1
|
Baig MMFA, Wong LY, Wu H. Development of mRNA nano-vaccines for COVID-19 prevention and its biochemical interactions with various disease conditions and age groups. J Drug Target 2024; 32:21-32. [PMID: 38010097 DOI: 10.1080/1061186x.2023.2288996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
This review has focused on the development of mRNA nano-vaccine and the biochemical interactions of anti-COVID-19 mRNA vaccines with various disease conditions and age groups. It studied five major groups of individuals with different disease conditions and ages, including allergic background, infarction background, adolescent, and adult (youngsters), pregnant women, and elderly. All five groups had been reported to have background-related adverse effects. Allergic background individuals were observed to have higher chances of experiencing allergic reactions and even anaphylaxis. Individuals with an infarction background had a higher risk of vaccine-induced diseases, e.g. pneumonitis and interstitial lung diseases. Pregnant women were seen to suffer from obstetric and gynecological adverse effects after receiving vaccinations. However, interestingly, the elderly individuals (> 65 years old) had experienced milder and less frequent adverse effects compared to the adolescent (<19 and >9 years old) and young adulthood (19-39 years old), or middle adulthood (40-59 years old) age groups, while middle to late adolescent (14-17 years old) was the riskiest age group to vaccine-induced cardiovascular manifestations.
Collapse
Affiliation(s)
- Mirza Muhammad Faran Ashraf Baig
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Lok Yin Wong
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hongkai Wu
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
2
|
Li H, Wang A, Zhang Y, Wei F. Diverse roles of lung macrophages in the immune response to influenza A virus. Front Microbiol 2023; 14:1260543. [PMID: 37779697 PMCID: PMC10534047 DOI: 10.3389/fmicb.2023.1260543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/16/2023] [Indexed: 10/03/2023] Open
Abstract
Influenza viruses are one of the major causes of human respiratory infections and the newly emerging and re-emerging strains of influenza virus are the cause of seasonal epidemics and occasional pandemics, resulting in a huge threat to global public health systems. As one of the early immune cells can rapidly recognize and respond to influenza viruses in the respiratory, lung macrophages play an important role in controlling the severity of influenza disease by limiting viral replication, modulating the local inflammatory response, and initiating subsequent adaptive immune responses. However, influenza virus reproduction in macrophages is both strain- and macrophage type-dependent, and ineffective replication of some viral strains in mouse macrophages has been observed. This review discusses the function of lung macrophages in influenza virus infection in order to better understand the pathogenesis of the influenza virus.
Collapse
Affiliation(s)
- Haoning Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Aoxue Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yuying Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Fanhua Wei
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
3
|
Bamorovat M, Sharifi I, Aflatoonian MR, Karamoozian A, Tahmouresi A, Jafarzadeh A, Heshmatkhah A, Sharifi F, Salarkia E, Khaleghi T, Khosravi A, Nooshadokht M, Zarandi MB, Barghi M. Prophylactic effect of cutaneous leishmaniasis against COVID-19: a case-control field assessment. Int J Infect Dis 2022; 122:155-161. [PMID: 34571149 PMCID: PMC8461267 DOI: 10.1016/j.ijid.2021.09.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 01/25/2023] Open
Abstract
INTRODUCTION We assessed the potential relationship between COVID-19 and laboratory-confirmed cutaneous leishmaniasis (CL)-registered cases with a history of scarring, compared with volunteer participants without history of CL. METHODS This case-control retrospective study was conducted in southeastern Iran with a high anthroponotic cutaneous leishmaniasis (ACL) burden. RESULTS Overall, n=1010 CL cases (n=479 male, n=531 female) were evaluated for infection with SARS-CoV-2. In the CL case group, 2 men and 1 woman (0.3% in total) had a mild form of COVID-19 disease; none were hospitalized or died. In contrast, of n=2020 participants without history of CL, n=57 (2.9%) contracted laboratory-confirmed COVID-19, including mild (66.7%), hospitalized (26.3%), critical (3.5%) and fatal (3.5%). There was a strong negative association between CL infection and COVID-19. The burden of COVID-19 in CL-cured participants significantly reduced the morbidity (odds ratio: 0.12; CI: 0.03-0.30; P <0.001) and mortality (percentile: -4.10, -0.02). CONCLUSION Participants with a history of CL scar had significantly reduced incidence of COVID-19 morbidity and mortality. The cross-protection mediated by CL may retard COVID-19 in endemic countries. However, further longitudinal studies are needed to explore the potential profile and duration of this protection offered by CL against COVID-19.
