1
|
Gökmen TG, Ütük AE, Tokgöz EA, Uprak NS, Tekin AS, Erol U, Demir PA, Sezer O, Günaydın E. Molecular Prevalence and Phylogenetic Analysis of Anaplasma spp. in Goats from Adana, Türkiye. Vet Sci 2025; 12:481. [PMID: 40431574 DOI: 10.3390/vetsci12050481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2025] [Revised: 05/09/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Anaplasmosis is a disease in animals that leads to significant economic losses. In addition, the zoonotic potential of vector-borne Anaplasma species is increasing its importance, both around the world and in Türkiye, in particular. The aim of this study was to determine the prevalence and phylogenetic profile of Anaplasma species in goats from the districts of Adana province, Türkiye, via molecular methods. For this purpose, blood samples from 364 goats of various breeds, ages, and genders were collected, and the presence of 55 Anaplasma spp. was determined through the PCR method. Anaplasma ovis was detected in 55 samples (15.1%) and A. phagocytophilum in 11 samples (3%) by Nested-PCR. However, A. capra was not detected. The phylogenetic relationships of A. ovis and A. phagocytophilum were investigated by DNA sequencing of the msp4 and 16S rRNA gene regions. Through sequence analysis in A. phagocytophilum, we identified nine isolates as A. phagocytophilum-like 1 and one isolate as A. phagocytophilum-like 2. Forty-six of the A. ovis isolates were 100% similar to each other. The other 2 isolates were also 100% similar to each other but had a single nucleotide difference from the other 46 isolates. Notably, the isolate identified as A. phagocytophilum-like 2 was detected for the first time in goats in Türkiye.
Collapse
Affiliation(s)
- Tülin Güven Gökmen
- Department of Microbiology, Ceyhan Veterinary Faculty, Çukurova University, Adana 01330, Türkiye
| | - Armağan Erdem Ütük
- Department of Parasitology, Ceyhan Veterinary Faculty, Çukurova University, Adana 01330, Türkiye
| | | | - Nur Sima Uprak
- Department of Microbiology, Ceyhan Veterinary Faculty, Çukurova University, Adana 01330, Türkiye
| | - Afra Sena Tekin
- Department of Parasitology, Ceyhan Veterinary Faculty, Çukurova University, Adana 01330, Türkiye
| | - Ufuk Erol
- Department of Parasitology, Veterinary Faculty, Sivas Cumhuriyet University, Sivas 58140, Türkiye
| | - Pınar Ayvazoğlu Demir
- Department of Animal Health Economics and Management, Veterinary Faculty, Kırıkkale University, Kırıkkale 71450, Türkiye
| | - Osman Sezer
- Adana Veterinary Control Institute, Adana 01122, Türkiye
| | - Elçin Günaydın
- Department of Microbiology, Veterinary Faculty, Kastamonu University, Kastamonu 37150, Türkiye
| |
Collapse
|
2
|
Yan Y, Wang Y, Cui Y, Wang J, Fan S, Ning C. Molecular Detection and Phylogenetic Analysis of Anaplasma phagocytophilum and Related Strains in Cattle from Henan, China. Vet Sci 2025; 12:252. [PMID: 40266961 PMCID: PMC11946663 DOI: 10.3390/vetsci12030252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 04/25/2025] Open
Abstract
Anaplasma phagocytophilum is a zoonotic pathogen transmitted by arthropod vectors. The pathogen infects various vertebrate hosts, causing mild to severe illness. Molecular studies have demonstrated that A. phagocytophilum exhibits a high level of genetic diversity, with two A. phagocytophilum-related variants identified in several countries. This study represents the first application of PCR amplification and restriction fragment length polymorphism (PCR-RFLP) in conjunction with DNA sequencing to investigate the frequency and phylogenetic relationships of A. phagocytophilum and its related strains in cattle from China. A total of 662 bovine blood samples were collected from diverse regions within Henan Province, China, and pathogen DNA was detected in 75 samples, comprising 11.33% of the total. PCR-RFLP analysis identified three strains with frequency rates of 2.87% (19/662) for A. phagocytophilum, 11.33% (75/662) for A. phagocytophilum-like 1, and 3.22% (22/662) for A. phagocytophilum-like 2. Additionally, co-infections involving A. phagocytophilum and A. phagocytophilum-like 1 were observed as well as between A. phagocytophilum-like 1 and A. phagocytophilum-like 2. Anaplasma phagocytophilum-like strains 1 and 2 should be considered when diagnosing bovine anaplasmosis. Despite recent molecular studies of A. phagocytophilum-related strains, there remains a shortage of data concerning vector capability, the epidemiology of the disease, clinical signs, and genetic diversity of the pathogens. Thus, large-scale investigations involving animals and tick vectors are necessary to obtain more detailed information concerning the etiology of anaplasmosis.
Collapse
Affiliation(s)
- Yaqun Yan
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (Y.Y.); (Y.W.); (J.W.)
- Field Observation and Research Station of Green Agriculture in Dancheng County, Dancheng 477150, China
| | - Yongli Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (Y.Y.); (Y.W.); (J.W.)
- Field Observation and Research Station of Green Agriculture in Dancheng County, Dancheng 477150, China
| | - Yanyan Cui
- School of Biotechnology and Food, Shangqiu Normal University, Shangqiu 476000, China;
| | - Jin Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (Y.Y.); (Y.W.); (J.W.)
- Field Observation and Research Station of Green Agriculture in Dancheng County, Dancheng 477150, China
| | - Shuhua Fan
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (Y.Y.); (Y.W.); (J.W.)
- Field Observation and Research Station of Green Agriculture in Dancheng County, Dancheng 477150, China
| | - Changshen Ning
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
3
|
Stevanović O, Ilić T, Jovanović N, Vejnović B, Radalj A. High genetic diversity of Anaplasma ovis in sheep from Bosnia and Herzegovina. Mol Biol Rep 2024; 51:936. [PMID: 39182201 DOI: 10.1007/s11033-024-09869-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Ovine anaplasmosis (sensu stricto) is a rickettsial blood disease caused by the tick-borne species Anaplasma ovis. The disease is characterized by mild anemia, fever, and icterus. A more severe clinical presentation is possible in non-endemic areas. There is no existing data on the presence of Anaplasma ovis in Bosnia and Herzegovina. However, given the country's location within the Mediterranean Basin and the recent molecular detection of Babesia ovis, it is plausible that sheep in the region could naturally be infected with this tick-borne pathogen. METHODS AND RESULTS Blood samples from 81 sheep in the Podrinje and Herzegovina areas were examined by PCR. PCR positivity was found in 38 (46.9%) cases indicating a high number of infected sheep. Mixed infections with Babesia ovis and A.ovis were observed in 63.3% of cases. A higher number of positive sheep was recorded in the area of Herzegovina. Phylogenetic analysis of the gltA, groEL, and msp4 genes of A. ovis revealed numerous genotypes and significant genetic variability. This diversity was not related to geographic origin, tick-borne infection status, or sheep breeding practices in Podrinje and Herzegovina. CONCLUSIONS The data obtained in this study suggest that the emergence of new genotypes and the high genetic variability of A. ovis are driven by specific local and micro-environmental factors.
Collapse
Affiliation(s)
- Oliver Stevanović
- PI Veterinary Institute "Dr Vaso Butozan" Banja Luka, Branka Radičevića 18, 78000, Banja Luka, Bosnia and Herzegovina.
| | - Tamara Ilić
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobodjenja 18, 11000, Belgrade, Republic of Serbia
| | - Nemanja Jovanović
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobodjenja 18, 11000, Belgrade, Republic of Serbia
| | - Branislav Vejnović
- Department of Economics and Statistcs, Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobodjenja 18, 11000, Belgrade, Republic of Serbia
| | - Andrea Radalj
- Deparment of Microbiology, Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobodjenja 18, 11000, Belgrade, Republic of Serbia
| |
Collapse
|
4
|
Mukhtar MU, Mahmood MA, Fayyaz Z, Klinpakdee K, Abdullah M. Opening the Black Box of Host Range, Vectorial Diversity, and Genetic Variants of Genus Anaplasma: The Contributing Factors Toward Its Zoonosis. Vector Borne Zoonotic Dis 2024; 24:265-273. [PMID: 38227393 DOI: 10.1089/vbz.2023.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Background: Genus Anaplasma of the family Anaplasmataceae possesses bacteria of hematopoietic origin, which are obligate intracellular Gram-negative bacteria transmitted mainly by tick vectors. The members of this group of infectious agents are not new as etiological agents of animal diseases worldwide. However, now, reports of their zoonotic potential have gained currency to study these pathogens. The emergence of new species of Anaplasma and the spread of existing species to new areas and hosts highlight the importance of monitoring and improving diagnostic and treatment options for zoonotic diseases caused by Anaplasma. Conclusion: This review focuses on the general and distinctive characteristics of Anaplasma spp., with particular emphasis on the novel species and their diverse spectrum of hosts as potential risk factors impacting its emerging zoonosis.
Collapse
Affiliation(s)
- Muhammad Uzair Mukhtar
- Department of Medical Entomology and Parasitology, Institute of Public Health, Lahore, Pakistan
| | - Muhammad Asif Mahmood
- Department of Medical Entomology and Parasitology, Institute of Public Health, Lahore, Pakistan
| | - Zahra Fayyaz
- Department of Infectious Diseases, Institute of Public Health, Lahore, Pakistan
| | - Kanoknaphat Klinpakdee
- Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-Ok, Chonburi, Thailand
| | - Muhammad Abdullah
- Department of Paramedical Education, Institute of Public Health, Lahore, Pakistan
| |
Collapse
|
5
|
Erol U, Sahin OF, Urhan OF, Atas AD, Altay K. Molecular investigation of Anaplasma phagocytophilum and related strains among sheep flocks from different parts of Türkiye; with a note of phylogenetic analyses of Anaplasma phagocytophilum- like 1. Comp Immunol Microbiol Infect Dis 2024; 107:102154. [PMID: 38442543 DOI: 10.1016/j.cimid.2024.102154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
Anaplasma phagocytophilum is a vector-borne zoonotic pathogen and can infect various vertebrate hosts, especially cattle, sheep, goats, horses, and dogs. Molecular-based studies have revealed that the agent has a high genetic diversity and closely related strains circulate in hosts. In this study, 618 sheep blood samples obtained from different geographic regions of Türkiye were researched for A.phagocytophilum and related strains with PCR, RFLP, and DNA sequence analyses. The DNA of these pathogens was detected in 110 (17.79%) samples. RFLP assay showed that all positive samples were infected with A.phagocytophilum-like 1, whereas A.phagocytophilum-like 2 and A.phagocytophilum were not detected. Partial parts of 16 S rRNA gene of seven randomly selected positive samples were sequenced. The phylogenetic analyses of these isolates revealed that at least two A.phagocytophilum-like 1 isolates circulate among hosts in Türkiye and around the world. A.phagocytophilum-related strains have been reported in molecular-based studies over the last few years, but there is a lack of data on the vector competence, epidemiology, clinical symptoms, and genetic diversity of these pathogens. Therefore, large-scale molecular studies are still needed to obtain detailed data on the above-mentioned topics.
Collapse
Affiliation(s)
- Ufuk Erol
- Department of Parasitology, Faculty of Veterinary Medicine, University of Sivas Cumhuriyet, Sivas 58140, Türkiye.
| | - Omer Faruk Sahin
- Department of Parasitology, Faculty of Veterinary Medicine, University of Sivas Cumhuriyet, Sivas 58140, Türkiye
| | - Osman Furkan Urhan
- Republic of Türkiye Ministry of Agriculture and Forestry, General Directory Meat and Milk Board, Sivas Meat Processing Plant, Sivas 58380, Türkiye
| | - Ahmet Duran Atas
- Department of Parasitology, Faculty of Medicine, University of Sivas Cumhuriyet, Sivas 58140, Türkiye
| | - Kursat Altay
- Department of Parasitology, Faculty of Veterinary Medicine, University of Sivas Cumhuriyet, Sivas 58140, Türkiye
| |
Collapse
|
6
|
Chadi H, Moraga-Fernández A, Sánchez-Sánchez M, Chenchouni H, Fernández de Mera IG, Garigliany MM, de la Fuente J, Tennah S, Sedrati T, Ghalmi F. Molecular detection and associated risk factors of Anaplasma marginale, A. ovis and A. platys in sheep from Algeria with evidence of the absence of A. phagocytophilum. Acta Trop 2024; 249:107040. [PMID: 37839669 DOI: 10.1016/j.actatropica.2023.107040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Anaplasma species are obligate intracellular rickettsial pathogens that cause significant diseases in animals and humans. Despite their importance, limited information on Anaplasma infections in Algeria has been published thus far. This study aimed to assess the infection rate, characterize Anaplasma species, and identify associated risk factors in selected sheep farms across Oum El Bouaghi region in Algeria. In 2018, we collected 417 blood samples from sheep (Ovis aries) and performed molecular characterization of Anaplasma species infecting these animals. This characterization involved the use of 16S rRNA, msp2, rpoB, and msp5 genes, which were analyzed through nested PCR, qPCR, cPCR, DNA sequencing, and subsequent phylogenetic analysis. Our findings revealed infection rates of 12.7 % for Anaplasma species detected, with Anaplasma ovis at 10.8 %, Anaplasma marginale at 1.7 %, and Anaplasma platys at 0.2 %. Interestingly, all tested animals were found negative for Anaplasma phagocytophilum. Statistical analyses, including the Chi-square test and Fisher exact test, failed to establish any significant relationships (p > 0.05) between A. ovis and A. platys infections and variables such as age, sex, sampling season, and tick infestation level. However, A. marginale infection exhibited a significant association with age (p < 0.05), with a higher incidence observed in lambs (5.2 %) compared to other age groups. Remarkably, this study represents the first molecular detection of A. platys and A. marginale in Algerian sheep. These findings suggest that Algerian sheep may serve as potential reservoirs for these pathogens. This research contributes valuable insights into the prevalence and characteristics of Anaplasma infections in Algerian sheep populations, emphasizing the need for further investigation and enhanced surveillance to better understand and manage these diseases.
