1
|
Wang X, Liu X, Li C, Li J, Qiu M, Wang Y, Han W. Effects of molecular weights on the bioactivity of hyaluronic acid: A review. Carbohydr Res 2025; 552:109472. [PMID: 40186950 DOI: 10.1016/j.carres.2025.109472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
Hyaluronic acid (HA), the only non-sulfated glycosaminoglycan (GAG), is essential for maintaining the extracellular matrix's structural and functional integrity. Its bioactivity is determined by interactions between HA fragments of different molecular weights and specific receptors, which influence downstream signaling pathways. This review systematic summarizes the correlation between HA molecular weight dynamic changes and bioactivities focusing on imbalance of HA degradation and metabolism due to various pathological processes. Outline the core transduction mechanisms of HA receptors and signaling pathways, and innovatively hypothesize that discrepancies in cellular distribution with HA-molecular weights dependent lead to the activation of different signaling pathways from the perspective of molecular weight affecting cellular distribution. Finally, it addresses challenges in studying HA's biofunctions and provides new perspectives for future research.
Collapse
Affiliation(s)
- Xiaoyun Wang
- College of Life Science and Health, University of Health and Rehabilitation Sciences, Qingdao, 266113, China; Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266024, China; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaojun Liu
- College of Life Science and Health, University of Health and Rehabilitation Sciences, Qingdao, 266113, China; Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266024, China
| | - Chao Li
- College of Life Science and Health, University of Health and Rehabilitation Sciences, Qingdao, 266113, China; Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266024, China
| | - Jiangtao Li
- College of Life Science and Health, University of Health and Rehabilitation Sciences, Qingdao, 266113, China
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Yongliang Wang
- College of Life Science and Health, University of Health and Rehabilitation Sciences, Qingdao, 266113, China; Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266024, China.
| | - Wenwei Han
- College of Life Science and Health, University of Health and Rehabilitation Sciences, Qingdao, 266113, China; Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266024, China.
| |
Collapse
|
2
|
Bretl M, Cheng L, Kendziorski C, Thibeault SL. RNA-sequencing demonstrates transcriptional differences between human vocal fold fibroblasts and myofibroblasts. BMC Genomics 2025; 26:347. [PMID: 40197133 PMCID: PMC11974177 DOI: 10.1186/s12864-025-11533-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND Differentiation of fibroblasts into myofibroblasts is necessary for wound healing, but excessive myofibroblast presence and persistence can result in scarring. Treatment for scarring is limited largely due to a lack of comprehensive understanding of how fibroblasts and myofibroblasts differ at the transcript level. The purpose of this study was to characterize transcriptional profiles of injured fibroblasts relative to normal fibroblasts, utilizing fibroblasts from the vocal fold as a model. RESULTS Utilizing bulk RNA sequencing technology, we identified differentially expressed genes between four cell lines of normal fibroblasts (cVFF), one line of scarred fibroblasts (sVFF), and four lines of fibroblasts treated with transforming growth factor-beta 1 (TGF-β1), representing an induced-scar phenotype (tVFF). Principal component analysis revealed clustering of normal fibroblasts separate from the clustering of fibroblasts treated with TGF-β1; scarred fibroblasts were more similar to normal fibroblasts than fibroblasts treated with TGF-β1. Enrichment analyses revealed pathways related to cell signaling, receptor-ligand activity, and regulation of cell functions in scarred fibroblasts, pathways related to cell adhesion in normal fibroblasts, and pathways related to ECM binding in fibroblasts treated with TGF-β1. Although transcriptomic profiles between scarred fibroblasts and fibroblasts treated with TGF-β1 were relatively dissimilar, the most highly co-expressed genes were enriched in pathways related to actin cytoskeleton binding, which supports the use of fibroblasts treated with TGF-β1 to represent a scarred cell phenotype. CONCLUSIONS Transcriptomics of normal fibroblasts differ from myofibroblasts, including from those retrieved from scar and those treated with TGF-β1. Despite large differences in transcriptomics between tVFF and sVFF, tVFF serve as a useful in vitro model of myofibroblasts and highlight key similarities to myofibroblasts extracted from scar pathology, as well as expected differences related to normal fibroblasts from healthy vocal folds.
Collapse
Affiliation(s)
- Michelle Bretl
- Department of Communication Sciences and Disorders, University of Wisconsin - Madison, Madison, WI, USA
- Department of Surgery, Division of Otolaryngology, University of Wisconsin - Madison, Madison, WI, USA
| | - Lingxin Cheng
- Department of Biostatistics & Medical Informatics, University of Wisconsin - Madison, Madison, WI, USA
| | - Christina Kendziorski
- Department of Biostatistics & Medical Informatics, University of Wisconsin - Madison, Madison, WI, USA
| | - Susan L Thibeault
- Department of Communication Sciences and Disorders, University of Wisconsin - Madison, Madison, WI, USA.
- Department of Surgery, Division of Otolaryngology, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
3
|
Balnadupete A, Moideen FM, Varughese A, Mugaranja K, M JT, Charavu R, Bhandary Y. Beyond the pill: incrimination of nuclear factor-kappa B and their targeted phytomedicine for pulmonary fibrosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04067-1. [PMID: 40137966 DOI: 10.1007/s00210-025-04067-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Pulmonary fibrosis (PF) is a slow and irreparable damage of the lung caused by the accumulation of scar tissue, which eventually results in organ dysfunction and fatality from gas exchange failure. One of the extensively studied inflammatory pathways in PF is the NF-κB signalling pathway, which is reportedly involved in epithelial-mesenchymal transition, myofibroblast differentiation, and other cellular processes. Additionally, studies have evidence that NF-κB signalling pathways can be employed as a potential target for developing therapeutic agents against PF. In the current scenario, FDA-approved drugs, nintedanib and pirfenidone, have been used for the treatment of PF with potential side effects. Recently, the usage of bioactive compounds has attracted attention in the treatment of PF. This review focuses on the involvement of the NF-κB signalling pathway in PF and the significance of phytocompounds in regulating the NF-κB pathway. Both the in vitro and in vivo studies reveal that NF-κB-targeted plant-based bioactive compounds significantly ameliorate the PF condition as well as improve the health condition. Databases such as Scopus, PubMed, and Web of Science were used to conduct literature surveys and compile data on all the bioactive compounds. In conclusion, the plant-derived bioactive compounds are potent enough to target the NF-κB with its biological properties, and this could be a highly effective therapeutic strategy for PF in the future.
Collapse
Affiliation(s)
- Akarsha Balnadupete
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
| | - Fathimath Muneesa Moideen
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
| | - Aleena Varughese
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
| | - Kirana Mugaranja
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
| | - Jeena T M
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
| | - Rakshitha Charavu
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
| | - Yashodhar Bhandary
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India.
- Specialized Research Unit, Yenepoya Medical College & Hospital, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, Karnataka, 575018, India.
| |
Collapse
|
4
|
Tikhonova NB, Temnov AA, Aleksankina VV, Aleksankin AP, Fokina TV, Sklifas AN, Aksenova MG, Elchaninov AV, Milovanov AP, Mikhaleva LM. Morphological and Molecular Peculiarities of Healing of Uterine Incision when Using Conditioned Media of Bone Marrow Stromal Cells Cultivated under Hypoxic Condition. Bull Exp Biol Med 2025; 178:496-502. [PMID: 40153165 DOI: 10.1007/s10517-025-06363-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Indexed: 03/30/2025]
Abstract
We studied the effect of conditioned media (CM) from cultivated bone marrow stromal cells grown at 10% O2 on extracellular matrix and vascular component in the healing zone after surgical incision of the uterine wall in Sprague-Dawley rats (n=17). Control group (n=10) received no treatment. On days 5 and 15 after the surgery, the expression of CoL1a1, CoL4a, MMP9, TIMP1, and FGF2 genes was evaluated and a morphological study was carried out. On day 5, CoL1a1 expression, CD34+ cell content, and the area of newly formed tissue were lower in the experimental group. On day 15, the expression of MMP9, TIMP1, FGF2, and CoL1a1 genes in the control group was lower, while CD34+ cell content and area of healing zone were higher. Thus, the application of CM reduced the damage area and accelerated the recovery process after surgical full-thickness incision of the uterine wall.
Collapse
Affiliation(s)
- N B Tikhonova
- Petrovsky National Research Center of Surgery, Moscow, Russia.
| | - A A Temnov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - V V Aleksankina
- Petrovsky National Research Center of Surgery, Moscow, Russia
| | - A P Aleksankin
- Petrovsky National Research Center of Surgery, Moscow, Russia
| | - T V Fokina
- Petrovsky National Research Center of Surgery, Moscow, Russia
| | - A N Sklifas
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - M G Aksenova
- Petrovsky National Research Center of Surgery, Moscow, Russia
| | - A V Elchaninov
- Petrovsky National Research Center of Surgery, Moscow, Russia
| | - A P Milovanov
- Petrovsky National Research Center of Surgery, Moscow, Russia
| | - L M Mikhaleva
- Petrovsky National Research Center of Surgery, Moscow, Russia
| |
Collapse
|
5
|
Ronan G, Bahcecioglu G, Yang J, Zorlutuna P. Cardiac tissue-resident vesicles differentially modulate anti-fibrotic phenotype by age and sex through synergistic miRNA effects. Biomaterials 2024; 311:122671. [PMID: 38941684 PMCID: PMC11344275 DOI: 10.1016/j.biomaterials.2024.122671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/30/2024]
Abstract
Aging is a risk factor for cardiovascular disease, the leading cause of death worldwide. Cardiac fibrosis is a harmful result of repeated myocardial infarction that increases risk of morbidity and future injury. Interestingly, both rates and outcomes of cardiac fibrosis differ between young and aged individuals, as well as men and women. Here, for the first time, we identify and isolate matrix-bound extracellular vesicles from the left ventricles (LVs) of young or aged males and females in both human and murine models. These LV vesicles (LVVs) show differences in morphology and content between these four cohorts in both humans and mice. LVV effects on fibrosis were also investigated in vitro, and aged male LVVs were pro-fibrotic while other LVVs were anti-fibrotic. From these LVVs, we could identify therapeutic miRNAs to promote anti-fibrotic effects. Four miRNAs were identified and together, but not individually, demonstrated significant cardioprotective effects when transfected. This suggests that miRNA synergy can regulate cell response, not just individual miRNAs, and also indicates that biological agent-associated therapeutic effects may be recapitulated using non-immunologically active agents. Furthermore, that chronic changes in LVV miRNA content may be a major factor in sex- and age-dependent differences in clinical outcomes of cardiac fibrosis.
Collapse
Affiliation(s)
- George Ronan
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA; Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA
| | - Jun Yang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Pinar Zorlutuna
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA; Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA; Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
6
|
Chowdhury A, Mitra Mazumder P. Unlocking the potential of flavonoid-infused drug delivery systems for diabetic wound healing with a mechanistic exploration. Inflammopharmacology 2024:10.1007/s10787-024-01561-5. [PMID: 39217278 DOI: 10.1007/s10787-024-01561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Diabetes is one of the common endocrine disorders generally characterized by elevated levels of blood sugar. It can originate either from the inability of the pancreas to synthesize insulin, which is considered as an autoimmune disorder, or the reduced production of insulin, considered as insulin resistivity. A wound can be defined as a condition of damage to living tissues including skin, mucous membrane and other organs as well. Wounds get complicated with respect to time based on specific processes like diabetes mellitus, obesity and immunocompromised conditions. Proper growth and functionality of the epidermis gets sustained due to impaired diabetic wound healing which shows a sign of dysregulated wound healing process. In comparison with synthetic medications, phytochemicals like flavonoids, tannins, alkaloids and glycosides have gained enormous importance relying on their distinct potential to heal diabetic wounds. Flavonoids are one of the most promising and important groups of natural compounds which can be used to treat acute as well as chronic wounds. Flavonoids show excellent properties due to the presence of hydroxyl groups in their chemical structure, which makes this class of compounds different from others. Based on the novel principles of nanotechnology via utilizing suitable drug delivery systems, the delivery of bioactive constituents from plant source amplifies the wound-healing mechanism, minimizes complexities and enhances bioavailability. Hence, the encapsulation and applicability of flavonoids with an emphasis on mechanistic route and wound-healing therapeutics have been highlighted in the subsequent study with focus on multiple drug delivery systems.
Collapse
Affiliation(s)
- Ankit Chowdhury
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
7
|
Saberianpour S, Melotto G, Redhead L, Terrazzini N, Forss JR, Santin M. Harnessing the Interactions of Wound Exudate Cells with Dressings Biomaterials for the Control and Prognosis of Healing Pathways. Pharmaceuticals (Basel) 2024; 17:1111. [PMID: 39338276 PMCID: PMC11434639 DOI: 10.3390/ph17091111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
The global socioeconomic challenge generated by wounds requires an understanding of healing and non-healing pathways in patients. Also, the interactions occurring between the wound dressing biomaterials with cells relevant to the healing process have not been sufficiently investigated, thus neglecting the role that wound dressing composition can play in healing. Through the study of six cases of acute surgical wounds, the present work analyses the early (24 h post-surgery) interactions of biochemical and cellular components with (i) Atrauman, a device made of knitted woven synthetic polymeric fibre when used as a primary dressing, and (ii) Melolin, a hydrocolloid engineered as two layers of synthetic and cellulose non-woven fibres when used as a secondary dressing. A pathway towards healing could be observed in those cases where endoglin-expressing cells and M2 macrophages were retained by Atrauman fibres at the interface with the wound bed. On the contrary, cases where the secondary dressing Melolin absorbed these cell phenotypes in its mesh resulted in a slower or deteriorating healing process. The data obtained indicate that a subtraction of progenitor cells by Melolin may impair the healing process and that the analysis of the retrieved wound dressings for biomarkers expressed by cells relevant to wound healing may become an additional tool to determine the patient's prognosis.
