1
|
Torres-Ruiz M, de Alba Gonzalez M, Cañas Portilla AI, Coronel R, Liste I, González-Caballero MC. Effects of nanomolar methylmercury on developing human neural stem cells and zebrafish Embryo. Food Chem Toxicol 2024; 188:114684. [PMID: 38663761 DOI: 10.1016/j.fct.2024.114684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Exposure to mercury and its organic form methylmercury (MeHg), is of great concern for the developing nervous system. Despite available literature on MeHg neurotoxicity, there is still uncertainty about its mechanisms of action and the doses that trigger developmental effects. Our study combines two alternative methodologies, the human neural stem cells (NSC) and the zebrafish (ZF) embryo, to address the neurotoxic effects of early exposure to nanomolar concentrations of MeHg. Our results show linear or nonmonotonic (hormetic) responses depending on studied parameters. In ZF, we observed a hormetic response in locomotion and larval rotation, but a concentration-dependent response for sensory organ size and habituation. We also observed a possible delayed response as MeHg had greater effects on larval activity at 5 days than at 24 h. In NSC cells, some parameters show a clear dose dependence, such as increased apoptosis and differentiation to glial cells or decreased neuronal precursors; while others show a hormetic response: neuronal differentiation or cell proliferation. This study shows that the ZF model was more susceptible than NSC to MeHg neurotoxicity. The combination of different models has improved the understanding of the underlying mechanisms of toxicity and possible compensatory mechanisms at the cellular and organismal level.
Collapse
Affiliation(s)
- Mónica Torres-Ruiz
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid, 28220, Spain.
| | - Mercedes de Alba Gonzalez
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid, 28220, Spain
| | - Ana I Cañas Portilla
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid, 28220, Spain
| | - Raquel Coronel
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III, Madrid, Spain; Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Madrid, Spain
| | - Isabel Liste
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Mª Carmen González-Caballero
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid, 28220, Spain.
| |
Collapse
|
2
|
Pinheiro J, Pinheiro E, de Deus GR, Saito G, Luz WL, Assad N, da Cunha Palheta MR, de Jesus Oliveira Batista E, Morais S, Passos A, Oliveira KRHM, Herculano AM. Brain oxidative stress mediates anxiety-like behavior induced by indomethacin in zebrafish: protective effect of alpha-tocopherol. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1715-1725. [PMID: 37721555 PMCID: PMC10858826 DOI: 10.1007/s00210-023-02661-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/01/2023] [Indexed: 09/19/2023]
Abstract
RATIONALE Indomethacin (INDO) is a widely utilized non-steroidal anti-inflammatory drug (NSAID) with recognized effect on the central nervous system. Although previous reports demonstrate that prolonged treatment with indomethacin can lead to behavioral alterations such as anxiety disorder, the biochemical effect exerted by this drug on the brain are not fully understood. OBJECTIVES The aim of present study was to evaluate if anxiety-like behavior elicited by indomethacin is mediated by brains oxidative stress as well as if alpha-tocopherol, a potent antioxidant, is able to prevent the behavioral and biochemical alterations induced by indomethacin treatment. METHODS Zebrafish were utilized as experimental model and subdivided into control, INDO 1 mg/Kg, INDO 2 mg/Kg, INDO 3 g/Kg, α-TP 2 mg/Kg, α-TP 2 mg/Kg + INDO 1 mg/Kg and α-TP + INDO 2 mg/Kg groups. Vertical distributions elicited by novelty and brain oxidative stress were utilized to determinate behavioral and biochemical alterations elicited by indomethacin treatment, respectively. RESULTS Our results showed that treatment with indomethacin 3 mg/kg induces animal death. No changes in animal survival were observed in animals treated with lower doses of indomethacin. Indomethacin induced significant anxiogenic-like behavior as well as intense oxidative stress in zebrafish brain. Treatment with alpha-tocopherol was able to prevent anxiety-like behavior and brain oxidative stress induced by indomethacin. CONCLUSIONS Data presented in current study demonstrated for the first time that indomethacin induces anxiety-like behavior mediated by brain oxidative stress in zebrafish as well as that pre-treatment with alpha-tocopherol is able to prevent these collateral effects.
Collapse
Affiliation(s)
- Jessica Pinheiro
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Emerson Pinheiro
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Gustavo Ramalho de Deus
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Geovanna Saito
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Waldo Lucas Luz
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Nadyme Assad
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Melk Roberto da Cunha Palheta
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Evander de Jesus Oliveira Batista
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Protozoology, Tropical Medicine Center, Federal University of Pará, Belém, Brazil
| | - Suellen Morais
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Adelaide Passos
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | - Anderson Manoel Herculano
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil.