Collapse
Affiliation(s)
- Hafidha Chadi
- Research Laboratory Management of Local Animal Resources, Higher National Veterinary School (ENSV), El Harrach, Algiers 16004, Algeria; Department of Applied Biology, Faculty of Exact Sciences and Nature and Life Sciences, University of Echahid Cheikh Larbi Tebessi, Tebessa 12000, Algeria.
| | - Alberto Moraga-Fernández
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ronda de Toledo 12, Ciudad Real 13005, Spain
| | - Marta Sánchez-Sánchez
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ronda de Toledo 12, Ciudad Real 13005, Spain
| | | | - Isabel G Fernández de Mera
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ronda de Toledo 12, Ciudad Real 13005, Spain
| | - Mutien-Marie Garigliany
- Fundamental and Applied Research for Animals and Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Belgium
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ronda de Toledo 12, Ciudad Real 13005, Spain; Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Safia Tennah
- Research Laboratory Management of Local Animal Resources, Higher National Veterinary School (ENSV), El Harrach, Algiers 16004, Algeria
| | - Tahar Sedrati
- Research Laboratory Management of Local Animal Resources, Higher National Veterinary School (ENSV), El Harrach, Algiers 16004, Algeria; Department of Biology, University of Mohamed El Bachir El Ibrahimi, Bordj Bou Arréridj 34000, Algeria
| | - Farida Ghalmi
- Research Laboratory Management of Local Animal Resources, Higher National Veterinary School (ENSV), El Harrach, Algiers 16004, Algeria
| |
Collapse
|
7
|
Onyiche TE, MacLeod ET. Hard ticks (Acari: Ixodidae) and tick-borne diseases of sheep and goats in Africa: A review. Ticks Tick Borne Dis 2023; 14:102232. [PMID: 37531888 DOI: 10.1016/j.ttbdis.2023.102232] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
Ticks are leading vectors of economically important pathogens that affect small ruminants due to favourable climatic conditions across different regions of the African continent. They are responsible for both direct and indirect economic losses in the livestock industry. This review focuses on the species diversity of hard ticks, their biology, tick-borne diseases of sheep and goats including non-infectious disease, and risk factors to tick infestation in Africa. Furthermore, our review provides recent updates on distribution of ticks and tick-borne pathogens of small ruminants in Africa. It was observed that several species and subspecies of hard ticks belonging to the genera Hyalomma (Hy), Rhipicephalus (Rh), Ixodes (I) and Amblyomma (Am) were found infesting small ruminants across the different regions of the continent. Of these genera, Rhipicephalus ticks accounts for the majority of the registered species, with exactly 27 different species infesting small ruminant stocks comprising of different developmental instars and adults of the tick. Rhipicephalus decolaratus, Rh. e. evertsi and Rh. appendiculatus were the three most common Rhipicephalus species reported. Both protozoal (Babesia and Theileria) and bacterial (Anaplasma, Rickettsia, Ehrlichia, Coxiella and Mycoplasma) pathogens have being reported to be amplified in several hard tick species and/or small ruminant hosts. Furthermore, tick paralysis and lameness were non-infectious conditions attributed to tick infestations. Amblyomma hebraeum and Rh. glabroscutatum may cause lameness in goats, while Hy. rufipes is responsible for the same condition in Merino sheep. Host paralysis due to a neurotoxin released by female Rh. e. evertsi and I. rubicundus has been documented within the continent. We therefore advocate for the need of integrated control measures against tick-borne pathogens (TBPs) including their arthropod vectors, to be performed simultaneously to ease the burden of vector-borne diseases in small ruminant production.
Collapse
Affiliation(s)
- ThankGod E Onyiche
- Deanery of Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, UK; Department of Veterinary Parasitology and Entomology, University of Maiduguri, P. M. B. 1069, Maiduguri, Nigeria; Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Ewan Thomas MacLeod
- Deanery of Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, UK
| |
Collapse
|
8
|
Rojas-Jaimes J, Del Valle-Mendoza J. Detection of Bartonella vinsonii, Anaplasma platys and Bartonella sp. in didelphis marsupialis, Pecari tajacu and Chelonoidis denticulate: Peru. BMC Res Notes 2023; 16:150. [PMID: 37475026 PMCID: PMC10360227 DOI: 10.1186/s13104-023-06412-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
INTRODUCTION Evidence suggest that wildlife Infectious diseases related to wildlife are of most importance because of the agents' capacity to spill over into humans from the wild reservoir. Among them, the bacteria Bartonella spp. and Anaplasma spp. are related to this zoonotic dynamic. OBJECTIVE The primary goal of the present study was to determine the presence of pathogenic bacteria in kidney and liver tissues of Didelphis marsupialis; spleen, liver, and skin of Pecari tajacu; spleen, liver, and skin of Chelonoidis denticulata. METHODOLOGY A PCR using universal and specific primers for 16 S rRNA, of Bartonella spp. with subsequent genetic sequencing were used. RESULTS The results in this study indicate that Bartonella vinsonni was detected in the liver tissue of Didelphis marsupialis using both universal primers and those specific for Bartonella sp. Anaplasma platys was detected at the liver and spleen level using universal primers. Additionally, Bartonella spp. was found at the liver, spleen, and skin level in Pecari tajacu using the specific primers. Finally, using the universal and specific primers at the skin level, Bartonella spp. was evident in Chelonoidis denticulata. CONCLUSIONS The presence of the DNA of the Bartonella vinsonii was detected at the liver tissue in Didelphis marsupialis. DNA of the Anaplasma platys and Bartonella spp. were identified at the spleen and liver level. This study also identified that DNA Bartonella spp. was detected in Pecari tajacu skin. Finally DNA of Bartonella spp. was evident in Chelonoidis denticulate skin. The findings of this study suggest that these bacteria are present in these animals and may be responsible for outbreaks.
Collapse
Affiliation(s)
- Jesús Rojas-Jaimes
- Facultad de Ciencias de la Salud, Universidad Privada del Norte, Av. El Sol 461, San Juan de Lurigancho 15434, Lima, Peru.
| | | |
Collapse
|
9
|
Sahin OF, Erol U, Duzlu O, Altay K. Molecular survey of Anaplasma phagocytophilum and related variants in water buffaloes: The first detection of Anaplasma phagocytophilum-like 1. Comp Immunol Microbiol Infect Dis 2023; 98:102004. [PMID: 37356166 DOI: 10.1016/j.cimid.2023.102004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
Anaplasma phagocytophilum infects various hosts and lead to mild to severe infection. Currently, two A.phagocytophilum-related variants have been documented in different countries. Although limited, there are studies revealing the presence of A.phagocytophilum in water buffaloes, but no study investigating A.phagocytophilum-like 1 and -like 2. A.phagocytophilum and related variants were investigated using PCR, PCR-RFLP, and DNA sequence analysis in water buffaloes in Türkiye. 364 buffalo blood samples were examined for A.phagocytophilum and related strains. Seven buffaloes were determined to be positive with PCR and PCR-RFLP revealed that all samples were A.phagocytophilum-like 1. According to the partial sequence of 16 S rRNA gene, A.phagocytophilum like-1 may split into two different variants. This work supplies the first molecular report of A.phagocytophilum-like 1 in water buffaloes. However, a lack of information is present on the pathogen's clinical manifestations and vector species. There is still a need to investigate vectors and clinical signs of the pathogen.
Collapse
Affiliation(s)
- Omer Faruk Sahin
- Department of Parasitology, Faculty of Veterinary Medicine, University of Sivas Cumhuriyet, 58140 Sivas, Turkey
| | - Ufuk Erol
- Department of Parasitology, Faculty of Veterinary Medicine, University of Sivas Cumhuriyet, 58140 Sivas, Turkey
| | - Onder Duzlu
- Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, 38090 Kayseri, Turkey
| | - Kursat Altay
- Department of Parasitology, Faculty of Veterinary Medicine, University of Sivas Cumhuriyet, 58140 Sivas, Turkey.
| |
Collapse
|
10
|
Kolo A. Anaplasma Species in Africa-A Century of Discovery: A Review on Molecular Epidemiology, Genetic Diversity, and Control. Pathogens 2023; 12:pathogens12050702. [PMID: 37242372 DOI: 10.3390/pathogens12050702] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Anaplasma species, belonging to the family Anaplasmataceae in the order Rickettsiales, are obligate intracellular bacteria responsible for various tick-borne diseases of veterinary and human significance worldwide. With advancements in molecular techniques, seven formal species of Anaplasma and numerous unclassified species have been described. In Africa, several Anaplasma species and strains have been identified in different animals and tick species. This review aims to provide an overview of the current understanding of the molecular epidemiology and genetic diversity of classified and unclassified Anaplasma species detected in animals and ticks across Africa. The review also covers control measures that have been taken to prevent anaplasmosis transmission on the continent. This information is critical when developing anaplasmosis management and control programs in Africa.
Collapse
Affiliation(s)
- Agatha Kolo
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
11
|
Li S, Zhang L, Li Z, Song H, Que Z, Zhao S, Li Y, Guo Y, Wu J. Distribution and Molecular Epidemiology of Anaplasma ovis in Melophagus ovinus and Small Ruminants in Border Regions of South Xinjiang, China. Vector Borne Zoonotic Dis 2023; 23:1-8. [PMID: 36576898 DOI: 10.1089/vbz.2022.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background: Anaplasma ovis are obligate intracellular bacteria that can endanger human and animal health, and they can be transmitted by arthropod vectors, such as Melophagus ovinus and ticks. Materials and Methods: In this study, 433 specimens, including 370 M. ovinus and 63 sheep blood samples, were collected from nine districts of South Xinjiang to investigate the distribution and molecular epidemiology of A. ovis in M. ovinus and small ruminant. Results: DNA of A. ovis was detected in 109 (25.2%, 109/433) of the 433 samples using PCR and sequencing. The analysis of A. ovis msp4 sequences revealed four different genotypes, including genotype III (47.7%; 52/109), GB3 (34.0%; 37/109), AoGOv3 (15.6%; 17/109), and XJ9 (2.8%; 3/109). Conclusions: To the best of our knowledge, A. ovis genotypes GB3, AoGOv3, and XJ9 detected in this study are the first to be reported in M. ovinus, and our data indicate that XJ9 is a novel A. ovis genotype presented herein for the first time. These findings provide important references for the new understanding and prevention of A. ovis in border counties in China.
Collapse
Affiliation(s)
- Siang Li
- College of Animal Science and Technology, Tarim University, Alar, People's Republic of China
- Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Xinjiang Production & Construction Corps, Alar, People's Republic of China
| | - Liu Zhang
- College of Animal Science and Technology, Tarim University, Alar, People's Republic of China
- Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Xinjiang Production & Construction Corps, Alar, People's Republic of China
| | - Zheng Li
- College of Animal Science and Technology, Tarim University, Alar, People's Republic of China
- Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Xinjiang Production & Construction Corps, Alar, People's Republic of China
| | - Haonan Song
- College of Animal Science and Technology, Tarim University, Alar, People's Republic of China
- Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Xinjiang Production & Construction Corps, Alar, People's Republic of China
| | - Zewei Que
- Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production & Construction Corps, Alar, People's Republic of China
| | - Siyu Zhao
- Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production & Construction Corps, Alar, People's Republic of China
| | - Yingying Li
- Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production & Construction Corps, Alar, People's Republic of China
| | - Yuling Guo
- Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production & Construction Corps, Alar, People's Republic of China
| | - Junyuan Wu
- College of Animal Science and Technology, Tarim University, Alar, People's Republic of China
| |
Collapse
|
12
|
Zobba R, Murgia C, Dahmani M, Mediannikov O, Davoust B, Piredda R, Schianchi E, Scagliarini A, Pittau M, Alberti A. Emergence of Anaplasma Species Related to A. phagocytophilum and A. platys in Senegal. Int J Mol Sci 2022; 24:ijms24010035. [PMID: 36613478 PMCID: PMC9820347 DOI: 10.3390/ijms24010035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The genus Anaplasma (Anaplasmataceae, Rickettsiales) includes tick-transmitted bacterial species of importance to both veterinary and human medicine. Apart from the traditionally recognized six Anaplasma species (A. phagocytophilum, A. platys, A. bovis, A. ovis, A. centrale, A. marginale), novel strains and candidate species, also of relevance to veterinary and human medicine, are emerging worldwide. Although species related to the zoonotic A. platys and A. phagocytophilum have been reported in several African and European Mediterranean countries, data on the presence of these species in sub-Saharan countries are still lacking. This manuscript reports the investigation of Anaplasma strains related to zoonotic species in ruminants in Senegal by combining different molecular tests and phylogenetic approaches. The results demonstrated a recent introduction of Candidatus (Ca) Anaplasma turritanum, a species related to the pathogenic A. platys, possibly originating by founder effect. Further, novel undetected strains related to Candidatus (Ca) Anaplasma cinensis were detected in cattle. Based on groEL and gltA molecular comparisons, we propose including these latter strains into the Candidatus (Ca) Anaplasma africanum species. Finally, we also report the emergence of Candidatus (Ca) A. boleense in Senegal. Collectively, results confirm that Anaplasma species diversity is greater than expected and should be further investigated, and that Anaplasma routine diagnostic procedures and epidemiological surveillance should take into account specificity issues raised by the presence of these novel strains, suggesting the use of a One Health approach for the management of Anaplasmataceae in sub-Saharan Africa.
Collapse
Affiliation(s)
- Rosanna Zobba
- Dipartimento di Medicina Veterinaria, University of Sassari, 07100 Sassari, Italy
| | - Claudio Murgia
- Dipartimento di Medicina Veterinaria, University of Sassari, 07100 Sassari, Italy
| | - Mustapha Dahmani
- IRD, AP-HM, MEPHI, Aix Marseille University, 13001 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Oleg Mediannikov
- IRD, AP-HM, MEPHI, Aix Marseille University, 13001 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Bernard Davoust
- IRD, AP-HM, MEPHI, Aix Marseille University, 13001 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Roberta Piredda
- Dipartimento di Medicina Veterinaria, University of Sassari, 07100 Sassari, Italy
| | - Eleonora Schianchi
- Dipartimento di Medicina Veterinaria, University of Sassari, 07100 Sassari, Italy
| | - Alessandra Scagliarini
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, University of Bologna, 40126 Bologna, Italy
| | - Marco Pittau
- Dipartimento di Medicina Veterinaria, University of Sassari, 07100 Sassari, Italy
| | - Alberto Alberti
- Dipartimento di Medicina Veterinaria, University of Sassari, 07100 Sassari, Italy
- Correspondence: ; Tel.: +39-320-922-5647
| |
Collapse
|
13
|
ElHamdi S, Mhadhbi M, Ben Said M, Mosbah A, Gharbi M, Klabi I, Daaloul-Jedidi M, Belkahia H, Selmi R, Darghouth MA, Messadi L. Anaplasma ovis Prevalence Assessment and Cross Validation Using Multiparametric Screening Approach in Sheep from Central Tunisia. Pathogens 2022; 11:1358. [PMID: 36422609 PMCID: PMC9693597 DOI: 10.3390/pathogens11111358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 08/04/2023] Open
Abstract
We conducted a 5-month-long screening of Anaplasma spp. and Anaplasma ovis infection in sheep from central Tunisia. During this longitudinal study, we investigated the infection dynamics using both direct and indirect assessments validated with a polymerase chain reaction (PCR) as the gold standard method. The experimental design included 84 male lambs aged from 6 to 8 months, and 32 ewes, both chosen randomly from June to November with a periodicity of 2 weeks approximately between June and September, and 1 month between September and November. A total of 9 field visits were carried out in this period during which animals were clinically examined and biological samples were extracted. Thus, a total of 716 blood smears, 698 sera from the nine sampling dates, as well as 220 blood samples from the first and the ninth sampling dates were collected from apparently healthy lambs and ewes, respectively, and analyzed by competitive enzyme-linked immunosorbent assay (cELISA) and polymerase chain reaction (PCR) assay, for the detection of Anaplasma antibodies and A. ovis DNA, respectively. Sera were analyzed by competitive enzyme-linked immunosorbent assay (cELISA) and PCR, for the detection of Anaplasma antibodies and A. ovis DNA, respectively. The Anaplasma spp. initial seroprevalence rate was 33.3% in lambs and 100% in ewes, and it then flowed in an upward trend to reach a maximum of 52.6% in lambs, whereas in ewes, the Anaplasma spp. seroprevalence rate remained unchanged and equal to 100%. Meanwhile, the A. ovis initial molecular prevalence was 22.6% at the first visit and 26.3% at the last visit in lambs, whereas in ewes, the molecular prevalence rates of A. ovis were higher in both the first and the last visit estimated at 100% and 85.7%, respectively. The Kappa coefficient between cELISA and PCR indicated a moderate level of agreement on the first sampling date (0.67) and a low agreement level on the last (0.43). Furthermore, an exploratory data analysis using a multimodal machine learning approach highlighted the underlying pattern of each analytical technique used in this study. In this prospect, we were able to establish the performance of each technique at detecting Anaplasma spp. in sheep. The combination of these approaches should improve the field assessment while promoting a data-based decision in precision epidemiology. The genetic follow-up test relevant to A. ovis msp4 sequences revealed three different genotypes, two of which were previously described in Italy.
