamilton
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Bailrigg, LA1 4YG Lancashire UK
| |
Collapse
|
24
|
Tracking Community Timing: Pattern and Determinants of Seasonality in Culicoides (Diptera: Ceratopogonidae) in Northern Florida. Viruses 2020; 12:v12090931. [PMID: 32854272 PMCID: PMC7552033 DOI: 10.3390/v12090931] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 11/19/2022] Open
Abstract
Community dynamics are embedded in hierarchical spatial–temporal scales that connect environmental drivers with species assembly processes. Culicoides species are hematophagous arthropod vectors of orbiviruses that impact wild and domestic ruminants. A better sense of Culicoides dynamics over time is important because sympatric species can lengthen the seasonality of virus transmission. We tested a putative departure from the four seasons calendar in the phenology of Culicoides and the vector subassemblage in the Florida panhandle. Two years of weekly abundance data, temporal scales, persistence and environmental thresholds were analyzed using a tripartite Culicoides β-diversity based modeling approach. Culicoides phenology followed a two-season regime and was explained by stream flow and temperature, but not rainfall. Species richness fit a nested pattern where the species recruitment was maximized during spring months. Midges were active year-round, and two suspected vectors species, Culicoides venustus and Culicoides stellifer, were able to sustain and connect the seasonal modules. Persistence suggests that Orbivirus maintenance does not rely on overwintering and that viruses are maintained year-round, with the seasonal dynamics resembling subtropical Culicoides communities with temporal-overlapping between multivoltine species. Viewing Culicoides-borne orbiviruses as a time-sensitive community-based issue, our results help to recommend when management operations should be delivered.
Collapse
|
25
|
Peck DE, Reeves WK, Pelzel-McCluskey AM, Derner JD, Drolet B, Cohnstaedt LW, Swanson D, McVey DS, Rodriguez LL, Peters DPC. Management Strategies for Reducing the Risk of Equines Contracting Vesicular Stomatitis Virus (VSV) in the Western United States. J Equine Vet Sci 2020; 90:103026. [PMID: 32534788 DOI: 10.1016/j.jevs.2020.103026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/12/2020] [Accepted: 04/12/2020] [Indexed: 11/24/2022]
Abstract
Vesicular stomatitis viruses (VSVs) cause a condition known as vesicular stomatitis (VS), which results in painful lesions in equines, cattle, swine, and camelids, and when transmitted to humans, can cause flu-like symptoms. When animal premises are affected by VS, they are subject to a quarantine. The equine industry more broadly may incur economic losses due to interruptions of animal trade and transportation to shows, competitions, and other events. Equine owners, barn managers, and veterinarians can take proactive measures to reduce the risk of equines contracting VS. To identify appropriate risk management strategies, it helps to understand which biting insects are capable of transmitting the virus to animals, and to identify these insect vectors' preferred habitats and behaviors. We make this area of science more accessible to equine owners, barn managers, and veterinarians, by (1) translating the most relevant scientific information about biting insect vectors of VSV and (2) identifying practical management strategies that might reduce the risk of equines contracting VSV from infectious biting insects or from other equines already infected with VSV. We address transmission risk at four different spatial scales-the animal, the barn/shelter, the barnyard/premises, and the surrounding environment/neighborhood-noting that a multiscale and spatially collaborative strategy may be needed to reduce the risk of VS.
Collapse
Affiliation(s)
| | - Will K Reeves
- USDA Animal and Plant Health Inspection Service, Fort Collins, CO
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dinh ETN, Cauvin A, Orange JP, Shuman RM, Wisely SM, Blackburn JK. Living la Vida T-LoCoH: site fidelity of Florida ranched and wild white-tailed deer ( Odocoileus virginianus) during the epizootic hemorrhagic disease virus (EHDV) transmission period. MOVEMENT ECOLOGY 2020; 8:14. [PMID: 32257219 PMCID: PMC7076934 DOI: 10.1186/s40462-020-00200-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Epizootic hemorrhagic disease virus (EHDV) is a pathogen vectored by Culicoides midges that causes significant economic loss in the cervid farming industry and affects wild deer as well. Despite this, its ecology is poorly understood. Studying movement and space use by ruminant hosts during the transmission season may elucidate EHDV ecology by identifying behaviors that can increase exposure risk. Here we compared home ranges (HRs) and site fidelity metrics within HRs using the T-LoCoH R package and GPS data from collared deer. METHODS Here, we tested whether white-tailed deer (Odocoileus virginianus) roaming within a high-fenced, private deer farm (ranched) and native deer from nearby state-managed properties (wild) exhibited differences in home range (HR) size and usage during the 2016 and 2017 EHDV seasons. We captured male and female individuals in both years and derived seasonal HRs for both sexes and both groups for each year. HRs were calculated using a time-scale distance approach in T-LoCoH. We then derived revisitation and duration of visit metrics and compared between years, sexes, and ranched and wild deer. RESULTS We found that ranched deer of both sexes tended to have smaller activity spaces (95% HR) and revisited sites within their HR more often but stayed for shorter periods than wild deer. However, core area (25% HR) sizes did not significantly differ between these groups. CONCLUSIONS The contrast in our findings between wild and ranched deer suggest that home range usage, rather than size, in addition to differences in population density, likely drive differences in disease exposure during the transmission period.