Collapse
Affiliation(s)
- Mehdi Bamorovat
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Reza Aflatoonian
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Karamoozian
- Research Center for Modeling in Health, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Abdollah Jafarzadeh
- Department of Immunology, Kerman University of Medical Sciences, Kerman, Iran
| | - Amireh Heshmatkhah
- Dadbin Health Clinic, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Sharifi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Tabandeh Khaleghi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nooshadokht
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran; Pathobiology Department, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Borhani Zarandi
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Barghi
- Department of Biochemistry, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
4
|
Screening of Antiviral Components of Yinhuapinggan Granule and Protective Effects of Yinhuapinggan Granule on MDCK Cells with Influenza A/H1N1 Virus. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1040129. [PMID: 35211622 PMCID: PMC8863447 DOI: 10.1155/2022/1040129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/16/2021] [Accepted: 01/21/2022] [Indexed: 11/17/2022]
Abstract
Background. Traditional Chinese medicine Yinhuapinggan granule (YHPG) has been used for treating upper respiratory tract infection like influenza, cough, and viral pneumonia. However, its active ingredients that really exert the main efficacy have not been well elucidated. This study is aimed at screening its antiviral components and investigating the potential therapeutic mechanisms of YHPG against the influenza A/PR8/34 (H1N1) virus in Madin Darby canine kidney (MDCK). Methods. MDCK cells were infected with the influenza virus and then treated with ribavirin, YHPG, and main active ingredients in YHPG. Based on the maximum nontoxic concentration (TC0), half-maximal toxic concentration (TC50), half-maximal inhibitory concentration (IC50), and therapeutic index (TI), interferon-β (IFN-β) and interleukin-6 (IL-6) levels were measured using enzyme-linked immunosorbent assay (ELISA), and the gene expression of TLR7, MyD88, tumor necrosis factor receptor-associated factor 6 (TRAF6), c-Jun amino terminal kinase (JNK), p38 mitogen-activated protein kinase (p38 MAPK), and p65 nuclear transcription factor-kappa B (p65 NF-κB) was quantified using reverse transcription-polymerase chain reaction (RT-PCR). Results. The results indicated that the components of YHPG, such as ephedrine hydrochloride, pseudoephedrine hydrochloride, chlorogenic acid, and emodin, had significant antiviral effects. High and medium doses of YHPG effectively reduced the cytopathic effect (CPE) and significantly decreased IFN-β and IL-6 levels in the supernatant. Simultaneously, the transcript levels of TLR7, MyD88, TRAF6, JNK, p38 MAPK, and p65 NF-κB decreased in infected MDCK cells. Moreover, a certain dose-dependent relationship among different groups of YHPG was observed. Conclusions. These results indicated that YHPG and the components of YHPG had a significant inhibitory function on the proliferation of the H1N1 virus. The mechanism might be associated with suppressing the activation of the TLR7/MyD88 signaling pathway, a decrease in the mRNA expression of key target genes, and inhibition of IFN-β and IL-6 secretion.