Collapse
Affiliation(s)
- Sihem ElHamdi
- Laboratory of Microbiology and Immunology, National School of Veterinary Medicine, IRESA & University of Manouba, Sidi Thabet 2010, Tunisia
| | - Moez Mhadhbi
- Parasitology Laboratory, National School of Veterinary Medicine, IRESA & University of Manouba, Sidi Thabet 2010, Tunisia
| | - Mourad Ben Said
- Laboratory of Microbiology and Immunology, National School of Veterinary Medicine, IRESA & University of Manouba, Sidi Thabet 2010, Tunisia
- Parasitology Laboratory, National School of Veterinary Medicine, IRESA & University of Manouba, Sidi Thabet 2010, Tunisia
- Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Sidi Thabet 2010, Tunisia
| | - Amine Mosbah
- National School of Veterinary Medicine, IRESA & University of Manouba, Sidi Thabet 2010, Tunisia
| | - Mohamed Gharbi
- Parasitology Laboratory, National School of Veterinary Medicine, IRESA & University of Manouba, Sidi Thabet 2010, Tunisia
| | - Imen Klabi
- Parasitology Laboratory, National School of Veterinary Medicine, IRESA & University of Manouba, Sidi Thabet 2010, Tunisia
| | - Monia Daaloul-Jedidi
- Laboratory of Microbiology and Immunology, National School of Veterinary Medicine, IRESA & University of Manouba, Sidi Thabet 2010, Tunisia
| | - Hanène Belkahia
- Laboratory of Microbiology and Immunology, National School of Veterinary Medicine, IRESA & University of Manouba, Sidi Thabet 2010, Tunisia
| | - Rachid Selmi
- Laboratory of Microbiology and Immunology, National School of Veterinary Medicine, IRESA & University of Manouba, Sidi Thabet 2010, Tunisia
- National School of Veterinary Medicine, IRESA & University of Manouba, Sidi Thabet 2010, Tunisia
| | - Mohamed Aziz Darghouth
- Parasitology Laboratory, National School of Veterinary Medicine, IRESA & University of Manouba, Sidi Thabet 2010, Tunisia
| | - Lilia Messadi
- Laboratory of Microbiology and Immunology, National School of Veterinary Medicine, IRESA & University of Manouba, Sidi Thabet 2010, Tunisia
| |
Collapse
|
14
|
Molecular characterization of Anaplasma capra infecting captive mouflon (Ovis gmelini) and domestic sheep (Ovis aries) of Pakistan. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Ouarti B, Fonkou DMM, Houhamdi L, Mediannikov O, Parola P. Lice and lice-borne diseases in humans in Africa: a narrative review. Acta Trop 2022; 237:106709. [PMID: 36198330 DOI: 10.1016/j.actatropica.2022.106709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 01/18/2023]
Abstract
Lice are host-specific insects. Human lice include Pediculus humanus humanus (body lice) which are known to be vectors of serious human bacterial infectious diseases including epidemic typhus, relapsing fever, trench fever and plague; Pediculus humanus capitis (head lice) that frequently affect children; and Pthirus pubis, commonly known as crab lice. In Africa, human infections transmitted by lice remained poorly known and therefore, underestimated, perhaps due to the lack of diagnostic tools and professional knowledge. In this paper we review current knowledge of the microorganisms identified in human lice in the continent of Africa, in order to alert health professionals to the importance of recognising the risk of lice-related diseases.
Collapse
Affiliation(s)
- Basma Ouarti
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France.
| | | | - Linda Houhamdi
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France.
| | - Oleg Mediannikov
- IHU-Méditerranée Infection, Marseille, France; IRD, AP-HM, MEPHI, Aix Marseille University, Marseille, France.
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
16
|
Altay K, Erol U, Sahin OF, Aytmirzakizi A, Temizel EM, Aydin MF, Dumanli N, Aktas M. The detection and phylogenetic analysis of Anaplasma phagocytophilum-like 1, A. ovis and A. capra in sheep: A. capra divides into two genogroups. Vet Res Commun 2022; 46:1271-1279. [PMID: 36167934 DOI: 10.1007/s11259-022-09998-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022]
Abstract
In this study, the presence, prevalence, and genotypes of Anaplasma phagocytophilum, A. ovis, and A. capra in sheep were investigated based on 16 S SSU rRNA, groEL, and gtlA gene-specific polymerase chain reaction (PCR), respectively. The sequences of the genes were used for detection of the phylogenetic position of the species. Additionally, a restriction fragment length polymorphism (RFLP) were carried out for discrimination of A. phagocytophilum and related variants (A. phagocytophilum-like 1 and 2). The prevalence of Anaplasma spp. was found as 25.8% (101/391), while it was found that A. ovis, A. phagocytophilum-like 1, and A. capra are circulating in the sheep herds in Kyrgyzstan, according to the PCRs, RFLP and the partial DNA sequencing results. The positivity rates of A. phagocytophilum-like 1, A. ovis, and A. capra genotype-1 were 6.9, 22.5, and 5.3%, respectively. A total of 32 (8.2%) sheep were found to be mix infected. Moreover, phylogenetic analyses and sequence comparison with those available in the GenBank showed that A. capra formed two distinct genetic groups (A. capra genotype-1 and A. capra genotype-2). Considering the zoonotic potential of these species, it may be necessary to make changes in the interpretation of anaplasmosis cases in animals and there is a need for further studies to determine the pathogenicity of the species/genotypes circulating in animals.
Collapse
Affiliation(s)
- Kursat Altay
- Department of Parasitology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, 58140, Sivas, Türkiye, Turkey.
| | - Ufuk Erol
- Department of Parasitology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, 58140, Sivas, Türkiye, Turkey
| | - Omer Faruk Sahin
- Department of Parasitology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, 58140, Sivas, Türkiye, Turkey
| | - Ayperi Aytmirzakizi
- Faculty of Veterinary Medicine, Kyrgyz-Turkish Manas University, 720044, Bishkek, Kyrgyzstan
| | - Ethem Mutlu Temizel
- Department of Internal Medicine, Faculty of Veterinary Medicine, Bursa Uludag University, 16059, Bursa, TÜRKİYE, Turkey
| | - Mehmet Fatih Aydin
- Department of Public Health, Faculty of Health Sciences, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| | - Nazir Dumanli
- Department of Parasitology, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| | - Munir Aktas
- Department of Parasitology, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| |
Collapse
|
17
|
First Molecular Identification of Babesia, Theileria, and Anaplasma in Goats from the Philippines. Pathogens 2022; 11:pathogens11101109. [PMID: 36297166 PMCID: PMC9612162 DOI: 10.3390/pathogens11101109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/16/2022] [Accepted: 09/24/2022] [Indexed: 12/01/2022] Open
Abstract
Goats are key livestock animals and goat raising is an income-generating venture for smallholder farmers, supporting agricultural development in many parts of the world. However, goat production is often limited by various factors, such as tick-borne diseases. Goat piroplasmosis is a disease caused by apicomplexan parasites Babesia spp. and Theileria spp., while anaplasmosis is caused by bacterial Anaplasma spp. In the Philippines, the presence of Babesia, Theileria, and Anaplasma has not been reported in goats. In this study, DNA obtained from goats were molecularly screened for Babesia/Theileria and Anaplasma. Of 396, 77.02% (305/396) and 38.64% (153/396) were positive for piroplasma and Anaplasma using PCR assays targeting the 18S rRNA and 16S rRNA genes, respectively. Similarly, Babesia ovis was detected in six samples (1.52%). Representative Babesia/Theileria sequences shared 89.97–97.74% identity with each other and were most closely related to T. orientalis, T. annulata, and Theileria spp. Meanwhile, Anaplasma 16SrRNA sequences were related to A. odocoilei, A. platys, and A. phagocytophilum. This is the first molecular identification of B. ovis, Theileria spp., and Anaplasma spp. in goats from the Philippines.
Collapse
|
18
|
Yan Y, Lu C, Gong P, Pei Z, Peng Y, Jian F, Wang R, Zhang L, Qi M, Ning C. Molecular detection and phylogeny of Anaplasma spp. closely related to Anaplasma phagocytophilum in small ruminants from China. Ticks Tick Borne Dis 2022; 13:101992. [PMID: 35777304 DOI: 10.1016/j.ttbdis.2022.101992] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/18/2023]
Abstract
The genus Anaplasma comprises eight bacterial species that are obligate intracellular pathogens that affect human and animal health. The zoonotic species A. phagocytophilum is the causative agent of tick-borne fever in ruminants, and of granulocytic anaplasmosis in horses, dogs, and humans. Recently, novel strains related to A. phagocytophilum (A. phagocytophilum-like 1/Japanese variant and A. phagocytophilum-like 2/Chinese variant) have been identified. The aim of this study was to reveal the prevalence and phylogeny of A. phagocytophilum and related stains in small ruminants and ticks in China based on sequences of the 16S rRNA combined restriction fragment length polymorphism (RFLP) and groEL genes. PCR-RFLP and phylogenetic analyses based on the 16S rRNA gene showed the presence of A. phagocytophilum-like 1 and 2 variants in sampled animals from China, with prevalence rates of 22.6% (303/1338) and 0.7% (10/1338), respectively. Only A. phagocytophilum-like 1 DNA was found in Haemaphysalis longicornis. The phylogeny based on the groEL gene showed inclusion of A. phagocytophilum-like 1 and some A. phagocytophilum-like 2 strains in two unique clades distinct from, but related to, Japanese and Chinese strains of related A. phagocytophilum, respectively. One noteworthy result was that the SSAP2f/SSAP2r primers detected Ehrlichia spp. strains. Moreover, the A. phagocytophilum-like 1 and 2 strains should be considered in the differential diagnosis of caprine and ovine anaplasmosis. Further investigations should be conducted to provide additional epidemiological information about A. phagocytophilum and A. phagocytophilum-like variants in animals and ticks.
Collapse
Affiliation(s)
- Yaqun Yan
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong, Zhengzhou, Henan 450046, PR China
| | - Chenyang Lu
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong, Zhengzhou, Henan 450046, PR China
| | - Pihong Gong
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong, Zhengzhou, Henan 450046, PR China; College of Animal Science, Tarim University, Tarim Road 1487, Alar, Xinjiang 843300, PR China
| | - Zhiyang Pei
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong, Zhengzhou, Henan 450046, PR China; College of Animal Science, Tarim University, Tarim Road 1487, Alar, Xinjiang 843300, PR China
| | - Yongshuai Peng
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong, Zhengzhou, Henan 450046, PR China
| | - Fuchun Jian
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong, Zhengzhou, Henan 450046, PR China
| | - Rongjun Wang
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong, Zhengzhou, Henan 450046, PR China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong, Zhengzhou, Henan 450046, PR China
| | - Meng Qi
- College of Animal Science, Tarim University, Tarim Road 1487, Alar, Xinjiang 843300, PR China
| | - Changshen Ning
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong, Zhengzhou, Henan 450046, PR China.
| |
Collapse
|
19
|
Mwaki DM, Kidambasi KO, Kinyua J, Ogila K, Kigen C, Getange D, Villinger J, Masiga DK, Carrington M, Bargul JL. Molecular detection of novel Anaplasma sp . and zoonotic hemopathogens in livestock and their hematophagous biting keds (genus Hippobosca) from Laisamis, northern Kenya. OPEN RESEARCH AFRICA 2022; 5:23. [PMID: 37396343 PMCID: PMC10314185 DOI: 10.12688/openresafrica.13404.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/13/2022] [Indexed: 07/04/2023]
Abstract
Background: Livestock are key sources of livelihood among pastoral communities. Livestock productivity is chiefly constrained by pests and diseases. Due to inadequate disease surveillance in northern Kenya, little is known about pathogens circulating within livestock and the role of livestock-associated biting keds (genus Hippobosca) in disease transmission. We aimed to identify the prevalence of selected hemopathogens in livestock and their associated blood-feeding keds. Methods: We randomly collected 389 blood samples from goats (245), sheep (108), and donkeys (36), as well as 235 keds from both goats and sheep (116), donkeys (11), and dogs (108) in Laisamis, Marsabit County, northern Kenya. We screened all samples for selected hemopathogens by high-resolution melting (HRM) analysis and sequencing of PCR products amplified using primers specific to the genera: Anaplasma, Trypanosoma, Clostridium, Ehrlichia, Brucella, Theileria, and Babesia. Results: In goats, we detected Anaplasma ovis (84.5%), a novel Anaplasma sp. (11.8%), Trypanosoma vivax (7.3%), Ehrlichia canis (66.1%), and Theileria ovis (0.8%). We also detected A. ovis (93.5%), E. canis (22.2%), and T. ovis (38.9%) in sheep. In donkeys, we detected ' Candidatus Anaplasma camelii' (11.1%), T. vivax (22.2%), E. canis (25%), and Theileria equi (13.9%). In addition, keds carried the following pathogens; goat/sheep keds - T. vivax (29.3%) , Trypanosoma evansi (0.86%), Trypanosoma godfreyi (0.86%), and E. canis (51.7%); donkey keds - T. vivax (18.2%) and E. canis (63.6%); and dog keds - T. vivax (15.7%), T. evansi (0.9%), Trypanosoma simiae (0.9%) , E. canis (76%), Clostridium perfringens (46.3%), Bartonella schoenbuchensis (76%), and Brucella abortus (5.6%). Conclusions: We found that livestock and their associated ectoparasitic biting keds carry a number of infectious hemopathogens, including the zoonotic B. abortus. Dog keds harbored the most pathogens, suggesting dogs, which closely interact with livestock and humans, as key reservoirs of diseases in Laisamis. These findings can guide policy makers in disease control.