Collapse
Affiliation(s)
- Emily T. N. Dinh
- Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL USA
| | - Allison Cauvin
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL USA
| | - Jeremy P. Orange
- Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL USA
| | - Rebecca M. Shuman
- Florida Fish and Wildlife Conservation Commission, Gainesville, FL USA
| | - Samantha M. Wisely
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL USA
| | - Jason K. Blackburn
- Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL USA
| |
Collapse
|
27
|
Evaluation of A Baculovirus-Expressed VP2 Subunit Vaccine for the Protection of White-Tailed Deer ( Odocoileus virginianus) from Epizootic Hemorrhagic Disease. Vaccines (Basel) 2020; 8:vaccines8010059. [PMID: 32023812 PMCID: PMC7157196 DOI: 10.3390/vaccines8010059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 11/17/2022] Open
Abstract
Epizootic hemorrhagic disease virus (EHDV) is an arthropod-transmitted RNA virus and the causative agent of epizootic hemorrhagic disease (EHD) in wild and domestic ruminants. In North America, white-tailed deer (WTD) experience the highest EHD-related morbidity and mortality, although clinical disease is reported in cattle during severe epizootics. No commercially licensed EHDV vaccine is available in North America. The objective of this study was to develop and evaluate a subunit vaccine candidate to control EHD in WTD. Recombinant VP2 (rVP2) outer capsid proteins of EHDV serotypes 2 (EHDV-2) and 6 (EHDV-6) were produced in a baculovirus-expression system. Mice and cattle vaccinated with EHDV-2 or EHDV-6 rVP2 produced homologous virus-neutralizing antibodies. In an immunogenicity/efficacy study, captive-bred WTD received 2 doses of EHDV-2 rVP2 or sham vaccine, then were challenged with wild-type EHDV-2 at 30 d post vaccination. None of the rVP2-vaccinated deer developed clinical disease, no viral RNA was detected in their blood or tissues (liver, lung, spleen, kidney), and no EHDV-induced lesions were observed. Sham-vaccinated deer developed clinical disease with viremia and typical EHD vascular lesions. Here, we demonstrate a rVP2 subunit vaccine that can provide protective immunity from EHDV infection and which may serve as an effective tool in preventing clinical EHD and reducing virus transmission.
Collapse
|
28
|
Erram D, Burkett-Cadena N. Laboratory Rearing of Culicoides stellifer (Diptera: Ceratopogonidae), a Suspected Vector of Orbiviruses in the United States. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:25-32. [PMID: 31602460 DOI: 10.1093/jme/tjz154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Indexed: 06/10/2023]
Abstract
Laboratory rearing procedures of Culicoides stellifer Coquillett (Diptera: Ceratopogonidae) were evaluated with an aim towards colonization of this species. Eggs collected from field-collected gravid females were placed on 0.25% agar slants and given a diet of 1) nematodes (Panagrellus redivivus Linnaeus), 2) nematodes + lactalbumin and yeast (LY), 3) microbes from nematode medium, and 4) tap water (autoclaved). Complete larval development to adult stage occurred only in two treatments: 1) nematodes and 2) nematodes + LY. Culicoides stellifer larvae could not survive beyond 1 wk on a diet of microbes alone or in the sterile water treatment. Larval survival rates were high using nematode diet (79.2 ± 11.3% [mean ± SE]) but were slightly lower in the nematode + LY group (66.5 ± 19.6%). Larval stage lasted ~21 d in both treatments. Sex ratio of F1 adults was ~1:1 (M:F) using nematode diet but was male biased (~2:1) with nematode + LY diet. These findings collectively suggest that a microbial community is required for midge larvae, either to support invertebrate prey base or as a potential food source. But in the present study, the supplied microbes alone were not sufficient to support midge survival/development. It appears that other nutritional components may also be essential to support the larval survival/development of C. stellifer. Overall, a simple diet of bacterial feeding nematodes and their associated microorganisms can be used to rear C. stellifer larvae under laboratory conditions. However, captive mating in F1 adults poses a major obstacle for successful colonization of this species currently.
Collapse
Affiliation(s)
- Dinesh Erram
- Florida Medical Entomology Laboratory, University of Florida, FL
| | | |
Collapse
|
29
|
Antibodies to Epizootic Hemorrhagic Disease Virus (EHDV) in Farmed and Wild Florida White-Tailed Deer (Odocoileus virginianus). J Wildl Dis 2020. [DOI: 10.7589/2019-02-034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Allen SE, Rothenburger JL, Jardine CM, Ambagala A, Hooper-McGrevy K, Colucci N, Furukawa-Stoffer T, Vigil S, Ruder M, Nemeth NM. Epizootic Hemorrhagic Disease in White-Tailed Deer, Canada. Emerg Infect Dis 2019; 25:832-834. [PMID: 30882321 PMCID: PMC6433007 DOI: 10.3201/eid2504.180743] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Epizootic hemorrhagic disease affects wild and domestic ruminants and has recently spread northward within the United States. In September 2017, we detected epizootic hemorrhagic disease virus in wild white-tailed deer, Odocoileus virginianus, in east-central Canada. Culicoides spp. midges of the subgenus Avaritia were the most common potential vectors identified on site.
