1
|
van Bree JW, Visser I, Duyvestyn JM, Aguilar-Bretones M, Marshall EM, van Hemert MJ, Pijlman GP, van Nierop GP, Kikkert M, Rockx BH, Miesen P, Fros JJ. Novel approaches for the rapid development of rationally designed arbovirus vaccines. One Health 2023; 16:100565. [PMID: 37363258 PMCID: PMC10288159 DOI: 10.1016/j.onehlt.2023.100565] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023] Open
Abstract
Vector-borne diseases, including those transmitted by mosquitoes, account for more than 17% of infectious diseases worldwide. This number is expected to rise with an increased spread of vector mosquitoes and viruses due to climate change and man-made alterations to ecosystems. Among the most common, medically relevant mosquito-borne infections are those caused by arthropod-borne viruses (arboviruses), especially members of the genera Flavivirus and Alphavirus. Arbovirus infections can cause severe disease in humans, livestock and wildlife. Severe consequences from infections include congenital malformations as well as arthritogenic, haemorrhagic or neuroinvasive disease. Inactivated or live-attenuated vaccines (LAVs) are available for a small number of arboviruses; however there are no licensed vaccines for the majority of these infections. Here we discuss recent developments in pan-arbovirus LAV approaches, from site-directed attenuation strategies targeting conserved determinants of virulence to universal strategies that utilize genome-wide re-coding of viral genomes. In addition to these approaches, we discuss novel strategies targeting mosquito saliva proteins that play an important role in virus transmission and pathogenesis in vertebrate hosts. For rapid pre-clinical evaluations of novel arbovirus vaccine candidates, representative in vitro and in vivo experimental systems are required to assess the desired specific immune responses. Here we discuss promising models to study attenuation of neuroinvasion, neurovirulence and virus transmission, as well as antibody induction and potential for cross-reactivity. Investigating broadly applicable vaccination strategies to target the direct interface of the vertebrate host, the mosquito vector and the viral pathogen is a prime example of a One Health strategy to tackle human and animal diseases.
Collapse
Affiliation(s)
- Joyce W.M. van Bree
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Imke Visser
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jo M. Duyvestyn
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Eleanor M. Marshall
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Martijn J. van Hemert
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Barry H.G. Rockx
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500, HB, Nijmegen, the Netherlands
| | - Jelke J. Fros
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
2
|
Spencer Clinton JL, Vogt MB, Kneubehl AR, Hibl BM, Paust S, Rico-Hesse R. Sialokinin in mosquito saliva shifts human immune responses towards intracellular pathogens. PLoS Negl Trop Dis 2023; 17:e0011095. [PMID: 36735632 PMCID: PMC9897557 DOI: 10.1371/journal.pntd.0011095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
Mosquito saliva is a mix of numerous proteins that are injected into the skin while the mosquito searches for a blood meal. While mosquito saliva is known to be immunogenic, the salivary components driving these immune responses, as well as the types of immune responses that occur, are not well characterized. We investigated the effects of one potential immunomodulatory mosquito saliva protein, sialokinin, on the human immune response. We used flow cytometry to compare human immune cell populations between humanized mice bitten by sialokinin knockout mosquitoes or injected with sialokinin, and compared them to those bitten by wild-type mosquitoes, unbitten, or saline-injected control mice. Humanized mice received 4 mosquito bites or a single injection, were euthanized after 7 days, and skin, spleen, bone marrow, and blood were harvested for immune cell profiling. Our results show that bites from sialokinin knockout mosquitoes induced monocyte and macrophage populations in the skin, blood, bone marrow, and spleens, and primarily affected CD11c- cell populations. Other increased immune cells included plasmacytoid dendritic cells in the blood, natural killer cells in the skin and blood, and CD4+ T cells in all samples analyzed. Conversely, we observed that mice bitten with sialokinin knockout mosquitoes had decreased NKT cell populations in the skin, and fewer B cells in the blood, spleen, and bone marrow. Taken together, we demonstrated that sialokinin knockout saliva induces elements of a TH1 cellular immune response, suggesting that the sialokinin peptide is inducing a TH2 cellular immune response during wild-type mosquito biting. These findings are an important step towards understanding how mosquito saliva modulates the human immune system and which components of saliva may be critical for arboviral infection. By identifying immunomodulatory salivary proteins, such as sialokinin, we can develop vaccines against mosquito saliva components and direct efforts towards blocking arboviral infections.
Collapse
Affiliation(s)
- Jennifer L. Spencer Clinton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Megan B. Vogt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alexander R. Kneubehl
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Brianne M. Hibl
- Center for Comparative Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Silke Paust
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, California, United States of America
| | - Rebecca Rico-Hesse
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
3
|
Fujisawa S, Murata S, Isezaki M, Win SY, Sato T, Oishi E, Taneno A, Maekawa N, Okagawa T, Konnai S, Ohashi K. Suppressive modulation of host immune responses by Dermanyssus gallinae infestation. Poult Sci 2023; 102:102532. [PMID: 36796246 PMCID: PMC9958498 DOI: 10.1016/j.psj.2023.102532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/22/2022] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
The poultry red mite (Dermanyssus gallinae, PRM) is a blood-sucking ectoparasite in chickens and is one of the most serious threats to poultry farms. Mass infestation with PRMs causes various health problems in chickens, resulting in significant productivity reduction in the poultry industry. Infestation with hematophagous ectoparasites, such as ticks, induces host inflammatory and hemostatic reactions. On the other hand, several studies have reported that hematophagous ectoparasites secrete various immunosuppressants from their saliva to suppress host immune responses to maintain blood sucking. Here, we examined the expression of cytokines in peripheral blood cells to investigate whether PRM infestation affects immunological states in chickens. In PRM-infested chickens, anti-inflammatory cytokines, IL-10 and TGF-β1, and immune checkpoint molecules, CTLA-4 and PD-1, were highly expressed compared to noninfested chickens. PRM-derived soluble mite extracts (SME) upregulated the gene expression of IL-10 in peripheral blood cells and HD-11 chicken macrophages. In addition, SME suppressed the expression of interferons and inflammatory cytokines in HD-11 chicken macrophages. Moreover, SME induces the polarization of macrophages into anti-inflammatory phenotypes. Collectively, PRM infestation could affect host immune responses, especially suppress the inflammatory responses. Further studies are warranted to fully understand the influence of PRM infestation on host immunity.
Collapse
Affiliation(s)
- Sotaro Fujisawa
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| | - Masayoshi Isezaki
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shwe Yee Win
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takumi Sato
- Vaxxinova Japan K.K., Minato-ku, Tokyo, Japan
| | - Eiji Oishi
- Vaxxinova Japan K.K., Minato-ku, Tokyo, Japan
| | | | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan,International Affairs Office, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
4
|
Guerrero D, Vo HTM, Lon C, Bohl JA, Nhik S, Chea S, Man S, Sreng S, Pacheco AR, Ly S, Sath R, Lay S, Missé D, Huy R, Leang R, Kry H, Valenzuela JG, Oliveira F, Cantaert T, Manning JE. Evaluation of cutaneous immune response in a controlled human in vivo model of mosquito bites. Nat Commun 2022; 13:7036. [PMID: 36396947 PMCID: PMC9672097 DOI: 10.1038/s41467-022-34534-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 10/27/2022] [Indexed: 11/18/2022] Open
Abstract
Mosquito-borne viruses are a growing global threat. Initial viral inoculation occurs in the skin via the mosquito 'bite', eliciting immune responses that shape the establishment of infection and pathogenesis. Here we assess the cutaneous innate and adaptive immune responses to controlled Aedes aegypti feedings in humans living in Aedes-endemic areas. In this single-arm, cross-sectional interventional study (trial registration #NCT04350905), we enroll 30 healthy adult participants aged 18 to 45 years of age from Cambodia between October 2020 and January 2021. We perform 3-mm skin biopsies at baseline as well as 30 min, 4 h, and 48 h after a controlled feeding by uninfected Aedes aegypti mosquitos. The primary endpoints are measurement of changes in early and late innate responses in bitten vs unbitten skin by gene expression profiling, immunophenotyping, and cytokine profiling. The results reveal induction of neutrophil degranulation and recruitment of skin-resident dendritic cells and M2 macrophages. As the immune reaction progresses T cell priming and regulatory pathways are upregulated along with a shift to Th2-driven responses and CD8+ T cell activation. Stimulation of participants' bitten skin cells with Aedes aegypti salivary gland extract results in reduced pro-inflammatory cytokine production. These results identify key immune genes, cell types, and pathways in the human response to mosquito bites and can be leveraged to inform and develop novel therapeutics and vector-targeted vaccine candidates to interfere with vector-mediated disease.
Collapse
Affiliation(s)
- David Guerrero
- Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Hoa Thi My Vo
- Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Chanthap Lon
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia
| | - Jennifer A Bohl
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Sreynik Nhik
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia
| | - Sophana Chea
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia
| | - Somnang Man
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Sokunthea Sreng
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Andrea R Pacheco
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia
| | - Sokna Ly
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia
| | - Rathanak Sath
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia
| | - Sokchea Lay
- Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Dorothée Missé
- MIVEGEC, Univ. Montpellier, IRD, CNRS, 34000, Montpellier, France
| | - Rekol Huy
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Rithea Leang
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Hok Kry
- Kampong Speu Provincial District, Ministry of Health, Phnom Penh, Cambodia
| | - Jesus G Valenzuela
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Fabiano Oliveira
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Tineke Cantaert
- Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Jessica E Manning
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia.
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
5
|
Lucas CJ, Morrison TE. Animal models of alphavirus infection and human disease. Adv Virus Res 2022; 113:25-88. [DOI: 10.1016/bs.aivir.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
6
|
Influence of Host-Related Factors and Exposure to Mosquito Bites on the Dynamics of Antibody Response to Plasmodium falciparum Antigens. Trop Med Infect Dis 2021; 6:tropicalmed6040185. [PMID: 34698307 PMCID: PMC8544703 DOI: 10.3390/tropicalmed6040185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
Humoral immunity to Plasmodium falciparum is acquired after repeated infections, and can lead to clinical protection. This study aimed to evaluate how human-, parasite-, and environment-related determinants can modulate the dynamics of IgG responses to Plasmodium falciparum after an infection. Individuals (n = 68, average age = 8.2 years) with uncomplicated malaria were treated with ACT and followed up for 42 days. IgG responses to P. falciparum merozoite antigens (PfMSP1, PfMSP3, PfAMA1, PfGLURP-R0), to whole schizont extract (PfSchz), and to Anopheles gSG6-P1 and Aedes Nterm–34 kDa salivary peptides were measured. Regression analyses were used to identify factors that influence the dynamics of IgG response to P. falciparum antigen between D0 and D42, including demographic and biological factors and the level of exposure to mosquito bites. The dynamics of IgG response to P. falciparum differed according to the antigen. According to multivariate analysis, IgG responses to PfSchz and to PfGLURP-R0 appear to be affected by exposure to Aedes saliva and are associated with age, parasite density, and anti-Plasmodium pre-existing immune response at study inclusion. The present work shows that human exposure to Aedes saliva may contribute, in addition to other factors, to the regulation of anti-Plasmodium immune responses during a natural infection.
