1
|
Chen D, Lu Y, Wang W, Zhang Y, Liu T, Liu H, Zhang L, Peng X, Lv S, Wang Z, Wu W, Hou Z. The Prevalence of Tick-Borne Encephalitis Virus Infection Among Humans in Heilongjiang Province of China in 2020-2023. Zoonoses Public Health 2024; 71:955-961. [PMID: 39169601 DOI: 10.1111/zph.13178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND AND AIMS Tick-borne encephalitis (TBE) is a serious and acute central nervous system infection caused by the tick-borne encephalitis virus (TBEV). In recent years, TBE has emerged as a growing public health threat, with cases reported across Europe, the Russian Far East, Japan and China. This study aims to assess the prevalence of TBEV infection and examine behaviours associated with an increased risk of infection among individuals who visited the Heilongjiang Red Cross Sengong General Hospital due to tick bites from 2020 to 2023. METHODS AND RESULTS We collected blood samples and administered survey questionnaires from tick-bitten people. A total of 457 samples were screened using Nested PCR, and the detected TBEV prevalence rate was 29.54% (135/457). The symptoms of redness and swelling at the site of tick bite (42.57%), fever (28.71%) and headache (10.89%) were identified in the TBEV-positive individuals when they visited the hospital by the physician. Phylogenetic analysis of the partial E gene of TBEV revealed that the predominant strains in the region are highly virulent Far Eastern subtype. However, they do not cluster with the three established evolutionary clades of the Far Eastern type. Questionnaires data analysis identified age and first tick bite as important factors associated with TBEV infection. CONCLUSIONS This study provides basic information on the epidemiology of TBEV in Heilongjiang Province in recent years and identifies that the most related risk factor of infecting TBEV is tick exposure. Further research is needed to develop effective prevention and control measures.
Collapse
Affiliation(s)
- Denghui Chen
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Yaxian Lu
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Wei Wang
- Tick-Borne Diseases Research and Therapeutic Center, Heilongjiang Red Cross Sengong General Hospital, Harbin, China
| | - Yu Zhang
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Tianlu Liu
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Hetong Liu
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Lu Zhang
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Xiaohong Peng
- Tick-Borne Diseases Research and Therapeutic Center, Heilongjiang Red Cross Sengong General Hospital, Harbin, China
| | - Shouxu Lv
- Tick-Borne Diseases Research and Therapeutic Center, Heilongjiang Red Cross Sengong General Hospital, Harbin, China
| | - Zedong Wang
- Department of Emerging Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Wenzhong Wu
- Tick-Borne Diseases Research and Therapeutic Center, Heilongjiang Red Cross Sengong General Hospital, Harbin, China
| | - Zhijun Hou
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| |
Collapse
|
2
|
Altantogtokh D, Lilak AA, Takhampunya R, Sakolvaree J, Chanarat N, Matulis G, Poole-Smith BK, Boldbaatar B, Davidson S, Hertz J, Bolorchimeg B, Tsogbadrakh N, Fiorenzano JM, Lindroth EJ, von Fricken ME. Metagenomic profiles of Dermacentor tick pathogens from across Mongolia, using next generation sequencing. Front Microbiol 2022; 13:946631. [PMID: 36033893 PMCID: PMC9399792 DOI: 10.3389/fmicb.2022.946631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022] Open
Abstract
Tick-borne diseases are a major public health concern in Mongolia. Nomadic pastoralists, which make up ~ 26% of Mongolia’s population, are at an increased risk of both tick bite exposure and economic loss associated with clinical disease in herds. This study sought to further characterize tick-borne pathogens present in Dermacentor ticks (n = 1,773) sampled in 2019 from 15 of Mongolia’s 21 aimags (provinces). The ticks were morphologically identified and sorted into 377 pools which were then screened using Next-Generation Sequencing paired with confirmatory PCR and DNA sequence analysis. Rickettsia spp. were detected in 88.33% of pools, while Anaplasma spp. and Bartonella spp. were detected in 3.18 and 0.79% of pools, respectively. Khentii had the highest infection rate for Rickettsia spp. (76.61%; CI: 34.65–94.79%), while Arkhangai had the highest infection rate for Anaplasma spp. (7.79%; CI:4.04–13.72%). The exclusive detection of Anaplasma spp. in tick pools collected from livestock supports previous work in this area that suggests livestock play a significant role in disease maintenance. The detection of Anaplasma, Bartonella, and Rickettsia demonstrates a heightened risk for infection throughout Mongolia, with this study, to our knowledge, documenting the first detection of Bartonella melophagi in ticks collected in Mongolia. Further research deploying NGS methods is needed to characterize tick-borne pathogens in other endemic tick species found in Mongolia, including Hyalomma asiaticum and Ixodes persulcatus.