Collapse
|
31
|
Ghosh A, Jasperson D, Cohnstaedt LW, Brelsfoard CL. Transfection of Culicoides sonorensis biting midge cell lines with Wolbachia pipientis. Parasit Vectors 2019; 12:483. [PMID: 31615544 PMCID: PMC6792224 DOI: 10.1186/s13071-019-3716-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/14/2019] [Indexed: 01/08/2023] Open
Abstract
Background Biting midges of the genus Culicoides vector multiple veterinary pathogens and are difficult to control. Endosymbionts particularly Wolbachia pipientis may offer an alternative to control populations of Culicoides and/or impact disease transmission in the form of population suppression or replacement strategies. Methods Culicoides sonorensis cell lines were transfected with a Wolbachia infection using a modified shell vial technique. Infections were confirmed using PCR and cell localization using fluorescent in situ hybridization (FISH). The stability of Wolbachia infections and density was determined by qPCR. qPCR was also used to examine immune genes in the IMD, Toll and JACK/STAT pathways to determine if Wolbachia were associated with an immune response in infected cells. Results Here we have transfected two Culicoides sonorensis cell lines (W3 and W8) with a Wolbachia infection (walbB) from donor Aedes albopictus Aa23 cells. PCR and FISH showed the presence of Wolbachia infections in both C. sonorensis cell lines. Infection densities were higher in the W8 cell lines when compared to W3. In stably infected cells, genes in the immune Toll, IMD and JAK/STAT pathways were upregulated, along with Attacin and an Attacin-like anti-microbial peptides. Conclusions The successful introduction of Wolbachia infections in C. sonorensis cell lines and the upregulation of immune genes, suggest the utility of using Wolbachia for a population replacement and/or population suppression approach to limit the transmission of C. sonorensis vectored diseases. Results support the further investigation of Wolbachia induced pathogen inhibitory effects in Wolbachia-infected C. sonorensis cell lines and the introduction of Wolbachia into C. sonorensis adults via embryonic microinjection to examine for reproductive phenotypes and host fitness effects of a novel Wolbachia infection.
Collapse
Affiliation(s)
- Arnab Ghosh
- Department of Biological Sciences, Texas Tech University, 2901 Main St., Lubbock, TX, 79409, USA
| | - Dane Jasperson
- USDA-ARS Arthropod Borne Animal Disease Research Unit, 1515 College Ave., Manhattan, KS, 66502, USA
| | - Lee W Cohnstaedt
- USDA-ARS Arthropod Borne Animal Disease Research Unit, 1515 College Ave., Manhattan, KS, 66502, USA
| | - Corey L Brelsfoard
- Department of Biological Sciences, Texas Tech University, 2901 Main St., Lubbock, TX, 79409, USA.
| |
Collapse
|
32
|
Erram D, Blosser EM, Burkett-Cadena N. Habitat associations of Culicoides species (Diptera: Ceratopogonidae) abundant on a commercial cervid farm in Florida, USA. Parasit Vectors 2019; 12:367. [PMID: 31349854 PMCID: PMC6660662 DOI: 10.1186/s13071-019-3626-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/19/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biting midges in the genus Culicoides (Diptera: Ceratopogonidae) transmit bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) to ruminants, thus exerting a significant economic impact on animal agriculture worldwide. However, very little is known about the larval habitat characteristics of Culicoides species associated with BTV/EHDV transmission, particularly in southeastern USA, limiting the establishment of effective midge control strategies. In this study, we examined the habitat associations of Culicoides species abundant on a commercial cervid farm in Florida, USA and quantified several environmental variables of their habitat to identify the key variables associated with midge abundance. METHODS Mud/substrate samples from three potential larval habitats on the farm (edges of streams, puddles and seepages) were brought to the laboratory and incubated for adult emergence, and the percentage organic matter, macronutrients, micronutrients, pH, electrical conductivity, moisture and microbial concentrations of the substrate were quantified. RESULTS Strong habitat associations were observed for Culicoides haematopotus (Malloch) (stream edge), Culicoides stellifer (Coquillett) (puddles) and Culicoides loisae (Jamnback) (stream edge), the most commonly emerging midge species from the samples. Suspected vector species of BTV/EHDV on the property, C. stellifer and Culicoides venustus (Hoffman), emerged mainly from habitats with moderate-high levels of pollution (edges of puddles and seepages) as indicated by the relatively higher concentrations/levels of organic matter, nutrients and other environmental variables in these samples. The emergence of C. insignis was too low to form any meaningful conclusions. For each Culicoides species, only weak positive or negative associations were detected between midge abundance and the various environmental variables quantified. CONCLUSIONS Habitat associations of Culicoides species abundant on a local cervid/animal farm vary, most likely as a function of certain biotic/abiotic characteristics of the habitat. Further studies across a larger spatial and temporal scale will be needed to experimentally evaluate/identify the key factors more strongly associated with the abundance of target Culicoides species. This information, in the long term, can be potentially exploited to render local habitats unsuitable for midge oviposition/larval development.