Collapse
|
7
|
Park SL, Huang YJS, Lyons AC, Ayers VB, Hettenbach SM, McVey DS, Noronha LE, Burton KR, Hsu WW, Higgs S, Vanlandingham DL. Mosquito Saliva Modulates Japanese Encephalitis Virus Infection in Domestic Pigs. FRONTIERS IN VIROLOGY 2021. [DOI: 10.3389/fviro.2021.724016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that is the leading cause of pediatric viral encephalitis in Asia. Japanese encephalitis virus is transmitted by Culex species mosquitoes that also vector several zoonotic flaviviruses. Despite the knowledge that mosquito saliva contains molecules that may alter flavivirus pathogenesis, whether or not the deposition of viruses by infected mosquitoes has an impact on the kinetics and severity of JEV infection has not been thoroughly examined, especially in mammalian species involved in the enzootic transmission. Most JEV pathogenesis models were established using needle inoculation. Mouse models for West Nile (WNV) and dengue (DENV) viruses have shown that mosquito saliva can potentiate flavivirus infections and exacerbate disease symptoms. In this study, we determined the impact of mosquito salivary components on the pathogenesis of JEV in pigs, a species directly involved in its transmission cycle as an amplifying host. Interestingly, co-injection of JEV and salivary gland extract (SGE) collected from Culex quinquefasciatus produced milder febrile illness and shortened duration of nasal shedding but had no demonstrable impact on viremia and neuroinvasion. Our findings highlight that mosquito salivary components can differentially modulate the outcomes of flavivirus infections in amplifying hosts and in mouse models.
Collapse
|
8
|
Guerrero-Arguero I, Tellez-Freitas CM, Weber KS, Berges BK, Robison RA, Pickett BE. Alphaviruses: Host pathogenesis, immune response, and vaccine & treatment updates. J Gen Virol 2021; 102. [PMID: 34435944 DOI: 10.1099/jgv.0.001644] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human pathogens belonging to the Alphavirus genus, in the Togaviridae family, are transmitted primarily by mosquitoes. The signs and symptoms associated with these viruses include fever and polyarthralgia, defined as joint pain and inflammation, as well as encephalitis. In the last decade, our understanding of the interactions between members of the alphavirus genus and the human host has increased due to the re-appearance of the chikungunya virus (CHIKV) in Asia and Europe, as well as its emergence in the Americas. Alphaviruses affect host immunity through cytokines and the interferon response. Understanding alphavirus interactions with both the innate immune system as well as the various cells in the adaptive immune systems is critical to developing effective therapeutics. In this review, we summarize the latest research on alphavirus-host cell interactions, underlying infection mechanisms, and possible treatments.
Collapse
Affiliation(s)
- Israel Guerrero-Arguero
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA.,Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - K Scott Weber
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Bradford K Berges
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Richard A Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Brett E Pickett
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| |
Collapse
|
9
|
Katta M, Sandanalakshmi R. Simultaneous tropical disease identification with PZT-5H piezoelectric material including molecular mass biosensor microcantilever collection. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
10
|
Complex Roles of Neutrophils during Arboviral Infections. Cells 2021; 10:cells10061324. [PMID: 34073501 PMCID: PMC8227388 DOI: 10.3390/cells10061324] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Arboviruses are known to cause large-scale epidemics in many parts of the world. These arthropod-borne viruses are a large group consisting of viruses from a wide range of families. The ability of their vector to enhance viral pathogenesis and transmission makes the development of treatments against these viruses challenging. Neutrophils are generally the first leukocytes to be recruited to a site of infection, playing a major role in regulating inflammation and, as a result, viral replication and dissemination. However, the underlying mechanisms through which neutrophils control the progression of inflammation and disease remain to be fully understood. In this review, we highlight the major findings from recent years regarding the role of neutrophils during arboviral infections. We discuss the complex nature of neutrophils in mediating not only protection, but also augmenting disease pathology. Better understanding of neutrophil pathways involved in effective protection against arboviral infections can help identify potential targets for therapeutics.
Collapse
|
11
|
Demarta-Gatsi C, Mécheri S. Vector saliva controlled inflammatory response of the host may represent the Achilles heel during pathogen transmission. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200155. [PMID: 34035796 PMCID: PMC8128132 DOI: 10.1590/1678-9199-jvatitd-2020-0155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Infection with vector-borne pathogens starts with the inoculation of these pathogens during blood feeding. In endemic regions, the population is regularly bitten by naive vectors, implicating a permanent stimulation of the immune system by the vector saliva itself (pre-immune context). Comparatively, the number of bites received by exposed individuals from non-infected vectors is much higher than the bites from infected ones. Therefore, vector saliva and the immunological response in the skin may play an important role, so far underestimated, in the establishment of anti-pathogen immunity in endemic areas. Hence, the parasite biology and the disease pathogenesis in “saliva-primed” and “saliva-unprimed” individuals must be different. This integrated view on how the pathogen evolves within the host together with vector salivary components, which are known to be endowed with a variety of pharmacological and immunological properties, must remain the focus of any investigational study dealing with vector-borne diseases. Considering this three-way partnership, the host skin (immune system), the pathogen, and the vector saliva, the approach that consists in the validation of vector saliva as a source of molecular entities with anti-disease vaccine potential has been recently a subject of active and fruitful investigation. As an example, the vaccination with maxadilan, a potent vasodilator peptide extracted from the saliva of the sand fly Lutzomyia longipalpis, was able to protect against infection with various leishmanial parasites. More interestingly, a universal mosquito saliva vaccine that may potentially protect against a range of mosquito-borne infections including malaria, dengue, Zika, chikungunya and yellow fever. In this review, we highlight the key role played by the immunobiology of vector saliva in shaping the outcome of vector-borne diseases and discuss the value of studying diseases in the light of intimate cross talk among the pathogen, the vector saliva, and the host immune mechanisms.
Collapse
Affiliation(s)
- Claudia Demarta-Gatsi
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France.,CNRS ERL9195, Paris, France.,INSERM U1201, Paris, France.,Medicines for Malaria Venture (MMV), Geneva, Switzerland.,Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France
| | - Salah Mécheri
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France.,CNRS ERL9195, Paris, France.,INSERM U1201, Paris, France
| |
Collapse
|
12
|
Higgs S, Vanlandingham DL, Huang YJS, Thangamani S. The Use of Arthropod-Borne Challenge Models in BSL-3Ag and BSL-4 Biocontainment. ILAR J 2021; 61:18-31. [PMID: 33951733 DOI: 10.1093/ilar/ilab013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/22/2021] [Indexed: 11/13/2022] Open
Abstract
The study of many arthropod-borne pathogens requires high biosafety considerations, including the use of specialized facilities and equipment for arthropod containment. Mosquito- and tick-borne viruses such as yellow fever, West Nile, and Crimean Congo hemorrhagic fever viruses require facilities that are suitable for housing vertebrates. Multidisciplinary studies that incorporate the vector, vertebrate, and pathogens are essential for a complete understanding of the interactions between these transmission cycle components, especially if they aim to evaluate and model relative susceptibilities of different arthropods and vertebrates to infection and transmission between these. Under laboratory conditions, these studies can be relatively simple, for example, involving colonized arthropods, small animals, and attenuated viruses. Other studies are complex with large animals, high-biocontainment pathogens, and field-collected arthropods. These require a higher level of containment and special design considerations. Both of these types of experiments have their relative merits. A thorough understanding of the issues related to these types of studies and the benefits and drawbacks to using various challenge models will enable the researcher to develop realistic goals for various experiments. This review examines the varied issues that should be considered prior to starting these experiments and covers the basics from the procurement of various arthropods, rearing, high-containment facilities and operational issues specific to work with arthropods, types of infection experiments, and specific issues with arthropod and animal experiments in biosafety levels 3 and 4.
Collapse
Affiliation(s)
- Stephen Higgs
- Director of the Biosecurity Research Institute and Associate Vice President for Research at Kansas State University, Manhattan, Kansas, USA
| | - Dana L Vanlandingham
- Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Yan-Jang S Huang
- Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Saravanan Thangamani
- Director of the SUNY Center for Environmental Health and Medicine, and Professor in the Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
13
|
Arnal A, Roche B, Gouagna LC, Dujon A, Ujvari B, Corbel V, Remoue F, Poinsignon A, Pompon J, Giraudeau M, Simard F, Missé D, Lefèvre T, Thomas F. Cancer and mosquitoes - An unsuspected close connection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140631. [PMID: 32758822 DOI: 10.1016/j.scitotenv.2020.140631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/28/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Cancer is a major public health issue and represents a significant burden in countries with different levels of economic wealth. In parallel, mosquito-borne infectious diseases represent a growing problem causing significant morbidity and mortality worldwide. Acknowledging that these two concerns are both globally distributed, it is essential to investigate whether they have a reciprocal connection that can fuel their respective burdens. Unfortunately, very few studies have examined the link between these two threats. This review provides an overview of the possible links between mosquitoes, mosquito-borne infectious diseases and cancer. We first focus on the impact of mosquitoes on carcinogenesis in humans including the transmission of oncogenic pathogens through mosquitoes, the immune reactions following mosquito bites, the presence of non-oncogenic mosquito-borne pathogens, and the direct transmission of cancer cells. The second part of this review deals with the direct or indirect consequences of cancer in humans on mosquito behaviour. Thirdly, we discuss the potential impacts that natural cancers in mosquitoes can have on their life history traits and therefore on their vector capacity. Finally, we discuss the most promising research avenues on this topic and the integrative public health strategies that could be envisioned in this context.