Collapse
|
5
|
Horiuchi S, Oishi K, Carrau L, Frere J, Møller R, Panis M, tenOever BR. Immune memory from SARS-CoV-2 infection in hamsters provides variant-independent protection but still allows virus transmission. Sci Immunol 2021; 6:eabm3131. [PMID: 34699266 DOI: 10.1126/sciimmunol.abm3131] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Shu Horiuchi
- Department of Microbiology, New York University, New York, NY 10016, USA
| | - Kohei Oishi
- Department of Microbiology, New York University, New York, NY 10016, USA
| | - Lucia Carrau
- Department of Microbiology, New York University, New York, NY 10016, USA
| | - Justin Frere
- Department of Microbiology, New York University, New York, NY 10016, USA
| | - Rasmus Møller
- Department of Microbiology, New York University, New York, NY 10016, USA
| | - Maryline Panis
- Department of Microbiology, New York University, New York, NY 10016, USA
| | | |
Collapse
|
6
|
Jafarzadeh A, Naseri A, Shojaie L, Nemati M, Jafarzadeh S, Bannazadeh Baghi H, Hamblin MR, Akhlagh SA, Mirzaei H. MicroRNA-155 and antiviral immune responses. Int Immunopharmacol 2021; 101:108188. [PMID: 34626873 DOI: 10.1016/j.intimp.2021.108188] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023]
Abstract
The microRNA, miR-155 regulates both adaptive and innate immune responses. In viral infections, miR-155 can affect both innate immunity (interferon response, natural killer cell activity, and macrophage polarization) and adaptive immunity (including generation of anti-viral antibodies, CD8+ cytotoxic T lymphocytes, Th17, Th2, Th1, Tfh and Treg cells). In many viral infections, the proper and timely regulation of miR-155 expression is critical for the induction of an effective anti-virus immune response and viral clearance without any harmful immunopathologic consequences. MiR-155 may also exert pro-viral effects, mainly through the inhibition of the anti-viral interferon response. Thus, dysregulated expression of miR-155 can result in virus persistence and disruption of the normal response to viral infections. This review provides a thorough discussion of the role of miR-155 in immune responses and immunopathologic reactions during viral infections, and highlights its potential as a therapeutic target.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Alma Naseri
- Department of Immunology, Islamic Azadi university of Zahedan, Zahedan, Iran
| | - Layla Shojaie
- Research Center for Liver Diseases, Keck School of Medicine, Department of Medicine, University of Southern California, Los angeles, CA, USA
| | - Maryam Nemati
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Bannazadeh Baghi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
7
|
Jafarzadeh A, Jafarzadeh S, Nemati M. Therapeutic potential of ginger against COVID-19: Is there enough evidence? JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2021. [PMCID: PMC8492833 DOI: 10.1016/j.jtcms.2021.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In addition to the respiratory system, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strikes other systems, including the digestive, circulatory, urogenital, and even the central nervous system, as its receptor angiotensin-converting enzyme 2 (ACE2) is expressed in various organs, such as lungs, intestine, heart, esophagus, kidneys, bladder, testis, liver, and brain. Different mechanisms, in particular, massive virus replication, extensive apoptosis and necrosis of the lung-related epithelial and endothelial cells, vascular leakage, hyper-inflammatory responses, overproduction of pro-inflammatory mediators, cytokine storm, oxidative stress, downregulation of ACE2, and impairment of the renin-angiotensin system contribute to the COVID-19 pathogenesis. Currently, COVID-19 is a global pandemic with no specific anti-viral treatment. The favorable capabilities of the ginger were indicated in patients suffering from osteoarthritis, neurodegenerative disorders, rheumatoid arthritis, type 2 diabetes, respiratory distress, liver diseases and primary dysmenorrheal. Ginger or its compounds exhibited strong anti-inflammatory and anti-oxidative influences in numerous animal models. This review provides evidence regarding the potential effects of ginger against SARS-CoV-2 infection and highlights its antiviral, anti-inflammatory, antioxidative, and immunomodulatory impacts in an attempt to consider this plant as an alternative therapeutic agent for COVID-19 treatment.