Collapse
Affiliation(s)
- Shirin Saberianpour
- Centre for Regenerative Medicine and Devices, University of Brighton, Huxley Building Lewes Road, Brighton BN2 4GJ, UK
- School of Applied Sciences, University of Brighton, Huxley Building Lewes Road, Brighton BN2 4GJ, UK
| | - Gianluca Melotto
- Centre for Regenerative Medicine and Devices, University of Brighton, Huxley Building Lewes Road, Brighton BN2 4GJ, UK
- School of Health and Sport Sciences, University of Brighton, Falmer Campus, Village Way, Brighton BN1 9PH, UK
| | - Lucy Redhead
- Centre for Regenerative Medicine and Devices, University of Brighton, Huxley Building Lewes Road, Brighton BN2 4GJ, UK
- School of Health and Sport Sciences, University of Brighton, Falmer Campus, Village Way, Brighton BN1 9PH, UK
| | - Nadia Terrazzini
- Centre for Regenerative Medicine and Devices, University of Brighton, Huxley Building Lewes Road, Brighton BN2 4GJ, UK
- School of Applied Sciences, University of Brighton, Huxley Building Lewes Road, Brighton BN2 4GJ, UK
| | - Jaqueline Rachel Forss
- Centre for Regenerative Medicine and Devices, University of Brighton, Huxley Building Lewes Road, Brighton BN2 4GJ, UK
- School of Health and Sport Sciences, University of Brighton, Falmer Campus, Village Way, Brighton BN1 9PH, UK
| | - Matteo Santin
- Centre for Regenerative Medicine and Devices, University of Brighton, Huxley Building Lewes Road, Brighton BN2 4GJ, UK
- School of Applied Sciences, University of Brighton, Huxley Building Lewes Road, Brighton BN2 4GJ, UK
| |
Collapse
|
8
|
Zhou CJ, Guo Y. Mini review on collagens in normal skin and pathological scars: current understanding and future perspective. Front Med (Lausanne) 2024; 11:1449597. [PMID: 39091289 PMCID: PMC11291465 DOI: 10.3389/fmed.2024.1449597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Pathological scar tissues are characterized by the presence of overabundant collagens whose structure and organization are also different from those in unwounded skin. This causes scar tissues to lose some functions performed by normal skin, and currently, there are no effective measures to prevent scar formation. Inflammation has been shown to modulate fibroblast proliferation, differentiation, and function, hence collagen production and organization. In this minireview, we provide an overview of the current understanding of collagen, specifically collagen type I and III which are main collagens in skin, structure and fibre formation and highlight their differences between normal skin and pathological scars. We discuss the role that cytokines play in modulating fibroblast function. We also identify some potential research directions which could help to further our understanding of the complex and dynamic wound healing and scar formation process.
Collapse
Affiliation(s)
| | - Yuan Guo
- School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
9
|
Dutra FA, Francisco CS, Carneiro Pires B, Borges MM, Torres ALH, Resende VA, Mateus MF, Cipriano DF, Miguez FB, Freitas JCC, Teixeira J, Borges WDS, Guimarães L, da Cunha EF, Ramalho TDC, Nascimento CS, De Sousa FB, Costa RA, Lacerda V, Borges KB. Coumarin/β-Cyclodextrin Inclusion Complexes Promote Acceleration and Improvement of Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30900-30914. [PMID: 38848495 PMCID: PMC11194811 DOI: 10.1021/acsami.4c05069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024]
Abstract
Coumarins have great pharmacotherapeutic potential, presenting several biological and pharmaceutical applications, like antibiotic, fungicidal, anti-inflammatory, anticancer, anti-HIV, and healing activities, among others. These molecules are practically insoluble in water, and for biological applications, it became necessary to complex them with cyclodextrins (CDs), which influence their bioavailability in the target organism. In this work, we studied two coumarins, and it was possible to conclude that there were structural differences between 4,7-dimethyl-2H-chromen-2-one (DMC) and 7-methoxy-4-methyl-2H-chromen-2-one (MMC)/β-CD that were solubilized in ethanol, frozen, and lyophilized (FL) and the mechanical mixtures (MM). In addition, the inclusion complex formation improved the solubility of DMC and MMC in an aqueous medium. According to the data, the inclusion complexes were formed and are more stable at a molar ratio of 2:1 coumarin/β-CD, and hydrogen bonds along with π-π stacking interactions are responsible for the better stability, especially for (MMC)2@β-CD. In vivo wound healing studies in mice showed faster re-epithelialization and the best deposition of collagen with the (DMC)2@β-CD (FL) and (MMC)2@β-CD (FL) inclusion complexes, demonstrating clearly that they have potential in wound repair. Therefore, (DMC)2@β-CD (FL) deserves great attention because it presented excellent results, reducing the granulation tissue and mast cell density and improving collagen remodeling. Finally, the protein binding studies suggested that the anti-inflammatory activities might exert their biological function through the inhibition of MEK, providing the possibility of development of new MEK inhibitors.
Collapse
Affiliation(s)
- Flávia
Viana Avelar Dutra
- Departamento
de Ciências Naturais, Universidade
Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio
74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| | - Carla Santana Francisco
- Departamento
de Química, Universidade Federal
do Espírito Santo, Centro de Ciências Exatas, Avenida Fernando Ferrari, S/N, Goiabeiras, 29060-900 Vitoria, Espírito Santo, Brazil
| | - Bruna Carneiro Pires
- Departamento
de Ciências Naturais, Universidade
Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio
74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| | - Marcella Matos
Cordeiro Borges
- Departamento
de Ciências Naturais, Universidade
Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio
74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| | - Ana Luiza Horta Torres
- Departamento
de Medicina, Universidade Federal de São
João del-Rei, Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, 36301-160 São João
del-Rei, Minas Gerais, Brazil
| | - Vivian Alexandra Resende
- Departamento
de Ciências Naturais, Universidade
Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio
74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| | - Marcella Fernandes
Mano Mateus
- Departamento
de Ciências Naturais, Universidade
Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio
74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| | - Daniel Fernandes Cipriano
- Departamento
de Física, Universidade Federal do
Espírito Santo, Centro de Ciências Exatas, Avenida Fernando Ferrari, S/N, Goiabeiras, 29060-900 Vitoria, Espírito Santo, Brazil
| | - Flávio Bastos Miguez
- Instituto
de Física e Química, Universidade
Federal de Itajubá, 37500-903 Itajubá, Minas Gerais, Brazil
| | - Jair Carlos Checon
de Freitas
- Departamento
de Física, Universidade Federal do
Espírito Santo, Centro de Ciências Exatas, Avenida Fernando Ferrari, S/N, Goiabeiras, 29060-900 Vitoria, Espírito Santo, Brazil
| | - Jéssika
Poliana Teixeira
- Departamento
de Química, Universidade Federal
de Lavras, Campus Universitário, 37200-900 Lavras, Minas Gerais, Brazil
| | - Warley de Souza Borges
- Departamento
de Química, Universidade Federal
do Espírito Santo, Centro de Ciências Exatas, Avenida Fernando Ferrari, S/N, Goiabeiras, 29060-900 Vitoria, Espírito Santo, Brazil
| | - Luciana Guimarães
- Departamento
de Ciências Naturais, Universidade
Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio
74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| | | | - Teodorico de Castro Ramalho
- Departamento
de Química, Universidade Federal
de Lavras, Campus Universitário, 37200-900 Lavras, Minas Gerais, Brazil
| | - Clebio Soares Nascimento
- Departamento
de Ciências Naturais, Universidade
Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio
74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| | - Frederico Barros De Sousa
- Instituto
de Física e Química, Universidade
Federal de Itajubá, 37500-903 Itajubá, Minas Gerais, Brazil
| | - Raquel Alves Costa
- Departamento
de Ciências Naturais, Universidade
Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio
74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| | - Valdemar Lacerda
- Departamento
de Química, Universidade Federal
do Espírito Santo, Centro de Ciências Exatas, Avenida Fernando Ferrari, S/N, Goiabeiras, 29060-900 Vitoria, Espírito Santo, Brazil
| | - Keyller Bastos Borges
- Departamento
de Ciências Naturais, Universidade
Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio
74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| |
Collapse
|
10
|
Chansoria P, Chaudhari A, Etter EL, Bonacquisti EE, Heavey MK, Le J, Maruthamuthu MK, Kussatz CC, Blackwell J, Jasiewicz NE, Sellers RS, Maile R, Wallet SM, Egan TM, Nguyen J. Instantly adhesive and ultra-elastic patches for dynamic organ and wound repair. Nat Commun 2024; 15:4720. [PMID: 38830847 PMCID: PMC11148085 DOI: 10.1038/s41467-024-48980-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
Bioadhesive materials and patches are promising alternatives to surgical sutures and staples. However, many existing bioadhesives do not meet the functional requirements of current surgical procedures and interventions. Here, we present a translational patch material that exhibits instant adhesion to tissues (2.5-fold stronger than Tisseel, an FDA-approved fibrin glue), ultra-stretchability (stretching to >300% its original length without losing elasticity), compatibility with rapid photo-projection (<2 min fabrication time/patch), and ability to deliver therapeutics. Using our established procedures for the in silico design and optimization of anisotropic-auxetic patches, we created next-generation patches for instant attachment to tissues while conforming to a broad range of organ mechanics ex vivo and in vivo. Patches coated with extracellular vesicles derived from mesenchymal stem cells demonstrate robust wound healing capability in vivo without inducing a foreign body response and without the need for patch removal that can cause pain and bleeding. We further demonstrate a single material-based, void-filling auxetic patch designed for the treatment of lung puncture wounds.
Collapse
Affiliation(s)
- Parth Chansoria
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ameya Chaudhari
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Emma L Etter
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Emily E Bonacquisti
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mairead K Heavey
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jiayan Le
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Murali Kannan Maruthamuthu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Caden C Kussatz
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - John Blackwell
- Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Natalie E Jasiewicz
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rani S Sellers
- Pathology and Laboratory Medicine, Department of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Robert Maile
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shannon M Wallet
- Division of Oral and Craniofacial Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Thomas M Egan
- Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- North Carolina State University, Raleigh, NC, 27695, USA
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
11
|
Yahyazadeh R, Baradaran Rahimi V, Ahmad Mohajeri S, Iranshahy M, Hasanpour M, Askari VR. Intra-peritoneal lavage of Zingiber officinale rhizome and its active constituent gingerol impede inflammation, angiogenesis, and fibrosis following post-operative peritoneal adhesion in male rats. Saudi Pharm J 2024; 32:102092. [PMID: 38737808 PMCID: PMC11087237 DOI: 10.1016/j.jsps.2024.102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024] Open
Abstract
Post-operative peritoneal adhesions (PA) are a common and important clinical problem. In this study, we focused on the ameliorative efficacy of ginger and gingerol compounds on surgical-induced peritoneal adhesion, and their strategies that disrupted the PA formation pathways to suppress their incidence. First, liquid chromatography-mass spectrometry (LC-MS) was established to separate and identify several chemical groups of ginger rhizome extract. In the next steps, male Wistar albino rats were randomly selected and divided into various groups, namely sham, control, ginger extract (0.6, 1.8, 5 %w/v), and gingerol (0.05, 0.1, 0.3, and 1 %w/v). Finally, we investigated the macroscopic parameters such as wound healing, body weight as well as spleen height and weight. In addition, visual peritoneal adhesion assessment was performed via Nair et al and Adhesion Scoring Scheme. Moreover, the microscopic parameters and biological assessment was performed via and immunoassays. The present findings revealed significant improvement in wound healing and reduction of the adhesion range, as Nair et al. and Adhesion Scoring Scheme scoring, in both the ginger and gingerol groups compared to the PA group (P < 0.05). Whereas, gingerol (0.3 % w/v) was able to increase the body weight in rats (P < 0.0001) at end stage of experiment. Also, inflammation, angiogenesis, and fibrosis were significantly decreased due to the downregulation of interleukin (IL)-6, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β1, vascular endothelial growth factor (VEGF), respectively, in the ginger and gingerol groups compared to the PA group (P < 0.05). In contrast, the levels of IL-10 were increased in the ginger and gingerol groups compared to the control group (P < 0.01). Our results proved that ginger rhizome and gingerol, as novel therapeutic compounds, could be used to prevent PA for their beneficial anti-inflammatory as well as anti-fibrosis properties in clinical trials. However, further clinical studies are required to approve the effectiveness of ginger and gingerol.
Collapse
Affiliation(s)
- Roghayeh Yahyazadeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Mohajeri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maede Hasanpour
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Saha I, Ghosh S, Mondal A, Roy S, Basu T, Sengupta A, Das D, Karmakar P. Fabrication and Therapeutic Process of a Green Silver-Nanoparticle-Embedded Mucilage Microsphere for Pathogenic-Bacteria-Infected Second-Degree Burn and Excision Wounds. ACS APPLIED BIO MATERIALS 2024; 7:2554-2568. [PMID: 38574371 DOI: 10.1021/acsabm.4c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Multidrug-resistant bacteria are a serious problem in biomedical applications that decrease the wound healing process and increase the mortality rate. Therefore, in this study, we have prepared a green-synthesized silver-nanoparticle-encapsulated mucilage microsphere (HMMS@GSNP) from Hibiscus rosa sinensis leaves and applied it to pathogen-infected burn and excision wounds. Biophysical properties like size, polydispersity index, absorbance capacity, and drug release were measured by different techniques like field-emission scanning electron microscopy, dynamic light scattering, swelling ratio, etc. The strong antibacterial activity of a HMMS@GSNP microsphere was measured by minimum inhibitory concentration assay, minimum bactericidal concentration assay, and agar well diffusion methods. The HMMS@GSNP microsphere enhanced the cell viability, cell proliferation, migration, antioxidant, and antiinflammation activity compared to untreated GSNP and HMMS, as quantified by MTT assay, BrdU assay, scratch wound assay, reactive oxygen species scavenging assay, and Western blot analysis, respectively. In the in vivo experiment, we used a methicillin-resistant Staphylococcus aureus bacteria-infected, burn-and-excision-wound-created male BALB/c mice model. The HMMS@GSNP-treated burn-and-excision-wound-infected mice showed significant results compared to other groups (untreated, Silverex Ionic Gel, AgNO3, HMMS, and GSNP), and the mice tissues were utilized for bacteria count, immunoblot analysis, histological studies, and real-time polymerase chain reaction. Thus, the HMM@GSNP microsphere is an excellent therapeutic material that can be used as a topical agent for the management of chronic wound therapy.