Collapse
Affiliation(s)
- Audrey Arnal
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France.
| | - Benjamin Roche
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France; Centre for Ecological and Evolutionary Research on Cancer (CREEC), Montpellier, France; IRD, Sorbonne Université, UMMISCO, F-93143 Bondy, France; Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico; Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France
| | | | - Antoine Dujon
- Centre for Ecological and Evolutionary Research on Cancer (CREEC), Montpellier, France; School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, VIC, Australia
| | - Beata Ujvari
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, VIC, Australia
| | - Vincent Corbel
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
| | - Franck Remoue
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
| | | | - Julien Pompon
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
| | - Mathieu Giraudeau
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France; Centre for Ecological and Evolutionary Research on Cancer (CREEC), Montpellier, France; Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France
| | - Frédéric Simard
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France; Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France
| | - Dorothée Missé
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France; Centre for Ecological and Evolutionary Research on Cancer (CREEC), Montpellier, France
| | - Thierry Lefèvre
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France; Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France; Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Frédéric Thomas
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France; Centre for Ecological and Evolutionary Research on Cancer (CREEC), Montpellier, France; Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France
| |
Collapse
|
14
|
Guerrero D, Cantaert T, Missé D. Aedes Mosquito Salivary Components and Their Effect on the Immune Response to Arboviruses. Front Cell Infect Microbiol 2020; 10:407. [PMID: 32850501 PMCID: PMC7426362 DOI: 10.3389/fcimb.2020.00407] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/30/2020] [Indexed: 12/25/2022] Open
Abstract
Vector-borne diseases are responsible for over a billion infections each year and nearly one million deaths. Mosquito-borne dengue virus, West Nile, Japanese encephalitis, Zika, Chikungunya, and Rift Valley Fever viruses constitute major public health problems in regions with high densities of arthropod vectors. During the initial step of the transmission cycle, vector, host, and virus converge at the bite site, where local immune cells interact with the vector's saliva. Hematophagous mosquito saliva is a mixture of bioactive components known to modulate vertebrate hemostasis, immunity, and inflammation during the insect's feeding process. The capacity of mosquito saliva to modulate the host immune response has been well-studied over the last few decades and has led to the consensus that the presence of saliva is linked to the enhancement of virus transmission, host susceptibility, disease progression, viremia levels, and mortality. We review some of the major aspects of the interactions between mosquito saliva and the host immune response that may be useful for future studies on the control of arboviruses.
Collapse
Affiliation(s)
- David Guerrero
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Dorothée Missé
- MIVEGEC, IRD, University of Montpellier, CNRS, Montpellier, France
| |
Collapse
|
15
|
Srivastava P, Kumar A, Hasan A, Mehta D, Kumar R, Sharma C, Sunil S. Disease Resolution in Chikungunya-What Decides the Outcome? Front Immunol 2020; 11:695. [PMID: 32411133 PMCID: PMC7198842 DOI: 10.3389/fimmu.2020.00695] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Chikungunya disease (CHIKD) is a viral infection caused by an alphavirus, chikungunya virus (CHIKV), and triggers large outbreaks leading to epidemics. Despite the low mortality rate, it is a major public health concern owing to high morbidity in affected individuals. The complete spectrum of this disease can be divided into four phases based on its clinical presentation and immunopathology. When a susceptible individual is bitten by an infected mosquito, the bite triggers inflammatory responses attracting neutrophils and initiating a cascade of events, resulting in the entry of the virus into permissive cells. This phase is termed the pre-acute or the intrinsic incubation phase. The virus utilizes the cellular components of the innate immune system to enter into circulation and reach primary sites of infection such as the lymph nodes, spleen, and liver. Also, at this point, antigen-presenting cells (APCs) present the viral antigens to the T cells thereby activating and initiating adaptive immune responses. This phase is marked by the exhibition of clinical symptoms such as fever, rashes, arthralgia, and myalgia and is termed the acute phase of the disease. Viremia reaches its peak during this phase, thereby enhancing the antigen-specific host immune response. Simultaneously, T cell-mediated activation of B cells leads to the formation of CHIKV specific antibodies. Increase in titres of neutralizing IgG/IgM antibodies results in the clearance of virus from the bloodstream and marks the initiation of the post-acute phase. Immune responses mounted during this phase of the infection determine the degree of disease progression or its resolution. Some patients may progress to a chronic arthritic phase of the disease that may last from a few months to several years, owing to a compromised disease resolution. The present review discusses the immunopathology of CHIKD and the factors that dictate disease progression and its resolution.
Collapse
Affiliation(s)
- Priyanshu Srivastava
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Ankit Kumar
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Abdul Hasan
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Divya Mehta
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Ramesh Kumar
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Chetan Sharma
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Sujatha Sunil
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|
16
|
Route of inoculation and mosquito vector exposure modulate dengue virus replication kinetics and immune responses in rhesus macaques. PLoS Negl Trop Dis 2020; 14:e0008191. [PMID: 32267846 PMCID: PMC7141610 DOI: 10.1371/journal.pntd.0008191] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/02/2020] [Indexed: 02/04/2023] Open
Abstract
Dengue virus (DENV) is transmitted by infectious mosquitoes during blood-feeding via saliva containing biologically-active proteins. Here, we examined the effect of varying DENV infection modality in rhesus macaques in order to improve the DENV nonhuman primate (NHP) challenge model. NHPs were exposed to DENV-1 via subcutaneous or intradermal inoculation of virus only, intradermal inoculation of virus and salivary gland extract, or infectious mosquito feeding. The infectious mosquito feeding group exhibited delayed onset of viremia, greater viral loads, and altered clinical and immune responses compared to other groups. After 15 months, NHPs in the subcutaneous and infectious mosquito feeding groups were re-exposed to either DENV-1 or DENV-2. Viral replication and neutralizing antibody following homologous challenge were suggestive of sterilizing immunity, whereas heterologous challenge resulted in productive, yet reduced, DENV-2 replication and boosted neutralizing antibody. These results show that a more transmission-relevant exposure modality resulted in viral replication closer to that observed in humans. Dengue virus is transmitted into the skin of humans by mosquitoes as they take a blood meal. In contrast, many animal models are infected in the laboratory using a syringe to inject below the skin. Here, we looked at how different routes and methods of infection altered dengue infection in rhesus macaques. We found that infection via mosquito feeding resulted in a number of changes compared to other routes and methods, including a delay in the time to detection of dengue virus and overall greater quantities of dengue virus in the blood, and changes in the amounts of various components of blood that have been associated with dengue disease in humans. After 15 months, we exposed the macaques again to either the same or a different type of dengue virus. We found that animals exposed to the same type of dengue virus were protected from infection, whereas those animals exposed to a different type were only partially protected. Overall, our results show that dengue virus delivery using the natural transmission vector, mosquitoes, results in infection that is closer to what is observed in humans and may influence the interpretation of future studies of candidate vaccines.
Collapse
|
17
|
Aka KG, Traoré DF, Sagna AB, Zoh DD, Assi SB, Tchiekoi BN, Adja AM, Remoue F, Poinsignon A. Pattern of antibody responses to Plasmodium falciparum antigens in individuals differentially exposed to Anopheles bites. Malar J 2020; 19:83. [PMID: 32085710 PMCID: PMC7033907 DOI: 10.1186/s12936-020-03160-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/12/2020] [Indexed: 11/16/2022] Open
Abstract
Background In malaria-endemic areas, human populations are frequently exposed to immunomodulatory salivary components injected during mosquito blood feeding. The consequences on pathogen-specific immune responses are not well known. This study evaluated and compared the humoral responses specific to merozoite stage vaccine candidates of Plasmodium falciparum, in children differentially exposed to Anopheles bites in a natural setting. Methods The cross-sectional study was carried out in Bouaké (Côte d’Ivoire) where entomological data and blood samples from children (0–14 years) were collected in two sites with similar malaria prevalence. Antibody (IgG, IgG1, IgG3) responses to PfAMA1 and PfMSP1 were evaluated by ELISA. Univariate and multivariate analysis were performed to assess the relationship between the immune responses to P. falciparum antigens and exposure to Anopheles bites in the total cohort and in each site, separately. The individual level of exposure to Anopheles bites was evaluated by quantifying specific IgG response to the Anopheles gSG6-P1 salivary peptide, which represents a proxy of Anopheles exposure. Results The anti-Plasmodium humoral responses were different according to the level of exposure of children, with those highly exposed to Anopheles presenting significantly lower antibody responses to PfMSP1 in total population (IgG and IgG3) and in Petessou village (IgG, IgG1, IgG3). No significant difference was seen for PfAMA1 antigen between children differently exposed to Anopheles. In Dar-es-Salam, a neighbourhood where a high Culex density was reported, children presented very low antibody levels specific to both antigens, and no difference according to the exposure to Anopheles bites was found. Conclusion These findings may suggest that immunomodulatory components of Anopheles saliva, in addition to other factors, may participate to the modulation of the humoral response specific to Plasmodium merozoite stage antigens. This epidemiological observation may form a starting point for additional work to decipher the role of mosquito saliva on the modulation of the anti-Plasmodium acquired immunity and clinical protection in combining both field and ex vivo immunological studies.
Collapse
Affiliation(s)
- Kakou G Aka
- Institut Pierre Richet, Institut National de Santé Publique, Bouaké, Côte d'Ivoire. .,MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France.
| | - Dipomin F Traoré
- Institut Pierre Richet, Institut National de Santé Publique, Bouaké, Côte d'Ivoire.,MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France.,UFR Sciences de la Nature, Université Nangui Abrogoua, Abidjan, Côte d'Ivoire
| | - André B Sagna
- Institut Pierre Richet, Institut National de Santé Publique, Bouaké, Côte d'Ivoire.,MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Dounin D Zoh
- Institut Pierre Richet, Institut National de Santé Publique, Bouaké, Côte d'Ivoire.,UFR Biosciences, Université Félix Houphouët Boigny, Abidjan, Côte d'Ivoire
| | - Serge B Assi
- Institut Pierre Richet, Institut National de Santé Publique, Bouaké, Côte d'Ivoire
| | | | - Akré M Adja
- Institut Pierre Richet, Institut National de Santé Publique, Bouaké, Côte d'Ivoire.,UFR Biosciences, Université Félix Houphouët Boigny, Abidjan, Côte d'Ivoire
| | - Franck Remoue
- Institut Pierre Richet, Institut National de Santé Publique, Bouaké, Côte d'Ivoire.,MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Anne Poinsignon
- Institut Pierre Richet, Institut National de Santé Publique, Bouaké, Côte d'Ivoire.,MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
18
|
Monteiro VVS, Navegantes-Lima KC, de Lemos AB, da Silva GL, de Souza Gomes R, Reis JF, Rodrigues Junior LC, da Silva OS, Romão PRT, Monteiro MC. Aedes-Chikungunya Virus Interaction: Key Role of Vector Midguts Microbiota and Its Saliva in the Host Infection. Front Microbiol 2019; 10:492. [PMID: 31024463 PMCID: PMC6467098 DOI: 10.3389/fmicb.2019.00492] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/26/2019] [Indexed: 01/02/2023] Open
Abstract
Aedes mosquitoes are important vectors for emerging diseases caused by arboviruses, such as chikungunya (CHIKV). These viruses’ main transmitting species are Aedes aegypti and Ae. albopictus, which are present in tropical and temperate climatic areas all over the globe. Knowledge of vector characteristics is fundamentally important to the understanding of virus transmission. Only female mosquitoes are able to transmit CHIKV to the vertebrate host since they are hematophagous. In addition, mosquito microbiota is fundamentally important to virus infection in the mosquito. Microorganisms are able to modulate viral transmission in the mosquito, such as bacteria of the Wolbachia genus, which are capable of preventing viral infection, or protozoans of the Ascogregarina species, which are capable of facilitating virus transmission between mosquitoes and larvae. The competence of the mosquito is also important in the transmission of the virus to the vertebrate host, since their saliva has several substances with biological effects, such as immunomodulators and anticoagulants, which are able to modulate the host’s response to the virus, interfering in its pathogenicity and virulence. Understanding the Aedes vector-chikungunya interaction is fundamentally important since it can enable the search for new methods of combating the virus’ transmission.