| |
Collapse
|
3
|
Zuo K, Xu Q, Wang Y, Sui Y, Niu Y, Liu Z, Liu M, Liu X, Liu D, Sun W, Wang Z, Liu X, Liu J. L-Ascorbic Acid 2-Phosphate Attenuates Methylmercury-Induced Apoptosis by Inhibiting Reactive Oxygen Species Accumulation and DNA Damage in Human SH-SY5Y Cells. TOXICS 2023; 11:144. [PMID: 36851019 PMCID: PMC9967424 DOI: 10.3390/toxics11020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Methylmercury (MeHg) is a toxin that causes severe neuronal oxidative damage. As vitamin C is an antioxidant well-known to protect neurons from oxidative damage, our goal was to elucidate its protective mechanism against MeHg-induced oxidative stress in human neuroblastomas (SHSY5Y). We treated cells with MeHg, L-ascorbic acid 2-phosphate (AA2P), or both, and used MTT, flow cytometry, and Western blot analyses to assess cell damage. We found that MeHg significantly decreased the survival rate of SH-SY5Y cells in a time- and dose-dependent manner, increased apoptosis, downregulated PAR and PARP1 expression, and upregulated AIF, Cyto C, and cleaved Caspase-3 expression. A time course study showed that MeHg increased reactive oxygen species (ROS) accumulation; enhanced apoptosis; increased DNA damage; upregulated expression ofγH2A.X, KU70, 67 and 57 kDa AIF, CytoC, and cleaved Caspase-3; and downregulated expression of 116 kDa PARP1, PAR, BRAC1, and Rad51. Supplementation with AA2P significantly increased cell viability and decreased intrinsic ROS accumulation. It also reduced ROS accumulation in cells treated with MeHg and decreased MeHg-induced apoptosis. Furthermore, AA2P conversely regulated gene expression compared to MeHg. Collectively, we demonstrate that AA2P attenuates MeHg-induced apoptosis by alleviating ROS-mediated DNA damage and is a potential treatment for MeHg neurotoxicity.
Collapse
Affiliation(s)
- Kuiyang Zuo
- Department of Toxicology, School of Public Health, Jilin University, 1163 Xinmin Avenue, Changchun 130021, China
| | - Qi Xu
- Department of Toxicology, School of Public Health, Jilin University, 1163 Xinmin Avenue, Changchun 130021, China
| | - Yujie Wang
- Department of Toxicology, School of Public Health, Jilin University, 1163 Xinmin Avenue, Changchun 130021, China
| | - Yutong Sui
- Department of Toxicology, School of Public Health, Jilin University, 1163 Xinmin Avenue, Changchun 130021, China
| | - Ye Niu
- Department of Toxicology, School of Public Health, Jilin University, 1163 Xinmin Avenue, Changchun 130021, China
| | - Zinan Liu
- Department of Toxicology, School of Public Health, Jilin University, 1163 Xinmin Avenue, Changchun 130021, China
| | - Mingsheng Liu
- Department of Toxicology, School of Public Health, Jilin University, 1163 Xinmin Avenue, Changchun 130021, China
| | - Xinpeng Liu
- Department of Toxicology, School of Public Health, Jilin University, 1163 Xinmin Avenue, Changchun 130021, China
| | - Dan Liu
- Department of Toxicology, School of Public Health, Jilin University, 1163 Xinmin Avenue, Changchun 130021, China
| | - Wei Sun
- Department of Toxicology, School of Public Health, Jilin University, 1163 Xinmin Avenue, Changchun 130021, China
| | - Ziyu Wang
- Department of Toxicology, School of Public Health, Jilin University, 1163 Xinmin Avenue, Changchun 130021, China
| | - Xiaomei Liu
- Department of Toxicology, School of Public Health, Jilin University, 1163 Xinmin Avenue, Changchun 130021, China
| | - Jinyu Liu
- Department of Toxicology, School of Public Health, Jilin University, 1163 Xinmin Avenue, Changchun 130021, China
| |
Collapse
|
4
|
Zhu R, Liu C, Wang J, Zou L, Yang F, Chi X, Zhu J. Nano-TiO 2 aggravates bioaccumulation and developmental neurotoxicity of difenoconazole in zebrafish larvae via oxidative stress and apoptosis: Protective role of vitamin C. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114554. [PMID: 36682185 DOI: 10.1016/j.ecoenv.2023.114554] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Titanium dioxide nanoparticles (n-TiO2) could enhance the bioavailability and toxicity of coexisting organic contaminants in the aquatic environment. This study attempted to investigate the combined effects of n-TiO2 and difenoconazole (DIF) on the neurodevelopment of zebrafish and the underlying mechanisms. In this study, zebrafish embryos were exposed to n-TiO2 (100 μg/L), DIF (0, 0.1 and 0.5 mg/L) and their mixtures from 4 to 96 h post fertilization (hpf) and neurotoxicity was evaluated. Our results indicated that n-TiO2 adsorbed DIF into the brain of zebrafish and significantly enhanced the bioaccumulation of DIF and n-TiO2 in the 0.5 mg/L co-exposure group. 100 μg/L n-TiO2 was not developmentally toxic to the zebrafish larvae, but it exacerbated DIF-induced neurobehavioral alterations in the zebrafish larvae. n-TiO2 also aggravated DIF-induced suppression of central nervous system (CNS) neurogenesis in Tg (HuC:egfp) zebrafish, motor neuron axon length in Tg (hb9:egfp) zebrafish, and downregulation of neurodevelopmental genes (elavl3, ngn1, gap43, gfap and mbp). In addition, DIF elevated oxidative stress by accumulation of reactive oxygen species (ROS) and inhibition of antioxidant enzymes, and triggered apoptosis by upregulation of p53, bax, bcl-2 and caspase-3, which were markedly intensified in the presence of n-TiO2. Moreover, vitamin C (VC) ameliorated n-TiO2/DIF-induced abnormal locomotor behaviors and neurotoxicity by inhibiting oxidative stress and apoptosis, indicating that oxidative stress and apoptosis are involved in n-TiO2/DIF-induced neurotoxicity. Taken together, our data indicated that n-TiO2 enhanced the accumulation of DIF and heightened oxidative stress and apoptosis, thereby inducing neurotoxicity. This study exemplifies the importance of the toxicity assessment of chemical mixtures and novel insights to mitigate their combined toxicity.