Collapse
Affiliation(s)
- Ishita Saha
- Department of Life Science and Biotechnology, Jadavpur University, 188 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Sourav Ghosh
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Arunima Mondal
- Department of Life Science and Biotechnology, Jadavpur University, 188 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Shubham Roy
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Tarakdas Basu
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Arunima Sengupta
- Department of Life Science and Biotechnology, Jadavpur University, 188 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Deepak Das
- GLA University, 17 km Stone, NH-2, Mathura-Delhi Road, Chaumuhan, Mathura 281406, Uttar Pradesh, India
| | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, 188 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| |
Collapse
|
13
|
Olteanu G, Neacșu SM, Joița FA, Musuc AM, Lupu EC, Ioniță-Mîndrican CB, Lupuliasa D, Mititelu M. Advancements in Regenerative Hydrogels in Skin Wound Treatment: A Comprehensive Review. Int J Mol Sci 2024; 25:3849. [PMID: 38612660 PMCID: PMC11012090 DOI: 10.3390/ijms25073849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
This state-of-the-art review explores the emerging field of regenerative hydrogels and their profound impact on the treatment of skin wounds. Regenerative hydrogels, composed mainly of water-absorbing polymers, have garnered attention in wound healing, particularly for skin wounds. Their unique properties make them well suited for tissue regeneration. Notable benefits include excellent water retention, creating a crucially moist wound environment for optimal healing, and facilitating cell migration, and proliferation. Biocompatibility is a key feature, minimizing adverse reactions and promoting the natural healing process. Acting as a supportive scaffold for cell growth, hydrogels mimic the extracellular matrix, aiding the attachment and proliferation of cells like fibroblasts and keratinocytes. Engineered for controlled drug release, hydrogels enhance wound healing by promoting angiogenesis, reducing inflammation, and preventing infection. The demonstrated acceleration of the wound healing process, particularly beneficial for chronic or impaired healing wounds, adds to their appeal. Easy application and conformity to various wound shapes make hydrogels practical, including in irregular or challenging areas. Scar minimization through tissue regeneration is crucial, especially in cosmetic and functional regions. Hydrogels contribute to pain management by creating a protective barrier, reducing friction, and fostering a soothing environment. Some hydrogels, with inherent antimicrobial properties, aid in infection prevention, which is a crucial aspect of successful wound healing. Their flexibility and ability to conform to wound contours ensure optimal tissue contact, enhancing overall treatment effectiveness. In summary, regenerative hydrogels present a promising approach for improving skin wound healing outcomes across diverse clinical scenarios. This review provides a comprehensive analysis of the benefits, mechanisms, and challenges associated with the use of regenerative hydrogels in the treatment of skin wounds. In this review, the authors likely delve into the application of rational design principles to enhance the efficacy and performance of hydrogels in promoting wound healing. Through an exploration of various methodologies and approaches, this paper is poised to highlight how these principles have been instrumental in refining the design of hydrogels, potentially revolutionizing their therapeutic potential in addressing skin wounds. By synthesizing current knowledge and highlighting potential avenues for future research, this review aims to contribute to the advancement of regenerative medicine and ultimately improve clinical outcomes for patients with skin wounds.
Collapse
Affiliation(s)
- Gabriel Olteanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (G.O.); (M.M.)
| | - Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | - Florin Alexandru Joița
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | | | - Elena Carmen Lupu
- Department of Mathematics and Informatics, Faculty of Pharmacy, “Ovidius” University of Constanta, 900001 Constanta, Romania;
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (G.O.); (M.M.)
| |
Collapse
|
14
|
Wang X, Li R, Zhao H. Enhancing angiogenesis: Innovative drug delivery systems to facilitate diabetic wound healing. Biomed Pharmacother 2024; 170:116035. [PMID: 38113622 DOI: 10.1016/j.biopha.2023.116035] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023] Open
Abstract
Diabetic wounds (DW) constitute a substantial burden on global healthcare owing to their widespread occurrence as a complication of diabetes. Angiogenesis, a crucial process, plays a pivotal role in tissue recovery by supplying essential oxygen and nutrients to the injury site. Unfortunately, in diabetes mellitus, various factors disrupt angiogenesis, hindering wound healing. While biomaterials designed to enhance angiogenesis hold promise for the treatment of DWs, there is an urgent need for more in-depth investigations to fully unlock their potential in clinical management. In this review, we explore the intricate mechanisms of angiogenesis that are crucial for DW recovery. We introduce a rational design for angiogenesis-enhancing drug delivery systems (DDS) and provide a comprehensive summary and discussion of diverse biomaterials that enhance angiogenesis for facilitating DW healing. Lastly, we address emerging challenges and prospects in angiogenesis-enhancing DDS for facilitating DW healing, aiming to offer a comprehensive understanding of this critical healthcare issue and potential solutions.
Collapse
Affiliation(s)
- Xuan Wang
- Department of foot and ankle surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an 710054, China
| | - Runmin Li
- Department of foot and ankle surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an 710054, China
| | - Hongmou Zhao
- Department of foot and ankle surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an 710054, China.
| |
Collapse
|
15
|
Vyas J, Shah I, Singh S, Prajapati BG. Biomaterials-based additive manufacturing for customized bioengineering in management of otolaryngology: a comprehensive review. Front Bioeng Biotechnol 2023; 11:1234340. [PMID: 37744247 PMCID: PMC10515088 DOI: 10.3389/fbioe.2023.1234340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Three-dimensional (3D)/four-dimensional (4D) printing, also known as additive manufacturing or fast prototyping, is a manufacturing technique that uses a digital model to generate a 3D/4D solid product. The usage of biomaterials with 3D/4D printers in the pharma and healthcare industries is gaining significant popularity. 3D printing has mostly been employed in the domain of otolaryngology to build portable anatomical models, personalized patient-centric implants, biologic tissue scaffolds, surgical planning in individuals with challenging conditions, and surgical training. Although identical to 3D printing technology in this application, 4D printing technology comprises a fourth dimension of time. With the use of 4D printing, a printed structure may alter over time under various stimuli. Smart polymeric materials are also generally denoted as bioinks are frequently employed in tissue engineering applications of 3D/4D printing. In general, 4D printing could significantly improve the safety and efficacy of otolaryngology therapies. The use of bioprinting in otolaryngology has an opportunity to transform the treatment of diseases influencing the ear, nose, and throat as well as the field of tissue regeneration. The present review briefs on polymeric material including biomaterials and cells used in the manufacturing of patient centric 3D/4D bio-printed products utilized in management of otolaryngology.
Collapse
Affiliation(s)
- Jigar Vyas
- Sigma Institute of Pharmacy, Vadodara, Gujarat, India
| | - Isha Shah
- Sigma Institute of Pharmacy, Vadodara, Gujarat, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, India
| |
Collapse
|
16
|
Melotti L, Venerando A, Zivelonghi G, Carolo A, Marzorati S, Martinelli G, Sugni M, Maccatrozzo L, Patruno M. A Second Life for Seafood Waste: Therapeutical Promises of Polyhydroxynapthoquinones Extracted from Sea Urchin by-Products. Antioxidants (Basel) 2023; 12:1730. [PMID: 37760033 PMCID: PMC10526080 DOI: 10.3390/antiox12091730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/02/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Coping with a zero-waste, more sustainable economy represents the biggest challenge for food market nowadays. We have previously demonstrated that by applying smart multidisciplinary waste management strategies to purple sea urchin (Paracentrotus lividus) food waste, it is possible to obtain both a high biocompatible collagen to produce novel skin substitutes and potent antioxidant pigments, namely polyhydroxynapthoquinones (PHNQs). Herein, we have analyzed the biological activities of the PHNQs extract, composed of Spinochrome A and B, on human skin fibroblast cells to explore their future applicability in the treatment of non-healing skin wounds with the objective of overcoming the excessive oxidative stress that hinders wound tissue regeneration. Our results clearly demonstrate that the antioxidant activity of PHNQs is not restricted to their ability to scavenge reactive oxygen species; rather, it can be traced back to an upregulating effect on the expression of superoxide dismutase 1, one of the major components of the endogenous antioxidant enzymes defense system. In addition, the PHNQs extract, in combination with Antimycin A, displayed a synergistic pro-apoptotic effect, envisaging its possible employment against chemoresistance in cancer treatments. Overall, this study highlights the validity of a zero-waste approach in the seafood chain to obtain high-value products, which, in turn, may be exploited for different biomedical applications.
Collapse
Affiliation(s)
- Luca Melotti
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Padova, Italy; (L.M.); (G.Z.); (A.C.); (L.M.); (M.P.)
| | - Andrea Venerando
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Giulia Zivelonghi
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Padova, Italy; (L.M.); (G.Z.); (A.C.); (L.M.); (M.P.)
| | - Anna Carolo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Padova, Italy; (L.M.); (G.Z.); (A.C.); (L.M.); (M.P.)
| | - Stefania Marzorati
- Department of Environmental Science and Policy, University of Milan, Via Celoria 2, 20133 Milan, Italy; (S.M.); (G.M.); (M.S.)
| | - Giordana Martinelli
- Department of Environmental Science and Policy, University of Milan, Via Celoria 2, 20133 Milan, Italy; (S.M.); (G.M.); (M.S.)
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 2, 20133 Milan, Italy; (S.M.); (G.M.); (M.S.)
| | - Lisa Maccatrozzo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Padova, Italy; (L.M.); (G.Z.); (A.C.); (L.M.); (M.P.)
| | - Marco Patruno
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Padova, Italy; (L.M.); (G.Z.); (A.C.); (L.M.); (M.P.)
| |
Collapse
|
17
|
Ersanli C, Tzora A, Voidarou C(C, Skoufos S, Zeugolis DI, Skoufos I. Biodiversity of Skin Microbiota as an Important Biomarker for Wound Healing. BIOLOGY 2023; 12:1187. [PMID: 37759587 PMCID: PMC10525143 DOI: 10.3390/biology12091187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Cutaneous wound healing is a natural and complex repair process that is implicated within four stages. However, microorganisms (e.g., bacteria) can easily penetrate through the skin tissue from the wound bed, which may lead to disbalance in the skin microbiota. Although commensal and pathogenic bacteria are in equilibrium in normal skin, their imbalance in the wound area can cause the delay or impairment of cutaneous wounds. Moreover, skin microbiota is in constant crosstalk with the immune system and epithelial cells, which has significance for the healing of a wound. Therefore, understanding the major bacteria species in the cutaneous wound as well as their communication with the immune system has gained prominence in a way that allows for the emergence of a new perspective for wound healing. In this review, the major bacteria isolated from skin wounds, the role of the crosstalk between the cutaneous microbiome and immune system to heal wounds, the identification techniques of these bacteria populations, and the applied therapies to manipulate the skin microbiota are investigated.
Collapse
Affiliation(s)
- Caglar Ersanli
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.E.); (I.S.)
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.V.)
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular and Biomedical Research, School of Mechanical and Materials Engineering, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Athina Tzora
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.V.)
| | - Chrysoula (Chrysa) Voidarou
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.V.)
| | - Stylianos Skoufos
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.V.)
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular and Biomedical Research, School of Mechanical and Materials Engineering, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Ioannis Skoufos
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.E.); (I.S.)
| |
Collapse
|
18
|
Zhao P, Dang Z, Liu M, Guo D, Luo R, Zhang M, Xie F, Zhang X, Wang Y, Pan S, Ma X. Molecular hydrogen promotes wound healing by inducing early epidermal stem cell proliferation and extracellular matrix deposition. Inflamm Regen 2023; 43:22. [PMID: 36973725 PMCID: PMC10044764 DOI: 10.1186/s41232-023-00271-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/26/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Despite progress in developing wound care strategies, there is currently no treatment that promotes the self-tissue repair capabilities. H2 has been shown to effectively protect cells and tissues from oxidative and inflammatory damage. While comprehensive effects and how H2 functions in wound healing remains unknown, especially for the link between H2 and extracellular matrix (ECM) deposition and epidermal stem cells (EpSCs) activation. METHODS Here, we established a cutaneous aseptic wound model and applied a high concentration of H2 (66% H2) in a treatment chamber. Molecular mechanisms and the effects of healing were evaluated by gene functional enrichment analysis, digital spatial profiler analysis, blood perfusion/oxygen detection assay, in vitro tube formation assay, enzyme-linked immunosorbent assay, immunofluorescent staining, non-targeted metabonomic analysis, flow cytometry, transmission electron microscope, and live-cell imaging. RESULTS We revealed that a high concentration of H2 (66% H2) greatly increased the healing rate (3 times higher than the control group) on day 11 post-wounding. The effect was not dependent on O2 or anti-reactive oxygen species functions. Histological and cellular experiments proved the fast re-epithelialization in the H2 group. ECM components early (3 days post-wounding) deposition were found in the H2 group of the proximal wound, especially for the dermal col-I, epidermal col-III, and dermis-epidermis-junction col-XVII. H2 accelerated early autologous EpSCs proliferation (1-2 days in advance) and then differentiation into myoepithelial cells. These epidermal myoepithelial cells could further contribute to ECM deposition. Other beneficial outcomes include sustained moist healing, greater vascularization, less T-helper-1 and T-helper-17 cell-related systemic inflammation, and better tissue remodelling. CONCLUSION We have discovered a novel pattern of wound healing induced by molecular hydrogen treatment. This is the first time to reveal the direct link between H2 and ECM deposition and EpSCs activation. These H2-induced multiple advantages in healing may be related to the enhancement of cell viability in various cells and the maintenance of mitochondrial functions at a basic level in the biological processes of life.
Collapse
Affiliation(s)
- Pengxiang Zhao
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, People's Republic of China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, People's Republic of China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, 100124, People's Republic of China
| | - Zheng Dang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, People's Republic of China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, People's Republic of China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, 100124, People's Republic of China
| | - Mengyu Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, People's Republic of China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, People's Republic of China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, 100124, People's Republic of China
| | - Dazhi Guo
- Department of Hyperbaric Oxygen, Sixth Medical Center of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Ruiliu Luo
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, People's Republic of China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, People's Republic of China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, 100124, People's Republic of China
| | - Mingzi Zhang
- Department of Plastic Surgery, Peking Union Medical College Hospital (Dongdan campus), No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, People's Republic of China
| | - Fei Xie
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, People's Republic of China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, People's Republic of China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, 100124, People's Republic of China
| | - Xujuan Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, People's Republic of China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, People's Republic of China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, 100124, People's Republic of China
| | - Youbin Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital (Dongdan campus), No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, People's Republic of China
| | - Shuyi Pan
- Department of Hyperbaric Oxygen, Sixth Medical Center of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Xuemei Ma
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, People's Republic of China.