Collapse
Affiliation(s)
- Daniel M. Mwaki
- Animal Health Department/Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology and Ecology (icipe), Nairobi, P.O. BOX 30772-00100, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, P.O. BOX 62000-00200, Kenya
- Department of Zoology, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, P.O. Box 62000-00200, Kenya
| | - Kevin O. Kidambasi
- Animal Health Department/Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology and Ecology (icipe), Nairobi, P.O. BOX 30772-00100, Kenya
| | - Johnson Kinyua
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, P.O. BOX 62000-00200, Kenya
| | - Kenneth Ogila
- Department of Zoology, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, P.O. Box 62000-00200, Kenya
| | - Collins Kigen
- Animal Health Department/Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology and Ecology (icipe), Nairobi, P.O. BOX 30772-00100, Kenya
| | - Dennis Getange
- Animal Health Department/Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology and Ecology (icipe), Nairobi, P.O. BOX 30772-00100, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, P.O. BOX 62000-00200, Kenya
| | - Jandouwe Villinger
- Animal Health Department/Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology and Ecology (icipe), Nairobi, P.O. BOX 30772-00100, Kenya
| | - Daniel K. Masiga
- Animal Health Department/Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology and Ecology (icipe), Nairobi, P.O. BOX 30772-00100, Kenya
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Joel L. Bargul
- Animal Health Department/Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology and Ecology (icipe), Nairobi, P.O. BOX 30772-00100, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, P.O. BOX 62000-00200, Kenya
| |
Collapse
|
20
|
Said MB, Attia KA, Alsubki RA, Mohamed AA, Kimiko I, Selim A. Molecular epidemiological survey, genetic characterization and phylogenetic analysis of Anaplasma ovis infecting sheep in Northern Egypt. Acta Trop 2022; 229:106370. [PMID: 35157843 DOI: 10.1016/j.actatropica.2022.106370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
Anaplasma ovis is the most common etiologic agent of ovine anaplasmosis, mainly transmitted by ticks. The present study aimed to determine the molecular prevalence of A. ovis in sheep from Egypt and assessed the associated risk factors. The study was conducted, between January and December 2020, in four governorates situated in Northern Egypt. Blood samples from 355 asymptomatic sheep were collected and examined by the use of PCR specific to A. ovis. Diversity analysis and phylogenetic study based on partial msp4 gene sequence were performed on revealed A. ovis DNA. Overall, the molecular prevalence rate of A. ovis was 15.5% and the highest rate was observed in Kafr ElSheikh governorate (16.8%). Statistical analysis revealed that A. ovis infection was significantly related to sheep gender and to tick infestation. The risk factors that were found to be associated with A. ovis infection in exposed sheep were: female sex (OR=2.6, 95%CI: 1.13-6.12), and infestation with ticks (OR=2.1, 95%CI: 1.11-3.79). The analysis of A. ovis msp4 sequences revealed two different genotypes classified in the Old World sub-cluster with other Egyptian isolates. Investigation on prevalence, risk factors and genetic variability of A. ovis in sheep reported in this study is important for the implementation of control programs. Further studies are needed to determine the vectors and reservoirs of A. ovis in Egyptian small ruminants and to identify the real economic impact of A. ovis infection on the country.
Collapse
Affiliation(s)
- Mourad Ben Said
- Higher Institute of Biotechnology, BiotechPôlet, BP-66, 2020, Sidi Thabet, Ariana Tunis, University of Manouba, Tunisia; Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, Ariana Tunis, University of Manouba, Tunisia.
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Roua A Alsubki
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Arif A Mohamed
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Itoh Kimiko
- Institute of Science and Technology, Niigata University, Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| |
Collapse
|
21
|
First Molecular Evidence for the Presence of Anaplasma phagocytophilum in Naturally Infected Small Ruminants in Tunisia, and Confirmation of Anaplasma ovis Endemicity. Pathogens 2022; 11:pathogens11030315. [PMID: 35335639 PMCID: PMC8950766 DOI: 10.3390/pathogens11030315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 01/27/2023] Open
Abstract
Anaplasma species are obligate intracellular rickettsial vector-borne pathogens that impose economic constraints on animal breeders and threaten human health. Anaplasma ovis and Anaplasma phagocytophilum infect sheep and goats worldwide. A duplex PCR targeting the msp2 and msp4 genes of A. phagocytophilum and A. ovis, respectively, was developed to analyze the field blood samples collected from sheep and goats. A total of 263 apparently healthy small ruminants from 16 randomly selected flocks situated in 3 bioclimatic zones in Tunisia were analyzed for Anaplasma infections. Anaplasma spp. was detected in 78.3% (95% confidence interval (CI): 72.8–83.1) of the analyzed animals. The prevalence of A. ovis in sheep (80.4%) and goats (70.3%) was higher than that of A. phagocytophilum (7.0% in sheep and 1.6% in goats). Using an inexpensive, specific, and rapid duplex PCR assay, we provide, to the best of our knowledge, the first molecular evidence for the presence of A. phagocytophilum in small ruminants in Tunisia. A. phagocytophilum generally presented as a co-infection with A. ovis. This study provides important data to understand the epidemiology of anaplasmosis in small ruminants, and highlights the risk of contracting the infection upon tick exposure.
Collapse
|
22
|
Selim A, Manaa E, Abdelhady A, Ben Said M, Sazmand A. Serological and molecular surveys of Anaplasma spp. in Egyptian cattle reveal high A. marginale infection prevalence. IRANIAN JOURNAL OF VETERINARY RESEARCH 2022; 22:288-297. [PMID: 35126536 DOI: 10.22099/ijvr.2021.40587.5879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/19/2021] [Accepted: 09/02/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Bovine anaplasmosis is an infectious disease with worldwide distribution. It spreads by various routes mainly through tick bites. AIMS This study aimed to investigate bovine related Anaplasma spp. in cattle from three northern governorates of Egypt by serological and molecular assays, to evaluate the associated risk factors and to analyze the phylogeny of revealed A. marginale isolates. METHODS During 2020, a total of 650 blood samples were collected from asymptomatic cattle in the governorates of Kafr El-Sheikh (n=240), Menofia (n=230), and Al-Gharbia (n=180). Sera samples were examined using the Anaplasma antibody test kit, cELISA v2. Blood genomic DNA of seropositive cattle was then examined by PCRs specific to A. marginale, A. centrale, and A. bovis. Selected positive samples were subjected to nucleotide sequencing. Risk factors (i.e. geographical area, breed, type of production, sex, age, herd size, season, husbandry system, tick infestation, and application of acaricides) were evaluated by logistic regression approach. RESULTS In total, 130 cattle (20%, 95% CI: 17.1-23.3) were recorded seropositive for Anaplasma species. Major risk factors associated with seropositivity were being crossbred, dairy cattle, aged more than 5 years, summer season, herd size of below 300, pasture grazing, tick infestation, and not being subjected to regular treatment with acaricides. By using species-specific PCR, only A. marginale was detected. Nucleotide sequencing showed the occurrence of two different msp4 genotypes. CONCLUSION This study shows the high prevalence of A. marginale in cattle of Kafr El-Sheikh, Al-Gharbia, and Menofia. However, the connection between Anaplasma species and their tick vectors remains unknown in Egypt and merits further investigations. Since these infections primarily spread through ixodid tick bites, effective ectoparasite control strategies, regular examination of cattle and successful chemoprophylaxis are recommended.
Collapse
Affiliation(s)
- A Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - E Manaa
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - A Abdelhady
- Department of Parasitology and Animal Diseases, National Research Center, Dokki, Giza, Egypt
| | - M Ben Said
- Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Manouba, Tunisia, and Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, Tunisia
| | - A Sazmand
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran, and Zoonotic Diseases Research Center, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
23
|
Test comparison for the detection of Anaplasma phagocytophilum antibodies in goats, and prevalence of granulocytic anaplasmosis in goats from Northern California and Southern Oregon. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2021.106608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Noaman V, Sazmand A. Anaplasma ovis infection in sheep from Iran: molecular prevalence, associated risk factors, and spatial clustering. Trop Anim Health Prod 2021; 54:6. [PMID: 34890017 DOI: 10.1007/s11250-021-03007-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
The aim of this cross-sectional study was to determine the molecular prevalence and associated risk factors in sheep populations of Iran. To this end, between March 2017 and February 2018 jugular vein blood samples were collected from 1842 apparently healthy sheep from 327 herds in nine provinces in four ecological zones of Iran. A specific nested-PCR targeting the msp4 gene of A. ovis was employed. Fourteen variables were subjected to logistic regression analyses (univariate and multivariate) to specify the potential risk factors for infection. Statistically significant variables in univariate analyses (P ≤ 0.20) were assessed by multivariable logistic regression to control the confounding factors. Anaplasma ovis DNA was detected in 51.1% of herds (167/327) and 28.3% of animals (521/1842). Among geographical zones, herd and animal prevalence was highest in the Persian-Gulf zone (P < 0.001), and among provinces, Lorestan (in west) and Khuzestan (in south-west) had the highest prevalence (P < 0.001). Analysis of factors associated with A. ovis infection revealed that distance from other farms (OR = 2.52, P < 0.001), presence of other animal species in the farm (OR = 2.03, P = 0.046), season (OR = 1.40, P = 0.005), breed (OR = 3.762, P < 0.001), and age of sheep (OR = 1.20, P = 0.049) are potential risks in Iran. The spatial scan statistic in SaTScan recognized two high risks clusters for A. ovis infection in central (Semnan province) and the Persian-Gulf (Khuzestan province) zones amongst the study areas (P < 0.001). Sequence and phylogenetic analysis of the msp4 gene confirmed the detection of A. ovis. This research is the largest study focusing on ovine anaplasmosis in Iran and shows that infected sheep are present in all geographic zones, bioclimatic areas, and provinces.
Collapse
Affiliation(s)
- Vahid Noaman
- Department of Parasitic Disease Research, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran. .,Veterinary Medicine Department, Isfahan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran.
| | - Alireza Sazmand
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, 6517658978, Hamedan, Iran.,Zoonotic Diseases Research Center, School of Public Health, Shahid Sadoughi University of Medical Sciences, 8915173160, Yazd, Iran
| |
Collapse
|
25
|
Altay K, Erol U, Sahin OF, Aytmirzakizi A. First molecular detection of Anaplasma species in cattle from Kyrgyzstan; molecular identification of human pathogenic novel genotype Anaplasma capra and Anaplasma phagocytophilum related strain. Ticks Tick Borne Dis 2021; 13:101861. [PMID: 34773849 DOI: 10.1016/j.ttbdis.2021.101861] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022]
Abstract
Anaplasmosis is a rickettsial infection with significant effects on human and animal health, and the discovery of new species or genotypes with zoonotic potential in recent years has increased this importance. The aim of this study was to provide the first assessment of the molecular etiology and prevalence of bovine anaplasmosis in Kyrgyzstan (specifically in the Chuy, Talas, Djalal-Abad, Naryn, and Issyk-Kul regions). The prevalence of bovine anaplasmosis was determined as 1.7% (6/358). PCR and partial DNA sequencing results of the 16S ribosomal RNA (rRNA) gene revealed that Anaplasma centrale, A. phagocytophilum like-1, and the human pathogenic novel genotype A. capra are circulating in cattle herds in Kyrgyzstan. Six DNA nucleotide sequences obtained in this study were deposited in GenBank under the following accession numbers: A. centrale (MW672117, MW672118, MW672119, MW672120), A. phagocytophilum (MW672121), and A. capra (MW672115).
Collapse
Affiliation(s)
- Kursat Altay
- Department of Parasitology, Faculty of Veterinary Medicine, University of Sivas Cumhuriyet, Sivas 58140, Turkey
| | - Ufuk Erol
- Department of Parasitology, Faculty of Veterinary Medicine, University of Sivas Cumhuriyet, Sivas 58140, Turkey.
| | - Omer Faruk Sahin
- Department of Parasitology, Faculty of Veterinary Medicine, University of Sivas Cumhuriyet, Sivas 58140, Turkey
| | - Ayperi Aytmirzakizi
- Faculty of Veterinary Medicine, Kyrgyz-Turkish Manas University, Bishkek 720044, Kyrgyzstan
| |
Collapse
|
26
|
Zobba R, Schianchi E, Ben Said M, Belkahia H, Messadi L, Piredda R, Pittau M, Alberti A. gltA typing of Anaplasma strains related to A. platys: Taxonomical and one health implications. Ticks Tick Borne Dis 2021; 13:101850. [PMID: 34656046 DOI: 10.1016/j.ttbdis.2021.101850] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/26/2021] [Accepted: 10/02/2021] [Indexed: 01/06/2023]
Abstract
Species belonging to the genus Anaplasma (Rickettsiales) include bacteria of veterinary and public health importance. Beside the zoonotic Anaplasma phagocytophilum, A. platys, the etiological agent of canine cyclic thrombocytopenia, has been sporadically reported in clinically ill human patients. The ongoing emergence of novel strains related to this species in vertebrate hosts emphasises the need for genetic comparisons among strains identified in different regions of the world. In this paper we developed a PCR test suitable for amplification of the still undescribed gltA gene of Anaplasma strains related to A. platys from Mediterranean ruminants and applied on a panel of 248 samples. gltA sequencing allowed phylogenetic comparison with strains related to A. platys recently identified in China, and strains representative of the Anaplasmataceae family. Results suggest the designation of Candidatus A. turritanum, including Mediterranean A. platys - like strains, and Candidatus A. cinensis, including strains isolated in China. Data generated in this study are a solid reference for future epidemiological studies of novel unclassified strains related to A. platys and for their diagnosis and raise concern on their potential veterinary and public health implications encouraging investigating the suspected unexplored diversity within the genus Anaplasma in animals and human.
Collapse
Affiliation(s)
- Rosanna Zobba
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy; Mediterranean Center for Disease Control, University of Sassari, 07100 Sassari, Italy
| | - Eleonora Schianchi
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Mourad Ben Said
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, University of Manouba, Sidi Thabet, Tunisia; Institut Supérieur de Biotechnologie de Sidi Thabet, Département des Sciences Fondamentales, University of Manouba, Sidi Thabet, Tunisia
| | - Hanène Belkahia
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, University of Manouba, Sidi Thabet, Tunisia
| | - Lilia Messadi
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, University of Manouba, Sidi Thabet, Tunisia
| | - Roberta Piredda
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Marco Pittau
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy; Mediterranean Center for Disease Control, University of Sassari, 07100 Sassari, Italy
| | - Alberto Alberti
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy; Mediterranean Center for Disease Control, University of Sassari, 07100 Sassari, Italy.
| |
Collapse
|
27
|
Medhat B, Shawish A. FLR: A Revolutionary Alignment-Free Similarity Analysis Methodology for DNA-Sequences. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1924-1936. [PMID: 31976902 DOI: 10.1109/tcbb.2020.2967385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This paper introduces a novel alignment-free sequence analysis methodology. Its main idea is based on introducing a new representation of the DNA-Sequence. This representation breaks the dependency between the DNA bases that exist in the traditional string presentation. We called it the Four-Lists-Representation (FLR). Based on the FLR, a series of revolutionary algorithms for searching, map-discovery, similarity-score analysis, and similarity-visualization have been developed. They are combined in what we call the FLR Methodology. The paper also studies most of the available similarity analysis techniques in a comprehensive state-of-art review. The conducted extensive simulation and theoretical studies confirm the outperformance of the whole set of FLR-based algorithms in terms of speed and memory consumption in comparison to a long list of available similarity analysis algorithms. The ability to provide a similarity-map, similarity-score, and similarity-graph as a set of evidence-based rationales makes the quality of results provided by the proposed methodology presents a new edge in this field and promises a new area of genome-based research.