Collapse
Affiliation(s)
| | - Abigail A. Lilak
- Department of Global and Community Health, George Mason University, Fairfax, VA, United States
| | - Ratree Takhampunya
- Department of Entomology, US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Jira Sakolvaree
- Department of Entomology, US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Nitima Chanarat
- Department of Entomology, US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Graham Matulis
- Department of Global and Community Health, George Mason University, Fairfax, VA, United States
| | - Betty Katherine Poole-Smith
- Department of Entomology, US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Bazartseren Boldbaatar
- School of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | - Silas Davidson
- Department of Entomology, US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
- Department of Chemistry and Life Science, US Military Academy, West Point, NY, United States
| | - Jeffrey Hertz
- Naval Medical Research Unit TWO (NAMRU-2), Sembawang, Singapore
| | | | | | | | - Erica J. Lindroth
- Department of Entomology, US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Michael E. von Fricken
- Department of Global and Community Health, George Mason University, Fairfax, VA, United States
- *Correspondence: Michael E. von Fricken,
| |
Collapse
|
3
|
Li X, Ji H, Wang D, Che L, Zhang L, Li L, Yin Q, Liu Q, Wei F, Wang Z. Molecular detection and phylogenetic analysis of tick-borne encephalitis virus in ticks in northeastern China. J Med Virol 2021; 94:507-513. [PMID: 34453752 DOI: 10.1002/jmv.27303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/06/2021] [Accepted: 08/26/2021] [Indexed: 11/11/2022]
Abstract
Tick-borne encephalitis virus (TBEV) is an important causative agent that causes neurological infections in humans and animals. In recent years, only few epidemiological surveys on TBEV have been conducted in China. The purpose of this study was to determine the prevalence and subtype of TBEV in ticks in northeastern (NE) China. A total of 3799 questing ticks were collected in NE China between April 2015 and June 2016. Ticks were pooled and tested for TBEV RNA using semi-nested reverse transcriptase-polymerase chain reaction. Positive pools were used to isolate the virus and amplify complete sequences, followed by sequence identity and phylogenetic analysis. TBEV RNA was detected in Ixodes persulcatus ticks at a total prevalence of 2.9% (6/143; 95% confidence interval: 1.2%-5.9%). Three TBEV strains were isolated (JL-T75, HLB-T74, and DXAL-T83) and showed 93.9%-99.1% nucleotide identities and 97.1%-99.5% amino acid identities in Far Eastern (FE) TBEV subtypes, and 82.9%-87.6% nucleotide identities and 92.9%-96.4% amino acid identities in other subtypes. For polyprotein, the JL-T75, HLB-T74, and DXAL-T83 strains showed 29, 50, and 55 amino acid residues, respectively, different from those in the TBEV vaccine (Senzhang) strain in China. Phylogenetic analysis revealed that these viruses were clustered in the FE-TBEV branch but formed distinct clades depending on the natural foci. The results of this study suggest that the FE-TBEV subtype is still endemic in I. persulcatus ticks in NE China, and the viruses in different natural foci in NE China are more likely to have genetic differences.
Collapse
Affiliation(s)
- Xiaohui Li
- Laboratory of Pathogen Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China
| | - Hongwei Ji
- Laboratory of Pathogen Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China
| | - Di Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, China
| | - Lihe Che
- Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Li Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, China
| | - Liang Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, China
| | - Qing Yin
- Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Quan Liu
- Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Jilin University, Changchun, China.,Laboratory of Emerging Vector-borne diseases, School of Life Sciences and Engineering, Foshan University, Foshan, Guangdong, China
| | - Feng Wei
- Laboratory of Pathogen Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China
| | - Zedong Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, China.,Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
4
|
Deviatkin AA, Karganova GG, Vakulenko YA, Lukashev AN. TBEV Subtyping in Terms of Genetic Distance. Viruses 2020; 12:E1240. [PMID: 33142676 PMCID: PMC7692686 DOI: 10.3390/v12111240] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 01/07/2023] Open
Abstract
Currently, the lowest formal taxon in virus classification is species; however, unofficial lower-level units are commonly used in everyday work. Tick-borne encephalitis virus (TBEV) is a species of mammalian tick-borne flaviviruses that may cause encephalitis. Many known representatives of TBEV are grouped into subtypes, mostly according to their phylogenetic relationship. However, the emergence of novel sequences could dissolve this phylogenetic grouping; in the absence of strict quantitative criterion, it may be hard to define the borders of the first TBEV taxonomic unit below the species level. In this study, the nucleotide/amino-acid space of all known TBEV sequences was analyzed. Amino-acid sequence p-distances could not reliably distinguish TBEV subtypes. Viruses that differed by less than 10% of nucleotides in the polyprotein-coding gene belonged to the same subtype. At the same time, more divergent viruses were representatives of different subtypes. According to this distance criterion, TBEV species may be divided into seven subtypes: TBEV-Eur, TBEV-Sib, TBEV-FE, TBEV-2871 (TBEV-Ob), TBEV-Him, TBEV-178-79 (TBEV-Bkl-1), and TBEV-886-84 (TBEV-Bkl-2).