Collapse
|
8
|
Elfaki Y, Yang J, Boehme J, Schultz K, Bruder D, Falk CS, Huehn J, Floess S. Tbx21 and Foxp3 Are Epigenetically Stabilized in T-Bet + Tregs That Transiently Accumulate in Influenza A Virus-Infected Lungs. Int J Mol Sci 2021; 22:ijms22147522. [PMID: 34299148 PMCID: PMC8307036 DOI: 10.3390/ijms22147522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 01/19/2023] Open
Abstract
During influenza A virus (IAV) infections, CD4+ T cell responses within infected lungs mainly involve T helper 1 (Th1) and regulatory T cells (Tregs). Th1-mediated responses favor the co-expression of T-box transcription factor 21 (T-bet) in Foxp3+ Tregs, enabling the efficient Treg control of Th1 responses in infected tissues. So far, the exact accumulation kinetics of T cell subsets in the lungs and lung-draining lymph nodes (dLN) of IAV-infected mice is incompletely understood, and the epigenetic signature of Tregs accumulating in infected lungs has not been investigated. Here, we report that the total T cell and the two-step Treg accumulation in IAV-infected lungs is transient, whereas the change in the ratio of CD4+ to CD8+ T cells is more durable. Within lungs, the frequency of Tregs co-expressing T-bet is steadily, yet transiently, increasing with a peak at Day 7 post-infection. Interestingly, T-bet+ Tregs accumulating in IAV-infected lungs displayed a strongly demethylated Tbx21 locus, similarly as in T-bet+ conventional T cells, and a fully demethylated Treg-specific demethylated region (TSDR) within the Foxp3 locus. In summary, our data suggest that T-bet+ but not T-bet- Tregs are epigenetically stabilized during IAV-induced infection in the lung.
Collapse
Affiliation(s)
- Yassin Elfaki
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (Y.E.); (J.Y.)
| | - Juhao Yang
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (Y.E.); (J.Y.)
| | - Julia Boehme
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (J.B.); (K.S.); (D.B.)
| | - Kristin Schultz
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (J.B.); (K.S.); (D.B.)
| | - Dunja Bruder
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (J.B.); (K.S.); (D.B.)
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Christine S. Falk
- Institute of Transplant Immunology, Hannover Medical School, 30625 Hannover, Germany;
- German Center for Infection Research DZIF, Thematical Translation Unit-Immunocompromized Host (TTU-IICH), Hannover-Braunschweig Site, 30625 Hannover, Germany
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (Y.E.); (J.Y.)
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
- Correspondence: (J.H.); (S.F.)
| | - Stefan Floess
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (Y.E.); (J.Y.)
- Correspondence: (J.H.); (S.F.)
| |
Collapse
|
9
|
The interplay between airway epithelium and the immune system - A primer for the respiratory clinician. Paediatr Respir Rev 2021; 38:2-8. [PMID: 33812796 PMCID: PMC8178232 DOI: 10.1016/j.prrv.2021.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023]
Abstract
The respiratory epithelium is one of the primary interfaces between the body's immune system and the external environment. This review discusses the innate and adaptive immunomodulatory effects of the respiratory epithelium, highlighting the physiologic immune responses associated with health and the disease-causing sequelae when these physiologic responses go awry. Airway macrophages, dendritic cells, and innate lymphoid cells are discussed as orchestrators of physiological and pathological innate immune responses and T cells, B cells, mast cells, and granulocytes (eosinophils and neutrophils) as orchestrators of physiologic and pathologic adaptive immune responses. The interplay between the airway epithelium and the varied immune cells as well as the interplay between these immune cells is discussed, highlighting the importance of the dose of noxious stimuli and pathogens in immune programming and the timing of their interaction with the immune cells that determine the pattern of immune responses. Although each cell type has been researched individually, this review highlights the need for simultaneous temporal investigation of immune responses from these varied cells to noxious stimuli and pathogens.