Collapse
|
28
|
Yan Y, Wang K, Cui Y, Zhou Y, Zhao S, Zhang Y, Jian F, Wang R, Zhang L, Ning C. Molecular detection and phylogenetic analyses of Anaplasma spp. in Haemaphysalis longicornis from goats in four provinces of China. Sci Rep 2021; 11:14155. [PMID: 34238975 PMCID: PMC8266805 DOI: 10.1038/s41598-021-93629-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/28/2021] [Indexed: 01/05/2023] Open
Abstract
Anaplasma species, which are distributed worldwide, are gram-negative obligate intracellular tick-borne bacteria that pose a threat to human and animal health. Haemaphysalis longicornis ticks play a vital role as vectors in the transmission of Anaplasma pathogens. However, the Anaplasma species carried by H. longicornis in China are yet to be characterized. In this study, 1074 H. longicornis specimens were collected from goats in four provinces of China from 2018 to 2019 and divided into 371 sample pools. All tick sample pools were examined for the presence of Anaplasma species via nested PCR amplification of 16S ribosomal RNA, major surface protein 4 (msp4), or citric acid synthase (gltA) genes, which were sequenced to determine the molecular and phylogenetic characteristics of the isolates. The overall Anaplasma spp-positive rate of H. longicornis was determined to be 26.68% (99/371). The percentage prevalence of A. phagocytophilum-like1, A. bovis, A. ovis, A. marginale, and A. capra were 1.08% (4/371), 13.21% (49/371), 13.21% (49/371), 1.35% (5/371), and 10.24% (38/371), respectively, and the co-infection rate of two or more types of Anaplasma was 6.47% (24/371). Phylogenetic analyses led to the classification of A. phagocytophilum into an A. phagocytophilum-like1 (Anaplasma sp. Japan) group. Anaplasma bovis sequences obtained in this study were 99.8–100% identical to those of an earlier strain isolated from a Chinese tick (GenBank accession no. KP314251). Anaplasma ovis sequences showed 99.3–99.6% identity to an A. ovis human strain identified from a Cypriot patient (GenBank accession no. FJ460443). Only one msp4 sequence of A. marginale was detected and was grouped with those of other A. marginale isolates, and these A. capra isolates obtained in this present study may be zoonotic. The detection and characterization of four Anaplasma species in H. longicornis in this study have added to the current knowledge of the parasite and provided data on multiple Anaplasma species with veterinary and medical significance from four provinces of China.
Collapse
Affiliation(s)
- Yaqun Yan
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Kunlun Wang
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Yanyan Cui
- School of Biotechnology and Food, Shangqiu Normal University, Shangqiu, 476000, People's Republic of China
| | - Yongchun Zhou
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Shanshan Zhao
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Yajun Zhang
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Fuchun Jian
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Rongjun Wang
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Longxian Zhang
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Changshen Ning
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China.
| |
Collapse
|
29
|
Belkahia H, Selmi R, Zamiti S, Daaloul-Jedidi M, Messadi L, Ben Said M. Zoonotic Rickettsia Species in Small Ruminant Ticks From Tunisia. Front Vet Sci 2021; 8:676896. [PMID: 34124229 PMCID: PMC8187766 DOI: 10.3389/fvets.2021.676896] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Tick-borne rickettsioses present a significant public health threat among emerging tick-borne diseases. In Tunisia, little is known about tick-borne Rickettsia pathogens. Therefore, the aim of this study was to investigate the presence of Rickettsia species in small ruminant ticks from Tunisia. Adult ticks (n = 694) were collected from goats and sheep in northern Tunisia. Obtained ticks were identified as Rhipicephalus turanicus (n = 434) and Rhipicephalus sanguineus sensu lato (n = 260). Selected ticks (n = 666) were screened for the presence of Rickettsia spp. by PCR targeting a partial sequence of the ompB gene followed by sequence analysis. Rickettsial DNA was detected in 122 (18.3%) tested tick samples. The infection rates in Rh. turanicus and Rh. sanguineus s.l. ticks were 23.4 and 9.5%, respectively. The overall prevalence of rickettsial DNA was markedly higher in ticks collected from goats (23.2%) compared to those infesting sheep (7.9%). The detection of rickettsial DNA was significantly higher in ticks from the governorate of Beja (39.0%) than those from the governorate of Bizerte (13.9%). Two additional genes, the outer membrane protein A gene (ompA) and the citrate synthase gene (gltA), were also targeted for further characterization of the detected Rickettsia species. Genotyping and phylogenetic analysis based on partial sequences (n = 106) of the three different genes revealed that positive ticks are infected with different isolates of two Spotted Fever Group (SFG) Rickettsia, namely, Rickettsia massiliae and Rickettsia monacensis, closely related to those infecting camels and associated ticks from Tunisia, and humans and small ruminant ticks from neighboring countries like Italy, France, and Spain.
Collapse
Affiliation(s)
- Hanène Belkahia
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, University of Manouba, Sidi Thabet, Tunisia
| | - Rachid Selmi
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, University of Manouba, Sidi Thabet, Tunisia.,Ministère de la Défense Nationale, Direction Générale de la Santé Militaire, Service Vétérinaire, Tunis, Tunisia
| | - Sayed Zamiti
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, University of Manouba, Sidi Thabet, Tunisia
| | - Monia Daaloul-Jedidi
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, University of Manouba, Sidi Thabet, Tunisia
| | - Lilia Messadi
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, University of Manouba, Sidi Thabet, Tunisia
| | - Mourad Ben Said
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, University of Manouba, Sidi Thabet, Tunisia.,Département des Sciences Fondamentales, Institut Supérieur de Biotechnologie de Sidi Thabet, University of Manouba, Sidi Thabet, Tunisia
| |
Collapse
|
30
|
Tick Infestation and Piroplasm Infection in Barbarine and Queue Fine de l'Ouest Autochthonous Sheep Breeds in Tunisia, North Africa. Animals (Basel) 2021; 11:ani11030839. [PMID: 33809606 PMCID: PMC8001609 DOI: 10.3390/ani11030839] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 11/17/2022] Open
Abstract
As ticks and tick-borne pathogens affect the productivity of livestock, searching for genetically resistant breeds to infestation by ticks may represent an alternative to the overuse of chemical drugs. The aim of this study was to assess if there is a difference in tick infestation among the main sheep breeds in Tunisia. The study was carried out between April 2018 and January 2020 in 17 small to middle-sized sheep flocks from 3 regions across Tunisia. Four hundred and thirty-nine ear-tagged ewes from Barbarine (n = 288, 65.6%) and Queue Fine de l'Ouest (QFO) (n = 151, 34.4%) breeds were examined and sampled each trimester. Ticks were identified to the species level, and piroplasms were detected using PCR that targets a common sequence ARNr18S to both Babesia and Theileria genera using catch-all primers. Totally, 707 adult ticks were collected from animals; 91.4% (646/707) of them were Rhipicephalus sanguineus s.l. Queue Fine de l'Ouest animals were markedly less infested by ticks, and no one of them was infected by piroplasms compared to the Barbarine breed. Indeed, during the first four seasons, 21 animals, all from the Barbarine breed, were detected positive for piroplasms. This is the first study in Tunisia about the low susceptibility of QFO ewes to infestation by ticks and to infection by piroplasms. The QFO sheep breed could be raised preferably at high-risk areas of tick occurrence and could be considered in concrete control strategies, including a breeding program.
Collapse
|
31
|
Aktaş M, Özübek S, Uluçeşme MC. Molecular Detection and Phylogeny of Anaplasma phagocytophilum and Related Variants in Small Ruminants from Turkey. Animals (Basel) 2021; 11:ani11030814. [PMID: 33799376 PMCID: PMC8001643 DOI: 10.3390/ani11030814] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary We explored the existence of Anaplasma phagocytophilum and related variant in samples of goats and sheep obtained from Antalya and Mersin provinces, representative of Mediterranean region of Turkey. Based on 16S rRNA and groEL genes of A. phagocytophilum and related variants, we examined blood samples by polymerase chain reaction (PCR) followed by sequencing. The results showed that the prevalence of A. phagocytophilum and A. phagocytophilum-like 1 infection was 1.4% and 26.5%, respectively. Sequencing confirmed molecular data and showed the presence of A. phagocytophilum and A. phagocytophilum-like-1 variant in the sampled animals. Abstract Anaplasma phagocytophilum causes tick-borne fever in small ruminants. Recently, novel Anaplasma variants related to A. phagocytophilum have been reported in ruminants from Tunisia, Italy, South Korea, Japan, and China. Based on 16S rRNA and groEL genes and sequencing, we screened the frequency of A. phagocytophilum and related variants in 433 apparently healthy small ruminants in Turkey. Anaplasma spp. overall infection rates were 27.9% (121/433 analyzed samples). The frequency of A. phagocytophilum and A. phagocytophilum-like 1 infections was 1.4% and 26.5%, respectively. No A. phagocytophilum-like 2 was detected in the tested animals. The prevalence of Anaplasma spp. was comparable in species, and no significant difference was detected between sheep and goats, whereas the prevalence significantly increased with tick infestation. Sequencing confirmed PCR-RFLP data and showed the presence of A. phagocytophilum and A. phagocytophilum-like-1 variant in the sampled animals. Phylogeny-based on 16S rRNA gene revealed the A. phagocytophilum-like 1 in a separate clade together with the previous isolates detected in small ruminants and ticks. In this work, A. phagocytophilum-like 1 has been detected for the first time in sheep and goats from Turkey. This finding revealed that the variant should be considered in the diagnosis of caprine and ovine anaplasmosis.
Collapse
|
32
|
Helke KL, Meyerholz DK, Beck AP, Burrough ER, Derscheid RJ, Löhr C, McInnes EF, Scudamore CL, Brayton CF. Research Relevant Background Lesions and Conditions: Ferrets, Dogs, Swine, Sheep, and Goats. ILAR J 2021; 62:133-168. [PMID: 33712827 DOI: 10.1093/ilar/ilab005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/17/2020] [Accepted: 01/06/2021] [Indexed: 01/01/2023] Open
Abstract
Animal models provide a valuable tool and resource for biomedical researchers as they investigate biological processes, disease pathogenesis, novel therapies, and toxicologic studies. Interpretation of animal model data requires knowledge not only of the processes/diseases being studied but also awareness of spontaneous conditions and background lesions in the model that can influence or even confound the study results. Species, breed/stock, sex, age, anatomy, physiology, diseases (noninfectious and infectious), and neoplastic processes are model features that can impact the results as well as study interpretation. Here, we review these features in several common laboratory animal species, including ferret, dog (beagle), pig, sheep, and goats.
Collapse
Affiliation(s)
- Kristi L Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Amanda P Beck
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Eric R Burrough
- Veterinary Diagnostic and Production Animal Medicine Department, Iowa State University, Ames, Iowa, USA
| | - Rachel J Derscheid
- Veterinary Diagnostic and Production Animal Medicine Department, Iowa State University, Ames, Iowa, USA
| | - Christiane Löhr
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Elizabeth F McInnes
- Toxicologic Pathology, Toxicology Section, Human Safety at Syngenta, in Jealott's Hill, Bracknell, United Kingdom
| | - Cheryl L Scudamore
- ExePathology, Pathologist at ExePathology, Exmouth, Devon, United Kingdom
| | - Cory F Brayton
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
33
|
Wang K, Yan Y, Zhou Y, Zhao S, Jian F, Wang R, Zhang L, Ning C. Seasonal dynamics of Anaplasma spp. in goats in warm-temperate zone of China. Ticks Tick Borne Dis 2021; 12:101673. [PMID: 33549978 DOI: 10.1016/j.ttbdis.2021.101673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Abstract
Anaplasma are tick-borne obligate intracellular bacteria that can endanger human and animal health, and until now, there have been few reports on the seasonal dynamics of Anaplasma species in China. In this study, a total of 491 goat blood samples were collected in spring (n = 124), summer (n = 135), autumn (n = 110), and winter (n = 122) from Shaanxi provinces. Single and mixed infections of Anaplasma spp. from warm-temperate regions of China were analyzed according to seasons using a nested PCR method. Positive samples were sequenced to observe the molecular and phylogenetic characteristics of the Anaplasma species, and we determined the co-infection rates of Anaplasma spp. for each season. A molecular survey of Anaplasma phagocytophilum, A. bovis, A. ovis, and A. capra in goats showed average prevalences of 71.6 % (maximum 86.7 % in summer and minimum 48.4 % in winter), 62.2 % (minimum 38.7 % in spring and maximum 94.1 % in summer), 25.5 % (minimum 0% in summer and maximum 51.6 % in spring), and 26.6 % (minimum 8.2 % in winter and maximum 55.6 % in summer), respectively. In the phylogenetic analysis, A. phagocytophilum and A. capra occupied two separate groups, Chinese A. bovis and foreign isolates appeared to be geographically isolated, and all A. ovis isolates were in the same branch as the previously described sequences. The survey indicated that goats in warm-temperate regions of China are frequently exposed to Anaplasma spp. all year round, and thus prevention and treatment efforts for anaplasmosis in the region should be strengthened.