Collapse
Affiliation(s)
- Andrei A. Deviatkin
- Laboratory of Molecular Biology and Biochemistry, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119048 Moscow, Russia;
| | - Galina G. Karganova
- Department of Organization and Technology of Immunobiological Preparations, Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Laboratory of Biology of Arboviruses, Chumakov Institute of Poliomyelitis and Viral Encephalitides (FSBSI “Chumakov FSC R&D IBP RAS), 108819 Moscow, Russia
| | - Yulia A. Vakulenko
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia;
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alexander N. Lukashev
- Laboratory of Molecular Biology and Biochemistry, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119048 Moscow, Russia;
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia;
| |
Collapse
|
5
|
Rubel F, Brugger K, Belova OA, Kholodilov IS, Didyk YM, Kurzrock L, García-Pérez AL, Kahl O. Vectors of disease at the northern distribution limit of the genus Dermacentor in Eurasia: D. reticulatus and D. silvarum. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 82:95-123. [PMID: 32815071 PMCID: PMC7471206 DOI: 10.1007/s10493-020-00533-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/07/2020] [Indexed: 05/07/2023]
Abstract
The two ixodid tick species Dermacentor reticulatus (Fabricius) and Dermacentor silvarum Olenev occur at the northern distribution limit of the genus Dermacentor in Eurasia, within the belt of [Formula: see text] latitude. Whilst the distribution area of D. reticulatus extends from the Atlantic coast of Portugal to Western Siberia, that of D. silvarum extends from Western Siberia to the Pacific coast. In Western Siberia, the distribution areas of the two Dermacentor species overlap. Although the two tick species are important vectors of disease, detailed information concerning the entire distribution area, climate adaptation, and proven vector competence is still missing. A dataset was compiled, resulting in 2188 georeferenced D. reticulatus and 522 D. silvarum locations. Up-to-date maps depicting the geographical distribution and climate adaptation of the two Dermacentor species are presented. To investigate the climate adaptation of the two tick species, the georeferenced locations were superimposed on a high-resolution map of the Köppen-Geiger climate classification. The frequency distribution of D. reticulatus under different climates shows two major peaks related to the following climates: warm temperate with precipitation all year round (57%) and boreal with precipitation all year round (40%). The frequency distribution of D. silvarum shows also two major peaks related to boreal climates with precipitation all year round (30%) and boreal winter dry climates (60%). Dermacentor silvarum seems to be rather flexible concerning summer temperatures, which can range from cool to hot. In climates with cool summers D. reticulatus does not occur, it prefers warm and to a lesser extent hot summers. Lists are given in this paper for cases of proven vector competence for various agents of both Dermacentor species. For the first time, the entire distribution areas of D. reticulatus and D. silvarum were mapped using georeferenced data. Their climate adaptations were quantified by Köppen profiles.