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, People's Republic of China.
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, 100124, People's Republic of China.
| |
Collapse
|
19
|
Mansour RN, Karimizade A, Enderami SE, Abasi M, Talebpour Amiri F, Jafarirad A, Mellati A. The effect of source animal age, decellularization protocol, and sterilization method on bovine acellular dermal matrix as a scaffold for wound healing and skin regeneration. Artif Organs 2023; 47:302-316. [PMID: 36161305 DOI: 10.1111/aor.14415] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Healing the full-thickness skin wounds has remained a challenge. One of the most frequently used grafts for skin regeneration is xenogeneic acellular dermal matrices (ADMs), including bovine ADMs. This study investigated the effect of the source animal age, enzymatic versus non-enzymatic decellularization protocols, and gamma irradiation versus ethylene oxide (EO) sterilization on the scaffold. METHODS ADMs were prepared using the dermises of fetal bovine or calf skins. All groups were decellularized through chemical and mechanical methods, unless T-FADM samples, in which an enzymatic step was added to the decellularization protocol. All groups were sterilized with ethylene oxide (EO), except G-FADM which was sterilized using gamma irradiation. The scaffolds were characterized through scanning electron microscopy, differential scanning calorimetry, tensile test, MTT assay, DNA quantification, and real-time PCR. The performance of the ADMs in wound treatment was also evaluated macroscopically and histologically. RESULTS All ADMs were effectively decellularized. In comparison to FADM (EO-sterilized fetal ADM), morphological, and mechanical properties of G-FADM, T-FADM, and CADM (EOsterilized calf ADM) were changed to different extents. In addition, the CADM and G-FADM were thermally more stable than the FADM and T-FADM. Although all ADMs were noncytotoxic, the wounds of the FADM, T-FADM, and G-FADM groups were contracted to almost 30.0% of the original area on day 7, significantly faster than the CADM (17.5% ± 1.7) and control (12.2% ± 1.59) groups. However, by day 21, all ADMs were mostly closed except for the untreated group (60.1 ± 1.8). CONCLUSION Altogether, fetal source and EO-sterilized samples performed better than calf source and gamma-sterilized samples unless in some mechanical properties. There was no added value in using enzymatic treatment during the decellularization process. Our results suggest that the age, decellularization, and sterilization methods of animal source should be selected based on the clinical requirements.
Collapse
Affiliation(s)
- Reyhaneh Nassiri Mansour
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ayoob Karimizade
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mozhgan Abasi
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Abdolreza Jafarirad
- Department of Surgery, Zare Psychiatry and Burn Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amir Mellati
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
20
|
Zheng X, Wang B, Tang X, Mao B, Zhang Q, Zhang T, Zhao J, Cui S, Chen W. Absorption, metabolism, and functions of hyaluronic acid and its therapeutic prospects in combination with microorganisms: A review. Carbohydr Polym 2023; 299:120153. [PMID: 36876779 DOI: 10.1016/j.carbpol.2022.120153] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022]
Abstract
Hyaluronic acid (HA) is key to the stability of the internal environment of tissues. HA content in tissues gradually decreases with age, causing age-related health problems. Exogenous HA supplements are used to prevent or treat these problems including skin dryness and wrinkles, intestinal imbalance, xerophthalmia, and arthritis after absorption. Moreover, some probiotics are able to promote endogenous HA synthesis and alleviate symptoms caused by HA loss, thus introducing potential preventative or therapeutic applications of HA and probiotics. Here, we review the oral absorption, metabolism, and biological function of HA as well as the potential role of probiotics and HA in increasing the efficacy of HA supplements.
Collapse
Affiliation(s)
- Xueli Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Botao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Bloomage Biotechnology Co., Ltd, Jinan 250000, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tianmeng Zhang
- Bloomage Biotechnology Co., Ltd, Jinan 250000, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
21
|
Berry CE, Downer M, Morgan AG, Griffin M, Liang NE, Kameni L, Laufey Parker JB, Guo J, Longaker MT, Wan DC. The effects of mechanical force on fibroblast behavior in cutaneous injury. Front Surg 2023; 10:1167067. [PMID: 37143767 PMCID: PMC10151708 DOI: 10.3389/fsurg.2023.1167067] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
Wound healing results in the formation of scar tissue which can be associated with functional impairment, psychological stress, and significant socioeconomic cost which exceeds 20 billion dollars annually in the United States alone. Pathologic scarring is often associated with exaggerated action of fibroblasts and subsequent excessive accumulation of extracellular matrix proteins which results in fibrotic thickening of the dermis. In skin wounds, fibroblasts transition to myofibroblasts which contract the wound and contribute to remodeling of the extracellular matrix. Mechanical stress on wounds has long been clinically observed to result in increased pathologic scar formation, and studies over the past decade have begun to uncover the cellular mechanisms that underly this phenomenon. In this article, we will review the investigations which have identified proteins involved in mechano-sensing, such as focal adhesion kinase, as well as other important pathway components that relay the transcriptional effects of mechanical forces, such as RhoA/ROCK, the hippo pathway, YAP/TAZ, and Piezo1. Additionally, we will discuss findings in animal models which show the inhibition of these pathways to promote wound healing, reduce contracture, mitigate scar formation, and restore normal extracellular matrix architecture. Recent advances in single cell RNA sequencing and spatial transcriptomics and the resulting ability to further characterize mechanoresponsive fibroblast subpopulations and the genes that define them will be summarized. Given the importance of mechanical signaling in scar formation, several clinical treatments focused on reducing tension on the wound have been developed and are described here. Finally, we will look toward future research which may reveal novel cellular pathways and deepen our understanding of the pathogenesis of pathologic scarring. The past decade of scientific inquiry has drawn many lines connecting these cellular mechanisms that may lead to a map for the development of transitional treatments for patients on the path to scarless healing.
Collapse
Affiliation(s)
- Charlotte E. Berry
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Mauricio Downer
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Annah G. Morgan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Michelle Griffin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Norah E. Liang
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Lionel Kameni
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Jennifer B. Laufey Parker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Jason Guo
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, United States
| | - Derrick C. Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Correspondence: Derrick C. Wan
| |
Collapse
|
22
|
Song J, Gao H, Zhang H, George OJ, Hillman AS, Fox JM, Jia X. Matrix Adhesiveness Regulates Myofibroblast Differentiation from Vocal Fold Fibroblasts in a Bio-orthogonally Cross-linked Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51669-51682. [PMID: 36367478 PMCID: PMC10350853 DOI: 10.1021/acsami.2c13852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Repeated mechanical and chemical insults cause an irreversible alteration of extracellular matrix (ECM) composition and properties, giving rise to vocal fold scarring that is refractory to treatment. Although it is well known that fibroblast activation to myofibroblast is the key to the development of the pathology, the lack of a physiologically relevant in vitro model of vocal folds impedes mechanistic investigations on how ECM cues promote myofibroblast differentiation. Herein, we describe a bio-orthogonally cross-linked hydrogel platform that recapitulates the alteration of matrix adhesiveness due to enhanced fibronectin deposition when vocal fold wound healing is initiated. The synthetic ECM (sECM) was established via the cycloaddition reaction of tetrazine (Tz) with slow (norbornene, Nb)- and fast (trans-cyclooctene, TCO)-reacting dienophiles. The relatively slow Tz-Nb ligation allowed the establishment of the covalent hydrogel network for 3D cell encapsulation, while the rapid and efficient Tz-TCO reaction enabled precise conjugation of the cell-adhesive RGDSP peptide in the hydrogel network. To mimic the dynamic changes of ECM composition during wound healing, RGDSP was conjugated to cell-laden hydrogel constructs via a diffusion-controlled bioorthognal ligation method 3 days post encapsulation. At a low RGDSP concentration (0.2 mM), fibroblasts residing in the hydrogel remained quiescent when maintained in transforming growth factor beta 1 (TGF-β1)-conditioned media. However, at a high concentration (2 mM), RGDSP potentiated TGF-β1-induced myofibroblast differentiation, as evidenced by the formation of an actin cytoskeleton network, including F-actin and alpha-smooth muscle actin. The RGDSP-driven fibroblast activation to myofibroblast was accompanied with an increase in the expression of wound healing-related genes, the secretion of profibrotic cytokines, and matrix contraction required for tissue remodeling. This work represents the first step toward the establishment of a 3D hydrogel-based cellular model for studying myofibroblast differentiation in a defined niche associated with vocal fold scarring.
Collapse
Affiliation(s)
- Jiyeon Song
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - Hanyuan Gao
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - He Zhang
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - Olivia J. George
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - Ashlyn S. Hillman
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Joseph. M. Fox
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, 590 Avenue 1743, Newark, Delaware, USA
| |
Collapse
|
23
|
Huang C, Dong L, Zhao B, Lu Y, Huang S, Yuan Z, Luo G, Xu Y, Qian W. Anti-inflammatory hydrogel dressings and skin wound healing. Clin Transl Med 2022; 12:e1094. [PMID: 36354147 PMCID: PMC9647861 DOI: 10.1002/ctm2.1094] [Citation(s) in RCA: 176] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022] Open
Abstract
Hydrogels are promising and widely utilized in the biomedical field. In recent years, the anti-inflammatory function of hydrogel dressings has been significantly improved, addressing many clinical challenges presented in ongoing endeavours to promote wound healing. Wound healing is a cascaded and highly complex process, especially in chronic wounds, such as diabetic and severe burn wounds, in which adverse endogenous or exogenous factors can interfere with inflammatory regulation, leading to the disruption of the healing process. Although insufficient wound inflammation is uncommon, excessive inflammatory infiltration is an almost universal feature of chronic wounds, which impedes a histological repair of the wound in a predictable biological step and chronological order. Therefore, resolving excessive inflammation in wound healing is essential. In the past 5 years, extensive research has been conducted on hydrogel dressings to address excessive inflammation in wound healing, specifically by efficiently scavenging excessive free radicals, sequestering chemokines and promoting M1 -to-M2 polarization of macrophages, thereby regulating inflammation and promoting wound healing. In this study, we introduced novel anti-inflammatory hydrogel dressings and demonstrated innovative methods for their preparation and application to achieve enhanced healing. In addition, we summarize the most important properties required for wound healing and discuss our analysis of potential challenges yet to be addressed.
Collapse
Affiliation(s)
- Can Huang
- Institute of Burn ResearchSouthwest HospitalState Key Laboratory of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsArmy Medical UniversityChongqingChina
| | - Lanlan Dong
- Institute of Burn ResearchSouthwest HospitalState Key Laboratory of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsArmy Medical UniversityChongqingChina
| | - Baohua Zhao
- Institute of Burn ResearchSouthwest HospitalState Key Laboratory of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsArmy Medical UniversityChongqingChina
| | - Yifei Lu
- Institute of Burn ResearchSouthwest HospitalState Key Laboratory of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsArmy Medical UniversityChongqingChina
| | - Shurun Huang
- Department of Burns and Plastic Surgerythe 910th Hospital of Joint Logistic Force of Chinese People's Liberation ArmyQuanzhouFujianChina
| | - Zhiqiang Yuan
- Institute of Burn ResearchSouthwest HospitalState Key Laboratory of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsArmy Medical UniversityChongqingChina
| | - Gaoxing Luo
- Institute of Burn ResearchSouthwest HospitalState Key Laboratory of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsArmy Medical UniversityChongqingChina
| | - Yong Xu
- Orthopedic InstituteSuzhou Medical CollegeSoochow UniversitySuzhouChina
- B CUBE Center for Molecular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Wei Qian
- Institute of Burn ResearchSouthwest HospitalState Key Laboratory of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsArmy Medical UniversityChongqingChina
| |
Collapse
|
24
|
Basara G, Bahcecioglu G, Ozcebe SG, Ellis BW, Ronan G, Zorlutuna P. Myocardial infarction from a tissue engineering and regenerative medicine point of view: A comprehensive review on models and treatments. BIOPHYSICS REVIEWS 2022; 3:031305. [PMID: 36091931 PMCID: PMC9447372 DOI: 10.1063/5.0093399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/08/2022] [Indexed: 05/12/2023]
Abstract
In the modern world, myocardial infarction is one of the most common cardiovascular diseases, which are responsible for around 18 million deaths every year or almost 32% of all deaths. Due to the detrimental effects of COVID-19 on the cardiovascular system, this rate is expected to increase in the coming years. Although there has been some progress in myocardial infarction treatment, translating pre-clinical findings to the clinic remains a major challenge. One reason for this is the lack of reliable and human representative healthy and fibrotic cardiac tissue models that can be used to understand the fundamentals of ischemic/reperfusion injury caused by myocardial infarction and to test new drugs and therapeutic strategies. In this review, we first present an overview of the anatomy of the heart and the pathophysiology of myocardial infarction, and then discuss the recent developments on pre-clinical infarct models, focusing mainly on the engineered three-dimensional cardiac ischemic/reperfusion injury and fibrosis models developed using different engineering methods such as organoids, microfluidic devices, and bioprinted constructs. We also present the benefits and limitations of emerging and promising regenerative therapy treatments for myocardial infarction such as cell therapies, extracellular vesicles, and cardiac patches. This review aims to overview recent advances in three-dimensional engineered infarct models and current regenerative therapeutic options, which can be used as a guide for developing new models and treatment strategies.