Collapse
Affiliation(s)
- Kunlun Wang
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, PR China
| | - Yaqun Yan
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, PR China
| | - Yongchun Zhou
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, PR China
| | - Shanshan Zhao
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, PR China
| | - Fuchun Jian
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, PR China
| | - Rongjun Wang
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, PR China
| | - Longxian Zhang
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, PR China
| | - Changshen Ning
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, PR China.
| |
Collapse
|
34
|
Kasozi KI, Welburn SC, Batiha GES, Marraiki N, Nalumenya DP, Namayanja M, Matama K, Zalwango KK, Matovu W, Zirintunda G, Ekou J, Kembabazi S, Mugasa CM, Kitibwa A, Tayebwa DS, Musinguzi SP, Mahero M, Ssengendo I, Nanteza A, Matovu E, MacLeod ET. Molecular epidemiology of anaplasmosis in small ruminants along a human-livestock-wildlife interface in Uganda. Heliyon 2020; 7:e05688. [PMID: 33437885 PMCID: PMC7788096 DOI: 10.1016/j.heliyon.2020.e05688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/28/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022] Open
Abstract
Background Information as regards the epidemiology of the Anaplasmataceae in small ruminants in several low- and middle-income countries is scarce. Methods In this study a total of 712 DNA samples collected from small ruminants were analyzed for Anaplasmataceae and Anaplasma ovis using the 16S rRNA and MSP4 genes respectively. Infection risk was assessed by location, sex and age of the animals and qGIS® was used to construct spatial maps. Results The prevalence of Anaplasmataceae spp was 89.1% (95% CI: 77.5–95.9) and 79.1% (95% CI: 75.9–82.1) in ovines and caprines respectively (RR = 1.1, 95% CI: 1.0–1.3); higher than those previously reported in other eastern African countries. The prevalence of A. ovis was 26.1% and 25.4% for both ovines and caprines respectively with ovines showing significantly higher levels of infection than caprines (P < 0.05). The risk of Anaplasma ovis infections was not affected by age (OR = 1.2, 95% CI: 0.9–1.7) or sex (OR = 1.1, 95% CI: 0.6–2.0). Small ruminants located at the forest edge (<0.3 km) showed higher A. ovis prevalence than those found inland with infections present in the midland regions associated with increased agricultural activity. Conclusion Anaplasma ovis remains a major challenge for small ruminant husbandry in Uganda and infections are under-reported. Policy efforts to prioritize management of Anaplasmataceae for small ruminant health would promote livestock productivity in vulnerable communities, improving livelihoods and ecosystem health.
Collapse
Affiliation(s)
- Keneth Iceland Kasozi
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, United Kingdom
- Department of Animal Production and Management, Faculty of Agriculture and Agricultural Sciences, Busitema University Arapai Campus, Box 203 Soroti, Uganda
- School of Medicine, Kabale University, Box 317 Kabale, Uganda
- Corresponding author.
| | - Susan Christina Welburn
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, United Kingdom
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, International Campus, 718 East Haizhou Road, Haining 314400, China
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - David Paul Nalumenya
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Box 7062 Kampala, Uganda
| | - Monica Namayanja
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Box 7062 Kampala, Uganda
| | - Kevin Matama
- Kampala International University Western Campus, Box 71 Bushenyi, Uganda
| | - Kelly Katenta Zalwango
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Box 7062 Kampala, Uganda
| | - Wycliff Matovu
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Box 7062 Kampala, Uganda
| | - Gerald Zirintunda
- Department of Animal Production and Management, Faculty of Agriculture and Agricultural Sciences, Busitema University Arapai Campus, Box 203 Soroti, Uganda
| | - Justine Ekou
- Department of Animal Production and Management, Faculty of Agriculture and Agricultural Sciences, Busitema University Arapai Campus, Box 203 Soroti, Uganda
| | | | - Claire Mack Mugasa
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Box 7062 Kampala, Uganda
| | - Annah Kitibwa
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Box 7062 Kampala, Uganda
| | - Dickson Stuart Tayebwa
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Box 7062 Kampala, Uganda
| | - Simon Peter Musinguzi
- Faculty of Agriculture and Environmental Sciences, Kabale University, Box 315 Kabale, Uganda
| | - Michael Mahero
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, USA
| | - Ibrahim Ssengendo
- Kampala International University Western Campus, Box 71 Bushenyi, Uganda
| | - Anne Nanteza
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Box 7062 Kampala, Uganda
| | - Enock Matovu
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Box 7062 Kampala, Uganda
| | - Ewan Thomas MacLeod
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, United Kingdom
| |
Collapse
|
35
|
Aktas M, Çolak S. Molecular detection and phylogeny of Anaplasma spp. in cattle reveals the presence of novel strains closely related to A. phagocytophilum in Turkey. Ticks Tick Borne Dis 2020; 12:101604. [PMID: 33160190 DOI: 10.1016/j.ttbdis.2020.101604] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/02/2020] [Accepted: 10/17/2020] [Indexed: 11/19/2022]
Abstract
Anaplasma species are obligate intracellular rickettsial pathogens that affect the health of humans and animals. In this study, we investigated the presence and frequency of Anaplasma species by 16S rRNA PCR-RLB, RFLP, and DNA sequencing in 200 apparently healthy cattle. Anaplasma spp. overall infection rate was 38.5 % (77/200) by RLB. The frequency of single and mixed infections was 31.5 % (63/200) and 7% (14/200), respectively. The most common species was A. marginale (32.5 %), followed by A. centrale (5.5 %), Anaplasma/Ehrlichia catc-all (5.5 %) and Anaplasma sp. Omatjenne (2.5 %). No A. phagocytophilum and A. bovis were detected in the tested animals. Eleven of 77 PCR-positive amplicons gave positive reactions to the catch-all probes but did not show any signals to the species-specific probes, but PCR-RFLP results showed that these amplicons were A. phagocytophilum-like 1 and A. phagocytophilum-like 2 strains. Sequencing and phylogenetic analyses based on 16S rRNA gene validated RFLP findings and provided evidence for the circulation of A. phagocytophilum-like-1 and 2 strains in Turkish cattle. This is the first report of the presence of A. phagocytophilum-like strains in the country. These findings indicate that A. phagocytophilum-like 1 and 2 strains should be taken into account in the differential diagnosis with bovine anaplasmosis.
Collapse
Affiliation(s)
- Munir Aktas
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, 23119, Elazig, Turkey.
| | - Serdar Çolak
- Ministry of Agriculture, Malatya Agriculture Provincial Directorate, Malatya, Turkey
| |
Collapse
|
36
|
Tumwebaze MA, Byamukama B, Tayebwa DS, Byaruhanga J, Angwe MK, Galon EM, Liu M, Lee SH, Ringo AE, Adjou Moumouni PF, Li J, Li Y, Ji S, Vudriko P, Xuan X. First Molecular Detection of Babesia ovis, Theileria spp., Anaplasma spp., and Ehrlichia ruminantium in Goats from Western Uganda. Pathogens 2020; 9:pathogens9110895. [PMID: 33121172 PMCID: PMC7692732 DOI: 10.3390/pathogens9110895] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Ticks and tick-borne diseases are major impediments to livestock production. To date, there have been several studies on the prevalence of tick-borne pathogens (TBPs) in cattle, but very few studies have documented TBPs in goats in Uganda. In this study, polymerase chain reaction assays and sequence analysis of different molecular markers were used to assess the presence and genetic characteristics of TBPs in 201 goats from Kasese district in western Uganda. The risk factors associated with TBP infections were also analyzed. We detected Theileria spp. (13.4%), Anaplasma phagocytophilum (10.9%), Anaplasma ovis (5.5%), Babesia ovis (5.5%), and Ehrlichia ruminantium (0.5%). The sequences of B. ovis ssu rRNA and A. ovismsp4 genes showed some degree of diversity among the parasite isolates in this study. The E. ruminantium pCS20 sequence formed a well-supported clade with isolates from Amblyomma variegatum ticks from Uganda. Wildlife interaction, sampling location, low body condition score, tick infestation, and herd size were significantly associated with TBP infections in the goats. The findings in this study provide important information on the epidemiology of tick-borne pathogens in Uganda, and show that goats could be potential reservoirs for tick-borne pathogens.
Collapse
Affiliation(s)
- Maria Agnes Tumwebaze
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; (M.A.T.); (B.B.); (E.M.G.); (M.L.); (S.-H.L.); (A.E.R.); (P.F.A.M.); (J.L.); (Y.L.); (S.J.)
- Research Center for Tropical Diseases and Vector Control, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala 7062, Uganda; (D.S.T.); (J.B.); (M.K.A.)
| | - Benedicto Byamukama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; (M.A.T.); (B.B.); (E.M.G.); (M.L.); (S.-H.L.); (A.E.R.); (P.F.A.M.); (J.L.); (Y.L.); (S.J.)
- Research Center for Tropical Diseases and Vector Control, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala 7062, Uganda; (D.S.T.); (J.B.); (M.K.A.)
| | - Dickson Stuart Tayebwa
- Research Center for Tropical Diseases and Vector Control, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala 7062, Uganda; (D.S.T.); (J.B.); (M.K.A.)
- Department of Veterinary Pharmacy, Clinical & Comparative Medicine, School of Veterinary Medicine and Animal Resources, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala 7062, Uganda
| | - Joseph Byaruhanga
- Research Center for Tropical Diseases and Vector Control, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala 7062, Uganda; (D.S.T.); (J.B.); (M.K.A.)
| | - Martin Kamilo Angwe
- Research Center for Tropical Diseases and Vector Control, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala 7062, Uganda; (D.S.T.); (J.B.); (M.K.A.)
| | - Eloiza May Galon
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; (M.A.T.); (B.B.); (E.M.G.); (M.L.); (S.-H.L.); (A.E.R.); (P.F.A.M.); (J.L.); (Y.L.); (S.J.)
| | - Mingming Liu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; (M.A.T.); (B.B.); (E.M.G.); (M.L.); (S.-H.L.); (A.E.R.); (P.F.A.M.); (J.L.); (Y.L.); (S.J.)
| | - Seung-Hun Lee
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; (M.A.T.); (B.B.); (E.M.G.); (M.L.); (S.-H.L.); (A.E.R.); (P.F.A.M.); (J.L.); (Y.L.); (S.J.)
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Aaron Edmond Ringo
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; (M.A.T.); (B.B.); (E.M.G.); (M.L.); (S.-H.L.); (A.E.R.); (P.F.A.M.); (J.L.); (Y.L.); (S.J.)
- Zanzibar Livestock Research Institute, Ministry of Agriculture, Natural Resources, Livestock and Fisheries, P.O. Box 159 Zanzibar, Tanzania
| | - Paul Franck Adjou Moumouni
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; (M.A.T.); (B.B.); (E.M.G.); (M.L.); (S.-H.L.); (A.E.R.); (P.F.A.M.); (J.L.); (Y.L.); (S.J.)
| | - Jixu Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; (M.A.T.); (B.B.); (E.M.G.); (M.L.); (S.-H.L.); (A.E.R.); (P.F.A.M.); (J.L.); (Y.L.); (S.J.)
| | - Yongchang Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; (M.A.T.); (B.B.); (E.M.G.); (M.L.); (S.-H.L.); (A.E.R.); (P.F.A.M.); (J.L.); (Y.L.); (S.J.)
| | - Shengwei Ji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; (M.A.T.); (B.B.); (E.M.G.); (M.L.); (S.-H.L.); (A.E.R.); (P.F.A.M.); (J.L.); (Y.L.); (S.J.)
| | - Patrick Vudriko
- Research Center for Tropical Diseases and Vector Control, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala 7062, Uganda; (D.S.T.); (J.B.); (M.K.A.)
- Department of Veterinary Pharmacy, Clinical & Comparative Medicine, School of Veterinary Medicine and Animal Resources, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala 7062, Uganda
- Correspondence: (P.V.); (X.X.)
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; (M.A.T.); (B.B.); (E.M.G.); (M.L.); (S.-H.L.); (A.E.R.); (P.F.A.M.); (J.L.); (Y.L.); (S.J.)
- Correspondence: (P.V.); (X.X.)
| |
Collapse
|
37
|
Epidemiological and Comparative Diagnostic Study of Anaplasma Spp. Infection in Goats from North-Eastern Algeria. FOLIA VETERINARIA 2020. [DOI: 10.2478/fv-2020-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Abstract
Anaplasmosis is an infectious disease affecting goats and other ruminants. Our goal was to estimate the prevalence of Anaplasma spp. infections, and to identify different tick species in goa ts along with their associated risk factors. The epidemiology of Anaplasma spp. (A. ovis/A. marginale) was investigated from April to September 2016 in dairy goats from three different agro-ecological areas in the northeast region of Algeria (Guelma and El-Taref). We tested 182 goat sera using a MSP5 competitive ELISA (cELISA) test for IgG antibody screening, and by microscopic examination using the Giemsa (May-Greunwald-Giemsa) stain of 128 blood smears to detect intraerythrocytic inclusions bodies. The results demonstrated a total infection rate of 78.02 % and 42.18 % using cELISA and MGG, respectively. Only two species of ticks collected were identified, i. e. Rhipicephalus sanguineus (85.39 %) and Rhipicephalus bursa (14.60 %). Our study revealed that factors, such as the season, the type of farming, the hygienic status and the climatic conditions of the studied areas were found to be significantly associated with the tick infestation of goats (P < 0.05). The Anaplasma spp. infection prevalence was found to be highly dependent on the climatic conditions, the season (P < 0.05) and most closely related to the type of breeding and herd management (P = 0.000).
The evaluation of the Giemsa technique showed specificity and sensitivity of 60.71 % and 45.16 % respectively. Calculating the concordance between the two techniques revealed Cohen’s Kappa value of 0.038 in the range 0.21—0.40, which corresponded to a very low agreement. The McNemar test results showed that both tests gave significantly different results (P < 0.05). This work provides evidence for Anaplasma spp. in goats from north-eastern Algeria.
Collapse
|
38
|
Ghaffar A, Ijaz M, Ali A, Farooqi SH, Rehman A, Ali MM, Zafar MZ, Naeem MA. First Report on Molecular Characterization of Anaplasmosis in Small Ruminants in Pakistan. J Parasitol 2020; 106:360-368. [PMID: 32227225 DOI: 10.1645/19-90] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Anaplasmosis is caused by a Gram-negative obligate intracellular bacterium of the genus Anaplasma with the pathogen having a zoonotic impact. The study aimed to estimate the prevalence of anaplasmosis in Pakistan, to unravel the association of potential risk factors, and to investigate the effect on hematological parameters in affected small ruminants. A total of 150 (n = 75 sheep; n = 75 goats) blood samples were initially screened microscopically and then subjected to PCR targeting the amplification of the 16S rRNA gene fragment of Anaplasma. The PCR-based positive samples were then processed for sequencing. Statistical analysis regarding risk factors was performed using R software. The study revealed an overall 29.33% (44/150) prevalence of anaplasmosis in small ruminants. Sheep had higher (P > 0.05) prevalence (32%) as compared to goats (25.30%). The final statistical model resulting from backward elimination showed only tick infestation as a significant predictor of infection status. The phylogenetic analysis of 16S rRNA gene of Anaplasma spp. revealed 9 study isolates clustered together and showed a close resemblance (99%) with Anaplasma ovis isolate (DQ837600) from Hungary. One of the isolates showed (99%) similarity with the isolate of Anaplasma marginale (MH155594) from Iraq. Furthermore, the hematological parameters pack cell volume, red blood cells, hemoglobin, white blood cells, granulocytes, monocytes, lymphocytes, and platelet count were decreased in Anaplasma-positive animals. This is the first study at the molecular level to characterize Anaplasma spp. in small ruminants of Pakistan, and it will be useful in developing control strategies for anaplasmosis.