Collapse
Affiliation(s)
- Dinesh Erram
- Florida Medical Entomology Laboratory, University of Florida, IFAS, 200 9th St. SE, Vero Beach, FL, 32962, USA.
| | - Erik M Blosser
- Florida Medical Entomology Laboratory, University of Florida, IFAS, 200 9th St. SE, Vero Beach, FL, 32962, USA.,University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Nathan Burkett-Cadena
- Florida Medical Entomology Laboratory, University of Florida, IFAS, 200 9th St. SE, Vero Beach, FL, 32962, USA
| |
Collapse
|
33
|
McGregor BL, Erram D, Acevedo C, Alto BW, Burkett-Cadena ND. Vector Competence of Culicoides sonorensis (Diptera: Ceratopogonidae) for Epizootic Hemorrhagic Disease Virus Serotype 2 Strains from Canada and Florida. Viruses 2019; 11:v11040367. [PMID: 31013588 PMCID: PMC6521025 DOI: 10.3390/v11040367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 01/12/2023] Open
Abstract
Epizootic hemorrhagic disease virus (EHDV), an Orbivirus transmitted by Culicoides spp. vectors, is represented by seven serotypes and numerous strains worldwide. While studies comparing vector competence between serotypes exist, studies between viral strains are lacking. In this study, we examined the rates of infection, dissemination, and transmission of two strains of EHDV-2 orally fed to the known vector, Culicoides sonorensis Wirth & Jones. Culicoides sonorensis cohorts were fed an infectious blood meal containing EHDV-2 strains from either Alberta, Canada (Can-Alberta) or Florida (5.5 log10 PFUe/mL) and tested for the vector’s susceptibility to infection and dissemination. In addition, transmission rates of the virus were assessed and compared using capillary tube and honey card methods. Our results show that the Florida strain had higher infection and dissemination rates than the Can-Alberta strain in spite of the Florida strain having significantly lower viral titers in C. sonorensis bodies, legs, and saliva than the Can-Alberta strain. Overall transmission rates were not significantly different between the two strains but varied significantly between the methods used. These findings suggest that the consequences of EHDV infection in C. sonorensis vary between virus strains and have huge implications in future vector competence studies involving Culicoides species and Orbiviruses.
Collapse
Affiliation(s)
- Bethany L McGregor
- Florida Medical Entomology Laboratory, University of Florida, 200 9th St. SE, Vero Beach, FL 32962, USA.
| | - Dinesh Erram
- Florida Medical Entomology Laboratory, University of Florida, 200 9th St. SE, Vero Beach, FL 32962, USA.
| | - Carolina Acevedo
- Florida Medical Entomology Laboratory, University of Florida, 200 9th St. SE, Vero Beach, FL 32962, USA.
| | - Barry W Alto
- Florida Medical Entomology Laboratory, University of Florida, 200 9th St. SE, Vero Beach, FL 32962, USA.
| | - Nathan D Burkett-Cadena
- Florida Medical Entomology Laboratory, University of Florida, 200 9th St. SE, Vero Beach, FL 32962, USA.
| |
Collapse
|
34
|
Sloyer KE, Wisely SM, Burkett-Cadena ND. Effects of ultraviolet LED versus incandescent bulb and carbon dioxide for sampling abundance and diversity of Culicoides in Florida. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:353-361. [PMID: 30383275 DOI: 10.1093/jme/tjy195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Biting midges (Ceratopogonidae: Culicoides) are vectors of bluetongue virus and epizootic hemorrhagic disease virus which cause significant morbidity and mortality in ruminants. Recently, ultraviolet light emitting diodes (UV/LEDs) in conjunction with suction traps have been widely utilized for Culicoides spp. collections. Despite the use of these traps, limited work has been done comparing sampling variability associated with these light types with and without CO2. For this objective, mini-CDC light traps with four different attractant combinations were operated at eight sites across Florida between April and October 2017. Trap attractants included white-incandescent lights and UV/LEDs with and without CO2 to determine optimum combinations of light type and attractant for species richness, diversity, and abundance of Culicoides spp. in Florida. The results of the study demonstrate that traps with UV/LED light collect greater richness, diversity, and abundance of Culicoides species than traps with white-incandescent light. Addition of CO2 resulted in greater diversity in traps with UV/LED lights, but lower diversity in traps with white-incandescent light. Therefore, CO2 may be used to increase the abundance of Culicoides spp. collected by traps, regardless of light type, but the ability for CO2 to attract a higher number and diversity of species to traps varies by the light type used. Therefore, we suggest using CO2 primarily in conjunction with UV/LED light. When CO2 is not available, UV/LED light used alone can be substituted without a significant loss in species richness or diversity, although abundance of most Culicoides species will be significantly lower in the absence of CO2.