Collapse
Affiliation(s)
- Gozde Basara
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - S. Gulberk Ozcebe
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Bradley W Ellis
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - George Ronan
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Pinar Zorlutuna
- Present address: 143 Multidisciplinary Research Building, University of Notre Dame, Notre Dame, IN 46556. Author to whom correspondence should be addressed:. Tel.: +1 574 631 8543. Fax: +1 574 631 8341
| |
Collapse
|
25
|
Zavadakova A, Vistejnova L, Tonarova P. Functional responses of dermal fibroblasts to low nutrition and pro-inflammatory stimuli mimicking a wound environment in vitro. In Vitro Cell Dev Biol Anim 2022; 58:643-657. [PMID: 35948856 DOI: 10.1007/s11626-022-00713-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/16/2022] [Indexed: 11/30/2022]
Abstract
Dermal fibroblasts (DF) constitute one of key cells involved in wound healing. However, the functions they perform in wound conditions remain poorly understood. This study involved exposing DF to low nutrition and to low nutrition + LPS for 5 d as conditions representing the wound. Although DF exhibited increasing metabolic activity in time under all conditions including control, the proliferation did not change in both low nutrition and low nutrition + LPS. Only the low nutrition + LPS was found to potentiate the migration and pro-inflammatory phenotype (IL6 release) of DF. The potential of DF to contract collagen hydrogel declined only under low nutrition as a consequence of low cell number. The expression of α-SMA was reduced under both conditions independently of the cell number. The remodeling capability of DF was affected under both conditions as documented by the enhanced MMP2 activity. Finally, the production of collagen type I was not affected by either condition. The study shows that low nutrition as the single factor is able to delay the healing process. Moreover, the addition of the mild pro-inflammatory stimulus represented by LPS may amplify the cell response in case of decreased α-SMA expression or excite DF to produce IL6 impairing the healing process.
Collapse
Affiliation(s)
- Anna Zavadakova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, Czech Republic.
| | - Lucie Vistejnova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, Pilsen, Czech Republic
| | - Pavla Tonarova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, Czech Republic.,Institute of Pathological Physiology, 1st Faculty of Medicine, Charles University, U Nemocnice 5, Prague, Czech Republic
| |
Collapse
|
26
|
Susilo RJK, Winarni D, Hayaza S, Doong RA, Wahyuningsih SPA, Darmanto W. Effect of crude Ganoderma applanatum polysaccharides as a renoprotective agent against carbon tetrachloride-induced early kidney fibrosis in mice. Vet World 2022; 15:1022-1030. [PMID: 35698489 PMCID: PMC9178572 DOI: 10.14202/vetworld.2022.1022-1030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Background and Aim: Interstitial fibrosis is the final stage of chronic kidney injury, which begins with an inflammatory process. Crude Ganoderma applanatum polysaccharides are known to have anti-inflammatory properties. The potential role of crude G. applanatum polysaccharides in renal fibrosis through pro-inflammatory cytokines needs further investigation. This study aimed to determine the renoprotective effect of crude G. applanatum polysaccharide extract in mice with carbon tetrachloride (CCL4)-induced early kidney fibrosis. Materials and Methods: This study was conducted for 4 weeks using 24 male BALB/c mice selected for their metabolic stability. The mice were randomly divided into six groups, including control (CG), model (MG), silymarin group and crude G. applanatum polysaccharide extract groups comprising doses of 25, 50, and 100 mg/kg body weight. After sacrificing the mice, whole blood was analyzed for urea and creatine levels, and kidney tissue was prepared to assess tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), hyaluronic acid (HA), and laminin levels, both using enzyme-linked immunosorbent assay. Kidney histology was determined using hematoxylin and eosin staining, while the extracellular matrix (ECM) components were stained using Masson’s trichome staining. The α-smooth muscle actin (α-SMA) concentration was determined using immunohistochemistry. These parameters were measured to determine the effectiveness of the crude G. applanatum polysaccharide extract in preventing interstitial fibrosis. Results: Administration of crude G. applanatum polysaccharides effectively prevented increases in kidney weight and physiological enzymes, pro-inflammatory cytokines, and ECM production compared with those in the MG, as evidenced by the low levels of urea, creatinine, TNF-α, IL-6, HA, and laminin. Histopathological results also showed that crude G. applanatum polysaccharides prevented the occurrence of inflammatory infiltration, desquamated nuclei, cytoplasm debris, rupture at the brush border, dilatation of the glomeruli space and lumen of the proximal tubule, and necrotic cells compared with the MG. Masson’s trichrome staining revealed lower collagen levels in the interstitial tubules of kidney tissue than those in the MG. Immunohistochemical analysis revealed low α-SMA expression in the crude G. applanatum polysaccharides treatment groups than that in the MG. Conclusion: The crude polysaccharide extract of G. applanatum has a protective effect that prevents the progression of kidney fibrosis in mice.
Collapse
Affiliation(s)
| | - Dwi Winarni
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Suhailah Hayaza
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Ruey-An Doong
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia; Institute of Analytical and Environmental Sciences, National Tsing Hua University, Sec. 2 Kuang Fu Road, Hsinchu 30013, Taiwan
| | | | - Win Darmanto
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia; Institute of Science Technology and Health, Jl. Kemuning 57A, Jombang, Indonesia
| |
Collapse
|
27
|
Singer AJ. Healing Mechanisms in Cutaneous Wounds: Tipping the Balance. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:1151-1167. [PMID: 34915757 PMCID: PMC9587785 DOI: 10.1089/ten.teb.2021.0114] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acute and chronic cutaneous wounds pose a significant health and economic burden. Cutaneous wound healing is a complex process that occurs in four distinct, yet overlapping, highly coordinated stages: hemostasis, inflammation, proliferation, and remodeling. Postnatal wound healing is reparative, which can lead to the formation of scar tissue. Regenerative wound healing occurs during fetal development and in restricted postnatal tissues. This process can restore the wound to an uninjured state by producing new skin cells from stem cell reservoirs, resulting in healing with minimal or no scarring. Focusing on the pathophysiology of acute burn wounds, this review highlights reparative and regenerative healing mechanisms (including the role of cells, signaling molecules, and the extracellular matrix) and discusses how components of regenerative healing are being used to drive the development of novel approaches and therapeutics aimed at improving clinical outcomes. Important components of regenerative healing, such as stem cells, growth factors, and decellularized dermal matrices, are all being evaluated to recapitulate more closely the natural regenerative healing process.
Collapse
Affiliation(s)
- Adam J Singer
- Department of Emergency Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
28
|
Li S, Ding X, Zhang H, Ding Y, Tan Q. IL-25 improves diabetic wound healing through stimulating M2 macrophage polarization and fibroblast activation. Int Immunopharmacol 2022; 106:108605. [PMID: 35149293 DOI: 10.1016/j.intimp.2022.108605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/22/2022] [Accepted: 01/31/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Persistent chronic inflammation is one of the main pathogenic characteristics of diabetic wounds. The resolution of inflammation is important for wound healing and extracellular matrix (ECM) formation. Interleukin (IL)-25 can modulate the function of macrophage and fibroblast, but its role and mechanism of action in the treatment of diabetic wounds remain largely unclear. METHODS The mice were categorized into diabetic, diabetic + IL-25 and control groups. Human monocytic THP-1 cell line and human dermal fibroblast (HDF) were stimulated under different IL-25 conditions. Then, flow cytometry, real-time quantitative PCR (RT-qPCR), Western blot (WB), and immunofluorescence (IF) assays were carried out. RESULTS The mice in diabetes group (DG) had a slower wound healing rate, more severe inflammation, less blood vessels and more disordered collagen than those in control group (CG). Intradermal injection of IL-25 could improve these conditions. IL-25 promoted M2 macrophage polarization and fibroblast activation in DG and high-glucose environment. The phenomenon, which was dependent on PI3K/AKT/mTOR and TGF-β/SMAD signaling, could be blocked by LY294002 and LY2109761. CONCLUSION IL-25 may serve as a therapeutic target to improve wound healing in diabetic mice.
Collapse
Affiliation(s)
- Shiyan Li
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China.
| | - Xiaofeng Ding
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China.
| | - Hao Zhang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China.
| | - Youjun Ding
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China.
| | - Qian Tan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China; Department of Burns and Plastic Surgery, Anqing Shihua Hospital, Nanjing Drum Tower Hospital Group, Anqing 246002, China.
| |
Collapse
|
29
|
Dos Santos RG, Santos GS, Alkass N, Chiesa TL, Azzini GO, da Fonseca LF, Dos Santos AF, Rodrigues BL, Mosaner T, Lana JF. The regenerative mechanisms of platelet-rich plasma: A review. Cytokine 2021; 144:155560. [PMID: 34004552 DOI: 10.1016/j.cyto.2021.155560] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/17/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022]
Abstract
Orthobiologics continue to gain popularity in many areas of medical science, especially in the field of regenerative medicine. Platelet-rich plasma derivatives are orthobiologic tools of particular interest. These biologic products can be obtained via centrifugation of a patient's whole blood and the components can then be subsequently isolated, concentrated and ultimately administered into injured tissues, particularly in areas where standard healing is disrupted. The elevated concentration of platelets above the basal value enables accelerated growth of various tissues with minimal side effects. The application of autologous orthobiologics is a relatively new biotechnology undergoing expansion which continues to reveal optimistic results in the stimulation and enhanced healing of various sorts of tissue injuries. The local release of growth factors and cytokines contained in platelet alpha granules accelerates and ameliorates tissue repair processes, mimicking and supporting standard wound healing. This effect is greatly enhanced upon combination with the fibrinolytic system, which are essential for complete regeneration. Fibrinolytic reactions can dictate proper cellular recruitment of certain cell populations such as mesenchymal stem cells and other immunomodulatory agents. Additionally, these reactions also control proteolytic activity in areas of wound healing and regenerative processes of mesodermal tissues including bone, cartilage, and muscle, which makes it particularly valuable for musculoskeletal health, for instance. Although many investigations have demonstrated significant results with platelet-rich plasma derivatives, further studies are still warranted.
Collapse
Affiliation(s)
- Rafael Gonzalez Dos Santos
- IOC - Instituto do Osso e da Cartilagem/The Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue - 2nd Floor, Room #29, Zip Code 13334-170, Indaiatuba, SP, Brazil.
| | - Gabriel Silva Santos
- IOC - Instituto do Osso e da Cartilagem/The Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue - 2nd Floor, Room #29, Zip Code 13334-170, Indaiatuba, SP, Brazil.
| | - Natasha Alkass
- Queensland University of Technology, 2 George St, Zip Code 4000, Brisbane, Queensland, Australia.
| | - Tania Liana Chiesa
- QML Pathology, 11 Riverview Place, Murarrie, Zip Code 4172, Brisbane, Queensland, Australia.
| | - Gabriel Ohana Azzini
- IOC - Instituto do Osso e da Cartilagem/The Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue - 2nd Floor, Room #29, Zip Code 13334-170, Indaiatuba, SP, Brazil.
| | - Lucas Furtado da Fonseca
- Universidade Federal De São Paulo - Escola Paulista de Medicina, 715 Napoleão de Barros St, Vila Clementino, Zip Code 04024-002, São Paulo, SP, Brazil.
| | - Antonio Fernando Dos Santos
- FARMERP- Faculdade de Medicina de São José do Rio Preto, 5416 Brigadeiro Faria Lima Avenue, Vila Sao Pedro, Zip Code 15090-000, São José do Rio Preto, SP, Brazil.
| | - Bruno Lima Rodrigues
- IOC - Instituto do Osso e da Cartilagem/The Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue - 2nd Floor, Room #29, Zip Code 13334-170, Indaiatuba, SP, Brazil.
| | - Tomas Mosaner
- IOC - Instituto do Osso e da Cartilagem/The Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue - 2nd Floor, Room #29, Zip code 13334-170, Indaiatuba, SP, Brazil.
| | - José Fábio Lana
- IOC - Instituto do Osso e da Cartilagem/The Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue - 2nd Floor, Room #29, Zip Code 13334-170, Indaiatuba, SP, Brazil.
| |
Collapse
|
30
|
Klasan A, Gerber F, Schermuksnies A, Putnis SE, Neri T, Heyse TJ. Blood loss after revision knee arthroplasty is 1.38- to 2.17-fold higher than after primary knee arthroplasty: A retrospective analysis of 898 cases. Orthop Traumatol Surg Res 2021; 107:102856. [PMID: 33588093 DOI: 10.1016/j.otsr.2021.102856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/07/2020] [Accepted: 09/21/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND There are a number of factors that influence blood loss during and after primary total knee arthroplasty (TKA) and revision TKA (rTKA). The purpose of this study was to provide a factorial assessment that would aid surgeons in managing expected blood loss in rTKA, when compared to TKA. The first question asked was the blood loss and transfusions between TKA and rTKA and the second question was risk factors for blood loss after rTKA. HYPOTHESIS Blood loss in any rTKA is higher than in TKA by a factor of 2. PATIENTS AND METHODS A retrospective single-centre consecutive series of rTKA between 2006 and 2018 was performed. Based on the rTKA types identified in joint registries, 4 rTKA cohorts were created: aseptic minor rTKA, aseptic major rTKA, 1st stage, and 2nd stage septic rTKA. A consecutive TKA cohort from the same study period was used to create a propensity score matched cohort with the aseptic major rTKA cohort. RESULT A total of 622 rTKA were identified. Aseptic major rTKA had double the median blood loss than TKA. The lowest blood loss was observed in the TKA group followed by aseptic minor rTKA, and the highest in 2nd stage septic rTKA. The median total blood loss was higher in all rTKA by a factor ranging between 1.38 and 2.17. Higher age, female gender, lower preoperative hemoglobin, chronic heart disease and history of myocardial infarction were risk factors for increased blood loss. The type of rTKA performed was not predictive of blood loss in the linear regression analysis. DISCUSSION Blood loss after rTKA is 1.38 to 2.17-fold higher than after TKA. The blood loss observed in 2nd stage septic rTKA and aseptic major rTKA was the highest. Older female patients, with a low preoperative hemoglobin, were identified to be at the highest risk of blood loss after rTKA. Strategies for further blood loss reductions need to be utilised to the fullest extent for these procedures. LEVEL OF EVIDENCE III; retrospective prognostic study.