Collapse
Affiliation(s)
- Awais Ghaffar
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, Lahore 54600, Pakistan
| | - Muhammad Ijaz
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, Lahore 54600, Pakistan
| | - Ahmad Ali
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, Lahore 54600, Pakistan
| | - Shahid Hussain Farooqi
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, Lahore 54600, Pakistan
| | - Abdul Rehman
- Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore 54600, Pakistan
| | - Muhammad Muddassir Ali
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore 54600, Pakistan
| | - Muhammad Zeeshan Zafar
- Department of Microbiology, University of Veterinary and Animal Sciences, Lahore 54600, Pakistan
| | - Muhammad Anas Naeem
- Department of Microbiology, University of Veterinary and Animal Sciences, Lahore 54600, Pakistan
| |
Collapse
|
39
|
Ghafar A, Khan A, Cabezas-Cruz A, Gauci CG, Niaz S, Ayaz S, Mateos-Hernández L, Galon C, Nasreen N, Moutailler S, Gasser RB, Jabbar A. An Assessment of the Molecular Diversity of Ticks and Tick-Borne Microorganisms of Small Ruminants in Pakistan. Microorganisms 2020; 8:microorganisms8091428. [PMID: 32957540 PMCID: PMC7563897 DOI: 10.3390/microorganisms8091428] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 01/02/2023] Open
Abstract
This study investigated ticks and tick-borne microorganisms of small ruminants from five districts of the Federally Administered Tribal Area (FATA) of Pakistan. Morphological (n = 104) and molecular (n = 54) characterization of the ticks revealed the presence of six ixodid ticks: Rhipicephalus (Rh.) haemaphysaloides, Rh. microplus, Rh. turanicus, Haemaphysalis (Hs.) punctata, Hs. sulcata and Hyalomma anatolicum. Phylogenetic analyses of nucleotide sequence data for two mitochondrial (16S and cytochrome c oxidase 1) and one nuclear (second internal transcribed spacer) DNA regions provided strong support for the grouping of the six tick species identified in this study. Microfluidic real-time PCR, employing multiple pre-validated nuclear and mitochondrial genetic markers, detected 11 potential pathogens and endosymbionts in 72.2% of the ticks (n = 54) tested. Rickettsia (R.) massiliae was the most common pathogen found (42.6% of ticks) followed by Theileria spp. (33.3%), Anaplasma (A.) ovis and R. slovaca (25.9% each). Anaplasma centrale, A. marginale, Ehrlichia spp., R. aeschlimannii, R. conorii and endosymbionts (Francisella- and Coxiella-like) were detected at much lower rates (1.9–22.2%) in ticks. Ticks from goats (83.9%) carried significantly higher microorganisms than those from sheep (56.5%). This study demonstrates that ticks of small ruminants from the FATA are carrying multiple microorganisms of veterinary and medical health significance and provides the basis for future investigations of ticks and tick-borne diseases of animals and humans in this and neighboring regions.
Collapse
Affiliation(s)
- Abdul Ghafar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee 3030, Victoria, Australia; (A.G.); (A.K.); (C.G.G.); (R.B.G.)
| | - Adil Khan
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee 3030, Victoria, Australia; (A.G.); (A.K.); (C.G.G.); (R.B.G.)
- Department of Zoology, Faculty of Chemical and Life Sciences, The Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan; (S.N.); (S.A.); (N.N.)
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France; (A.C.-C.); (L.M.-H.); (C.G.); (S.M.)
| | - Charles G. Gauci
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee 3030, Victoria, Australia; (A.G.); (A.K.); (C.G.G.); (R.B.G.)
| | - Sadaf Niaz
- Department of Zoology, Faculty of Chemical and Life Sciences, The Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan; (S.N.); (S.A.); (N.N.)
| | - Sultan Ayaz
- Department of Zoology, Faculty of Chemical and Life Sciences, The Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan; (S.N.); (S.A.); (N.N.)
| | - Lourdes Mateos-Hernández
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France; (A.C.-C.); (L.M.-H.); (C.G.); (S.M.)
| | - Clemence Galon
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France; (A.C.-C.); (L.M.-H.); (C.G.); (S.M.)
| | - Nasreen Nasreen
- Department of Zoology, Faculty of Chemical and Life Sciences, The Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan; (S.N.); (S.A.); (N.N.)
| | - Sara Moutailler
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France; (A.C.-C.); (L.M.-H.); (C.G.); (S.M.)
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee 3030, Victoria, Australia; (A.G.); (A.K.); (C.G.G.); (R.B.G.)
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee 3030, Victoria, Australia; (A.G.); (A.K.); (C.G.G.); (R.B.G.)
- Correspondence:
| |
Collapse
|
40
|
Abdullah DA, Ali FF, Jasim AY, Ola-Fadunsin SD, Gimba FI, Ali MS. Clinical signs, prevalence, and hematobiochemical profiles associated with Anaplasma infections in sheep of North Iraq. Vet World 2020; 13:1524-1527. [PMID: 33061222 PMCID: PMC7522931 DOI: 10.14202/vetworld.2020.1524-1527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 06/12/2020] [Indexed: 01/03/2023] Open
Abstract
Background and Aim: Anaplasma infection is a worldwide prevalent condition that causes significant economic losses in affected flocks. This study was conducted to determine the prevalence and clinical signs associated with ovine anaplasmosis as well as the hematological and biochemical changes associated with the disease in natural infection in North Iraq. Materials and Methods: A total of 420 sheep were appropriately examined, and the clinical signs were documented accordingly. Blood samples were collected and subjected to parasitological, hematological, and biochemical analyses. Results: Anaplasma-infected sheep displayed the following clinical signs: Paleness of the mucous membrane, bloody diarrhea, emaciation, pyrexia, jaundice, nasal discharge, coughing, loss of wool, nervous signs, hemoglobinuria, and lacrimation. The prevalence of Anaplasma infection was 66.19%, and female sheep were significantly (p<0.05) more infected than male sheep. The hematological and biochemical parameters were significantly different between Anaplasma-positive and Anaplasma-negative sheep. Conclusion: Anaplasma infection among sheep is a significant concern in North Iraq considering its prevalence, clinical signs, and hematological and biochemical findings, which entirely causes significant debilitating effects on sheep productivity. It is important to pay more attention toward managing tick infestation among sheep to reduce the occurrence of this rickettsial disease for a more robust livestock sector of the Iraqi economy.
Collapse
Affiliation(s)
| | - Fawwaz Fadhil Ali
- Department of Animal Production Techniques, Northern Technical University, Mosul, Iraq
| | - Afrah Younis Jasim
- Department of Animal Production Techniques, Northern Technical University, Mosul, Iraq
| | - Shola David Ola-Fadunsin
- Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Ilorin, PMB 1515 Ilorin, Kwara State, Nigeria
| | - Fufa Ido Gimba
- Avian Influenza Control Project Animal Health Component Desk office, Taraba State Ministry of Agriculture and Natural Resources Jalingo, Taraba State, Nigeria
| | - Moeena Sadeq Ali
- Department of Animal Production Techniques, Northern Technical University, Mosul, Iraq
| |
Collapse
|
41
|
Bacterial and protozoan pathogens/symbionts in ticks infecting wild grasscutters (Thryonomys swinderianus) in Ghana. Acta Trop 2020; 205:105388. [PMID: 32035054 DOI: 10.1016/j.actatropica.2020.105388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 12/20/2022]
Abstract
Ticks and tick-borne pathogens constitute a great threat to livestock production and are a potential health hazard to humans. Grasscutters (Thryonomys swinderianus) are widely hunted for meat in Ghana and many other West and Central African countries. However, tick-borne zoonotic risks posed by wild grasscutters have not been assessed. The objective of this study was to investigate bacterial and protozoan pathogens in ticks infecting wild grasscutters. A total of 81 ticks were collected from three hunted grasscutters purchased from Kantamanto, the central bushmeat market in Accra. Ticks were identified as Ixodes aulacodi and Rhipicephalus sp. based on morphological keys, which were further confirmed by sequencing mitochondrial 16S ribosomal DNA (rDNA) and cytochrome oxidase I (COI) genes of specimens. Protozoan infections were tested by PCR amplifying 18S rDNA of Babesia/Theileria/Hepatozoon, while bacterial infections were evaluated by PCRs or real-time PCRs targeting Anaplasmataceae, Borrelia, spotted fever group rickettsiae, chlamydiae and Candidatus Midichloria mitochondrii. The results of PCR screening showed that 35.5% (27 out of 76) of I. aulacodi were positive for parasite infections. Sequencing analysis of the amplified products gave one identical sequence showing similarity with Babesia spp. reported from Africa. The Ca. M. mitochondrii endosymbiont was present in 85.5% (65 out of 76) of I. aulacodi but not in the five Rhipicephalus ticks. Two Anaplasmataceae bacteria genetically related to Ehrlichia muris and Anaplasma phagocytophilum were also detected in two I. aulacodi. None of the ticks were positive for Borrelia spp., spotted fever group rickettsiae and chlamydiae. Since I. aulacodi on wild grasscutters are potential carriers of tick-borne pathogens, some of which could be of zoonotic potential, rigorous tick control and pathogen analyses should be instituted especially when wild caught grasscutters are being used as foundation stock for breeding.
Collapse
|
42
|
Ben Said M, Selmi R, Rhouma MH, Belkahia H, Messadi L. Molecular phylogeny and genetic diversity based on msp1a, groEL and gltA genes of Anaplasma ovis Tunisian isolates compared to available worldwide isolates and strains. Ticks Tick Borne Dis 2020; 11:101447. [PMID: 32499148 DOI: 10.1016/j.ttbdis.2020.101447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/22/2022]
Abstract
Anaplasma ovis, the causative agent of ovine anaplasmosis in tropical and subtropical countries, is a tick-borne obligatory intraerythrocytic bacterium of sheep, goats and wild ruminants. In Tunisia, data about the molecular phylogeny and the genetic diversity of A. ovis isolates are limited to the analysis of msp4 and groEL genes. The aim of this study was to genetic characterize 40 A. ovis isolates infecting 28 goats, 10 sheep, one camel and one Rhipicephalus turanicus tick located in different geographic regions of Tunisia on the basis of 3 partial genes (gltA, groEL and msp1a). Sequence analysis revealed 6 and 17 different genotypes in the partial gltA and groEL genes, respectively. Phylogenetic analysis revealed, as expected for the groEL gene, that sequences from small ruminants and their infesting ticks clustered separately from those isolated from camels. The analysis of amino-acid Msp1a sequences identified 18 novel genotypes of Msp1a repeats from 20 A. ovis isolates. These Msp1a repeats were highly variable with 33-47 amino-acids, and the number of repeats is one for 19 isolates infecting 18 goats and one R. turanicus tick, and 4 for a single isolate found in one sheep. Phylogenetic trees based on Msp1a partial sequences revealed that the N-terminal region of Msp1a protein appear to be relatively more informative phylogeographically compared to other markers especially according to countries. The presented data give a more detailed knowledge regarding the molecular phylogeny and the genetic diversity of A. ovis isolates occurring in different animal species and their associated ticks in Tunisia.
Collapse
Affiliation(s)
- Mourad Ben Said
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, Université de La Manouba, 2020 Sidi Thabet, Tunisia.
| | - Rachid Selmi
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, Université de La Manouba, 2020 Sidi Thabet, Tunisia
| | - Mohamed Hamza Rhouma
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, Université de La Manouba, 2020 Sidi Thabet, Tunisia
| | - Hanène Belkahia
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, Université de La Manouba, 2020 Sidi Thabet, Tunisia
| | - Lilia Messadi
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, Université de La Manouba, 2020 Sidi Thabet, Tunisia.
| |
Collapse
|
43
|
Yan Y, Jiang Y, Tao D, Zhao A, Qi M, Ning C. Molecular detection of Anaplasma spp. in dairy cattle in southern Xinjiang, China. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2020; 20:100406. [PMID: 32448523 DOI: 10.1016/j.vprsr.2020.100406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 01/19/2023]
Abstract
Bovine anaplasmosis is caused by a group of obligate intracellular bacteria belonging to the genus Anaplasma, which are transmitted by ticks. This study was conducted to determine the prevalences and molecular characterization of Anaplasma spp. in dairy cattle in the upper reaches of the Tarim River in Xinjiang, China. Using polymerase chain reaction (PCR) and sequencing approaches, DNA of Anaplasma spp. was detected in 16 of 493 (3.2%) blood samples from dairy cattle. Positive rates were 0.2% (1/493), 0.4% (2/493), 0.2% (1/493), 2.4% (12/493) and 2.4% (12/493) for A. bovis, A. ovis, A. phagocytophilum like strain, A. phagocytophilum and A. platys like strain, respectively. Anaplasma phagocytophilum and A. platys like strain co-infection was detected in 12 samples. To our knowledge, this is the first report of A. ovis infection in dairy cattle in Xinjiang. This study provides new data on the prevalences of Anaplasma spp. in cattle in Xinjiang, which will help to formulate appropriate control strategies for these pathogens in this area.
Collapse
Affiliation(s)
- Yaqun Yan
- College of Animal Science, Tarim University, Alar, Xinjiang 843300, PR China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, PR China
| | - Yuxi Jiang
- College of Animal Science, Tarim University, Alar, Xinjiang 843300, PR China
| | - Dayong Tao
- College of Animal Science, Tarim University, Alar, Xinjiang 843300, PR China
| | - Aiyun Zhao
- College of Animal Science, Tarim University, Alar, Xinjiang 843300, PR China
| | - Meng Qi
- College of Animal Science, Tarim University, Alar, Xinjiang 843300, PR China.
| | - Changshen Ning
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, PR China.
| |
Collapse
|
44
|
Zobba R, Ben Said M, Belkahia H, Pittau M, Cacciotto C, Pinna Parpaglia ML, Messadi L, Alberti A. Molecular epidemiology of Anaplasma spp. related to A. phagocytophilum in Mediterranean small ruminants. Acta Trop 2020; 202:105286. [PMID: 31790650 DOI: 10.1016/j.actatropica.2019.105286] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/21/2019] [Accepted: 11/27/2019] [Indexed: 01/21/2023]
Abstract
The genus Anaplasma currently comprises 6 bacterial species mostly pathogenic to animals and/or human, including the zoonotic species Anaplasma phagocytophilum, the causative agent of tick-borne fever (TBF) of ruminants, and of granulocytic anaplasmosis of horses, dogs and human. Recently, novel potentially non-pathogenic strains related to A. phagocytophilum have been identified in Japan, China, and Tunisia. This paper reports the identification, molecular typing, and evolutionary history of novel Anaplasma strains (A. phagocytophilum-like 1 and 2), related to but distinct from A. phagocytophilum in Mediterranean area of Europe and Africa. PCR-RFLP and phylogenetic analyses based on 16S rRNA provided evidence for the circulation of A. phagocytophilum-like 1 strains in Europe. Phylogeny based on groEL gene showed the inclusion of Sardinian and Tunisian A. phagocytophilum-like 1 strains in a unique clade distinct from, but related to that of Japanese strains. Results suggest that genetic diversity within the genus Anaplasma is much greater than expected and provide information useful for the development of specific and effective diagnostic and prophylactic tools.