Collapse
Affiliation(s)
- Valter Vinícius Silva Monteiro
- Laboratory of Inflammation and Pain, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kely Campos Navegantes-Lima
- Graduate Program in Neuroscience and Cellular Biology, Biology Science Institute, Federal University of Pará, Belém, Brazil
| | | | | | - Rafaelli de Souza Gomes
- Graduate Program in Pharmaceutical Science, Health Science Institute, Federal University of Pará, Belém, Brazil
| | - Jordano Ferreira Reis
- School of Pharmacy, Health Science Institute, Federal University of Pará, Belém, Brazil
| | - Luiz Carlos Rodrigues Junior
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Onilda Santos da Silva
- Department of Microbiology, Immunology and Parasitology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Pedro Roosevelt Torres Romão
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Marta Chagas Monteiro
- Graduate Program in Neuroscience and Cellular Biology, Biology Science Institute, Federal University of Pará, Belém, Brazil.,Graduate Program in Pharmaceutical Science, Health Science Institute, Federal University of Pará, Belém, Brazil
| |
Collapse
|
19
|
Rathore APS, St John AL. Immune responses to dengue virus in the skin. Open Biol 2019; 8:rsob.180087. [PMID: 30135238 PMCID: PMC6119867 DOI: 10.1098/rsob.180087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/13/2018] [Indexed: 12/12/2022] Open
Abstract
Dengue virus (DENV) causes infection in humans and current estimates place 40% of the world population at risk for contracting disease. There are four DENV serotypes that induce a febrile illness, which can develop into a severe and life-threatening disease in some cases, characterized primarily by vascular dysregulation. As a mosquito-borne infection, the skin is the initial site of DENV inoculation and also where primary host immune responses are initiated. This review discusses the early immune response to DENV in the skin by both infection target cells such as dendritic cells and by immune sentinels such as mast cells. We provide an overview of the mechanisms of immune sensing and functional immune responses that have been shown to aid clearance of DENV in vivo. Finally, we discuss factors that can influence the immune response to DENV in the skin, such as mosquito saliva, which is co-injected with virus during natural route infection, and pre-existing immunity to other DENV serotypes or to related flaviviruses.
Collapse
Affiliation(s)
- Abhay P S Rathore
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Ashley L St John
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Republic of Singapore .,Department of Pathology, Duke University Medical Center, Durham, NC, USA.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore
| |
Collapse
|
20
|
Abstract
Mosquitoes are haematophagous vectors for hundreds of pathogenic viruses that are aetiological agents of human diseases. In nature, mosquito-borne viruses maintain a lifecycle between mosquitoes and vertebrate animals. Viruses are acquired by a naive mosquito from an infected host by blood meals and then propagate extensively in the mosquito's tissues. This mosquito then becomes a virus reservoir and is competent to transmit the viruses to a naive vertebrate host through the next blood meal. To survive in and efficiently cycle between two distinct host environments, mosquito-borne viruses have evolved delicate and smart strategies to comprehensively exploit host and vector factors. Here, we provide an update on recent studies of the mechanisms of virus survival in, acquisition and transmission by mosquitoes.
Collapse
|
21
|
Huang YJS, Higgs S, Vanlandingham DL. Arbovirus-Mosquito Vector-Host Interactions and the Impact on Transmission and Disease Pathogenesis of Arboviruses. Front Microbiol 2019; 10:22. [PMID: 30728812 PMCID: PMC6351451 DOI: 10.3389/fmicb.2019.00022] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/09/2019] [Indexed: 12/11/2022] Open
Abstract
Hundreds of viruses, designated as arboviruses, are transmitted by arthropod vectors in complex transmission cycles between the virus, vertebrate host, and the vector. With millions of human and animal infections per year, it is critical to improve our understanding of the interactions between the biological and environmental factors that play a critical role in pathogenesis, disease outcomes, and transmission of arboviruses. This review focuses on mosquito-borne arboviruses and discusses current knowledge of the factors and underlying mechanisms that influence infection and transmission of arboviruses and discusses critical factors and pathways that can potentially become targets for intervention and therapeutics.
Collapse
Affiliation(s)
- Yan-Jang S Huang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States.,Biosecurity Research Institute, Kansas State University, Manhattan, KS, United States
| | - Stephen Higgs
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States.,Biosecurity Research Institute, Kansas State University, Manhattan, KS, United States
| | - Dana L Vanlandingham
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States.,Biosecurity Research Institute, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
22
|
Manning JE, Cantaert T. Time to Micromanage the Pathogen-Host-Vector Interface: Considerations for Vaccine Development. Vaccines (Basel) 2019; 7:E10. [PMID: 30669682 PMCID: PMC6466432 DOI: 10.3390/vaccines7010010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 12/18/2022] Open
Abstract
The current increase in vector-borne disease worldwide necessitates novel approaches to vaccine development targeted to pathogens delivered by blood-feeding arthropod vectors into the host skin. A concept that is gaining traction in recent years is the contribution of the vector or vector-derived components, like salivary proteins, to host-pathogen interactions. Indeed, the triad of vector-host-pathogen interactions in the skin microenvironment can influence host innate and adaptive responses alike, providing an advantage to the pathogen to establish infection. A better understanding of this "bite site" microenvironment, along with how host and vector local microbiomes immunomodulate responses to pathogens, is required for future vaccines for vector-borne diseases. Microneedle administration of such vaccines may more closely mimic vector deposition of pathogen and saliva into the skin with the added benefit of near painless vaccine delivery. Focusing on the 'micro'⁻from microenvironments to microbiomes to microneedles⁻may yield an improved generation of vector-borne disease vaccines in today's increasingly complex world.
Collapse
Affiliation(s)
- Jessica E Manning
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh 12201, Cambodia.
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh 12201, Cambodia.
| |
Collapse
|
23
|
Salivary Gland Extract from Aedes aegypti Improves Survival in Murine Polymicrobial Sepsis through Oxidative Mechanisms. Cells 2018; 7:cells7110182. [PMID: 30360497 PMCID: PMC6262460 DOI: 10.3390/cells7110182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/05/2018] [Accepted: 10/15/2018] [Indexed: 12/31/2022] Open
Abstract
Sepsis is a systemic disease with life-threatening potential and is characterized by a dysregulated immune response from the host to an infection. The organic dysfunction in sepsis is associated with the production of inflammatory cascades and oxidative stress. Previous studies showed that Aedes aegypti saliva has anti-inflammatory, immunomodulatory, and antioxidant properties. Considering inflammation and the role of oxidative stress in sepsis, we investigated the effect of pretreatment with salivary gland extract (SGE) from Ae. aegypti in the induction of inflammatory and oxidative processes in a murine cecum ligation and puncture (CLP) model. Here, we evaluated animal survival for 16 days, as well as bacterial load, leukocyte migration, and oxidative parameters. We found that the SGE pretreatment improved the survival of septic mice, reduced bacterial load and neutrophil influx, and increased nitric oxide (NO) production in the peritoneal cavity. With regard to oxidative status, SGE increased antioxidant defenses as measured by Trolox equivalent antioxidant capacity (TEAC) and glutathione (GSH), while reducing levels of the oxidative stress marker malondialdehyde (MDA). Altogether, these data suggest that SGE plays a protective role in septic animals, contributing to oxidative and inflammatory balance during sepsis. Therefore, Ae. aegypti SGE is a potential source for new therapeutic molecule(s) in polymicrobial sepsis, and this effect seems to be mediated by the control of inflammation and oxidative damage.
Collapse
|
24
|
Abstract
Alphaviruses are transmitted to humans via bites of infected mosquitoes. Although alphaviruses have caused a wide range of outbreaks and crippling disease, the availability of licensed vaccines or antiviral therapies remains limited. Mosquito vectors such as Aedes and Culex are the main culprits in the transmission of alphaviruses. This review explores how mosquito saliva may promote alphavirus infection. Identifying the roles of mosquito-derived factors in alphavirus pathogenesis will generate novel tools to circumvent and control mosquito-borne alphavirus infections in humans.
Collapse
|
25
|
Vogt MB, Lahon A, Arya RP, Kneubehl AR, Spencer Clinton JL, Paust S, Rico-Hesse R. Mosquito saliva alone has profound effects on the human immune system. PLoS Negl Trop Dis 2018; 12:e0006439. [PMID: 29771921 PMCID: PMC5957326 DOI: 10.1371/journal.pntd.0006439] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/10/2018] [Indexed: 12/22/2022] Open
Abstract
Mosquito saliva is a very complex concoction of >100 proteins, many of which have unknown functions. The effects of mosquito saliva proteins injected into our skin during blood feeding have been studied mainly in mouse models of injection or biting, with many of these systems producing results that may not be relevant to human disease. Here, we describe the numerous effects that mosquito bites have on human immune cells in mice engrafted with human hematopoietic stem cells. We used flow cytometry and multiplex cytokine bead array assays, with detailed statistical analyses, to detect small but significant variations in immune cell functions after 4 mosquitoes fed on humanized mice footpads. After preliminary analyses, at different early times after biting, we focused on assessing innate immune and subsequent cellular responses at 6 hours, 24 hours and 7 days after mosquito bites. We detected both Th1 and Th2 human immune responses, and delayed effects on cytokine levels in the blood, and immune cell compositions in the skin and bone marrow, up to 7 days post-bites. These are the first measurements of this kind, with human immune responses in whole animals, bitten by living mosquitoes, versus previous studies using incomplete mouse models and salivary gland extracts or needle injected saliva. The results have major implications for the study of hematophagous insect saliva, its effects on the human immune system, with or without pathogen transmission, and the possibility of determining which of these proteins to target for vaccination, in attempts to block transmission of numerous tropical diseases.