Collapse
Affiliation(s)
- Antonio Klasan
- North Shore hospital, Auckland, New Zealand; University hospital of Marburg, Marburg, Germany.
| | | | | | | | - Thomas Neri
- Department of orthopaedic surgery, University hospital centre of Saint-Étienne, Saint-Étienne, France; EA 7424 - Inter-university laboratory of human movement science, University of Lyon - University Jean-Monnet, Saint-Étienne, France
| | | |
Collapse
|
31
|
Wound Healing Promotion by Hyaluronic Acid: Effect of Molecular Weight on Gene Expression and In Vivo Wound Closure. Pharmaceuticals (Basel) 2021; 14:ph14040301. [PMID: 33800588 PMCID: PMC8065935 DOI: 10.3390/ph14040301] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
Hyaluronic acid (HA) has been known to play an important role in wound healing process. However, the effect of molecular weight (MW) of exogenously administered HA on the wound healing process has not been fully understood. In this study, we investigated HA with different MWs on wound healing process using human epidermal keratinocytes and dermal fibroblasts. Cell proliferation and migration ability were assessed by water soluble tetrazolium (WST) assay and wound scratch assay. We examined the effect of HA addition in a full-thickness wound model in mice and the gene expression related to wound healing. Proliferation and migration of HaCaT cells increased with the increase of MW and concentration of HA. Interleukin (IL-1β), IL-8 and vascular endothelial growth factor (VEGF) as well as matrix metalloproteinase (MMP)-9 and MMP-13 were significantly upregulated by high molecular weight (HMW) HA in keratinocytes. Together with VEGF upregulation and the observed promotion of HaCaT migration, HA with the MW of 2290 kDa may hold potential to improve re-epithelialization, a critical obstacle to heal chronic wounds.
Collapse
|
32
|
McKeown-Longo PJ, Higgins PJ. Hyaluronan, Transforming Growth Factor β, and Extra Domain A-Fibronectin: A Fibrotic Triad. Adv Wound Care (New Rochelle) 2021; 10:137-152. [PMID: 32667849 DOI: 10.1089/wound.2020.1192] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Significance: Inflammation is a critical aspect of injury repair. Nonresolving inflammation, however, is perpetuated by the local generation of extracellular matrix-derived damage-associated molecular pattern molecules (DAMPs), such as the extra domain A (EDA) isoform of fibronectin and hyaluronic acid (HA) that promote the eventual acquisition of a fibrotic response. DAMPs contribute to the inflammatory environment by engaging Toll-like, integrin, and CD44 receptors while stimulating transforming growth factor (TGF)-β signaling to activate a fibroinflammatory genomic program leading to the development of chronic disease. Recent Advances: Signaling through TLR4, CD44, and the TGF-β pathways impact the amplitude and duration of the innate immune response to endogenous DAMPs synthesized in the context of tissue injury. New evidence indicates that crosstalk among these three networks regulates phase transitions as well as the repertoire of expressed genes in the wound healing program determining, thereby, repair outcomes. Clarifying the molecular mechanisms underlying pathway integration is necessary for the development of novel therapeutics to address the spectrum of fibroproliferative diseases that result from maladaptive tissue repair. Critical Issues: There is an increasing appreciation for the role of DAMPs as causative factors in human fibroinflammatory disease regardless of organ site. Defining the involved intermediates essential for the development of targeted therapies is a daunting effort, however, since various classes of DAMPs activate different direct and indirect signaling pathways. Cooperation between two matrix-derived DAMPs, HA, and the EDA isoform of fibronectin, is discussed in this review as is their synergy with the TGF-β network. This information may identify nodes of signal intersection amenable to therapeutic intervention. Future Directions: Clarifying mechanisms underlying the DAMP/growth factor signaling nexus may provide opportunities to engineer the fibroinflammatory response to injury and, thereby, wound healing outcomes. The identification of shared and unique DAMP/growth factor-activated pathways is critical to the design of optimized tissue repair therapies while preserving the host response to bacterial pathogens.
Collapse
Affiliation(s)
- Paula J. McKeown-Longo
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Paul J. Higgins
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| |
Collapse
|
33
|
Raina N, Rani R, Gupta M. Angiogenesis: Aspects in wound healing. ENDOTHELIAL SIGNALING IN VASCULAR DYSFUNCTION AND DISEASE 2021:77-90. [DOI: 10.1016/b978-0-12-816196-8.00010-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
34
|
Fu H, Sun Y, Shao Y, Saredy J, Cueto R, Liu L, Drummer C, Johnson C, Xu K, Lu Y, Li X, Meng S, Xue ER, Tan J, Jhala NC, Yu D, Zhou Y, Bayless KJ, Yu J, Rogers TJ, Hu W, Snyder NW, Sun J, Qin X, Jiang X, Wang H, Yang X. Interleukin 35 Delays Hindlimb Ischemia-Induced Angiogenesis Through Regulating ROS-Extracellular Matrix but Spares Later Regenerative Angiogenesis. Front Immunol 2020; 11:595813. [PMID: 33154757 PMCID: PMC7591706 DOI: 10.3389/fimmu.2020.595813] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL) 35 is a novel immunosuppressive heterodimeric cytokine in IL-12 family. Whether and how IL-35 regulates ischemia-induced angiogenesis in peripheral artery diseases are unrevealed. To fill this important knowledge gap, we used loss-of-function, gain-of-function, omics data analysis, RNA-Seq, in vivo and in vitro experiments, and we have made the following significant findings: i) IL-35 and its receptor subunit IL-12RB2, but not IL-6ST, are induced in the muscle after hindlimb ischemia (HLI); ii) HLI-induced angiogenesis is improved in Il12rb2-/- mice, in ApoE-/-/Il12rb2-/- mice compared to WT and ApoE-/- controls, respectively, where hyperlipidemia inhibits angiogenesis in vivo and in vitro; iii) IL-35 cytokine injection as a gain-of-function approach delays blood perfusion recovery at day 14 after HLI; iv) IL-35 spares regenerative angiogenesis at the late phase of HLI recovery after day 14 of HLI; v) Transcriptome analysis of endothelial cells (ECs) at 14 days post-HLI reveals a disturbed extracellular matrix re-organization in IL-35-injected mice; vi) IL-35 downregulates three reactive oxygen species (ROS) promoters and upregulates one ROS attenuator, which may functionally mediate IL-35 upregulation of anti-angiogenic extracellular matrix proteins in ECs; and vii) IL-35 inhibits human microvascular EC migration and tube formation in vitro mainly through upregulating anti-angiogenic extracellular matrix-remodeling proteins. These findings provide a novel insight on the future therapeutic potential of IL-35 in suppressing ischemia/inflammation-triggered inflammatory angiogenesis at early phase but sparing regenerative angiogenesis at late phase.
Collapse
Affiliation(s)
- Hangfei Fu
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yu Sun
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jason Saredy
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ramon Cueto
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Lu Liu
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Charles Drummer
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Candice Johnson
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Keman Xu
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yifan Lu
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xinyuan Li
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Shu Meng
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Eric R Xue
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Judy Tan
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Nirag C Jhala
- Department of Pathology & Laboratory Medicine Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Daohai Yu
- Department of Clinical Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, United States
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, United States
| | - Jun Yu
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Thomas J Rogers
- Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Wenhui Hu
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Nathaniel W Snyder
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jianxin Sun
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Xuebin Qin
- National Primate Research Center, Tulane University, Covington, LA, United States
| | - Xiaohua Jiang
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hong Wang
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
35
|
Monserrat-Mesquida M, Quetglas-Llabrés M, Capó X, Bouzas C, Mateos D, Pons A, Tur JA, Sureda A. Metabolic Syndrome is Associated with Oxidative Stress and Proinflammatory State. Antioxidants (Basel) 2020; 9:E236. [PMID: 32178436 PMCID: PMC7139344 DOI: 10.3390/antiox9030236] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome (MetS) is associated with increased risk of developing diabetes and cardiovascular diseases. MetS is also characterized by an increase of oxidative stress which contributes to impaired inflammation, vascular function, and atherosclerosis. The aim was to assess the oxidative stress and inflammatory markers in plasma and PBMCs in adults with or without MetS. Antioxidant and inflammatory parameters were measured in peripheral blood mononuclear cells (PBMCs) of 80 men and 80 women over 55 to 80-years-old residing in the Balearic Islands without previously documented cardiovascular disease. Circulating leukocytes, neutrophils, lymphocytes, basophils, and monocytes were higher in MetS subjects with respect to those without MetS. Plasma levels of malondialdehyde, tumor necrosis factor α (TNFα), and interleukin 6 (IL-6) levels were higher in MetS subjects in both genders, but the superoxide dismutase activity was lower. The myeloperoxidase plasma activity was higher in the MetS male subjects. Higher activities and protein levels of catalase and glutathione reductase in PBMCs were observed in MetS subjects in both genders. Obtained data show that MetS is associated with oxidative stress and a proinflammatory state and with high antioxidant defenses in PBMCs probably derived from a pre-activation state of immune cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Josep A. Tur
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands, Health Research Institute of Balearic Islands (IdISBa), and CIBEROBN (Physiopathology of Obesity and Nutrition), E-07122 Palma, Balearic Islands, Spain; (M.M.-M.); (M.Q.-L.); (X.C.); (C.B.); (D.M.); (A.P.); (A.S.)
| | | |
Collapse
|
36
|
Tejada S, Batle JM, Ferrer MD, Busquets-Cortés C, Monserrat-Mesquida M, Nabavi SM, Del Mar Bibiloni M, Pons A, Sureda A. Therapeutic Effects of Hyperbaric Oxygen in the Process of Wound Healing. Curr Pharm Des 2020; 25:1682-1693. [PMID: 31269879 DOI: 10.2174/1381612825666190703162648] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/20/2019] [Indexed: 12/20/2022]
Abstract
Chronic and non-healing wounds, especially diabetic foot ulcers and radiation injuries, imply remarkable morbidity with a significant effect on the quality of life and a high sanitary cost. The management of these wounds requires complex actions such as surgical debris, antibiotic treatment, dressings and even revascularization. These wounds are characterized by poor oxygen supply resulting in inadequate oxygenation of the affected tissue. The adjuvant treatment with hyperbaric oxygen therapy (HBOT) may increase tissue oxygenation favoring the healing of wounds which do not respond to the usual clinical care. The increase in the partial pressure of oxygen contributes to cover the energy demands necessary for the healing process and reduces the incidence of infections. Moreover, the increase in oxygen leads to the production of reactive species with hormetic activity, acting on signaling pathways that modulate the synthesis of inflammation mediators, antioxidants and growth factors which can contribute to the healing process. Studies performed with cell cultures and in animal models seem to demonstrate the beneficial effects of HBOT. However, clinical trials do not show such conclusive results; thus, additional randomized placebo-controlled studies are necessary to determine the real efficacy of HBOT and the mechanism of action for various types of wounds.
Collapse
Affiliation(s)
- Silvia Tejada
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands & CIBEROBN (Physiopathology of Obesity and Nutrition), E-07122, Palma de Mallorca, Balearic Islands, Spain
| | - Juan M Batle
- MEDISUB Recerca (Institut de Recerca Hiperbarica), Cami d´Aucanada 52, E-07410 Pto. de Alcudia, Balearic Islands, Spain
| | - Miguel D Ferrer
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands & CIBEROBN (Physiopathology of Obesity and Nutrition), E-07122, Palma de Mallorca, Balearic Islands, Spain
| | - Carla Busquets-Cortés
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands & CIBEROBN (Physiopathology of Obesity and Nutrition), E-07122, Palma de Mallorca, Balearic Islands, Spain
| | - Margalida Monserrat-Mesquida
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands & CIBEROBN (Physiopathology of Obesity and Nutrition), E-07122, Palma de Mallorca, Balearic Islands, Spain
| | - Seyed M Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, 14359-16471 Tehran, Iran
| | - Maria Del Mar Bibiloni
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands & CIBEROBN (Physiopathology of Obesity and Nutrition), E-07122, Palma de Mallorca, Balearic Islands, Spain
| | - Antoni Pons
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands & CIBEROBN (Physiopathology of Obesity and Nutrition), E-07122, Palma de Mallorca, Balearic Islands, Spain
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands & CIBEROBN (Physiopathology of Obesity and Nutrition), E-07122, Palma de Mallorca, Balearic Islands, Spain
| |
Collapse
|
37
|
A Modified Collagen Dressing Induces Transition of Inflammatory to Reparative Phenotype of Wound Macrophages. Sci Rep 2019; 9:14293. [PMID: 31586077 PMCID: PMC6778115 DOI: 10.1038/s41598-019-49435-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022] Open
Abstract
Collagen containing wound-care dressings are extensively used. However, the mechanism of action of these dressings remain unclear. Earlier studies utilizing a modified collagen gel (MCG) dressing demonstrated improved vascularization of ischemic wounds and better healing outcomes. Wound macrophages are pivotal in facilitating wound angiogenesis and timely healing. The current study was designed to investigate the effect of MCG on wound macrophage phenotype and function. MCG augmented recruitment of macrophage at the wound-site, attenuated pro-inflammatory and promoted anti-inflammatory macrophage polarization. Additionally, MCG increased anti-inflammatory IL-10, IL-4 and pro-angiogenic VEGF production, indicating a direct role of MCG in resolving wound inflammation and improving angiogenesis. At the wound-site, impairment in clearance of apoptotic cell bioburden enables chronic inflammation. Engulfment of apoptotic cells by macrophages (efferocytosis) resolves inflammation via a miR-21-PDCD4-IL-10 pathway. MCG-treated wound macrophages exhibited a significantly bolstered efferocytosis index. Such favorable outcome significantly induced miR-21 expression. MCG-mediated IL-10 production was dampened under conditions of miR-21 knockdown pointing towards miR-21 as a causative factor. Pharmacological inhibition of JNK attenuated IL-10 production by MCG, implicating miR-21-JNK pathway in MCG-mediated IL-10 production by macrophages. This work provides direct evidence demonstrating that a collagen-based wound-care dressing may influence wound macrophage function and therefore modify wound inflammation outcomes.
Collapse
|
38
|
Abstract
Amnion and chorion products show great promise and have real potential to be mainstays of treatment for chronic, nonhealing wounds. Although amniotic products do carry a cost, the decrease in time to healing, with the assumed subsequent decrease in complication and infection rates, should also be taken into consideration. These products, with their unique biologic potential and availability in the clinical setting, may prove to be beneficial in a vast array of podiatric surgical applications.