Collapse
Affiliation(s)
- Kristin E Sloyer
- University of Florida IFAS, Florida Medical Entomology Laboratory, Vero Beach, FL
| | - Samantha M Wisely
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL
| | | |
Collapse
|
35
|
Merino J, Cruz NIDL, Galvan G, León AD, Burnes J. First molecular and serological detection of Epizootic Hemorrhagic Disease virus in white tailed deer ( Odocoileus virginianus ) from Tamaulipas, Mexico. ARQ BRAS MED VET ZOO 2019. [DOI: 10.1590/1678-4162-9987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Epizootic hemorrhagic disease viruses (EHDV) are dsRNA arboviruses transmitted by biting midges of the genus Culicoides that cause disease in domestic and wild ruminants. Epizootic hemorrhagic disease (EHD) is considered the most important infectious disease of white tailed deer (WTD) in North America, some studies in Northeast Mexico reported EHDV-seropositive WTD and EHDV-infected Culicoides vectors. The increasing population of WTD that share habitat with livestock in Northeast México highlights the importance of EHD for the livestock industry in the transboundary region with the U.S. One hundred and twenty two samples from WTD in Tamaulipas state, Mexico were tested by ELISA and RT-PCR for EHDV antibodies and nucleic acid, respectively. Twelve animals were seropositive to ELISA and eleven animals were positive by RT-PCR. This is the first report of EHDV nucleic acid detection in WTD from Mexico. It is hypothesized that applying the transboundary disease approach to interdisciplinary research will help fill knowledge gaps, which could help develop countermeasures to mitigate the threat of EHDV infection in wildlife and livestock along the U.S.-Mexico border.
Collapse
Affiliation(s)
| | | | - G. Galvan
- Universidad Autónoma de Tamaulipas, Mexico
| | | | - J. Burnes
- Universidad Autónoma de Tamaulipas, Mexico
| |
Collapse
|
36
|
Baygents G, Bani-Yaghoub M. Cluster analysis of hemorrhagic disease in Missouri's white-tailed deer population: 1980-2013. BMC Ecol 2018; 18:35. [PMID: 30217140 PMCID: PMC6137738 DOI: 10.1186/s12898-018-0188-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 09/03/2018] [Indexed: 01/04/2023] Open
Abstract
Background Outbreaks of deer hemorrhagic disease (HD) have been documented in the USA for many decades. In the year 2012, there was a severe HD outbreak in Missouri with mortalities reaching approximately 6.9 per thousand. Moreover, Missouri accounted for more than 43% of all reported epizootic HD cases in captive white-tailed deer. Using the data of suspected HD occurrence in Missouri, the primary goal of this paper was to determine if HD in Missouri’s white-tailed deer occurs in spatial clusters. Results The main results of the cluster analysis are as follows. First, the spatial clusters of years 1980, 1988, 2005–2007, 2010, 2012, and 2013 suggest patterns of outbreaks every 6–8 years, with a potential outbreak in years 2018–2020. Secondly, these spatial clusters were more frequent in the central and southern counties. Conclusions The clustering analyses employed in this study have potential applications for improving surveillance programs and designing early warning systems for effective deer population management and potentially reducing the number of HD cases.
Collapse
Affiliation(s)
- Gerry Baygents
- Trinidad State Junior College, Valley Campus, 1011 Main Street, Alamosa, CO, 81101, USA.
| | - Majid Bani-Yaghoub
- Department of Math and Statistics, University of Missouri-Kansas City, 5120 Rockhill Road, Kansas City, MO, 64110, USA
| |
Collapse
|
37
|
Hope A, Gubbins S, Sanders C, Barber J, Stubbins F, Baylis M, Carpenter S. Sheep breed and shearing influences attraction and blood-feeding behaviour of Culicoides (Diptera: Ceratopogonidae) on a UK farm. Parasit Vectors 2018; 11:473. [PMID: 30126453 PMCID: PMC6102838 DOI: 10.1186/s13071-018-3003-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 07/09/2018] [Indexed: 11/30/2022] Open
Abstract
Background Culicoides biting midges (Diptera: Ceratopogonidae) are responsible for the biological transmission of arboviruses of international importance between ruminant livestock. These arboviruses include bluetongue virus (BTV) and Schmallenberg virus (SBV), which have emerged in unprecedented outbreaks in northern Europe. The impact of breed and shearing of sheep on Culicoides: host contact rates has not been investigated in detail and has the potential to influence arbovirus transmission and control measures employed to limit spread. Methods Attraction of Culicoides to Hartline and Hartline/Suffolk cross-breed sheep was compared using 224 drop trap collections over 22 nights and 181 catches from sheared or unsheared Hartline/Suffolk ewes were made over 17 nights to compare Culicoides activity and rates of blood engorgement. Results A total of 31,314 Culicoides was collected in the two trials and females of the subgenus Avaritia represented over 96.9% of individuals collected. Attraction to breed was dependent upon species of Culicoides and physiological status, with a significantly greater number of individuals collected on the cross-breed sheep. Shearing of sheep did not significantly increase or decrease the number of Culicoides attracted but increased the rate of successful engorgement. Conclusions Both breed and shearing were shown to influence Culicoides biting rate on sheep. These data are useful in a direct context in understanding the likely impact of control measures against arboviruses including BTV and SBV and additionally in providing data from field-based studies to enable modelling exercises of arbovirus transmission and spread. Electronic supplementary material The online version of this article (10.1186/s13071-018-3003-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew Hope
- The Pirbright Institute, Pirbright, Surrey, UK.