Collapse
Affiliation(s)
- Renfei Zhu
- Department of Hepatobiliary Surgery, Affiliated Nantong Third Hospital of Nantong University, Nantong 226001, PR China
| | - Chunlan Liu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Jingyu Wang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, PR China
| | - Li Zou
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, PR China
| | - Fan Yang
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong, Nantong 226011, PR China.
| | - Xia Chi
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, PR China.
| | - Jiansheng Zhu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, PR China.
| |
Collapse
|
5
|
Félix L, Carreira P, Peixoto F. Effects of chronic exposure of naturally weathered microplastics on oxidative stress level, behaviour, and mitochondrial function of adult zebrafish (Danio rerio). CHEMOSPHERE 2023; 310:136895. [PMID: 36265700 DOI: 10.1016/j.chemosphere.2022.136895] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) are a big and growing environmental concern, with studies showing sublethal to acute biological impacts on typical aquatic organisms. However, little is known about the biological effects of naturally weathered MPs, particularly focusing on mitochondria dysfunction as the key trigger of the biological effects. Therefore, in this study, naturally weathered MPs were produced from day-to-day life products, characterized, and chronically exposed (21 days) to adult zebrafish at the concentration of 0.1 and 1 mg/L. Locomotion and unconditioned anxiety-like behaviour was assessed. Mitochondrial respiration, membrane potential, mitochondrial complex activity and oxidative-related parameters were evaluated in the brain and liver. The results revealed the weathered MPs as a copolymer of propylene and ethylene that induced anxiety-like behaviour. There was an increase in brain catalase activity while the brain lactate dehydrogenase activity was inhibited after exposure to 1 mg/L. Brain glutathione levels were increased while their ratio was not affected. Mitochondrial respiratory chain complex Ⅱ and IV were also significantly decreased in the brain, although not compromising mitochondrial function. On the other hand, exposure to 1 mg/L caused a deficiency in liver mitochondrial respiration and decreased mitochondrial membrane potential, which were associated with the mitochondrial respiratory chain inhibition. An increase in hepatic superoxide dismutase and catalase activity was noticed, supporting the occurrence of ROS-induced ROS release as the potential trigger for the mitochondrial dysfunction. Overall, these findings highlight the potential indirect and cumulative environmental effects these particles may pose to aquatic ecosystems.
Collapse
Affiliation(s)
- Luís Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, Vila Real, Portugal.
| | - Paulo Carreira
- Life Sciences and Environment School (ECVA), UTAD, Vila Real, Portugal
| | | |
Collapse
|
6
|
Adebiyi O, Adigun K, David-Odewumi P, Akindele U, Olayemi F. Gallic and ascorbic acids supplementation alleviate cognitive deficits and neuropathological damage exerted by cadmium chloride in Wistar rats. Sci Rep 2022; 12:14426. [PMID: 36002551 PMCID: PMC9402671 DOI: 10.1038/s41598-022-18432-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
Cadmium is a highly neurotoxic heavy metal that interferes with DNA repair mechanisms via generation of reactive oxygen species. The potentials of polyphenols and antioxidants as effective protective agents following heavy metal-induced neurotoxicity are emerging. We therefore explored the neuroprotective potentials of gallic and ascorbic acids in CdCl2-induced neurotoxicity. Seventy-two Wistar rats were divided into six groups. Group A received distilled water, B: 3 mg/kg CdCl2, C: 3 mg/kg CdCl2 + 20 mg/kg gallic acid (GA), D: 3 mg/kg CdCl2 + 10 mg/kg ascorbic acid (AA), E: 20 mg/kg GA and F: 10 mg/kg AA orally for 21 days. Depression, anxiety, locomotion, learning and memory were assessed using a battery of tests. Neuronal structure and myelin expression were assessed with histological staining and immunofluorescence. The Morris Water Maze test revealed significant increase in escape latency in CdCl2 group relative to rats concurrently treated with GA or AA. Similarly, time spent in the target quadrant was reduced significantly in CdCl2 group relative to other groups. Concomitant administration of gallic acid led to significant reduction in the durations of immobility and freezing that were elevated in CdCl2 group during forced swim and open field tests respectively. Furthermore, GA and AA restored myelin integrity and neuronal loss observed in the CdCl2 group. We conclude that gallic and ascorbic acids enhance learning and memory, decrease anxiety and depressive-like behavior in CdCl2-induced neurotoxicity with accompanying myelin-protective ability.
Collapse
Affiliation(s)
- Olamide Adebiyi
- Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria.