Collapse
Affiliation(s)
- Rosanna Zobba
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy; Mediterranean Center for Disease Control, University of Sassari, 07100 Sassari, Italy
| | - Mourad Ben Said
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, Université de Manouba, Sidi Thabet, Tunisia
| | - Hanène Belkahia
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, Université de Manouba, Sidi Thabet, Tunisia
| | - Marco Pittau
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy; Mediterranean Center for Disease Control, University of Sassari, 07100 Sassari, Italy
| | - Carla Cacciotto
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy; Mediterranean Center for Disease Control, University of Sassari, 07100 Sassari, Italy
| | | | - Lilia Messadi
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, Université de Manouba, Sidi Thabet, Tunisia
| | - Alberto Alberti
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy; Mediterranean Center for Disease Control, University of Sassari, 07100 Sassari, Italy.
| |
Collapse
|
45
|
Ben Said M, Belkahia H, Selmi R, Messadi L. Computational selection of minimum length groESL operon required for Anaplasma species attribution and strain diversity analysis. Mol Cell Probes 2019; 48:101467. [DOI: 10.1016/j.mcp.2019.101467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/06/2019] [Accepted: 09/25/2019] [Indexed: 01/18/2023]
|
46
|
Sadeddine R, Diarra AZ, Laroche M, Mediannikov O, Righi S, Benakhla A, Dahmana H, Raoult D, Parola P. Molecular identification of protozoal and bacterial organisms in domestic animals and their infesting ticks from north-eastern Algeria. Ticks Tick Borne Dis 2019; 11:101330. [PMID: 31786146 DOI: 10.1016/j.ttbdis.2019.101330] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/16/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022]
Abstract
A molecular survey was undertaken to determine the presence of protozoal and bacterial organisms in 120 ticks and 87 blood samples collected from mammals in north-eastern Algeria. Eight tick species were morphologically identified including 70 Rhipicephalus (Boophilus) annulatus, 23 Rhipicephalus bursa, five Rhipicephalus sanguineus sensu lato, 11 Hyalomma impeltatum, five Hyalomma scupense, two Hyalommma marginatum, one Hyalomma anatolicum and three Ixodes ricinus. Quantitative PCR screening of the ticks showed that Theileria annulata, "Candidatus Ehrlichia urmitei", Theileria buffeli and Anaplasma platys were detected in Rh. annulatus. Rickettsia massiliae and Anaplasma ovis were detected in Rh. sanguineus s.l. and Rh. bursa. Rickettsia aeschlimannii was detected in Hy. marginatum, Hy. scupense and Hy. impeltatum. Finally, "Candidatus Rickettsia barbariae" was detected in Rh. bursa. In the screening blood samples, Theileria equi, T.annulata, T. buffeli, Babesia bovis, Anaplasma marginale, A. ovis and Borrelia spp. were detected in cattle. Theileria ovis, T. annulata, and A. ovis were detected in sheep. In addition, A. ovis and T. equi were detected in goats and equidea respectively. In this study, T. equi and "Candidatus Rickettsia barbariae" were identified for the first time in Algeria as well as potential new species of Ehrlichia and Anaplasma. Although molecular detection does not indicate vector/reservoir competence when investigating ticks removed from animals, this study expands the knowledge of the microorganisms detected in ticks in north-east of Algeria.
Collapse
Affiliation(s)
- Rima Sadeddine
- Université Chadli Bendjdid, Département des Sciences Vétérinaires, El Tarf, 36000, Algeria; Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Adama Zan Diarra
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU Méditerranée Infection, Marseille, France; Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Maureen Laroche
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Oleg Mediannikov
- IHU Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Souad Righi
- Université Chadli Bendjdid, Département des Sciences Vétérinaires, El Tarf, 36000, Algeria
| | - Ahmed Benakhla
- Université Chadli Bendjdid, Département des Sciences Vétérinaires, El Tarf, 36000, Algeria
| | - Handi Dahmana
- IHU Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU Méditerranée Infection, Marseille, France.
| |
Collapse
|
47
|
Selmi R, Ben Said M, Dhibi M, Ben Yahia H, Abdelaali H, Messadi L. Genetic diversity of groEL and msp4 sequences of Anaplasma ovis infecting camels from Tunisia. Parasitol Int 2019; 74:101980. [PMID: 31518651 DOI: 10.1016/j.parint.2019.101980] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/10/2019] [Accepted: 08/30/2019] [Indexed: 01/28/2023]
Abstract
To date, no information is available regarding the infection of camels (Camelus dromedarius) by Anaplasma ovis in North African region. Several animal species can be infected by A. ovis which further complicates its natural infection cycle. In this paper, we investigated the occurrence and the genetic diversity of A. ovis in camels and ticks collected from them in Tunisia and the risk factor analysis. Camel blood samples (n = 412) and tick (n = 300) samples, identified as Hyalomma dromedarii (n = 149, 49.6%), H. impeltatum (n = 142, 47.3%) and H. excavatum (n = 9, 3%), were analyzed by conventional PCR followed by the sequencing of msp4 and groEL genes. A. ovis DNA was identified in five camels (1.2%), but not in infesting ticks (0%). The microscopic examination revealed the specific infection of camel erythrocytes by Anaplasma inclusions. The msp4 and groEL typing confirmed the natural infection of camels by A. ovis and revealed two different msp4 genotypes earlier detected in Tunisian small ruminants and their infested ticks, and five different and novel groEL genetic variants forming a separately sub-cluster within A. ovis cluster. The occurrence of different A. ovis strains specific to camels associated with a low prevalence of this Anaplasma species in camels may enrich knowledge regarding the distribution and the transmission cycle of this bacterium in arid and Saharan areas of Tunisia.
Collapse
Affiliation(s)
- Rachid Selmi
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, Université de Manouba, 2020 Sidi Thabet, Tunisie; Ministère de la Défense Nationale, Direction Générale de la Santé Militaire, Service Vétérinaire, Tunis, Tunisie; Institut National Agronomique de Tunis, Université de Carthage, Tunisie
| | - Mourad Ben Said
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, Université de Manouba, 2020 Sidi Thabet, Tunisie
| | - Mokhtar Dhibi
- Service de Parasitologie, Ecole Nationale de Médecine Vétérinaire, Université de Manouba, 2020 Sidi Thabet, Tunisie
| | - Houcine Ben Yahia
- Ministère de la Défense Nationale, Direction Générale de la Santé Militaire, Service Vétérinaire, Tunis, Tunisie
| | - Hedi Abdelaali
- Ministère de la Défense Nationale, Direction Générale de la Santé Militaire, Service Vétérinaire, Tunis, Tunisie
| | - Lilia Messadi
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, Université de Manouba, 2020 Sidi Thabet, Tunisie.
| |
Collapse
|
48
|
Hamzah KJ, Hasso SA. Molecular prevalence of Anaplasma phagocytophilum in sheep from Iraq. Open Vet J 2019; 9:238-245. [PMID: 31998617 PMCID: PMC6794391 DOI: 10.4314/ovj.v9i3.8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/17/2019] [Indexed: 11/28/2022] Open
Abstract
Background: Tick-borne diseases are widely distributed among animal populations and are responsible for significant economic losses. However, little attention has been offered for screening such infections world widely. Anaplasma phagocytophilum is among those neglected tick-borne pathogens, particularly in the developing countries. Aim: This study was conducted to detect A. phagocytophilum infection among sheep in three governorates of Iraq (Babylon, Wasit, and Missan) and try to identify the potential tick vector responsible for A. phagocytophilum transmission among sheep in these analyzed regions. Methods: A total of 297 blood samples and 103 ticks were collected and examined for A. phagocytophilum by polymerase chain reaction using specific primers amplifying partial sequence for msp4 gene. Results: The results showed that about 14 out of 297 tested sheep were positive for A. phagocytophilum. There was no difference between A. phygocytophilum prevalence according to animal gender, age, and sampling period. Furthermore, our analysis showed that the main vectors of A. phagocytophilum: Ixodes scapularis, I. pacificus, or I. ricinus were not identified in three regions of Iraq (Rhipicephalus turanicus, Hyalomma anatolicum, and Hyalomma turanicum were identified). Conclusion: These results highlight the importance of the survey of the tick-borne bacterial infections in Iraq and in the Middle East region in general.
Collapse
Affiliation(s)
- Karrar Jasim Hamzah
- Department of Veterinary Internal and Preventive Medicine, College of Veterinary Medicine, Al-Qasim Green University, Babylon, Iraq
| | - Saleem Amin Hasso
- Department of Veterinary Internal and Preventive Medicine, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
49
|
Langenwalder DB, Schmidt S, Gilli U, Pantchev N, Ganter M, Silaghi C, Aardema ML, von Loewenich FD. Genetic characterization of Anaplasma phagocytophilum strains from goats (Capra aegagrus hircus) and water buffalo (Bubalus bubalis) by 16S rRNA gene, ankA gene and multilocus sequence typing. Ticks Tick Borne Dis 2019; 10:101267. [PMID: 31444126 DOI: 10.1016/j.ttbdis.2019.101267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/15/2019] [Accepted: 08/12/2019] [Indexed: 11/19/2022]
Abstract
Anaplasma phagocytophilum is a Gram-negative obligate intracellular bacterium that replicates in neutrophil granulocytes. It is transmitted by ticks and causes tick-borne fever in domestic ruminants such as sheep, cattle and goats. However, in contrast to sheep and cattle little is known about the clinical course of infection in goats. We report here on three cases of symptomatic infection with A. phagocytophilum in two goats (Capra aegagrus hircus) and one water buffalo (Bubalus bubalis). The animals showed symptoms and laboratory findings similar to sheep and cattle. To our knowledge, this is the first report on the symptomatic infection of water buffalos with A. phagocytophilum. The infecting strains were genetically characterized by 16S rRNA gene, ankA gene and multilocus sequence typing (MLST). Four other strains from asymptomatically infected goats were also included. The ankA sequences from five goats were part of the formerly described ankA gene clusters I and IV that are known to contain A. phagocytophilum strains from sheep and cattle. However, the sequences from one goat and from the water buffalo belonged to ankA gene cluster II that was formerly described to be restricted to roe deer. A similar observation was made for MLST as three goats clustered with sequences from sheep and cattle, whereas three other goats and the water buffalo were found to be part of the roe deer cluster. However, since most of the strains from sheep and cattle were distinct from the roe deer strains, roe deer might not represent major reservoir hosts for tick-borne fever in domestic ruminants. When differing parts of the 16S rRNA gene were used for typing the results were conflicting. This shows that the use of a standardized typing method such as MLST is highly desirable to generate easily comparable results.
Collapse
Affiliation(s)
- Denis B Langenwalder
- Department of Medical Microbiology and Hygiene, University of Mainz, Obere Zahlbacherstrasse 67, D-55131 Mainz, Germany.
| | - Sabine Schmidt
- Department of Medical Microbiology and Hygiene, University of Mainz, Obere Zahlbacherstrasse 67, D-55131 Mainz, Germany.
| | - Urs Gilli
- IDEXX Diavet, Schlyffistrasse 10, CH-8806 Bäch, Switzerland.
| | - Nikola Pantchev
- IDEXX Laboratories, Mörikestrasse 28/3, D-71636 Ludwigsburg, Germany.
| | - Martin Ganter
- Clinic for Swine and Small Ruminants, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, D-30173 Hannover, Germany.
| | - Cornelia Silaghi
- Friedrich-Loeffler-Institut, Südufer 10, D-17493 Greifswald - Insel Riems, Germany.
| | - Matthew L Aardema
- Department of Biology, Montclair State University, 1 Normal Ave., Montclair, NJ, 07043, USA; Sackler Institute for Comparative Genomics, The American Museum of Natural History, Central Park West and 79th Street, New York, NY, 10024, USA.
| | - Friederike D von Loewenich
- Department of Medical Microbiology and Hygiene, University of Mainz, Obere Zahlbacherstrasse 67, D-55131 Mainz, Germany.
| |
Collapse
|
50
|
Selmi R, Ben Said M, Dhibi M, Ben Yahia H, Messadi L. Improving specific detection and updating phylogenetic data related to Anaplasma platys-like strains infecting camels (Camelus dromedarius) and their ticks. Ticks Tick Borne Dis 2019; 10:101260. [PMID: 31327747 DOI: 10.1016/j.ttbdis.2019.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 06/13/2019] [Accepted: 07/06/2019] [Indexed: 01/28/2023]
Abstract
In camels and their infesting ectoparasites, specific detection of pathogenic Anaplasma platys and genetically related strains (A. platys-like strains) remains problematic. This requires sequencing of the hemi-nested PCR products specific to A. platys and related strains. In this study, a PCR/RFLP method, earlier developed for specific detection of A. platys-like strains in animal species other than camels, was adapted in order to subtype A. platys-like strains isolated from camels and their ticks and to differentiate them from pathogenic A. platys without going through a sequencing step. This approach was used for investigating the infections with A. platys and related strains in 412 Camelus dromedarius camels and 334 feeding ticks from five Tunisian governorates. Microscopic examination using Giemsa-stained blood smears was performed in order to specify which types of cells were infected. Ticks were identified as Hyalomma dromedarii (n = 164, 49%), H. impeltatum (n = 161, 48.3%) and H. excavatum (n = 9, 2.7%). A. platys was not detected in any of the tested camels or ticks. The overall prevalence of A. platys-like strains was 5.6% (23/412) in camels and microscopic examination of infected cells showed a tropism for neutrophil granulocytes. One tick identified as H. dromedarii out of 327 analyzed ticks was found to be infected with A. platys-like strains (0.3%). Alignment, identity comparison and phylogenetic analysis of the 16S rRNA partial sequences obtained in this study suggest that Tunisian dromedaries and feeding ticks are infected with different Anaplasma strains genetically related to A. platys. Sequence analysis and phylogenetic study based on the groEL gene confirm the RFLP results and show that camel strains formed a separate sub-cluster relatively close to A. platys-like strains infecting Tunisian cattle. This adapted RFLP assay allows fast and specific detection of pathogenic A. platys and A. platys-like strains in camels and infesting ticks and has the intrinsic potential of revealing co-infections with these two types of bacteria in the same sample, reducing the time and costs associated with cloning and sequencing during molecular diagnosis.
Collapse
Affiliation(s)
- Rachid Selmi
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, Université de Manouba, 2020 Sidi Thabet, Tunisia; Institut National Agronomique de Tunis, Université de Carthage, Tunisia; Ministère de la Défense Nationale, Direction Générale de la Santé Militaire, Service Vétérinaire, Tunis, Tunisia
| | - Mourad Ben Said
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, Université de Manouba, 2020 Sidi Thabet, Tunisia
| | - Mokhtar Dhibi
- Service de Parasitologie, Ecole Nationale de Médecine Vétérinaire, Université de Manouba, 2020 Sidi Thabet, Tunisia
| | - Houcine Ben Yahia
- Ministère de la Défense Nationale, Direction Générale de la Santé Militaire, Service Vétérinaire, Tunis, Tunisia
| | - Lilia Messadi
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, Université de Manouba, 2020 Sidi Thabet, Tunisia.
| |
Collapse
|