Collapse
|
39
|
Ocampo-Candiani J, Saint Aroman M, Carballido F, Darde MS, Vázquez Martínez O, Garza-Rodríguez V, Chavez-Alvarez S, Aardewijn T. Efficacy of a repair cream based on Rhealba Oat plantlets extract and active healing compounds in peelings: benefit to patient's downtime and pain. J Eur Acad Dermatol Venereol 2019; 33 Suppl 5:3-12. [PMID: 31536168 DOI: 10.1111/jdv.15829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/05/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND The frequency of dermatological procedures is steadily increasing, accompanying a growing demand from patients. Chemical peels are a method of resurfacing in the treatment of various skin conditions. However, during the early healing process, patients may impose downtime on themselves. The erythema, pain and poor aesthetic appearance of the skin can lead to unwillingness to participate in social or professional activities. OBJECTIVES The objective of this study was to evaluate the tolerance and efficacy of a repair cream based on Rhealba Oat plantlets extract and active healing compounds after a peeling procedure. METHODS Men and women, aged 18-65 years, with Fitzpatrick phototype I-IV, who had previously received a medium-depth chemical peel on the face (TCA 30%) entered with their consent a clinical study evaluating the new test product based on Rhealba Oat and active healing compounds. At the beginning of the study, the selected patients received a TCA 30% medium-depth peel. Afterwards, they were treated during 29 days with the repair cream and evaluated for the benefits to downtime and pain. RESULTS Significant reductions of pain (P < 0.0114) and erythema (P < 0.0001) were observed in the study. The downtime reduction with the tested cream was 92% - from 9 days after the previous peeling procedure to 0.74 days with application of the tested cream - a difference of 8.39 days. CONCLUSION In consequence, the tested repair cream based on Rhealba Oat plantlets extract and active healing compounds brings clinical benefit to patients who undergo peeling procedures. By reducing pain and downtime, it allows patients to get back to their daily life activities a week earlier than with previous peels.
Collapse
Affiliation(s)
- J Ocampo-Candiani
- Dermatology Department, Hospital Universitario Dr José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | | | - F Carballido
- Pierre Fabre Dermo-Cosmétique, A-Derma, Lavaur, France
| | - M S Darde
- Pierre Fabre Dermo-Cosmétique, Toulouse, France
| | - O Vázquez Martínez
- Dermatology Department, Hospital Universitario Dr José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - V Garza-Rodríguez
- Dermatology Department, Hospital Universitario Dr José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - S Chavez-Alvarez
- Dermatology Department, Hospital Universitario Dr José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - T Aardewijn
- Pierre Fabre Dermo-Cosmétique, A-Derma, Lavaur, France
| |
Collapse
|
40
|
Yonemitsu MA, Lin TY, Yu K. Hyaluronic acid is required for palatal shelf movement and its interaction with the tongue during palatal shelf elevation. Dev Biol 2019; 457:57-68. [PMID: 31526805 DOI: 10.1016/j.ydbio.2019.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/29/2019] [Accepted: 09/14/2019] [Indexed: 12/22/2022]
Abstract
Palatal shelf elevation is an essential morphogenetic process that results from palatal shelf movement caused by an intrinsic elevating force. The nature of the elevating force remains unclear, but the accumulation of hyaluronic acid (HA) in the extracellular matrix (ECM) of the palatal shelves may play a pivotal role in developing the elevating force. In mammals, HA is synthesized by hyaluronic acid synthases (HAS) that are encoded by three genes (Has1-3). Here, we used the Wnt1-Cre driver to conditionally disrupt hyaluronic acid synthase 2 (Has2) in cranial neural crest cell lineages. All Has2 conditional knockout (cko) mice had cleft palate due to failed shelf elevation during palate development. The HA content was significantly reduced in the craniofacial mesenchyme of Has2 cko mutants. Reduced HA content affected the ECM space and shelf expansion to result in a reduced shelf area and an increased mesenchymal cell density in the palatal shelves of Has2 cko mutants. We examined palatal shelf movement by removal of the tongue and mandible from unfixed E13.5 and early E14.5 embryonic heads. Reduced shelf expansion in Has2 cko mutants altered palatal shelf movement in the medial direction resulting in a larger gap between the palatal shelves than that of littermate controls. We further examined palatal shelf movement in the intact oral cavity by culturing explants containing the maxilla, palate, mandible and tongue (MPMT explants). The palatal shelves elevated alongside morphological changes in the tongue after 24-h culture in MPMT explants of early E14.5 wild type embryos. On the contrary, shelf elevation failed to occur in MPMT explants of age-matched Has2 cko mutants because the tongue obstructs palatal shelf movement, suggesting that reduced shelf expansion could be essential for the palatal shelves to interact with the tongue and overcome tongue obstruction during shelf elevation. Has2 cko mutants also showed micrognathia due to reduced HA content in the mandibular mesenchyme including Meckel's cartilage. Through 3D imaging and morphometric analysis, we demonstrate that mandibular growth results in a significant increase in the vertical dimension of the common oral-nasal cavity that facilitates palatal shelf movement and its interaction with the tongue during shelf elevation.
Collapse
Affiliation(s)
- Marisa A Yonemitsu
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington and Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Tzu-Yin Lin
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington and Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Kai Yu
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington and Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, 98101, USA.
| |
Collapse
|
41
|
Carmen L, Maria V, Morales-Medina JC, Vallelunga A, Palmieri B, Iannitti T. Role of proteoglycans and glycosaminoglycans in Duchenne muscular dystrophy. Glycobiology 2019; 29:110-123. [PMID: 29924302 DOI: 10.1093/glycob/cwy058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 06/18/2018] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an inherited fatal X-linked myogenic disorder with a prevalence of 1 in 3500 male live births. It affects voluntary muscles, and heart and breathing muscles. DMD is characterized by continuous degeneration and regeneration cycles resulting in extensive fibrosis and a progressive reduction in muscle mass. Since the identification of a reduction in dystrophin protein as the cause of this disorder, numerous innovative and experimental therapies, focusing on increasing the levels of dystrophin, have been proposed, but the clinical improvement has been unsatisfactory. Dystrophin forms the dystrophin-associated glycoprotein complex and its proteins have been studied as a promising novel therapeutic target to treat DMD. Among these proteins, cell surface glycosaminoglycans (GAGs) are found almost ubiquitously on the surface and in the extracellular matrix (ECM) of mammalian cells. These macromolecules interact with numerous ligands, including ECM constituents, adhesion molecules and growth factors that play a crucial role in muscle development and maintenance. In this article, we have reviewed in vitro, in vivo and clinical studies focused on the functional role of GAGs in the pathophysiology of DMD with the final aim of summarizing the state of the art of GAG dysregulation within the ECM in DMD and discussing future therapeutic perspectives.
Collapse
Affiliation(s)
- Laurino Carmen
- Department of General Surgery and Surgical Specialties, University of Modena and Reggio Emilia Medical School, Surgical Clinic, Modena, Italy
| | - Vadala' Maria
- Department of General Surgery and Surgical Specialties, University of Modena and Reggio Emilia Medical School, Surgical Clinic, Modena, Italy
| | - Julio Cesar Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, CP, AP 62, Mexico
| | - Annamaria Vallelunga
- Department of Medicine and Surgery, Centre for Neurodegenerative Diseases (CEMAND), University of Salerno, Salerno, Italy
| | - Beniamino Palmieri
- Department of General Surgery and Surgical Specialties, University of Modena and Reggio Emilia Medical School, Surgical Clinic, Modena, Italy
| | | |
Collapse
|
42
|
The Antiseptic Octenidine Inhibits Langerhans Cell Activation and Modulates Cytokine Expression upon Superficial Wounding with Tape Stripping. J Immunol Res 2019; 2019:5143635. [PMID: 30944833 PMCID: PMC6421797 DOI: 10.1155/2019/5143635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/03/2018] [Accepted: 01/14/2019] [Indexed: 12/31/2022] Open
Abstract
Ideal agents for the topical treatment of skin wounds should have antimicrobial efficacy without negative influence on wound healing. Octenidine (OCT) has become a widely used antiseptic in professional wound care, but its influence on several components of the wound healing process remains unclear. In the present study, we have used a superficial wound model using tape stripping on human full-thickness skin ex vivo to investigate the influence of OCT on epidermal Langerhans cells (LCs) and cytokine secretion pattern of skin cells during wound healing in a model without disruption of the normal skin structure. Histological and immunofluorescence studies showed that OCT neither altered human skin architecture nor the viability of skin cells upon 48 hours of culture in unwounded or wounded skin. The epidermis of explants and LCs remained morphologically intact throughout the whole culture period upon OCT treatment. OCT inhibited the upregulation of the maturation marker CD83 on LCs and prevented their emigration in wounded skin. Furthermore, OCT reduced both pro- and anti-inflammatory mediators (IL-8, IL-33, and IL-10), while angiogenesis and growth factor mediators (VEGF and TGF-β1) remained unchanged in skin explant cultures. Our data provide novel insights into the host response to OCT in the biologically relevant environment of viable human (wounded) skin.
Collapse
|
43
|
Shamskhou EA, Kratochvil MJ, Orcholski ME, Nagy N, Kaber G, Steen E, Balaji S, Yuan K, Keswani S, Danielson B, Gao M, Medina C, Nathan A, Chakraborty A, Bollyky PL, De Jesus Perez VA. Hydrogel-based delivery of Il-10 improves treatment of bleomycin-induced lung fibrosis in mice. Biomaterials 2019; 203:52-62. [PMID: 30852423 DOI: 10.1016/j.biomaterials.2019.02.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a life-threatening progressive lung disorder with limited therapeutic options. While interleukin-10 (IL-10) is a potent anti-inflammatory and anti-fibrotic cytokine, its utility in treating lung fibrosis has been limited by its short half-life. We describe an innovative hydrogel-based approach to deliver recombinant IL-10 to the lung for the prevention and reversal of pulmonary fibrosis in a mouse model of bleomycin-induced lung injury. Our studies show that a hyaluronan and heparin-based hydrogel system locally delivers IL-10 by capitalizing on the ability of heparin to reversibly bind IL-10 without bleeding or other complications. This formulation is significantly more effective than soluble IL-10 for both preventing and reducing collagen deposition in the lung parenchyma after 7 days of intratracheal administration. The anti-fibrotic effect of IL-10 in this system is dependent on suppression of TGF-β driven collagen production by lung fibroblasts and myofibroblasts. We conclude that hydrogel-based delivery of IL-10 to the lung is a promising therapy for fibrotic lung disorders.
Collapse
Affiliation(s)
- Elya A Shamskhou
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Michael J Kratochvil
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA; Department of Medicine, Division of Infectious Disease, Stanford University, Stanford, CA, 94305, USA
| | - Mark E Orcholski
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Nadine Nagy
- Department of Medicine, Division of Infectious Disease, Stanford University, Stanford, CA, 94305, USA
| | - Gernot Kaber
- Department of Medicine, Division of Infectious Disease, Stanford University, Stanford, CA, 94305, USA
| | - Emily Steen
- Department of Surgery, Division of Pediatric Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
| | - Swathi Balaji
- Department of Surgery, Division of Pediatric Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
| | - Ke Yuan
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Sundeep Keswani
- Department of Surgery, Division of Pediatric Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
| | - Ben Danielson
- Department of Medicine, Division of Infectious Disease, Stanford University, Stanford, CA, 94305, USA
| | - Max Gao
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Carlos Medina
- Department of Medicine, Division of Infectious Disease, Stanford University, Stanford, CA, 94305, USA
| | - Abinaya Nathan
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Ananya Chakraborty
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Paul L Bollyky
- Department of Medicine, Division of Infectious Disease, Stanford University, Stanford, CA, 94305, USA
| | - Vinicio A De Jesus Perez
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
44
|
Wu L, Magaz A, Maughan E, Oliver N, Darbyshire A, Loizidou M, Emberton M, Birchall M, Song W. Cellular responses to thermoresponsive stiffness memory elastomer nanohybrid scaffolds by 3D-TIPS. Acta Biomater 2019; 85:157-171. [PMID: 30557696 DOI: 10.1016/j.actbio.2018.12.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 11/11/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022]
Abstract
Increasing evidence suggests the contribution of the dynamic mechanical properties of the extracellular matrix (ECM) to regulate tissue remodeling and regeneration. Following our recent study on a family of thermoresponsive 'stiffness memory' elastomeric nanohybrid scaffolds manufactured via an indirect 3D printing guided thermally-induced phase separation process (3D-TIPS), this work reports in vitro and in vivo cellular responses towards these scaffolds with different initial stiffness and hierarchically interconnected porous structure. The viability of mouse embryonic dermal fibroblasts in vitro and the tissue responses during the stiffness softening of the scaffolds subcutaneously implanted in rats for three months were evaluated by immunohistochemistry and histology. Scaffolds with a higher initial stiffness and a hierarchical porous structure outperformed softer ones, providing initial mechanical support to cells and surrounding tissues before promoting cell and tissue growth during stiffness softening. Vascularization was guided throughout the digitally printed interconnected networks. All scaffolds exhibited polarization of the macrophage response from a macrophage phenotype type I (M1) towards a macrophage phenotype type II (M2) and down-regulation of the T-cell proliferative response with increasing implantation time; however, scaffolds with a more pronounced thermo-responsive stiffness memory mechanism exerted higher inflammo-informed effects. These results pave the way for personalized and biologically responsive soft tissue implants and implantable device with better mechanical matches, angiogenesis and tissue integration. Statement of Significance This work reports cellular responses to a family of 3D-TIPS thermoresponsive nanohybrid elastomer scaffolds with different stiffness softening both in vitro and in vivo rat models. The results, for the first time, have revealed the effects of initial stiffness and dynamic stiffness softening of the scaffolds on tissue integration, vascularization and inflammo-responses, without coupling chemical crosslinking processes. The 3D printed, hierarchically interconnected porous structures guide the growth of myofibroblasts, collagen fibers and blood vessels in real 3D scales. In vivo study on those unique smart elastomer scaffolds will help pave the way for personalized and biologically responsive soft tissue implants and implantable devices with better mechanical matches, angiogenesis and tissue integration.