| | - Kabirat Adigun
- Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Praise David-Odewumi
- Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Uthman Akindele
- Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Funsho Olayemi
- Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
7
|
Maratha S, Sharma V, Walia V. Antidepressant Like Effect of Ascorbic Acid in Mice: Possible Involvement of NO-sGC-cGMP Signaling. Neurochem Res 2021; 47:967-978. [PMID: 34825298 DOI: 10.1007/s11064-021-03496-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 10/19/2022]
Abstract
The present study was designed to determine the antidepressant like activity of ascorbic acid (AA) in mice. Further the influence of NO-sGC-cGMP signaling in the antidepressant like effect of AA in mice was determined. Male swiss albino mice were used in the present study. Mice in the control group received saline and fluoxetine (10 mg/kg, i.p.) was used as the standard antidepressant drug. AA (50, 100 and 150 mg/kg, i.p.) was administered to the mice and depression related behavior were determined using tail suspension test (TST) and forced swim test (FST). Further the whole brain nitrite and serotonin levels were also determined. It was observed that the administration of AA (100 mg/kg, i.p.) reversed the depression like behavior in mice in TST and FST. AA (100 mg/kg, i.p.) treatment decreased the level of nitrite and increased the level of serotonin in the brain of mice significantly as compared to control. Further the behavioral and neurochemical effect of AA (50 mg/kg, i.p) was studied in NO modulator [NO donor: L-Arginine (50 mg/kg, i.p); NO-sGC inhibitor: methylene blue (1 mg/kg, i.p.) and cGMP modulator: sildenafil (1 mg/kg, i.p.)] pretreated mice. It was observed that the pretreatment of NO donor and cGMP modulator counteracted the effect conferred by AA (50 mg/kg, i.p). While the pretreatment of NO-sGC inhibitor potentiated the effect conferred by AA (50 mg/kg, i.p). The present study suggested that the AA confer antidepressant like effect in mice and NO-sGC-cGMP signaling pathway influence the antidepressant like effect of AA in mice.
Collapse
Affiliation(s)
- Sushma Maratha
- SGT College of Pharmacy, SGT University, Gurugram, India
| | - Vijay Sharma
- SGT College of Pharmacy, SGT University, Gurugram, India
| | - Vaibhav Walia
- SGT College of Pharmacy, SGT University, Gurugram, India.
| |
Collapse
|
8
|
Vitamin C Mitigates Oxidative Stress and Behavioral Impairments Induced by Deltamethrin and Lead Toxicity in Zebrafish. Int J Mol Sci 2021; 22:ijms222312714. [PMID: 34884514 PMCID: PMC8657856 DOI: 10.3390/ijms222312714] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 12/21/2022] Open
Abstract
Environmental contamination from toxic metals and pesticides is an issue of great concern due to their harmful effects to human health and the ecosystems. In this framework, we assessed the adverse effects when aquatic organisms are exposed to toxicants such as deltamethrin (DM) and lead (Pb), alone or in combination, using zebrafish as a model. Moreover, we likewise evaluated the possible protective effect of vitamin C (VC) supplementation against the combined acute toxic effects of the two toxicants. Juvenile zebrafish were exposed to DM (2 μg L-1) and Pb (60 μg L-1) alone and in combination with VC (100 μg L-1) and responses were assessed by quantifying acetylcholinesterase (AChE) activity, lipid peroxidation (MDA), some antioxidant enzyme activities (SOD and GPx), three-dimension locomotion responses and changes of elements concentrations in the zebrafish body. Our results show that VC has mitigative effects against behavioral and biochemical alterations induced by a mixture of contaminants, demonstrating that it can be used as an effective antioxidant. Moreover, the observations in the study demonstrate zebrafish as a promising in vivo model for assessing the neuroprotective actions of bioactive compounds.
Collapse
|
9
|
Suga N, Murakami A, Arimitsu H, Shiogama K, Tanaka S, Ito M, Kato Y. Elevation of the serotonin-derived quinone, tryptamine-4,5-dione, in the intestine of ICR mice with dextran sulfate-induced colitis. J Clin Biochem Nutr 2021; 69:61-67. [PMID: 34376915 PMCID: PMC8325771 DOI: 10.3164/jcbn.20-161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/20/2020] [Indexed: 11/22/2022] Open
Abstract
Inflammatory bowel diseases, including Crohn's disease and ulcerative colitis, are chronic inflammatory disorders associated with oxidative stress. The intestines produce 5-hydroxytryptamine that may negatively affect disease state under inflammatory conditions when overproduced. 5-Hydroxytryptamine is a substrate for myeloperoxidase and is converted into reactive tryptamine-4,5-dione. Here, an experimental colitis model was established through oral administration of 5% dextran sulfate sodium to ICR mice for 7 days. Furthermore, the formation of tryptamine-4,5-dione in the colorectal mucosa/submucosa and colorectal tissue was analyzed by chemical and immunochemical methodologies. First, free tryptamine-4,5-dione in the homogenate was chemically trapped by o-phenylenediamine and analyzed as the stable phenazine derivative. Tryptamine-4,5-dione localization as adducted proteins in the colorectal tissue was immunohistochemically confirmed, and as demonstrated by both methods, this resulted in the significant increase of tryptamine-4,5-dione in dextran sulfate sodium-challenged mice compared with control mice. Immunohistochemical staining confirmed tryptamine-4,5-dione-positive staining at the myeloperoxidase accumulation site in dextran sulfate sodium-challenged mice colorectal tissue. The tryptamine-4,5-dione locus in the mice was partly matched with that of a specific marker for myeloperoxidase, halogenated tyrosine. Overall, the results possibly indicate that tryptamine-4,5-dione is generated by neutrophil myeloperoxidase in inflammatory tissue and may contribute to the development of inflammatory bowel disease.