Collapse
Affiliation(s)
- Megan B. Vogt
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - Anismrita Lahon
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ravi P. Arya
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alexander R. Kneubehl
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jennifer L. Spencer Clinton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Silke Paust
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rebecca Rico-Hesse
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
26
|
Kamiya T, Greischar MA, Mideo N. Epidemiological consequences of immune sensitisation by pre-exposure to vector saliva. PLoS Negl Trop Dis 2017; 11:e0005956. [PMID: 28991904 PMCID: PMC5648264 DOI: 10.1371/journal.pntd.0005956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 10/19/2017] [Accepted: 09/12/2017] [Indexed: 11/25/2022] Open
Abstract
Blood-feeding arthropods—like mosquitoes, sand flies, and ticks—transmit many diseases that impose serious public health and economic burdens. When a blood-feeding arthropod bites a mammal, it injects saliva containing immunogenic compounds that facilitate feeding. Evidence from Leishmania, Plasmodium and arboviral infections suggests that the immune responses elicited by pre-exposure to arthropod saliva can alter disease progression if the host later becomes infected. Such pre-sensitisation of host immunity has been reported to both exacerbate and limit infection symptoms, depending on the system in question, with potential implications for recovery. To explore if and how immune pre-sensitisation alters the effects of vector control, we develop a general model of vector-borne disease. We show that the abundance of pre-sensitised infected hosts should increase when control efforts moderately increase vector mortality rates. If immune pre-sensitisation leads to more rapid clearance of infection, increasing vector mortality rates may achieve greater than expected disease control. However, when immune pre-sensitisation prolongs the duration of infection, e.g., through mildly symptomatic cases for which treatment is unlikely to be sought, vector control can actually increase the total number of infected hosts. The rising infections may go unnoticed unless active surveillance methods are used to detect such sub-clinical individuals, who could provide long-lasting reservoirs for transmission and suffer long-term health consequences of those sub-clinical infections. Sensitivity analysis suggests that these negative consequences could be mitigated through integrated vector management. While the effect of saliva pre-exposure on acute symptoms is well-studied for leishmaniasis, the immunological and clinical consequences are largely uncharted for other vector-parasite-host combinations. We find a large range of plausible epidemiological outcomes, positive and negative for public health, underscoring the need to quantify how immune pre-sensitisation modulates recovery and transmission rates in vector-borne diseases. Many diseases of health and economic importance are transmitted by arthropod vectors, like mosquitoes, sand flies, and ticks. When a blood-feeding arthropod bites a mammal, it injects saliva containing compounds that facilitate feeding. The immune responses elicited by previous exposure to vector saliva can alter disease severity if the host later becomes infected. Such pre-sensitisation of host immunity has been linked to either exacerbation or mitigation of symptoms in a number of disease systems. We develop a general model of vector-borne disease to examine how vector control efforts alter the frequency of immune pre-sensitisation and thus change the epidemiological impact of control. We show that the abundance of pre-sensitised infected hosts should increase when control efforts moderately increase vector mortality rates. When immune pre-sensitisation leads to longer infections—by generating sub-clinical cases for which treatment is not rapidly sought—killing vectors can lead to unexpected increases in the number of infected hosts. The rising case burden may go unnoticed unless sub-clinical individuals are tested for infection. Conversely, if immune pre-sensitisation leads to more rapid clearance of infection, increasing vector mortality rates may achieve greater than expected disease control. Our findings highlight the need to quantify how immune pre-sensitisation modulates clinical outcomes and parasite transmission in humans.
Collapse
Affiliation(s)
- Tsukushi Kamiya
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Megan A Greischar
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Mideo
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Pingen M, Bryden SR, Pondeville E, Schnettler E, Kohl A, Merits A, Fazakerley JK, Graham GJ, McKimmie CS. Host Inflammatory Response to Mosquito Bites Enhances the Severity of Arbovirus Infection. Immunity 2017; 44:1455-69. [PMID: 27332734 PMCID: PMC4920956 DOI: 10.1016/j.immuni.2016.06.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 03/10/2016] [Accepted: 03/31/2016] [Indexed: 12/24/2022]
Abstract
Aedes aegypti mosquitoes are responsible for transmitting many medically important viruses such as those that cause Zika and dengue. The inoculation of viruses into mosquito bite sites is an important and common stage of all mosquito-borne virus infections. We show, using Semliki Forest virus and Bunyamwera virus, that these viruses use this inflammatory niche to aid their replication and dissemination in vivo. Mosquito bites were characterized by an edema that retained virus at the inoculation site and an inflammatory influx of neutrophils that coordinated a localized innate immune program that inadvertently facilitated virus infection by encouraging the entry and infection of virus-permissive myeloid cells. Neutrophil depletion and therapeutic blockade of inflammasome activity suppressed inflammation and abrogated the ability of the bite to promote infection. This study identifies facets of mosquito bite inflammation that are important determinants of the subsequent systemic course and clinical outcome of virus infection. Mosquito bites enhance virus replication and dissemination and increase host mortality Neutrophil-driven inflammation retains virus in skin to drive macrophage recruitment Recruited and resident myeloid cells become infected and replicate virus Blocking leukocyte recruitment to bite site inhibits viral infection
Collapse
Affiliation(s)
- Marieke Pingen
- Virus Host Interaction Team, Section of Infection and Immunity, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
| | - Steven R Bryden
- Virus Host Interaction Team, Section of Infection and Immunity, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK; Institute of Infection, Immunology and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Emilie Pondeville
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Esther Schnettler
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Andres Merits
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | | | - Gerard J Graham
- Institute of Infection, Immunology and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Clive S McKimmie
- Virus Host Interaction Team, Section of Infection and Immunity, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK.
| |
Collapse
|
28
|
Pingen M, Schmid MA, Harris E, McKimmie CS. Mosquito Biting Modulates Skin Response to Virus Infection. Trends Parasitol 2017; 33:645-657. [PMID: 28495485 DOI: 10.1016/j.pt.2017.04.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 01/19/2023]
Abstract
Mosquito-borne infections are increasing in number and are spreading to new regions at an unprecedented rate. In particular, mosquito-transmitted viruses, such as those that cause Zika, dengue, West Nile encephalitis, and chikungunya, have become endemic or have caused dramatic epidemics in many parts of the world. Aedes and Culex mosquitoes are the main culprits, spreading infection when they bite. Importantly, mosquitoes do not act as simple conduits that passively transfer virus from one individual to another. Instead, host responses to mosquito-derived factors have an important influence on infection and disease, aiding replication and dissemination within the host. Here, we discuss the latest research developments regarding this fascinating interplay between mosquito, virus, and the mammalian host.
Collapse
Affiliation(s)
- Marieke Pingen
- Virus Host Interaction Team, Section of Infection and Immunity, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
| | - Michael A Schmid
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Immunology and Microbiology, University of Leuven, Leuven, Belgium
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Clive S McKimmie
- Virus Host Interaction Team, Section of Infection and Immunity, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK.
| |
Collapse
|
29
|
Schmid MA, Kauffman E, Payne A, Harris E, Kramer LD. Preparation of Mosquito Salivary Gland Extract and Intradermal Inoculation of Mice. Bio Protoc 2017; 7:e2407. [PMID: 28932759 DOI: 10.21769/bioprotoc.2407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Mosquito-transmitted pathogens are among the leading causes of severe disease and death in humans. Components within the saliva of mosquito vectors facilitate blood feeding, modulate host responses, and allow efficient transmission of pathogens, such as Dengue, Zika, yellow fever, West Nile, Japanese encephalitis, and chikungunya viruses, as well as Plasmodium parasites, among others. Here, we describe standardized methods to assess the impact of mosquito-derived factors on immune responses and pathogenesis in mouse models of infection. This protocol includes the generation of mosquito salivary gland extracts and intradermal inoculation of mouse ears. Ultimately, the information obtained from using these techniques can help reveal fundamental mechanisms of interaction between pathogens, mosquito vectors, and the mammalian host. In addition, this protocol can help establish improved infection challenge models for pre-clinical testing of vaccines or therapeutics that take into account the natural route of transmission via mosquitoes.
Collapse
Affiliation(s)
- Michael A Schmid
- Rega Institute for Medical Research, Virology and Chemotherapy, Department of Immunology and Microbiology, University of Leuven, Leuven, Belgium
| | - Elizabeth Kauffman
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Anne Payne
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, USA
| | - Laura D Kramer
- Wadsworth Center, New York State Department of Health, Albany, New York, USA.,School of Public Health, State University of New York at Albany, Albany, New York, USA
| |
Collapse
|
30
|
The human immune system’s response to carcinogenic and other infectious agents transmitted by mosquito vectors. Parasitol Res 2016; 116:1-9. [DOI: 10.1007/s00436-016-5272-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/21/2016] [Indexed: 10/20/2022]
|
31
|
Conway MJ, Londono-Renteria B, Troupin A, Watson AM, Klimstra WB, Fikrig E, Colpitts TM. Aedes aegypti D7 Saliva Protein Inhibits Dengue Virus Infection. PLoS Negl Trop Dis 2016; 10:e0004941. [PMID: 27632170 PMCID: PMC5025043 DOI: 10.1371/journal.pntd.0004941] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/02/2016] [Indexed: 12/29/2022] Open
Abstract
Aedes aegypti is the primary vector of several medically relevant arboviruses including dengue virus (DENV) types 1–4. Ae. aegypti transmits DENV by inoculating virus-infected saliva into host skin during probing and feeding. Ae. aegypti saliva contains over one hundred unique proteins and these proteins have diverse functions, including facilitating blood feeding. Previously, we showed that Ae. aegypti salivary gland extracts (SGEs) enhanced dissemination of DENV to draining lymph nodes. In contrast, HPLC-fractionation revealed that some SGE components inhibited infection. Here, we show that D7 proteins are enriched in HPLC fractions that are inhibitory to DENV infection, and that recombinant D7 protein can inhibit DENV infection in vitro and in vivo. Further, binding assays indicate that D7 protein can directly interact with DENV virions and recombinant DENV envelope protein. These data reveal a novel role for D7 proteins, which inhibits arbovirus transmission to vertebrates through a direct interaction with virions. Dengue virus (DENV) is transmitted to humans by Aedes aegypti during the blood feeding process. During blood feeding, DENV and saliva proteins are inoculated into human skin. D7 proteins are prevalent and immunogenic proteins present in Ae. aegypti saliva, and assist the blood feeding process by scavenging biogenic amines. Previous data suggests that antibodies against D7 protein from Culex spp. can increase West Nile virus infection. We hypothesized that D7 proteins may also have antiviral activity. Here, we show that recombinant Ae. aegypti D7 protein can inhibit DENV infection in vitro and in vivo, and that D7 can bind to DENV virions.