Collapse
Affiliation(s)
- Linxiao Wu
- Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
| | - Adrián Magaz
- Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
| | - Elizabeth Maughan
- UCL Ear Institute, Royal National Throat Nose and Ear Hospital and University College London, London, United Kingdom
| | - Nina Oliver
- Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
| | - Arnold Darbyshire
- Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
| | - Marilena Loizidou
- Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
| | - Mark Emberton
- Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
| | - Martin Birchall
- UCL Ear Institute, Royal National Throat Nose and Ear Hospital and University College London, London, United Kingdom
| | - Wenhui Song
- Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom.
| |
Collapse
|
45
|
Human Novel MicroRNA Seq-915_x4024 in Keratinocytes Contributes to Skin Regeneration by Suppressing Scar Formation. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 14:410-423. [PMID: 30731322 PMCID: PMC6365370 DOI: 10.1016/j.omtn.2018.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 12/23/2022]
Abstract
Early in gestation, wounds in fetal skin heal by regeneration, in which microRNAs play key roles. Seq-915_x4024 is a novel microRNA candidate confirmed by deep sequencing and mirTools 2.0. It is highly expressed in fetal keratinocytes during early gestation. Using an in vitro wound-healing assay, Transwell cell migration assay, and MTS proliferation assay, we demonstrated that keratinocytes overexpressing seq-915_x4024 exhibited higher proliferative activity and the ability to promote fibroblast migration and fibroblast proliferation. These characteristics of keratinocytes are the same biological behaviors as those of fetal keratinocytes, which contribute to skin regeneration. In addition, seq-915_x4024 suppressed the expression of the pro-inflammatory markers TNF-α, IL-6, and IL-8 and the pro-inflammatory chemokines CXCL1 and CXCL5. We also demonstrated that seq-915_x4024 regulates TGF-β isoforms and the extracellular matrix. Moreover, using an in vivo wound-healing model, we demonstrated that overexpression of seq-915_x4024 in keratinocytes suppresses inflammatory cell infiltration and scar formation. Using bioinformatics analyses, luciferase reporter assays, and western blotting, we further demonstrated that Sar1A, Smad2, TNF-α, and IL-8 are direct targets of seq-915_x4024. Furthermore, the expression of phosphorylated Smad2 and Smad3 was reduced by seq-915_x4024. Seq-915_x4024 could be used as an anti-fibrotic factor for the treatment of wound healing.
Collapse
|
46
|
Zang T, Cuttle L, Broszczak DA, Broadbent JA, Tanzer C, Parker TJ. Characterization of the Blister Fluid Proteome for Pediatric Burn Classification. J Proteome Res 2019; 18:69-85. [PMID: 30520305 DOI: 10.1021/acs.jproteome.8b00355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Blister fluid (BF) is a novel and viable research matrix for burn injury study, which can reflect both systemic and local microenvironmental responses. The protein abundance in BF from different burn severities were initially observed using a 2D SDS-PAGE approach. Subsequently, a quantitative data independent acquisition (DIA) method, SWATH, was employed to characterize the proteome of pediatric burn blister fluid. More than 600 proteins were quantitatively profiled in 87 BF samples from different pediatric burn patients. These data were correlated with clinically assessed burn depth and time until complete wound re-epithelialization through several different statistical analyses. Several proteins from these analyses exhibited significant abundance change between different burn depth or re-epithelialization groups, and can be considered as potential biomarker candidates. Further gene ontology (GO) enrichment analysis of the significant proteins revealed the most significant burn related biological processes (BP) that are altered with burn depth, including homeostasis and oxygen transport. However, for wounds with re-epithelialization times more or less than 21 days, the significant GO annotations were related to enzyme activity. This quantitative proteomics investigation of burn BF may enable objective classification of burn wound severity and assist with clinical decision-making. Data are available via ProteomeXchange with identifier PXD011102.
Collapse
Affiliation(s)
- Tuo Zang
- Tissue Repair and Translational Physiology Program , Institute of Health and Biomedical Innovation, Queensland University of Technology , Kelvin Grove , Queensland 4059 , Australia.,School of Biomedical Sciences, Faculty of Health , Queensland University of Technology , Brisbane , Queensland 4000 , Australia.,Wound Management Innovation Co-operative Research Centre , Brisbane , Queensland 4000 , Australia
| | - Leila Cuttle
- Tissue Repair and Translational Physiology Program , Institute of Health and Biomedical Innovation, Queensland University of Technology , Kelvin Grove , Queensland 4059 , Australia.,School of Biomedical Sciences, Faculty of Health , Queensland University of Technology , Brisbane , Queensland 4000 , Australia.,Centre for Children's Burns and Trauma Research, Queensland University of Technology , Institute of Health and Biomedical Innovation at the Centre for Children's Health Research , South Brisbane , Queensland 4101 , Australia
| | - Daniel A Broszczak
- Tissue Repair and Translational Physiology Program , Institute of Health and Biomedical Innovation, Queensland University of Technology , Kelvin Grove , Queensland 4059 , Australia.,School of Biomedical Sciences, Faculty of Health , Queensland University of Technology , Brisbane , Queensland 4000 , Australia.,School of Science, Faculty of Health Sciences , Australian Catholic University , Brisbane , Queensland 4014 , Australia
| | - James A Broadbent
- Tissue Repair and Translational Physiology Program , Institute of Health and Biomedical Innovation, Queensland University of Technology , Kelvin Grove , Queensland 4059 , Australia.,School of Biomedical Sciences, Faculty of Health , Queensland University of Technology , Brisbane , Queensland 4000 , Australia
| | - Catherine Tanzer
- Tissue Repair and Translational Physiology Program , Institute of Health and Biomedical Innovation, Queensland University of Technology , Kelvin Grove , Queensland 4059 , Australia.,Wound Management Innovation Co-operative Research Centre , Brisbane , Queensland 4000 , Australia.,Centre for Children's Burns and Trauma Research, Queensland University of Technology , Institute of Health and Biomedical Innovation at the Centre for Children's Health Research , South Brisbane , Queensland 4101 , Australia
| | - Tony J Parker
- Tissue Repair and Translational Physiology Program , Institute of Health and Biomedical Innovation, Queensland University of Technology , Kelvin Grove , Queensland 4059 , Australia.,School of Biomedical Sciences, Faculty of Health , Queensland University of Technology , Brisbane , Queensland 4000 , Australia
| |
Collapse
|
47
|
Use of Cerium Oxide Nanoparticles Conjugated with MicroRNA-146a to Correct the Diabetic Wound Healing Impairment. J Am Coll Surg 2018; 228:107-115. [PMID: 30359833 DOI: 10.1016/j.jamcollsurg.2018.09.017] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/23/2018] [Accepted: 09/14/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Diabetic wounds have become one of the most challenging public health issues of the 21st century, yet there is no effective treatment available. We have previously shown that the diabetic wound healing impairment is associated with increased inflammation and decreased expression of the regulatory microRNA miR-146a. We have conjugated miR-146a to cerium oxide nanoparticles (CNP-miR146a) to target reactive oxygen species (ROS) and inflammation. This study aimed to evaluate the consequences of CNP-miR146a treatment of diabetic wounds. STUDY DESIGN Eight-millimeter wounds were created on the dorsal skin of Db/Db mice and treated with PBS or differing concentrations of CNP-mir146a (1; 10; 100; or 1,000 ng) at the time of wounding. Rate of wound closure was measured until the wounds were fully healed. At 4 weeks post-healing, a dumbbell-shaped skin sample was collected, with the healed wound in the center, and an Instron 5942 testing unit was used to measure the maximum load and modulus. RESULTS Our data showed that diabetic wounds treated with PBS or 1 ng CNP-miR146a took 18 days to heal. Treatment with 10, 100, or 1,000 ng of CNP+miR-146a effectively enhanced healing, and wounds were fully closed at day 14 post-wounding. The healed skin from the CNP-miR146a-treated group showed a trend of improved biomechanical properties (increased maximum load and modulus), however it did not reach significance. CONCLUSIONS We found that a 100-ng dose of CNP-miR146a improved diabetic wound healing and did not impair the biomechanical properties of the skin post-healing. This nanotechnology-based therapy is promising, and future studies are warranted to transfer this therapy to clinical application.
Collapse
|
48
|
Chen Z, Gu J, El Ayadi A, Oberhauser AF, Zhou J, Sousse LE, Finnerty CC, Herndon DN, Boor PJ. Effect of N-(2-aminoethyl) ethanolamine on hypertrophic scarring changes in vitro: Finding novel anti-fibrotic therapies. Toxicol Appl Pharmacol 2018; 362:9-19. [PMID: 30248415 DOI: 10.1016/j.taap.2018.09.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 08/29/2018] [Accepted: 09/20/2018] [Indexed: 01/21/2023]
Abstract
Hypertrophic scars (HS) limit movement, decrease quality of life, and remain a major impediment to rehabilitation from burns. However, no effective pharmacologic therapies for HS exist. Here we tested the in vitro anti-fibrotic effects of the novel chemical N-(2-aminoethyl) ethanolamine (AEEA) at non-toxic concentrations. Scanning electron microscopy showed that AEEA markedly altered the structure of the extracellular matrix (ECM) produced by primary dermal fibroblasts isolated from a HS of a burn patient (HTS). Compression atomic force microscopy revealed that AEEA stiffened the 3D nanostructure of ECM formed by HTS fibroblasts. Western blot analysis in three separate types of primary human dermal fibroblasts (including HTS) showed that AEEA exposure increased the extractability of type I collagen in a dose- and time-dependent fashion, while not increasing collagen synthesis. A comparison of the electrophoretic behavior of the same set of samples under native and denaturing conditions suggested that AEEA alters the 3D structure of type I collagen. The antagonization effect of AEEA to TGF-β1 on ECM formation was also observed. Furthermore, analyses of the anti-fibrotic effects of analogs of AEEA (with modified pharmacophores) suggest the existence of a chemical structure-activity relationship. Thus, AEEA and its analogs may inhibit HS development; further study and optimization of analogs may be a promising strategy for the discovery for effective HS therapies.
Collapse
Affiliation(s)
- Zhenping Chen
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jianhua Gu
- AFM/SEM Core Facility, The Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Amina El Ayadi
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA; Shriners Hospitals for Children, Galveston, TX 77550, USA
| | - Andres F Oberhauser
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Linda E Sousse
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA; Shriners Hospitals for Children, Galveston, TX 77550, USA
| | - Celeste C Finnerty
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA; Shriners Hospitals for Children, Galveston, TX 77550, USA
| | - David N Herndon
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA; Shriners Hospitals for Children, Galveston, TX 77550, USA
| | - Paul J Boor
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Shriners Hospitals for Children, Galveston, TX 77550, USA.
| |
Collapse
|
49
|
Fallacara A, Baldini E, Manfredini S, Vertuani S. Hyaluronic Acid in the Third Millennium. Polymers (Basel) 2018; 10:E701. [PMID: 30960626 PMCID: PMC6403654 DOI: 10.3390/polym10070701] [Citation(s) in RCA: 445] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 02/07/2023] Open
Abstract
Since its first isolation in 1934, hyaluronic acid (HA) has been studied across a variety of research areas. This unbranched glycosaminoglycan consisting of repeating disaccharide units of N-acetyl-d-glucosamine and d-glucuronic acid is almost ubiquitous in humans and in other vertebrates. HA is involved in many key processes, including cell signaling, wound reparation, tissue regeneration, morphogenesis, matrix organization and pathobiology, and has unique physico-chemical properties, such as biocompatibility, biodegradability, mucoadhesivity, hygroscopicity and viscoelasticity. For these reasons, exogenous HA has been investigated as a drug delivery system and treatment in cancer, ophthalmology, arthrology, pneumology, rhinology, urology, aesthetic medicine and cosmetics. To improve and customize its properties and applications, HA can be subjected to chemical modifications: conjugation and crosslinking. The present review gives an overview regarding HA, describing its history, physico-chemical, structural and hydrodynamic properties and biology (occurrence, biosynthesis (by hyaluronan synthases), degradation (by hyaluronidases and oxidative stress), roles, mechanisms of action and receptors). Furthermore, both conventional and recently emerging methods developed for the industrial production of HA and its chemical derivatization are presented. Finally, the medical, pharmaceutical and cosmetic applications of HA and its derivatives are reviewed, reporting examples of HA-based products that currently are on the market or are undergoing further investigations.
Collapse
Affiliation(s)
- Arianna Fallacara
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technology (COSMAST), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| | - Erika Baldini
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technology (COSMAST), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technology (COSMAST), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| | - Silvia Vertuani
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technology (COSMAST), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| |
Collapse
|
50
|
Dash S, Sarashetti PM, Rajashekar B, Chowdhury R, Mukherjee S. TGF-β2-induced EMT is dampened by inhibition of autophagy and TNF-α treatment. Oncotarget 2018; 9:6433-6449. [PMID: 29464083 PMCID: PMC5814223 DOI: 10.18632/oncotarget.23942] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 12/23/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) typically develops in a chronic inflammatory setting causal to release of a plethora of growth factors and cytokines. However, the molecular effect of these cytokines on HCC progression is poorly understood. In this study, we exposed HCC cells to TGF-β2 (Transforming Growth Factor-β2), which resulted in a significant elevation of EMT (Epithelial to Mesenchymal Transition) like features. Molecular analysis of EMT markers showed an increase at both RNA and protein levels upon TGF-β2 administration along with up-regulation of TGF-β-induced Smad signaling. Induction of EMT was associated with a simultaneous increase in reactive oxygen species (ROS) and cytostasis of TGF-β2-treated cells. Importantly, quenching of ROS resulted in a significant promotion of TGF-β2-induced EMT. Furthermore, cells treated with TGF-β2 also showed an enhanced autophagic flux. Interestingly, inhibition of autophagy by chloroquine-di-phosphate (CQDP) or siRNA-mediated ablation of ATG5 drastically inhibited TGF-β2-induced EMT. Autophagy inhibition significantly increased ROS levels promoting apoptosis. It was further observed that pro-inflammatory cytokine like, TNF-α (Tumor Necrosis Factor-α) can antagonize TGF-β2-induced response by down-regulating autophagy, increasing ROS levels and thus inhibiting EMT in HCC cells. This inhibitory effect of TNF-α is serum-independent. Transcriptomic analysis through RNA sequencing was further performed which validated that TGF-β2-induced autophagic genes are inhibited by TNF-α treatment suppressing EMT. Our study suggests that autophagy plays a pro-metastatic role facilitating EMT by regulating ROS levels in HCC cells and TNF-α can suppress EMT by inhibiting autophagy. We provide unique mechanistic insights into the role of TGF-β2 in HCC cells, along with appropriate cues to effectively control the disease.
Collapse
Affiliation(s)
- Subhra Dash
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India
| | | | - Balaji Rajashekar
- Genotypic Technology Pvt. Ltd., Bangalore, India
- Institute of Computer Science, University of Tartu, Estonia
| | - Rajdeep Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India
| | - Sudeshna Mukherjee
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India
| |
Collapse
|