Collapse
Affiliation(s)
- Naoko Suga
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-honcho, Himeji, Hyogo 670-0092, Japan
| | - Akira Murakami
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-honcho, Himeji, Hyogo 670-0092, Japan.,Research Institute for Food and Nutritional Sciences, University of Hyogo, 1-1-12 Shinzaike-honcho, Himeji, Hyogo 670-0092, Japan
| | - Hideyuki Arimitsu
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-honcho, Himeji, Hyogo 670-0092, Japan.,Research Institute for Food and Nutritional Sciences, University of Hyogo, 1-1-12 Shinzaike-honcho, Himeji, Hyogo 670-0092, Japan
| | - Kazuya Shiogama
- Department of Diagnostic Pathology II, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Sarasa Tanaka
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-honcho, Himeji, Hyogo 670-0092, Japan.,Research Institute for Food and Nutritional Sciences, University of Hyogo, 1-1-12 Shinzaike-honcho, Himeji, Hyogo 670-0092, Japan
| | - Mikiko Ito
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-honcho, Himeji, Hyogo 670-0092, Japan.,Research Institute for Food and Nutritional Sciences, University of Hyogo, 1-1-12 Shinzaike-honcho, Himeji, Hyogo 670-0092, Japan
| | - Yoji Kato
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-honcho, Himeji, Hyogo 670-0092, Japan.,Research Institute for Food and Nutritional Sciences, University of Hyogo, 1-1-12 Shinzaike-honcho, Himeji, Hyogo 670-0092, Japan
| |
Collapse
|
10
|
Eiró LG, Ferreira MKM, Bittencourt LO, Aragão WAB, Souza MPCD, Silva MCF, Dionizio A, Buzalaf MAR, Crespo-López ME, Lima RR. Chronic methylmercury exposure causes spinal cord impairment: Proteomic modulation and oxidative stress. Food Chem Toxicol 2020; 146:111772. [DOI: 10.1016/j.fct.2020.111772] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022]
|
11
|
Abstract
The industry is increasingly relying on fish for toxicity assessment. However, current guidelines for toxicity assessment focus on teratogenicity and mortality. From an ecotoxicological point of view, however, these endpoints may not reflect the “full picture” of possible deleterious effects that can nonetheless result in decreased fitness and/or inability to adapt to a changing environment, affecting whole populations. Therefore, assessing sublethal effects add relevant data covering different aspects of toxicity at different levels of analysis. The impacts of toxicants on neurobehavioral function have the potential to affect many different life-history traits, and are easier to assess in the laboratory than in the wild. We propose that carefully-controlled laboratory experiments on different behavioral domains—including anxiety, aggression, and exploration—can increase our understanding of the ecotoxicological impacts of contaminants, since these domains are related to traits such as defense, sociality, and reproduction, directly impacting life-history traits. The effects of selected contaminants on these tests are reviewed, focusing on larval and adult zebrafish, showing that these behavioral domains are highly sensitive to small concentrations of these substances. These strategies suggest a way forward on ecotoxicological research using fish.
Collapse
|
12
|
Moritz B, Schmitz AE, Rodrigues ALS, Dafre AL, Cunha MP. The role of vitamin C in stress-related disorders. J Nutr Biochem 2020; 85:108459. [PMID: 32745879 DOI: 10.1016/j.jnutbio.2020.108459] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/10/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022]
Abstract
Stress-related disorders, such as depression and anxiety, present marked deficits in behavioral and cognitive functions related to reward. These are highly prevalent disabling conditions with high social and economic costs. Furthermore, a significant percentage of affected individuals cannot benefit from clinical intervention, opening space for new treatments. Although the literature data have reported limited and variable results regarding oxidative stress-related endpoints in stress-related disorders, the possible neuroprotective effect of antioxidant compounds, such as ascorbic acid (vitamin C), emerges as a possible therapy strategy for psychiatric diseases. Here, we briefly present background information on biological activity of ascorbic acid, particularly functions related to the CNS homeostasis. Additionaly, we reviewed the available information on the role of ascorbic acid in stress-related diseases, focusing on supplementation and depletion studies. The vitamin C deficiency is widely associated to stress-related diseases. Although the efficacy of this vitamin in anxiety spectrum disorders is less stablished, several studies showed that ascorbic acid supplementation produces antidepressant effect and improves mood. Interestingly, the modulation of monoaminergic and glutamatergic neurotransmitter systems is postulated as pivotal target for the antidepressant and anxiolytic effects of this vitamin. Given that ascorbic acid supplementation produces fast therapeutic response with low toxicity and high tolerance, it can be considered as a putative candidate for the treatment of mood and anxiety disorders, especially those that are refractory to current treatments. Herein, the literature was reviewed considering the potential use of ascorbic acid as an adjuvant in the treatment of anxiety and depression.
Collapse
Affiliation(s)
- Bettina Moritz
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Ariana E Schmitz
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Alcir L Dafre
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Mauricio P Cunha
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
| |
Collapse
|
13
|
Moretti M, Rodrigues ALS. Ascorbic acid as an antioxidant and applications to the central nervous system. Pathology 2020. [DOI: 10.1016/b978-0-12-815972-9.00015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Oxidative Stress Mediates Anxiety-Like Behavior Induced by High Caffeine Intake in Zebrafish: Protective Effect of Alpha-Tocopherol. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8419810. [PMID: 31772712 PMCID: PMC6854957 DOI: 10.1155/2019/8419810] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/21/2019] [Accepted: 09/04/2019] [Indexed: 12/02/2022]
Abstract
Anxiety is a common symptom associated with high caffeine intake. Although the neurochemical mechanisms of caffeine-induced anxiety remain unclear, there are some evidences suggesting participation of oxidative stress. Based on these evidences, the current study is aimed at evaluating the possible protective effect of alpha-tocopherol (TPH) against anxiety-like behavior induced by caffeine (CAF) in zebrafish. Adult animals were treated with CAF (100 mg/kg) or TPH (1 mg/kg)+CAF before behavioral and biochemical evaluations. Oxidative stress in the zebrafish brain was evaluated by a lipid peroxidation assay, and anxiety-like behavior was monitored using light/dark preference and novel tank diving test. Caffeine treatment evoked significant elevation of brain MDA levels in the zebrafish brain, and TPH treatment prevented this increase. Caffeine treatment also induced anxiety-like behavior, while this effect was not observed in the TPH+CAF group. Taken together, the current study suggests that TPH treatment is able to inhibit oxidative stress and anxiety-like behavior evoked by caffeine.