| | | | | | | | | | - Matthew Baylis
- Liverpool University Climate and Infectious Diseases of Animals (Lucinda) Group, University of Liverpool, Neston, Cheshire, UK.,Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
38
|
|
39
|
Erram D, Burkett-Cadena N. Laboratory studies on the oviposition stimuli of Culicoides stellifer (Diptera: Ceratopogonidae), a suspected vector of Orbiviruses in the United States. Parasit Vectors 2018; 11:300. [PMID: 29769137 PMCID: PMC5956791 DOI: 10.1186/s13071-018-2891-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/08/2018] [Indexed: 11/21/2022] Open
Abstract
Background Biting midges of the genus Culicoides (Diptera: Ceratopogonidae) exert a significant impact on animal agriculture worldwide because they transmit bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) to ruminants. Without effective vaccines, BTV/EHDV vector management strategies are needed, particularly in commercial white-tailed deer (WTD) facilities. However, detailed information on the ecology of midge immatures in/around cervid operations is currently lacking. Towards filling this knowledge gap, we conducted two-choice oviposition experiments with field-collected Culicoides stellifer Coquillett (a suspected vector of BTV/EHDV in the USA) under laboratory conditions to examine which natural source from the larval habitat is relatively more attractive for midge oviposition. Methods Field-collected C. stellifer females (CDC-UV light traps) were given a blood meal from live chicken and examined for their oviposition preferences for individual (or mixed) potential larval habitat oviposition stimuli in two-choice bioassays. Substrates included mud from C. stellifer habitat, mud from allopatric site, vegetation (Sphagnum spp. mosses), field water, WTD manure and de-ionized water (control). Results The majority of midges (91%) oviposited in only one dish, with few females (9%) ovipositing in both the dishes. Gravid females demonstrated an overall oviposition preference for substrates with mud and vegetation from the larval habitat, depositing a significantly higher proportion of eggs on mud (52.3%) and vegetation (81.8%) than on controls (≤ 18.2%) (P ≤ 0.0320). Moreover, greater number of eggs per female were deposited on mud (29.5–40.7 depending on trial) and vegetation (38.2) than on controls (≤ 5.8). WTD manure, field water and mud from allopatric site were not found to be more attractive than controls for oviposition. Combining individual substrates (mud + WTD manure; mud + moss + WTD manure + field water) did not elicit greater oviposition responses than mud or moss alone. Conclusions Management strategies to discourage C. stellifer oviposition in/around commercial cervid facilities should likely focus on mud and/or vegetation, rather than WTD manure. However, further studies are needed to examine whether the spatial distributions of C. stellifer and Sphagnum spp. moss are correlated, and to determine whether targeting vegetation in/around cervid facilities can contribute to reductions in local midge densities. Electronic supplementary material The online version of this article (10.1186/s13071-018-2891-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dinesh Erram
- Florida Medical Entomology Laboratory, University of Florida, IFAS, 200 9th St. SE, Vero Beach, FL, 32962, USA.
| | - Nathan Burkett-Cadena
- Florida Medical Entomology Laboratory, University of Florida, IFAS, 200 9th St. SE, Vero Beach, FL, 32962, USA
| |
Collapse
|
40
|
Erram D, Zurek L. Larval Development of Culicoides sonorensis (Diptera: Ceratopogonidae) in Mud Supplemented With Manure of Various Farm Animals. JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:43-50. [PMID: 29121343 DOI: 10.1093/jme/tjx197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Understanding factors that affect Culicoides larval development is critical in suppressing adult midge populations that transmit economically important pathogens to ruminants such as bluetongue virus and epizootic hemorrhagic disease virus. In this study, development of Culicoides sonorensis Wirth and Jones (Diptera: Ceratopogonidae) was investigated in sterilized mud mixed with varying concentrations (3.2, 6.4, 12.6, 25.0, 50.0, and 100.0%) of dairy cattle and white tailed deer manures. In addition, C. sonorensis development was also evaluated in manure (25.0% concentration) of six other farm animals (beef cattle, sheep, goat, pig, horse, and chicken). First instar larvae (~100/treatment) were added to each substrate, and adult emergence and development times were monitored for 90 d. In substrates with dairy cattle manure, significantly more adults emerged (≥76.7%) and development time was shorter (≤25.5 d) from 25.0% manure substrate than from lower or higher manure concentrations (≤41.3% emerged; ≥31.2 d). Comparatively, white-tailed deer and chicken manures supported C. sonorensis development poorly with low emergence rates (deer ≤ 13.0%; chicken = 0%) and longer development time (deer ≥ 29.0 d). Mud enriched with manure of beef cattle, sheep, goat, pig, and horse generally supported C. sonorensis development, although adult emergence and development times varied widely between species. These results suggest that manure of several farm animals, except for white-tailed deer and chicken, can contribute substantially to C. sonorensis development in the field. Therefore, the potential of animals other than cattle in sustaining local populations of C. sonorensis cannot be overlooked when designing management strategies.