Collapse
|
10
|
Jafarzadeh A, Nemati M, Jafarzadeh S. Contribution of STAT3 to the pathogenesis of COVID-19. Microb Pathog 2021; 154:104836. [PMID: 33691172 PMCID: PMC7937040 DOI: 10.1016/j.micpath.2021.104836] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/13/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023]
Abstract
Hyper-inflammatory responses, lymphopenia, unbalanced immune responses, cytokine storm, large viral replication and massive cell death play fundamental roles in the pathogenesis of COVID-19. Extreme production of many kinds of pro-inflammatory cytokines and chemokines occur in severe COVID-19 that called cytokine storm. Signal transducer and activator of transcription-3 (STAT-3) present in the cytoplasm in an inactive form and can be stimulated by a vast range of cytokines, chemokines and growth factors. Thus, STAT-3 can participate in the induction of inflammatory responses during coronavirus infections. STAT-3 can also suppress anti-virus interferon response and induce unbalanced anti-virus adaptive immune response, through influencing Th17-, Th1-, Treg-, and B cell-mediated functions. Furthermore, STAT-3 can contribute to the M2 macrophage polarization, lung fibrosis and thrombosis. Moreover, STAT-3 may be directly targeted by some virus-derived protein and operate as a pro-viral or anti-viral element in a virus-specific process. Here, the possible contribution of STAT-3 to the pathogenesis of COVID-19 was explained, while providing potential approaches to target this transcription factor in an attempt for COVID-19 treatment.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Maryam Nemati
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
11
|
Hutchinson NT, Steelman A, Woods JA. Behavioral strategies to prevent and mitigate COVID-19 infection. SPORTS MEDICINE AND HEALTH SCIENCE 2020; 2:115-125. [PMID: 34189481 PMCID: PMC7481129 DOI: 10.1016/j.smhs.2020.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
The single stranded RNA virus SARS-CoV-2 has caused a massive addition to the already leading global cause of mortality, viral respiratory tract infections. Characterized by and associated with early and deleteriously enhanced production of pro-inflammatory cytokines by respiratory epithelial cells, severe COVID-19 illness has the potential to inflict acute respiratory distress syndrome and even death. Due to the fast spreading nature of COVID-19 and the current lack of a vaccine or specific pharmaceutical treatments, understanding of viral pathogenesis, behavioral prophylaxis, and mitigation tactics are of great public health concern. This review article outlines the immune response to viral pathogens, and due to the novelty of COVID-19 and the large body of evidence suggesting the respiratory and immune benefits from regular moderate intensity exercise, provides observational and mechanistic evidence from research on other viral infections that suggests strategically planned exercise regimens may help reduce susceptibility to infection, while also mitigating severe immune responses to infection commonly associated with poor COVID-19 prognosis. We propose that regular moderate intensity exercise should be considered as part of a combinatorial approach including widespread hygiene initiatives, properly planned and well-executed social distancing policies, and use of efficacious facial coverings like N95 respirators. Studies discerning COVID-19 pathogenesis mechanisms, transfer dynamics, and individual responses to pharmaceutical and adjunct treatments are needed to reduce viral transmission and bring an end to the COVID-19 pandemic.
Collapse
Affiliation(s)
- Noah T. Hutchinson
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Andrew Steelman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Carle R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Jeffrey A. Woods
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
12
|
Chałubiński M, Gajewski A, Kowalski ML. The relationship between human coronaviruses, asthma and allergy-An unresolved dilemma. Clin Exp Allergy 2020; 50:1122-1126. [PMID: 32762099 PMCID: PMC7436768 DOI: 10.1111/cea.13718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/11/2020] [Accepted: 06/27/2020] [Indexed: 12/27/2022]
Abstract
Human coronaviruses (HCoVs) such as HCoV‐229E or OC43 are responsible for mild upper airway infections, whereas highly pathogenic HCoVs, including SARS‐CoV, MERS‐CoV and SARS‐CoV‐2, often evoke acute, heavy pneumonias. They tend to induce immune responses based on interferon and host inflammatory cytokine production and promotion of T1 immune profile. Less is known about their effect on T2‐type immunity. Unlike human rhinoviruses (HRV) and Respiratory Syncytial Virus (RSV), HCoVs are not considered as a dominant risk factor of severe exacerbations of asthma, mostly T2‐type chronic inflammatory disease. The relationship between coronaviruses and T2‐type immunity, especially in asthma and allergy, is not well understood. This review aims to summarize currently available knowledge about the relationship of HCoVs, including novel SARS‐CoV‐2, with asthma and allergic inflammation.