Collapse
Affiliation(s)
- Michael J. Conway
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, Michigan, United States of America
- * E-mail:
| | - Berlin Londono-Renteria
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Andrea Troupin
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Alan M. Watson
- Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - William B. Klimstra
- Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Tonya M. Colpitts
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| |
Collapse
|
32
|
Schmid MA, Glasner DR, Shah S, Michlmayr D, Kramer LD, Harris E. Mosquito Saliva Increases Endothelial Permeability in the Skin, Immune Cell Migration, and Dengue Pathogenesis during Antibody-Dependent Enhancement. PLoS Pathog 2016; 12:e1005676. [PMID: 27310141 PMCID: PMC4911004 DOI: 10.1371/journal.ppat.1005676] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/12/2016] [Indexed: 01/24/2023] Open
Abstract
Dengue remains the most prevalent arthropod-borne viral disease in humans. While probing for blood vessels, Aedes aegypti and Ae. albopictus mosquitoes transmit the four serotypes of dengue virus (DENV1-4) by injecting virus-containing saliva into the skin. Even though arthropod saliva is known to facilitate transmission and modulate host responses to other pathogens, the full impact of mosquito saliva on dengue pathogenesis is still not well understood. Inoculating mice lacking the interferon-α/β receptor intradermally with DENV revealed that mosquito salivary gland extract (SGE) exacerbates dengue pathogenesis specifically in the presence of enhancing serotype-cross-reactive antibodies—when individuals already carry an increased risk for severe disease. We further establish that SGE increases viral titers in the skin, boosts antibody-enhanced DENV infection of dendritic cells and macrophages in the dermis, and amplifies dendritic cell migration to skin-draining lymph nodes. We demonstrate that SGE directly disrupts endothelial barrier function in vitro and induces endothelial permeability in vivo in the skin. Finally, we show that surgically removing the site of DENV transmission in the skin after 4 hours rescued mice from disease in the absence of SGE, but no longer prevented lethal antibody-enhanced disease when SGE was present. These results indicate that SGE accelerates the dynamics of dengue pathogenesis after virus transmission in the skin and induces severe antibody-enhanced disease systemically. Our study reveals novel aspects of dengue pathogenesis and suggests that animal models of dengue and pre-clinical testing of dengue vaccines should consider mosquito-derived factors as well as enhancing antibodies. Mosquitoes inject saliva into the skin while probing for blood vessels. Saliva facilitates blood feeding and can contain pathogens when the mosquito is infected. In tropical regions, Aedes mosquitoes transmit the four serotypes of dengue virus (DENV1-4) and infect almost 400 million humans every year. DENV causes severe disease especially in people who have already been exposed to a different serotype. During antibody-dependent enhancement, antibodies that were generated during the first infection bind, but do not neutralize, DENV, and instead enhance infection of immune cells. We injected mouse ears with DENV alone or with extracts from mosquito salivary glands to study the impact on disease. We found that saliva induced severe disease and death only during antibody-enhanced infection. Saliva increased DENV infection in the dermis, immune cell migration to skin and lymph nodes, and permeability of endothelial cells that line blood vessels. Removing the site of DENV inoculation in the skin rescued mice from severe disease, but this protective effect was lost when saliva was present. Our study reveals that mosquito saliva affects dendritic cell migration, increases endothelial permeability, and augments dengue disease severity. Mosquito saliva and enhancing antibodies thus need to be considered when developing vaccines and drugs against dengue.
Collapse
Affiliation(s)
- Michael A. Schmid
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail: (MAS); (EH)
| | - Dustin R. Glasner
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Sanjana Shah
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Daniela Michlmayr
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Laura D. Kramer
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail: (MAS); (EH)
| |
Collapse
|
33
|
Parameters of Mosquito-Enhanced West Nile Virus Infection. J Virol 2015; 90:292-9. [PMID: 26468544 DOI: 10.1128/jvi.02280-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/06/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The arthropod-borne West Nile virus (WNV) emerged in New York State in 1999 and quickly spread throughout the United States. Transmission is maintained in an enzootic cycle in which infected mosquitoes transmit the virus to susceptible hosts during probing and feeding. Arthropod-derived components within the viral inoculum are increasingly acknowledged to play a role in infection of vertebrate hosts. We previously showed that Culex tarsalis mosquito saliva and salivary gland extract (SGE) enhance the in vivo replication of WNV. Here, we characterized the effective dose, timing, and proximity of saliva and SGE administration necessary for enhancement of WNV viremia using a mouse model. Mosquito saliva and SGE enhanced viremia in a dose-dependent manner, and a single mosquito bite or as little as 0.01 μg of SGE was effective at enhancing viremia, suggesting a potent active salivary factor. Viremia was enhanced when SGE was injected in the same location as virus inoculation from 24 h before virus inoculation through 12 h after virus inoculation. These results were confirmed with mosquito saliva deposited by uninfected mosquitoes. When salivary treatment and virus inoculation were spatially separated, viremia was not enhanced. In summary, the effects of mosquito saliva and SGE were potent, long lasting, and localized, and these studies have implications for virus transmission in nature, where vertebrate hosts are fed upon by both infected and uninfected mosquitoes over time. Furthermore, our model provides a robust system to identify the salivary factor(s) responsible for enhancement of WNV replication. IMPORTANCE Mosquito-borne viruses are a significant class of agents causing emerging infectious diseases. WNV has caused over 18,000 cases of neuroinvasive disease in the United States since its emergence. We have shown that Culex tarsalis mosquito saliva and SGE enhance the replication of WNV. We now demonstrate that saliva and SGE have potent, long-lasting, and localized effects. Our model provides a robust system to identify the salivary factor(s) and characterize the mechanism responsible for enhancement of WNV replication. These studies could lead to the identification of novel prophylactic or treatment options useful in limiting the spread of WNV, other mosquito-borne viruses, and the diseases that they cause.
Collapse
|
34
|
Eastern equine encephalitis virus in mice I: clinical course and outcome are dependent on route of exposure. Virol J 2015; 12:152. [PMID: 26420265 PMCID: PMC4588493 DOI: 10.1186/s12985-015-0386-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/15/2015] [Indexed: 12/05/2022] Open
Abstract
Background Eastern equine encephalitis virus (EEEV), an arbovirus, is an important human and veterinary pathogen belonging to one of seven antigenic complexes in the genus Alphavirus, family Togaviridae. EEEV is considered the most deadly of the mosquito-borne alphaviruses due to the high case fatality rate associated with clinical infections, reaching up to 75 % in humans and 90 % in horses. In patients that survive acute infection, neurologic sequelae are often devastating. Although natural infections are acquired by mosquito bite, EEEV is also highly infectious by aerosol. This fact, along with the relative ease of production and stability of this virus, has led it to being identified as a potential agent of bioterrorism. Methods To characterize the clinical course and outcome of EEEV strain FL93-939 infection, we compared clinical parameters, cytokine expression, viremia, and viral titers in numerous tissues of mice exposed by various routes. Twelve-week-old female BALB/c mice were infected by the intranasal, aerosol, or subcutaneous route. Mice were monitored for clinical signs of disease and euthanized at specified time points (6 hpi through 8 dpi). Blood and tissues were harvested for cytokine analysis and/or viral titer determination. Results Although all groups of animals exhibited similar clinical signs after inoculation, the onset and severity differed. The majority of those animals exposed by the aerosol route developed severe clinical signs by 4 dpi. Significant differences were also observed in the viral titers of target tissues, with virus being detected in the brain at 6 hpi in the aerosol study. Conclusion The clinical course and outcome of EEEV infection in mice is dependent on route of exposure. Aerosol exposure to EEEV results in acute onset of clinical signs, rapid neuroinvasion, and 100 % mortality. Electronic supplementary material The online version of this article (doi:10.1186/s12985-015-0386-1) contains supplementary material, which is available to authorized users.
Collapse
|
35
|
McDowell MA. Vector-transmitted disease vaccines: targeting salivary proteins in transmission (SPIT). Trends Parasitol 2015; 31:363-72. [PMID: 26003330 DOI: 10.1016/j.pt.2015.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/20/2015] [Accepted: 04/27/2015] [Indexed: 12/25/2022]
Abstract
More than half the population of the world is at risk for morbidity and mortality from vector-transmitted diseases, and emerging vector-transmitted infections are threatening new populations. Rising insecticide resistance and lack of efficacious vaccines highlight the need for novel control measures. One such approach is targeting the vector-host interface by incorporating vector salivary proteins in anti-pathogen vaccines. Debate remains about whether vector saliva exposure exacerbates or protects against more severe clinical manifestations, induces immunity through natural exposure or extends to all vector species and associated pathogens. Nevertheless, exploiting this unique biology holds promise as a viable strategy for the development of vaccines against vector-transmitted diseases.
Collapse
Affiliation(s)
- Mary Ann McDowell
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
36
|
Abstract
Chikungunya virus (CHIKV), a mosquito-borne alphavirus of increasing public health significance, has caused large epidemics in Africa and the Indian Ocean basin; now it is spreading throughout the Americas. The primary vectors of CHIKV are Aedes (Ae.) aegypti and, after the introduction of a mutation in the E1 envelope protein gene, the highly anthropophilic and geographically widespread Ae. albopictus mosquito. We review here research efforts to characterize the viral genetic basis of mosquito-vector interactions, the use of RNA interference and other strategies for the control of CHIKV in mosquitoes, and the potentiation of CHIKV infection by mosquito saliva. Over the past decade, CHIKV has emerged on a truly global scale. Since 2013, CHIKV transmission has been reported throughout the Caribbean region, in North America, and in Central and South American countries, including Brazil, Columbia, Costa Rica, El Salvador, French Guiana, Guatemala, Guyana, Nicaragua, Panama, Suriname, and Venezuela. Closing the gaps in our knowledge of driving factors behind the rapid geographic expansion of CHIKV should be considered a research priority. The abundance of multiple primate species in many of these countries, together with species of mosquito that have never been exposed to CHIKV, may provide opportunities for this highly adaptable virus to establish sylvatic cycles that to date have not been seen outside of Africa. The short-term and long-term ecological consequences of such transmission cycles, including the impact on wildlife and people living in these areas, are completely unknown.