Collapse
Affiliation(s)
- Dinesh Erram
- Department of Entomology, College of Agriculture, Kansas State University, Manhattan, KS
| | - Ludek Zurek
- Department of Entomology, College of Agriculture, Kansas State University, Manhattan, KS
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| |
Collapse
|
41
|
Munsick TR, Peck DE, Ritten JP, Jones R, Jones M, Miller MM. Expected Net Benefit of Vaccinating Rangeland Sheep against Bluetongue Virus Using a Modified-Live versus Killed Virus Vaccine. Front Vet Sci 2017; 4:166. [PMID: 29075635 PMCID: PMC5641540 DOI: 10.3389/fvets.2017.00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 09/22/2017] [Indexed: 11/13/2022] Open
Abstract
Recurring outbreaks of bluetongue virus in domestic sheep of the US Intermountain West have prompted questions about the economic benefits and costs of vaccinating individual flocks against bluetongue (BT) disease. We estimate the cost of a BT outbreak on a representative rangeland sheep operation in the Big Horn Basin of the state of Wyoming using enterprise budgets and stochastic simulation. The latter accounts for variability in disease severity and lamb price, as well as uncertainty about when an outbreak will occur. We then estimate the cost of purchasing and administering a BT vaccine. Finally, we calculate expected annual net benefit of vaccinating under various outbreak intervals. Expected annual net benefit is calculated for both a killed virus (KV) vaccine and modified-live virus vaccine, using an observed price of $0.32 per dose for modified-live and an estimated price of $1.20 per dose for KV. The modified-live vaccine’s expected annual net benefit has a 100% chance of being positive for an outbreak interval of 5, 10, or 20 years, and a 77% chance of being positive for a 50-year interval. The KV vaccine’s expected annual net benefit has a 97% chance of being positive for a 5-year outbreak interval, and a 42% chance of being positive for a 10-year interval. A KV vaccine is, therefore, unlikely to be economically attractive to producers in areas exposed less frequently to BT disease. A modified-live vaccine, however, requires rigorous authorization before legal use can occur in Wyoming. To date, no company has requested to manufacture a modified-live vaccine for commercial use in Wyoming. The KV vaccine poses less risk to sheep reproduction and less risk of unintentional spread, both of which facilitate approval for commercial production. Yet, our results show an economically consequential tradeoff between a KV vaccine’s relative safety and higher cost. Unless the purchase price is reduced below our assumed $1.20 per dose, producer adoption of a KV vaccine for BT is likely to be low in the study area. This tradeoff between cost and safety should be considered when policymakers regulate commercial use of the two vaccine types.
Collapse
Affiliation(s)
- Tristram R Munsick
- Department of Agricultural & Applied Economics, University of Wyoming, Laramie, WY, United States
| | - Dannele E Peck
- Department of Agricultural & Applied Economics, University of Wyoming, Laramie, WY, United States
| | - John P Ritten
- Department of Agricultural & Applied Economics, University of Wyoming, Laramie, WY, United States
| | - Randall Jones
- Agricultural Producer, Big Horn Basin, WY, United States
| | - Michelle Jones
- Agricultural Producer, Big Horn Basin, WY, United States
| | - Myrna M Miller
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
42
|
Mills MK, Michel K, Pfannenstiel RS, Ruder MG, Veronesi E, Nayduch D. Culicoides-virus interactions: infection barriers and possible factors underlying vector competence. CURRENT OPINION IN INSECT SCIENCE 2017; 22:7-15. [PMID: 28805641 DOI: 10.1016/j.cois.2017.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
In the United States, Culicoides midges vector arboviruses of economic importance such as Bluetongue Virus and Epizootic Hemorrhagic Disease Virus. A limited number of studies have demonstrated the complexities of midge-virus interactions, including dynamic changes in virus titer and prevalence over the infection time course. These dynamics are, in part, dictated by mesenteron infection and escape barriers. This review summarizes the overarching trends in viral titer and prevalence throughout the course of infection. Essential barriers to infection and dissemination in the midge are highlighted, along with heritable and extrinsic factors that likely contribute to these barriers. Next generation molecular tools and techniques, now available for Culicoides midges, give researchers the opportunity to test how these factors contribute to vector competence.