Collapse
Affiliation(s)
- Maciej Chałubiński
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Adrian Gajewski
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Marek L Kowalski
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
13
|
Jia R, Liu S, Xu J, Liang X. IL16 deficiency enhances Th1 and cytotoxic T lymphocyte response against influenza A virus infection. Biosci Trends 2019; 13:516-522. [PMID: 31852865 DOI: 10.5582/bst.2019.01286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ran Jia
- Department of Clinical Laboratory, Children’s Hospital of Fudan University, Shanghai, China
| | - Shuai Liu
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jin Xu
- Department of Clinical Laboratory, Children’s Hospital of Fudan University, Shanghai, China
| | - Xiaozhen Liang
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
14
|
Tognarelli EI, Bueno SM, González PA. Immune-Modulation by the Human Respiratory Syncytial Virus: Focus on Dendritic Cells. Front Immunol 2019; 10:810. [PMID: 31057543 PMCID: PMC6478035 DOI: 10.3389/fimmu.2019.00810] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/26/2019] [Indexed: 12/23/2022] Open
Abstract
The human respiratory syncytial virus (hRSV) is the leading cause of pneumonia in infants and produces a significant burden in the elderly. It can also infect and produce disease in otherwise healthy adults and recurrently infect those previously exposed to the virus. Importantly, recurrent infections are not necessarily a consequence of antigenic variability, as described for other respiratory viruses, but most likely due to the capacity of this virus to interfere with the host's immune response and the establishment of a protective and long-lasting immunity. Although some genes encoded by hRSV are known to have a direct participation in immune evasion, it seems that repeated infection is mainly given by its capacity to modulate immune components in such a way to promote non-optimal antiviral responses in the host. Importantly, hRSV is known to interfere with dendritic cell (DC) function, which are key cells involved in establishing and regulating protective virus-specific immunity. Notably, hRSV infects DCs, alters their maturation, migration to lymph nodes and their capacity to activate virus-specific T cells, which likely impacts the host antiviral response against this virus. Here, we review and discuss the most important and recent findings related to DC modulation by hRSV, which might be at the basis of recurrent infections in previously infected individuals and hRSV-induced disease. A focus on the interaction between DCs and hRSV will likely contribute to the development of effective prophylactic and antiviral strategies against this virus.
Collapse
Affiliation(s)
- Eduardo I Tognarelli
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
15
|
Vangeti S, Yu M, Smed-Sörensen A. Respiratory Mononuclear Phagocytes in Human Influenza A Virus Infection: Their Role in Immune Protection and As Targets of the Virus. Front Immunol 2018; 9:1521. [PMID: 30018617 PMCID: PMC6037688 DOI: 10.3389/fimmu.2018.01521] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022] Open
Abstract
Emerging viruses have become increasingly important with recurrent epidemics. Influenza A virus (IAV), a respiratory virus displaying continuous re-emergence, contributes significantly to global morbidity and mortality, especially in young children, immunocompromised, and elderly people. IAV infection is typically confined to the airways and the virus replicates in respiratory epithelial cells but can also infect resident immune cells. Clearance of infection requires virus-specific adaptive immune responses that depend on early and efficient innate immune responses against IAV. Mononuclear phagocytes (MNPs), comprising monocytes, dendritic cells, and macrophages, have common but also unique features. In addition to being professional antigen-presenting cells, MNPs mediate leukocyte recruitment, sense and phagocytose pathogens, regulate inflammation, and shape immune responses. The immune protection mediated by MNPs can be compromised during IAV infection when the cells are also targeted by the virus, leading to impaired cytokine responses and altered interactions with other immune cells. Furthermore, it is becoming increasingly clear that immune cells differ depending on their anatomical location and that it is important to study them where they are expected to exert their function. Defining tissue-resident MNP distribution, phenotype, and function during acute and convalescent human IAV infection can offer valuable insights into understanding how MNPs maintain the fine balance required to protect against infections that the cells are themselves susceptible to. In this review, we delineate the role of MNPs in the human respiratory tract during IAV infection both in mediating immune protection and as targets of the virus.