Collapse
|
15
|
Ballaz SJ, Rebec GV. Neurobiology of vitamin C: Expanding the focus from antioxidant to endogenous neuromodulator. Pharmacol Res 2019; 146:104321. [PMID: 31229562 DOI: 10.1016/j.phrs.2019.104321] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 01/06/2023]
Abstract
Ascorbic acid (AA) is a water-soluble vitamin (C) found in all bodily organs. Most mammals synthesize it, humans are required to eat it, but all mammals need it for healthy functioning. AA reaches its highest concentration in the brain where both neurons and glia rely on tightly regulated uptake from blood via the glucose transport system and sodium-coupled active transport to accumulate and maintain AA at millimolar levels. As a prototype antioxidant, AA is not only neuroprotective, but also functions as a cofactor in redox-coupled reactions essential for the synthesis of neurotransmitters (e.g., dopamine and norepinephrine) and paracrine lipid mediators (e.g., epoxiecoisatrienoic acids) as well as the epigenetic regulation of DNA. Although redox capacity led to the promotion of AA in high doses as potential treatment for various neuropathological and psychiatric conditions, ample evidence has not supported this therapeutic strategy. Here, we focus on some long-neglected aspects of AA neurobiology, including its modulatory role in synaptic transmission as demonstrated by the long-established link between release of endogenous AA in brain extracellular fluid and the clearance of glutamate, an excitatory amino acid. Evidence that this link can be disrupted in animal models of Huntington´s disease is revealing opportunities for new research pathways and therapeutic applications (e.g., epilepsy and pain management). In fact, we suggest that improved understanding of the regulation of endogenous AA and its interaction with key brain neurotransmitter systems, rather than administration of AA in excess, should be the target of future brain-based therapies.
Collapse
Affiliation(s)
- Santiago J Ballaz
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuqui, Ecuador.
| | - George V Rebec
- Program in Neuroscience, Department Psychological & Brain Sciences, Indiana University, Bloomington, USA.
| |
Collapse
|
16
|
Boomhower SR, Newland MC. d-Amphetamine and methylmercury exposure during adolescence alters sensitivity to monoamine uptake inhibitors in adult mice. Neurotoxicology 2019; 72:61-73. [PMID: 30769003 PMCID: PMC6527454 DOI: 10.1016/j.neuro.2019.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/04/2019] [Accepted: 02/03/2019] [Indexed: 11/17/2022]
Abstract
Gestational exposure to methylmercury (MeHg), an environmental neurotoxicant, and adolescent administration of d-amphetamine (d-AMP) disrupt dopamine neurotransmission and alter voluntary behavior in adult rodents. We determined the impact of adolescent exposure to MeHg and d-AMP on monoamine neurotransmission in mice by assessing sensitivity to acute d-AMP, desipramine, and clomipramine, drugs that target dopamine, norepinephrine, and serotonin reuptake, respectively. Male C57Bl/6n mice were given 0 (control) or 3 ppm MeHg via drinking water from postnatal day 21 to 60 (murine adolescence). Within each group, mice were given once-daily injections of d-AMP or saline (i.p.) from postnatal day 28 to 42. This exposure regimen produced four treatment groups (n = 10-12/group): control, d-AMP, MeHg, and d-AMP + MeHg. As adults, the mice lever pressed under fixed-ratio schedules of reinforcement (FR 1, 5, 15, 30, 60, and 120). Acute i.p. injections of d-AMP (.3-1.7 mg/kg), desipramine (5.6-30 mg/kg), and clomipramine (5.6-30 mg/kg) were administered in adulthood after a stable behavioral baseline was established. Adolescent MeHg exposure increased saturation rate and minimum response time, an effect that was mitigated by chronic administration of d-AMP in adolescence. In unexposed mice, the three monoamine reuptake inhibitors had separable behavioral effects. Adolescent d-AMP increased sensitivity to acute d-AMP, desipramine, and clomipramine. Adolescent MeHg exposure alone did not alter drug sensitivity. Combined adolescent d-AMP + MeHg exposure enhanced sensitivity to acute d-AMP's and desipramine's effects on minimum response time. Adolescence is a vulnerable developmental period during which exposure to chemicals can have lasting effects on monoamine function and behavior.