Collapse
Affiliation(s)
- Franz Rubel
- Unit for Veterinary Public Health and Epidemiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Katharina Brugger
- Unit for Veterinary Public Health and Epidemiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Oxana A Belova
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, FSBSI "Chumakov FSC R&D IBP RAS", Moscow, Russia
| | - Ivan S Kholodilov
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, FSBSI "Chumakov FSC R&D IBP RAS", Moscow, Russia
| | - Yuliya M Didyk
- Institute of Zoology SAS, Bratislava, Slovakia
- Schmalhausen Institute of Zoology NAS of Ukraine, Kiev, Ukraine
| | | | | | | |
Collapse
|
6
|
Duan DY, Liu GH, Cheng TY. Microbiome analysis of the saliva and midgut from partially or fully engorged female adult Dermacentor silvarum ticks in China. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 80:543-558. [PMID: 32144639 DOI: 10.1007/s10493-020-00478-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
Dermacentor silvarum is widely distributed in northern China and transmits several pathogens that cause diseases in humans and domestic animals. We analysed the comprehensive bacterial community of the saliva and midgut from partially and fully engorged female adult D. silvarum. Dermacentor silvarum samples were collected from Guyuan, China. Bacterial DNA was extracted from the saliva and midgut contents of partially or fully engorged female adult D. silvarum. Sequencing of the V3-V4 hypervariable regions of the 16S rRNA genes was performed using the IonS5TMXL platform. The bacterial diversity in saliva was higher than in the midgut. The bacterial diversity of saliva from fully engorged ticks was greater than in partially engorged tick saliva. The bacterial diversity in midguts from partially engorged ticks was greater than in fully engorged tick midguts. Proteobacteria was the most dominant bacterial phylum in all of the samples. Twenty-nine bacterial genera were detected in all of the samples. Rickettsia, Anaplasma, and Stenotrophomonas were the main genera. The symbionts Coxiella, Arsenophonus, and Wolbachia were also detected in all of the samples. Eight bacterial species were identified in all of the experimental samples. Anaplasma marginale was reported for the first time in D. silvarum.
Collapse
Affiliation(s)
- De-Yong Duan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan Province, China
| | - Guo-Hua Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan Province, China
| | - Tian-Yin Cheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan Province, China.
- Laboratory of Molecular Physiology, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan Province, China.
| |
Collapse
|
7
|
Yoo JR, Oh JH, Lee KH, Song SW. Serological evidence of tick-borne encephalitis virus infection in South Korea, 2015-2018. Ticks Tick Borne Dis 2020; 11:101408. [PMID: 32107175 DOI: 10.1016/j.ttbdis.2020.101408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/07/2020] [Accepted: 02/21/2020] [Indexed: 11/15/2022]
Abstract
No human cases of tick-borne encephalitis (TBE) have been reported in South Korea. We tested for TBE virus (TBEV)-IgM and -IgG in serum samples from healthy farmers during 2015-2018 using ELISA kits. Seroprevalence study revealed a 1.9 % prevalence of TBEV. A neutralizing test for TBEV-specific antibodies was not performed.
Collapse
Affiliation(s)
- Jeong Rae Yoo
- Department of Internal Medicine, Jeju National University, College of Medicine and Graduate School of Medicine, Jeju, South Korea
| | - Jung Hwan Oh
- Department of Neurology, Jeju National University, College of Medicine and Graduate School of Medicine, Jeju, South Korea
| | - Keun Hwa Lee
- Department of Microbiology, Hanyang University College of Medicine, Seoul, South Korea
| | - Sung Wook Song
- Department of Emergency Medicine, Jeju National University, College of Medicine and Graduate School of Medicine, Jeju, South Korea.
| |
Collapse
|
8
|
Epidemiology of tick-borne encephalitis in China, 2007- 2018. PLoS One 2019; 14:e0226712. [PMID: 31877145 PMCID: PMC6932775 DOI: 10.1371/journal.pone.0226712] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 12/02/2019] [Indexed: 12/24/2022] Open
Abstract
Tick-borne encephalitis (TBE) is endemic to Europe and some Asian countries and is prevalent in northeast China. We analyzed the epidemiology of TBE in China from 2007 to 2018. A total of 3,364 TBE cases were reported in mainland China from 2007 to 2018, for an annual incidence of 0.09 to 0.44/100,000. Among the TBE cases, 89.92% were reported in forest areas (41.94% in DaXingAnLing, 8.70% in XiaoXingAnLing, and 39.21% in ChangBaiShan) in northeast China. The TBE cases were primarily male with a proportion of 67.15% (2,259/3,364 cases) and in 40–49-year age group with a proportion of 31.89% (1,073/3,364 cases). The epidemiology of TBE differed slightly among the three forest regions. Domestic workers and forestry workers accounted for the most of the TBE cases in DaXingAnLing, and domestic workers and farmers in XiaoXingAnLing and ChangBaiShan, respectively. The TBE cases mainly occurred from April to August with a peak in June. The TBE laboratory confirmed rate in DaXingAnLing (84.14%, 1,189/1,413 cases) was highest, compared with XiaoXingAnLing and ChangBaiShan (13.99% and 11.37%, respectively). Moreover, the hospital with the highest laboratory confirmed rate (88.01%, 1,336/1,518 cases) was Inner Mongolia Forestry General Hospital of DaXingAnling region. Systematic enhanced TBE surveillance and a vaccination program are needed to improve the laboratory confirmed rate and reduce the incidence of TBE in northeast China.
Collapse
|