Collapse
Affiliation(s)
- Sindhu Vangeti
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Meng Yu
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
16
|
Tan KS, Ong HH, Yan Y, Liu J, Li C, Ong YK, Thong KT, Choi HW, Wang DY, Chow VT. In Vitro Model of Fully Differentiated Human Nasal Epithelial Cells Infected With Rhinovirus Reveals Epithelium-Initiated Immune Responses. J Infect Dis 2018; 217:906-915. [PMID: 29228279 DOI: 10.1093/infdis/jix640] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/07/2017] [Indexed: 12/19/2022] Open
Abstract
Human rhinoviruses (HRVs) are the commonest cause of the common cold. While HRV is less pathogenic than other respiratory viruses, it is frequently associated with exacerbation of chronic respiratory diseases such as rhinosinusitis and asthma. Nasal epithelial cells are the first sites of viral contact, immune initiation, and airway interconnectivity, but there are limited studies on HRV infection of nasal epithelial cells. Hence, we established a model of HRV infection of in vitro-differentiated human nasal epithelial cells (hNECs) derived from multiple individuals. Through HRV infection of hNECs, we found that HRV mainly targeted ciliated cells and preferentially induced type I and III interferon antiviral pathways. Quantitative polymerase chain reaction analysis of inflammatory genes suggested predominant type 1 immunity signaling and recruitment, with secreted CXCL9, IP-10, CXCL11, and RANTES as likely initiators of airway inflammatory responses. Additionally, we further explored HRV bidirectional release from the hNECs and identified 11 associated genes. Other HRV interactions were also identified through a systematic comparison with influenza A virus infection of hNECs. Overall, this in vitro hNEC HRV infection model provides a platform for repeatable and controlled studies of different individuals, thus providing novel insights into the roles of human nasal epithelium in HRV interaction and immune initiation.
Collapse
Affiliation(s)
- Kai Sen Tan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, Singapore
| | - Hsiao Hui Ong
- Department of Otolaryngology, Yong Loo Lin School of Medicine, Singapore
| | - Yan Yan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, Singapore
| | - Jing Liu
- Department of Otolaryngology, Yong Loo Lin School of Medicine, Singapore
| | - Chunwei Li
- Department of Otolaryngology, Yong Loo Lin School of Medicine, Singapore
| | - Yew Kwang Ong
- Department of Otolaryngology, Yong Loo Lin School of Medicine, Singapore
| | - Kim Thye Thong
- Department of Otolaryngology, Yong Loo Lin School of Medicine, Singapore
| | - Hyung Won Choi
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - De-Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, Singapore
| | - Vincent T Chow
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Singapore
| |
Collapse
|
17
|
Lu X, Fu H, Han F, Fang Y, Xu J, Zhang L, Du Q. Lipoxin A4 regulates PM2.5-induced severe allergic asthma in mice via the Th1/Th2 balance of group 2 innate lymphoid cells. J Thorac Dis 2018; 10:1449-1459. [PMID: 29707294 DOI: 10.21037/jtd.2018.03.02] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Urban particulate matter (PM) contributes to the increasing number of people with asthma, which is closely related to the development of industrialization. Especially, PM with an aerodynamic diameter of <2.5 µm (PM2.5) enhances the risk of damaging respiratory organs. It has reported that PM2.5-induced pathological changes could be considered as a remarkable molecular mechanism of PM2.5-mediated cytotoxicity in respiratory disease and even lung cancer. Methods In this study, we have investigated the effects of PM2.5 on ovalbumin (OVA)-induced asthma mice and the therapeutic effect of Lipoxin A4 (LXA4) on improving the poor pathology. Results The exposure of PM2.5 showed that both cytokines of T helper-2 (Th2) cells and transcription factors of group 2 innate lymphoid cells (ILC2s) were significantly increased, and inflammatory cell infiltration occurred in lung tissue. The LXA4 was used to treat asthma, which was an effective option in reducing inflammatory cytokines and relieving pathological symptoms, probably by regulating the Th1/Th2 balance. Conclusions These results suggest that PM2.5-induced inflammation plays a key role in the progression of asthma mice. In addition, LXA4 has a significant therapeutic effect on asthma, which indicates the direction for the treatment of asthma related inflammatory diseases.