Collapse
Affiliation(s)
- Steven R Boomhower
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Bldg 1, Boston, MA, United States.
| | | |
Collapse
|
17
|
Puty B, Leão LKR, Crespo-Lopez ME, Almeida APCPSC, Fagundes NCF, Maia LC, Lima RR. Association between methylmercury environmental exposure and neurological disorders: A systematic review. J Trace Elem Med Biol 2019; 52:100-110. [PMID: 30732869 DOI: 10.1016/j.jtemb.2018.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 01/23/2023]
Abstract
The mercury-related central nervous system disorders have been extensively studied on animal models and human beings. However, clinical evidences of which neurological changes are in fact associated with mercury exposure remains controversial. This systematic review (Prospero registration under the number CRD42016041760) aimed to elucidate the association of methylmercury (MeHg) exposure with neurological alteration in populations living in MeHg-endemic risk area. A systematic search was performed according to the Preferred Reporting Items for Systematic Review and Meta-Analysis criteria using available databases PubMed, LILACS, Scopus, Web of Science, The Cochrane Library, OpenGrey and Google Scholar. A search of the following terms: "methylmercury compounds", "organomercury compounds", "neurologic manifestations", "memory disorders", "neurobehavioral manifestations" and "communication disorders" were performed in a systematic way. Studies focusing on MeHg exposure and subsequent neurological alteration on humans (>13 years) were included. Evaluation of methodological quality and risk of bias as well as the level of evidence was performed. Our results have identified 470 studies and six articles were eligible for systematic review inclusion criteria. The studies suggested alterations related to the psychosensory, motor and coordination system, as well as motor speech, hearing, visual impairment, mood alterations and loss of intelligent quotient. Of all the six studies, two presented a high risk of bias, with methodological problems related to the confounding factors and all studies presented evidence level ranged from very low to low. In this way our results revealed that a definitive demonstration of an association of MeHg and neurological alterations in human beings is still a pending subject. Future studies in this topic should take into consideration more confident and reliable methods to answer this question.
Collapse
Affiliation(s)
- Bruna Puty
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belem, Brazil.
| | - Luana Ketlen Reis Leão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belem, Brazil.
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Para, Belem, Brazil.
| | | | | | - Lucianne Cople Maia
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belem, Brazil.
| |
Collapse
|
18
|
Walia V, Garg C, Garg M. Nitrergic signaling modulation by ascorbic acid treatment is responsible for anxiolysis in mouse model of anxiety. Behav Brain Res 2019; 364:85-98. [PMID: 30738102 DOI: 10.1016/j.bbr.2019.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/16/2019] [Accepted: 02/04/2019] [Indexed: 10/27/2022]
Abstract
The present study was designed to investigate the effect of ascorbic acid (AA) treatment on the anxiety related behavioral and neurochemical alterations. AA (50, 100 and 200 mg/kg, i.p.) was administered to the mice and anxiety related behavior and levels of glutamate and nitrite in the brain of mice were determined. The results obtained revealed that the administration of AA (100 mg/kg, i.p.) significantly reduced the anxiety related behavior and the levels of nitrite in the brain of mice. Nitrergic interactions were further determined by the pretreatment of mice with nitric oxide (NO) modulator and AA treatment followed by behavioral and neurochemical measurements. The results obtained suggested that NO inhibition potentiated the anxiolytic like activity of AA in mice. It was also observed that the glutamate and nitrite level in the brain of mice were significantly reduced by the NO inhibitor pretreatment. Thus, the present study demonstrated the possible nitrergic pathways modulation in the anxiolytic like activity of AA in mice.
Collapse
Affiliation(s)
- Vaibhav Walia
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, Haryana, India.
| | - Chanchal Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, Haryana, India.
| | - Munish Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, Haryana, India.
| |
Collapse
|
19
|
Ke T, Gonçalves FM, Gonçalves CL, Dos Santos AA, Rocha JBT, Farina M, Skalny A, Tsatsakis A, Bowman AB, Aschner M. Post-translational modifications in MeHg-induced neurotoxicity. Biochim Biophys Acta Mol Basis Dis 2018; 1865:2068-2081. [PMID: 30385410 DOI: 10.1016/j.bbadis.2018.10.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 12/29/2022]
Abstract
Mercury (Hg) exposure remains a major public health concern due to its widespread distribution in the environment. Organic mercurials, such as MeHg, have been extensively investigated especially because of their congenital effects. In this context, studies on the molecular mechanism of MeHg-induced neurotoxicity are pivotal to the understanding of its toxic effects and the development of preventive measures. Post-translational modifications (PTMs) of proteins, such as phosphorylation, ubiquitination, and acetylation are essential for the proper function of proteins and play important roles in the regulation of cellular homeostasis. The rapid and transient nature of many PTMs allows efficient signal transduction in response to stress. This review summarizes the current knowledge of PTMs in MeHg-induced neurotoxicity, including the most commonly PTMs, as well as PTMs induced by oxidative stress and PTMs of antioxidant proteins. Though PTMs represent an important molecular mechanism for maintaining cellular homeostasis and are involved in the neurotoxic effects of MeHg, we are far from understanding the complete picture on their role, and further research is warranted to increase our knowledge of PTMs in MeHg-induced neurotoxicity.