Collapse
Affiliation(s)
- Stephen Higgs
- 1 Biosecurity Research Institute, Kansas State University , Manhattan, Kansas
| | | |
Collapse
|
37
|
Corradin G, Levitskaya J. Priming of CD8(+) T Cell Responses to Liver Stage Malaria Parasite Antigens. Front Immunol 2014; 5:527. [PMID: 25414698 PMCID: PMC4220712 DOI: 10.3389/fimmu.2014.00527] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 10/07/2014] [Indexed: 01/13/2023] Open
Abstract
While the role of malaria parasite-specific memory CD8+ T cells in the control of exo-erythrocytic stages of malaria infection is well documented and generally accepted, a debate is still ongoing regarding both the identity of the anatomic site where the activation of naive pathogen-specific T cells is taking place and contribution of different antigen-presenting cells (APCs) into this process. Whereas some studies infer a role of professional APCs present in the lymph nodes draining the site of parasite injection by the mosquito, others argue in favor of the liver as a primary organ and hepatocytes as stimulators of naïve parasite-specific T cell responses. This review aims to critically analyze the current knowledge and outline new lines of research necessary to understand the induction of protective cellular immunity against the malaria parasite.
Collapse
Affiliation(s)
| | - Jelena Levitskaya
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University , Baltimore, MD , USA
| |
Collapse
|
38
|
Ockenfels B, Michael E, McDowell MA. Meta-analysis of the effects of insect vector saliva on host immune responses and infection of vector-transmitted pathogens: a focus on leishmaniasis. PLoS Negl Trop Dis 2014; 8:e3197. [PMID: 25275509 PMCID: PMC4183472 DOI: 10.1371/journal.pntd.0003197] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/18/2014] [Indexed: 11/18/2022] Open
Abstract
A meta-analysis of the effects of vector saliva on the immune response and progression of vector-transmitted disease, specifically with regard to pathology, infection level, and host cytokine levels was conducted. Infection in the absence or presence of saliva in naïve mice was compared. In addition, infection in mice pre-exposed to uninfected vector saliva was compared to infection in unexposed mice. To control for differences in vector and pathogen species, mouse strain, and experimental design, a random effects model was used to compare the ratio of the natural log of the experimental to the control means of the studies. Saliva was demonstrated to enhance pathology, infection level, and the production of Th2 cytokines (IL-4 and IL-10) in naïve mice. This effect was observed across vector/pathogen pairings, whether natural or unnatural, and with single salivary proteins used as a proxy for whole saliva. Saliva pre-exposure was determined to result in less severe leishmaniasis pathology when compared with unexposed mice infected either in the presence or absence of sand fly saliva. The results of further analyses were not significant, but demonstrated trends toward protection and IFN-γ elevation for pre-exposed mice. Arthropod vectors transmit a wide variety of diseases resulting in substantial human morbidity and economic costs worldwide. When hematophagous arthropods blood feed, they release saliva into the host. This saliva elicits a strong immune response and has recently been a focus for vaccine research. There is evidence that the saliva enhances infection in naïve hosts, but that prior exposure to saliva results in less severe infection. This analysis endeavored to determine whether there was a statistically significant enhancement or protective effect with regard to saliva exposure and the progression of disease, and to determine the underlying immune mechanism driving these effects. We found that saliva does indeed enhance infection levels of vector-transmitted pathogens and leishmaniasis pathology in naïve mice and elevates Th2 cytokine levels (IL-4 and IL-10). We also determined that pre-exposure to saliva results in less severe pathology of experimental leishmaniasis in mice. These results are important for vaccine trials and vector control programs, though more studies are needed with regard to pre-exposure.
Collapse
Affiliation(s)
- Brittany Ockenfels
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Edwin Michael
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Mary Ann McDowell
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| |
Collapse
|
39
|
Evaluation of the murine immune response to Xenopsylla cheopis flea saliva and its effect on transmission of Yersinia pestis. PLoS Negl Trop Dis 2014; 8:e3196. [PMID: 25255317 PMCID: PMC4177749 DOI: 10.1371/journal.pntd.0003196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/18/2014] [Indexed: 01/20/2023] Open
Abstract
Background/Aims Arthropod-borne pathogens are transmitted into a unique intradermal microenvironment that includes the saliva of their vectors. Immunomodulatory factors in the saliva can enhance infectivity; however, in some cases the immune response that develops to saliva from prior uninfected bites can inhibit infectivity. Most rodent reservoirs of Yersinia pestis experience fleabites regularly, but the effect this has on the dynamics of flea-borne transmission of plague has never been investigated. We examined the innate and acquired immune response of mice to bites of Xenopsylla cheopis and its effects on Y. pestis transmission and disease progression in both naïve mice and mice chronically exposed to flea bites. Methods/Principal Findings The immune response of C57BL/6 mice to uninfected flea bites was characterized by flow cytometry, histology, and antibody detection methods. In naïve mice, flea bites induced mild inflammation with limited recruitment of neutrophils and macrophages to the bite site. Infectivity and host response in naïve mice exposed to flea bites followed immediately by intradermal injection of Y. pestis did not differ from that of mice infected with Y. pestis without prior flea feeding. With prolonged exposure, an IgG1 antibody response primarily directed to the predominant component of flea saliva, a family of 36–45 kDa phosphatase-like proteins, occurred in both laboratory mice and wild rats naturally exposed to X. cheopis, but a hypersensitivity response never developed. The incidence and progression of terminal plague following challenge by infective blocked fleas were equivalent in naïve mice and mice sensitized to flea saliva by repeated exposure to flea bites over a 10-week period. Conclusions Unlike what is observed with many other blood-feeding arthropods, the murine immune response to X. cheopis saliva is mild and continued exposure to flea bites leads more to tolerance than to hypersensitivity. The immune response to flea saliva had no detectable effect on Y. pestis transmission or plague pathogenesis in mice. The saliva of blood-feeding arthropods contains a variety of components that prevent blood clotting and interfere with the immune system of the vertebrate host. These properties have been shown to enhance or inhibit the transmission of different pathogens transmitted by arthropods. Yersinia pestis, the bacterial agent of plague, is maintained in nature by flea to rodent transmission cycles. Most rodents live in close association with fleas and are constantly being bitten by them, but the influence this has on plague transmission is unknown - previous studies used laboratory animals which have never experienced a flea bite. We found that flea bites caused a mild inflammatory response in mice, and eventually an antibody response to components of flea saliva, but did not significantly affect pathogenesis. The transmission of Y. pestis by infected fleas and the incidence rate of bubonic plague mortality were the same in mice that had been exposed to frequent uninfected flea bites and mice with no prior exposure to fleas. Therefore, in contrast to what has been shown for many other arthropod-borne disease systems, vector saliva did not enhance or inhibit Y. pestis infection in mice, regardless of the immune status of the host to flea saliva.
Collapse
|
40
|
Sariol CA, White LJ. Utility, limitations, and future of non-human primates for dengue research and vaccine development. Front Immunol 2014; 5:452. [PMID: 25309540 PMCID: PMC4174039 DOI: 10.3389/fimmu.2014.00452] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 09/05/2014] [Indexed: 11/13/2022] Open
Abstract
Dengue is considered the most important emerging, human arboviruses, with worldwide distribution in the tropics. Unfortunately, there are no licensed dengue vaccines available or specific anti-viral drugs. The development of a dengue vaccine faces unique challenges. The four serotypes co-circulate in endemic areas, and pre-existing immunity to one serotype does not protect against infection with other serotypes, and actually may enhance severity of disease. One foremost constraint to test the efficacy of a dengue vaccine is the lack of an animal model that adequately recapitulates the clinical manifestations of a dengue infection in humans. In spite of this limitation, non-human primates (NHP) are considered the best available animal model to evaluate dengue vaccine candidates due to their genetic relatedness to humans and their ability to develop a viremia upon infection and a robust immune response similar to that in humans. Therefore, most dengue vaccines candidates are tested in primates before going into clinical trials. In this article, we present a comprehensive review of published studies on dengue vaccine evaluations using the NHP model, and discuss critical parameters affecting the usefulness of the model. In the light of recent clinical data, we assess the ability of the NHP model to predict immunological parameters of vaccine performances in humans and discuss parameters that should be further examined as potential correlates of protection. Finally, we propose some guidelines toward a more standardized use of the model to maximize its usefulness and to better compare the performance of vaccine candidates from different research groups.
Collapse
Affiliation(s)
- Carlos A Sariol
- Department of Microbiology and Medical Zoology, Caribbean Primate Research Center, University of Puerto Rico-Medical Sciences Campus , San Juan, PR , USA ; Department of Internal Medicine, Caribbean Primate Research Center, University of Puerto Rico-Medical Sciences Campus , San Juan, PR , USA
| | - Laura J White
- Global Vaccine Incorporation , Research Triangle Park, NC , USA
| |
Collapse
|
41
|
Aedes aegypti salivary protein "aegyptin" co-inoculation modulates dengue virus infection in the vertebrate host. Virology 2014; 468-470:133-139. [PMID: 25173089 DOI: 10.1016/j.virol.2014.07.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/04/2014] [Accepted: 07/11/2014] [Indexed: 01/13/2023]
Abstract
Dengue virus (DENV) is transmitted in the saliva of the mosquito vector Aedes aegypti during blood meal acquisition. This saliva is composed of numerous proteins with the capacity to disrupt hemostasis or modulate the vertebrate immune response. One such protein, termed "aegyptin," is an allergen and inhibitor of clot formation, and has been found in decreased abundance in the saliva of DENV-infected mosquitoes. To examine the influence of aegyptin on DENV infection of the vertebrate, we inoculated IRF-3/7(-/- -/-) mice with DENV serotype 2 strain 1232 with and without co-inoculation of aegyptin. Mice that received aegyptin exhibited decreased DENV titers in inoculation sites and in circulation, as well as increased concentrations of GM-CSF, IFN-γ, IL-5, and IL-6, at 48 h post-inoculation when compared to mice that received inoculation of DENV alone. These and other data suggest that aegyptin impacts DENV perpetuation via elevated induction of the immune response.
Collapse
|
42
|
Role of skin immune cells on the host susceptibility to mosquito-borne viruses. Virology 2014; 464-465:26-32. [PMID: 25043586 DOI: 10.1016/j.virol.2014.06.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/15/2014] [Accepted: 06/17/2014] [Indexed: 12/13/2022]
Abstract
Due to climate change and the propagation of competent arthropods worldwide, arboviruses have become pathogens of major medical importance. Early transmission to vertebrates is initiated by skin puncture and deposition of virus together with arthropod saliva in the epidermis and dermis. Saliva components have the capacity to modulate skin cell responses by enhancing and/or counteracting initial replication and establishment of systemic viral infection. Here, we review the nature of the cells targeted by arboviruses at the skin level and discuss the type of cellular responses elicited by these pathogens in light of the immunomodulatory properties of arthropod vector-derived salivary factors injected at the inoculation site. Understanding cutaneous arbovirus-host interactions may provide new clues for the design of future therapeutics.