Collapse
Affiliation(s)
- Xiaoxia Lu
- Department of Pulmonary Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, China
| | - Huicong Fu
- Department of Pulmonary Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, China
| | - Feng Han
- Department of Pulmonary Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, China
| | - Yurong Fang
- Department of Pulmonary Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, China
| | - Jiali Xu
- Department of Pulmonary Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, China
| | - Liqiong Zhang
- Department of Pulmonary Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, China
| | - Qing Du
- Department of Pulmonary Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, China
| |
Collapse
|
18
|
Roh DE, Park SH, Choi HJ, Kim YH. Comparison of cytokine expression profiles in infants with a rhinovirus induced lower respiratory tract infection with or without wheezing: a comparison with respiratory syncytial virus. KOREAN JOURNAL OF PEDIATRICS 2017; 60:296-301. [PMID: 29042873 PMCID: PMC5638836 DOI: 10.3345/kjp.2017.60.9.296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/10/2017] [Accepted: 08/07/2017] [Indexed: 01/14/2023]
Abstract
PURPOSE The aim of this study was to evaluate whether infants with rhinovirus (RV) infection-induced wheezing and those with respiratory syncytial virus (RSV) infection-induced wheezing have different cytokine profiles in the acute stage. METHODS Of the infants with lower respiratory tract infection (LRTI) between September 2011 and May 2012, 88 were confirmed using reverse transcription polymerase chain reaction and hospitalized. Systemic interferon-gamma (IFN-γ), interleukin (IL)-2, IL-12, IL-4, IL-5, IL-13, and Treg-type cytokine (IL-10) responses were examined with multiplex assay using acute phase serum samples. RESULTS Of the 88 patients, 38 had an RV infection (RV group) and 50 had an RSV infection (RSV group). In the RV group, the IFN-γ and IL-10 concentrations were higher in the patients with than in the patients without wheezing (P=0.022 and P=0.007, respectively). In the RSV group, the differences in IFN-γ and IL-10 concentrations did not reach statistical significance between the patients with and the patients without wheezing (P=0.105 and P=0.965, respectively). The IFN-γ and IL-10 concentrations were not significantly different between the RV group with wheezing and the RSV group with wheezing (P=0.155 and P=0.801, respectively), in contrast to the significant difference between the RV group without wheezing and the RSV group without wheezing (P=0.019 and P=0.035, respectively). CONCLUSION In comparison with RSV-induced LRTI, RV-induced LRTI combined with wheezing showed similar IFN-γ and IL-10 levels, which may have an important regulatory function.
Collapse
Affiliation(s)
- Da Eun Roh
- Department of Pediatrics, Kyungpook National University School of Medicine, Daegu, Korea
| | - Sook-Hyun Park
- Department of Pediatrics, Kyungpook National University School of Medicine, Daegu, Korea
| | - Hee Joung Choi
- Department of Pediatrics, Keimyung University School of Medicine, Daegu, Korea
| | - Yeo Hyang Kim
- Department of Pediatrics, Kyungpook National University School of Medicine, Daegu, Korea
| |
Collapse
|