Collapse
Affiliation(s)
- Mary K Mills
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Robert S Pfannenstiel
- United States Department of Agriculture, Agricultural Research Service, Arthropod Borne Animal Diseases Research Unit, Manhattan, KS 66502, USA
| | - Mark G Ruder
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Eva Veronesi
- Vector-borne Viral Diseases Programme, The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, United Kingdom
| | - Dana Nayduch
- United States Department of Agriculture, Agricultural Research Service, Arthropod Borne Animal Diseases Research Unit, Manhattan, KS 66502, USA.
| |
Collapse
|
43
|
The First 10 Years (2006-15) of Epizootic Hemorrhagic Disease Virus Serotype 6 in the USA. J Wildl Dis 2017; 53:901-905. [PMID: 28657859 DOI: 10.7589/2016-12-284] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Epizootic hemorrhagic disease virus (EHDV) is a Culicoides biting midge-transmitted orbivirus (family Reoviridae) of wild and domestic ruminants and is an important pathogen of white-tailed deer (Odocoileus virginianus). Historically, only two serotypes, EHDV-1 and EHDV-2, have been known to be endemic in the US. However, in 2006, an exotic serotype (EHDV-6) was first detected in the US by a long-term passive surveillance system for EHDV and bluetongue viruses. Here we report EHDV-6 detections made through these passive surveillance efforts by the Southeastern Cooperative Wildlife Disease Study (University of Georgia, Athens, Georgia, USA) and the National Veterinary Services Laboratories (US Department of Agriculture, Ames, Iowa, USA) over a 10-yr period (2006-15). The results demonstrated that EHDV-6 was detected from ruminants every year since 2006 and was widespread in the central and eastern US, providing evidence that EHDV-6 is likely now established in the US.
Collapse
|
44
|
Abstract
The performance of different bluetongue control measures related to both vaccination and protection from bluetongue virus (BTV) vectors was assessed. By means of a mathematical model, it was concluded that when vaccination is applied on 95% of animals even for 3 years, bluetongue cannot be eradicated and is able to re‐emerge. Only after 5 years of vaccination, the infection may be close to the eradication levels. In the absence of vaccination, the disease can persist for several years, reaching an endemic condition with low level of prevalence of infection. Among the mechanisms for bluetongue persistence, the persistence in the wildlife, the transplacental transmission in the host, the duration of viraemia and the possible vertical transmission in vectors were assessed. The criteria of the current surveillance scheme in place in the EU for demonstration of the virus absence need revision, because it was highlighted that under the current surveillance policy bluetongue circulation might occur undetected. For the safe movement of animals, newborn ruminants from vaccinated mothers with neutralising antibodies can be considered protected against infection, although a protective titre threshold cannot be identified. The presence of colostral antibodies interferes with the vaccine immunisation in the newborn for more than 3 months after birth, whereas the minimum time after vaccination of animal to be considered immune can be up to 48 days. The knowledge about vectors ecology, mechanisms of over‐wintering and criteria for the seasonally vector‐free period was updated. Some Culicoides species are active throughout the year and an absolute vector‐free period may not exist at least in some areas in Europe. To date, there is no evidence that the use of insecticides and repellents reduce the transmission of BTV in the field, although this may reduce host/vector contact. By only using pour‐on insecticides, protection of animals is lower than the one provided by vector‐proof establishments. This publication is linked to the following EFSA Supporting Publications article: http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2017.EN-1182/full, http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2017.EN-1171/full
Collapse
|
45
|
Climate Change Influences on the Global Potential Distribution of Bluetongue Virus. PLoS One 2016; 11:e0150489. [PMID: 26959424 PMCID: PMC4784974 DOI: 10.1371/journal.pone.0150489] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/15/2016] [Indexed: 11/19/2022] Open
Abstract
The geographic distribution of arboviruses has received considerable attention after several dramatic emergence events around the world. Bluetongue virus (BTV) is classified among category “A” diseases notifiable to the World Organization of Animal Health (OIE), and is transmitted among ruminants by biting midges of the genus Culicoides. Here, we developed a comprehensive occurrence data set to map the current distribution, estimate the ecological niche, and explore the future potential distribution of BTV globally using ecological niche modeling and based on diverse future climate scenarios from general circulation models (GCMs) for four representative concentration pathways (RCPs). The broad ecological niche and potential geographic distribution of BTV under present-day conditions reflected the disease’s current distribution across the world in tropical, subtropical, and temperate regions. All model predictions were significantly better than random expectations. As a further evaluation of model robustness, we compared our model predictions to 331 independent records from most recent outbreaks from the Food and Agriculture Organization Emergency Prevention System for Transboundary Animal and Plant Pests and Diseases Information System (EMPRES-i); all were successfully anticipated by the BTV model. Finally, we tested ecological niche similarity among possible vectors and BTV, and could not reject hypotheses of niche similarity. Under future-climate conditions, the potential distribution of BTV was predicted to broaden, especially in central Africa, United States, and western Russia.
Collapse
|