Collapse
|
43
|
Lehiy CJ, Drolet BS. The salivary secretome of the biting midge, Culicoides sonorensis. PeerJ 2014; 2:e426. [PMID: 24949243 PMCID: PMC4060021 DOI: 10.7717/peerj.426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/21/2014] [Indexed: 11/20/2022] Open
Abstract
Culicoides biting midges (Diptera: Ceratopogonidae) are hematophagous insects with over 1400 species distributed throughout the world. Many of these species are of particular agricultural importance as primary vectors of bluetongue and Schmallenberg viruses, yet little is known about Culicoides genomics and proteomics. Detailed studies of members from other blood-feeding Dipteran families, including those of mosquito (Culicidae) and black fly (Simuliidae), have shown that protein components within the insect's saliva facilitate the blood feeding process. To determine the protein components in Culicoides sonorensis midges, secreted saliva was collected for peptide sequencing by tandem mass spectrometry. Forty-five secreted proteins were identified, including members of the D7 odorant binding protein family, Kunitz-like serine protease inhibitors, maltase, trypsin, and six novel proteins unique to C. sonorensis. Identifying the complex myriad of proteins in saliva from blood-feeding Dipteran species is critical for understanding their role in blood feeding, arbovirus transmission, and possibly the resulting disease pathogenesis.
Collapse
Affiliation(s)
- Christopher J Lehiy
- United States Department of Agriculture, Agricultural Research Service, Arthropod-Borne Animal Diseases Research Unit , Manhattan, KS , USA
| | - Barbara S Drolet
- United States Department of Agriculture, Agricultural Research Service, Arthropod-Borne Animal Diseases Research Unit , Manhattan, KS , USA
| |
Collapse
|
44
|
Abstract
Many arboviral diseases are uncontrolled, and the viruses that cause them are globally emerging or reemerging pathogens that produce significant disease throughout the world. The increased spread and prevalence of disease are occurring during a period of substantial scientific growth in the vector-borne disease research community. This growth has been supported by advances in genomics and proteomics, and by the ability to genetically alter disease vectors. For the first time, researchers are elucidating the molecular details of vector host-seeking behavior, the susceptibility of disease vectors to arboviruses, the immunological control of infection in disease vectors, and the determinants that facilitate transmission of arboviruses from a vector to a host. These discoveries are facilitating the development of novel strategies to combat arboviral disease, including the release of transgenic mosquitoes harboring dominant lethal genes, the introduction of arbovirus-blocking microbes into mosquito populations, and the development of acquisition- and transmission-blocking therapeutics. Understanding the role of the vector in arbovirus transmission has provided critical practical and theoretical tools to control arboviral disease.
Collapse
Affiliation(s)
- Michael J Conway
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, Michigan 48859
| | - Tonya M Colpitts
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana 70112
| | - Erol Fikrig
- Department of Internal Medicine, Infectious Diseases Section, Yale University School of Medicine, New Haven, Connecticut 06520; .,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| |
Collapse
|
45
|
Le Coupanec A, Babin D, Bouloy M, Choumet V. Clone 13-infected Aedes aegypti salivary components inhibit Rift Valley fever virus pathogenicity. Microbes Infect 2014; 16:439-44. [DOI: 10.1016/j.micinf.2014.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 01/29/2014] [Accepted: 01/31/2014] [Indexed: 11/25/2022]
|
46
|
Analysis of early dengue virus infection in mice as modulated by Aedes aegypti probing. J Virol 2013; 88:1881-9. [PMID: 24198426 DOI: 10.1128/jvi.01218-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dengue virus (DENV), the etiologic agent of dengue fever, is transmitted during probing of human skin by infected-mosquito bite. The expectorated viral inoculum also contains an assortment of mosquito salivary proteins that have been shown to modulate host hemostasis and innate immune responses. To examine the potential role of mosquito probing in DENV establishment within the vertebrate host, we inoculated mice intradermally with DENV serotype 2 strain 1232 at sites where Aedes aegypti had or had not probed immediately prior. We assayed these sites 3 h postinoculation with transcript arrays for the Toll-like receptor (TLR), RIG-I-like receptor, and NOD-like receptor signaling pathways of the innate immune system. We then chose TLR7, transcription factor p65 (RelA), gamma interferon (IFN-γ), and IFN-γ-inducible protein 10 (IP-10) from the arrays for further investigation and assayed these transcripts at 10 min, 3 h, and 6 h postinoculation. The transcripts for TLR7, RelA, IFN-γ, and IP-10 were significantly downregulated between 2- and 3-fold in the group subjected to mosquito probing relative to the virus-only inoculation group at 3 h postinoculation. A reduction in these transcripts could indicate reduced DENV recognition and antigen presentation and diminished inhibition of viral replication and spread. Further, mosquito probing resulted in viremia titers significantly higher than those in mice that did not receive probing. A. aegypti probing has a significant effect on the innate immune response to DENV infection and generates an early immune environment more permissive to the establishment of infection.
Collapse
|
47
|
Machain-Williams C, Reagan K, Wang T, Zeidner NS, Blair CD. Immunization with Culex tarsalis mosquito salivary gland extract modulates West Nile virus infection and disease in mice. Viral Immunol 2013; 26:84-92. [PMID: 23362833 DOI: 10.1089/vim.2012.0051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mosquito salivary proteins inoculated during blood feeding modulate the host immune response, which can contribute to the pathogenesis of viruses transmitted by mosquito bites. Previous studies with mosquito bite-naïve mice indicated that exposure to arthropod salivary proteins resulted in a shift toward a Th2-type immune response in flavivirus-susceptible mice but not flavivirus-resistant animals. In the study presented here, we tested the hypothesis that immunization with high doses of Culex tarsalis salivary gland extracts (SGE) with an adjuvant would prevent Th2 polarization after mosquito bite and enhance resistance to mosquito-transmitted West Nile virus (WNV). Our results indicate that mice immunized with Cx. tarsalis SGE produced increased levels of Th1-type cytokines (IFNγ and TNFα) after challenge with mosquito-transmitted WNV and exhibited both a delay in infection of the central nervous system (CNS) and significantly lower WNV brain titers compared to mock-immunized mice. Moreover, mortality was significantly reduced in the SGE-immunized mice, as none of these mice died, compared to mortality of 37.5% of mock-vaccinated mice by 8 days after infected mosquito bite. These results suggest that development of a mosquito salivary protein vaccine might be a strategy to control arthropod-borne viral pathogens such as WNV.
Collapse
Affiliation(s)
- Carlos Machain-Williams
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | |
Collapse
|
48
|
Abstract
West Nile Virus was introduced into the Western Hemisphere during the late summer of 1999 and has been causing significant and sometimes severe human diseases since that time. This article briefly touches upon the biology of the virus and provides a comprehensive review regarding recent discoveries about virus transmission, virus acquisition, and human infection and disease.
Collapse
|
49
|
Sarr JB, Samb B, Sagna AB, Fortin S, Doucoure S, Sow C, Senghor S, Gaayeb L, Guindo S, Schacht AM, Rogerie F, Hermann E, Dia I, Konate L, Riveau G, Remoue F. Differential acquisition of human antibody responses to Plasmodium falciparum according to intensity of exposure to Anopheles bites. Trans R Soc Trop Med Hyg 2012; 106:460-7. [PMID: 22721883 DOI: 10.1016/j.trstmh.2012.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 05/17/2012] [Accepted: 05/17/2012] [Indexed: 11/16/2022] Open
Abstract
Malaria immunity is modulated by many environmental and epidemiological factors. This study evaluates the influence of a hitherto unstudied environmental-epidemiological factor, namely the impact of human exposure to Anopheles bites on the isotype profile of acquired antibody responses to Plasmodium falciparum. In two Senegalese villages where the intensity of exposure to Anopheles bites was markedly different (high and low exposure), specific IgG1 and IgG3 responses to P. falciparum whole schizont extract (WSE) and circumsporozoite protein (CSP) were evaluated at the peak of Anopheles exposure (September) and later (December) in a cohort of 120 children aged 3-8 years. Multivariate analysis showed a significantly lower IgG1 response against P. falciparum WSE and CSP in children highly exposed to Anopheles bites (Gankette) compared to those who were weakly exposed (Mboula). In contrast, in both villages, parasitemia and increasing age were strongly associated with higher IgG1 and IgG3 levels. We hypothesize that high exposure to Anopheles bites could inhibit IgG1-dependent responsiveness to P. falciparum known to induce protective immune responses against malaria. The impact of mosquito saliva on the regulation of specific protective immunity may need to be taken into account in epidemiological studies and trials for malaria vaccines.
Collapse
Affiliation(s)
- Jean Biram Sarr
- Unité de recherche mixte MIVEGEC (IRD 224-CNRS 5290-UM1-UM2), Montpellier, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Machain-Williams C, Mammen MP, Zeidner NS, Beaty BJ, Prenni JE, Nisalak A, Blair CD. Association of human immune response to Aedes aegypti salivary proteins with dengue disease severity. Parasite Immunol 2012; 34:15-22. [PMID: 21995849 DOI: 10.1111/j.1365-3024.2011.01339.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dengue viruses (DENV; family Flaviviridae, genus Flavivirus) are transmitted by Aedes aegypti mosquitoes and can cause dengue fever (DF), a relatively benign disease, or more severe dengue haemorrhagic fever (DHF). Arthropod saliva contains proteins delivered into the bite wound that can modulate the host haemostatic and immune responses to facilitate the intake of a blood meal. The potential effects on DENV infection of previous exposure to Ae. aegypti salivary proteins have not been investigated. We collected Ae. aegypti saliva, concentrated the proteins and fractionated them by nondenaturing polyacrylamide gel electrophoresis (PAGE). By the use of immunoblots, we analysed reactivity with the mosquito salivary proteins (MSP) of sera from 96 Thai children diagnosed with secondary DENV infections leading either to DF or DHF, or with no DENV infection, and found that different proportions of each patient group had serum antibodies reactive to specific Ae. aegypti salivary proteins. Our results suggest that prior exposure to MSP might play a role in the outcome of DENV infection in humans.
Collapse
Affiliation(s)
- C Machain-Williams
- Department of Microbiology, Immunology and Pathology, Arthropod-borne and Infectious Diseases Laboratory, Colorado State University, Fort Collins, CO, USA.
| | | | | | | | | | | | | |
Collapse
|