Collapse
Affiliation(s)
- Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| | - Filipe Marques Gonçalves
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Cinara Ludvig Gonçalves
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | | | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97105900 Santa Maria, RS, Brazil
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040900 Florianópolis, SC, Brazil
| | - Anatoly Skalny
- Yaroslavl State University, Sovetskaya St., 14, Yaroslavl 150000, Russia; Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, Moscow 105064, Russia; Orenburg State University, Pobedy Ave., 13, Orenburg 460352, Russia
| | - Aristidis Tsatsakis
- Center of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, United States.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| |
Collapse
|
20
|
Santos P, Herrmann AP, Elisabetsky E, Piato A. Anxiolytic properties of compounds that counteract oxidative stress, neuroinflammation, and glutamatergic dysfunction: a review. ACTA ACUST UNITED AC 2018; 41:168-178. [PMID: 30328963 PMCID: PMC6781690 DOI: 10.1590/1516-4446-2018-0005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/31/2018] [Indexed: 01/27/2023]
Abstract
Objective: Anxiety disorders are highly prevalent and the efficacy of the available anxiolytic drugs is less than desired. Adverse effects also compromise patient quality of life and adherence to treatment. Accumulating evidence shows that the pathophysiology of anxiety and related disorders is multifactorial, involving oxidative stress, neuroinflammation, and glutamatergic dysfunction. The aim of this review was to evaluate data from animal studies and clinical trials showing the anxiolytic effects of agents whose mechanisms of action target these multiple domains. Methods: The PubMed database was searched for multitarget agents that had been evaluated in animal models of anxiety, as well as randomized double-blind placebo-controlled clinical trials of anxiety and/or anxiety related disorders. Results: The main multitarget agents that have shown consistent anxiolytic effects in various animal models of anxiety, as well in clinical trials, are agomelatine, N-acetylcysteine (NAC), and omega-3 fatty acids. Data from clinical trials are preliminary at best, but reveal good safety profiles and tolerance to adverse effects. Conclusion: Agomelatine, NAC and omega-3 fatty acids show beneficial effects in clinical conditions where mainstream treatments are ineffective. These three multitarget agents are considered promising candidates for innovative, effective, and better-tolerated anxiolytics.
Collapse
Affiliation(s)
- Patrícia Santos
- Programa de Pós-Graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana P Herrmann
- Programa de Pós-Graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Elaine Elisabetsky
- Programa de Pós-Graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Angelo Piato
- Programa de Pós-Graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
21
|
Anxiolytic effects of ascorbic acid and ketamine in mice. J Psychiatr Res 2018; 100:16-23. [PMID: 29475017 DOI: 10.1016/j.jpsychires.2018.02.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/07/2017] [Accepted: 02/08/2018] [Indexed: 12/15/2022]
Abstract
Some studies have demonstrated that ascorbic acid, similarly to ketamine, exhibits antidepressant-like effects mediated, at least in part, by modulation of the glutamatergic system. Despite the involvement of glutamatergic system in the pathophysiology of anxiety disorders, the ability of ascorbic acid and ketamine to elicit anxiolytic effects in animal models remains to be established. Therefore, this study investigated the effects of a single administration of ascorbic acid, ketamine or diazepam (positive control) in different animal models of anxiety. Mice were treated with ascorbic acid (1, 3 and 10 mg∕kg, p.o.), ketamine (1 and 10 mg∕kg, i.p.) or diazepam (2 mg∕kg, p.o) and their behavioral responses were assessed in the elevated plus maze, open field test (OFT), ligh∕dark preference test and marble burying test. Ascorbic acid increased total time spent in the open arms of elevated plus maze, increased total time in the center of the OFT, decreased rearing responses, increased the latency to grooming, decreased the rostral grooming, but did not affect body grooming. Furthermore, ascorbic acid increased the latency time and total time in light area in the ligh∕dark preference test, but did not affect the performance of mice in the marble burying test. Ketamine demonstrated an anxiolytic-like effect in elevated plus maze, OFT, and ligh∕dark preference test. Diazepam exhibited an anxiolytic-like effect in all the behavioral tests. Altogether, the results indicate the potential anxiolytic effect of ascorbic acid and ketamine, providing a possible new avenue for the management of anxiety-related disorders.
Collapse
|
22
|
Kato Y, Suga N. Covalent adduction of endogenous and food-derived quinones to a protein: its biological significance. J Clin Biochem Nutr 2018; 62:213-220. [PMID: 29892159 PMCID: PMC5990407 DOI: 10.3164/jcbn.18-26] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 03/05/2018] [Indexed: 01/09/2023] Open
Abstract
There are many chemically reactive compounds, including quinone, in living systems and also food. Even after the ingestion of food polyphenols, quinones derived from catechol moieties could form endogenously in the body. Dopaquinone, dopamine quinone, estrogen-derived quinones, tryptamine-4,5-dione, and ubiquinone are examples of an endogenous quinone. These indicate that quinone is ubiquitously formed or present in living systems and food. Quinones can induce a variety of hazardous effects and also could have beneficial physiological effects. This review focuses on the chemical reactivity of quinone toward a biomolecule and its biological action.
Collapse
Affiliation(s)
- Yoji Kato
- Laboratory of Free Radical and Food Function, School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-honcho, Himeji, Hyogo 670-0092, Japan.,Research Institute of Food and Nutrition, University of Hyogo, 1-1-12 Shinzaike-honcho, Himeji, Hyogo 670-0092, Japan
| | - Naoko Suga
- Laboratory of Free Radical and Food Function, School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-honcho, Himeji, Hyogo 670-0092, Japan
| |
Collapse
|
23
|
Preventive and Therapeutic Potential of Vitamin C in Mental Disorders. Curr Med Sci 2018; 38:1-10. [PMID: 30074145 DOI: 10.1007/s11596-018-1840-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/15/2018] [Indexed: 12/11/2022]
Abstract
In this review, we summarize the involvement of vitamin C in mental disorders by presenting available evidence on its pharmacological effects in animal models as well as in clinical studies. Vitamin C, especially its reduced form, has gained interest for its multiple functions in various tissues and organs, including central nervous system (CNS). Vitamin C protects the neuron against oxidative stress, alleviates inflammation, regulates the neurotransmission, affects neuronal development and controls epigenetic function. All of these processes are closely associated with psychopathology. In the past few decades, scientists have revealed that the deficiency of vitamin C may lead to motor deficit, cognitive impairment and aberrant behaviors, whereas supplement of vitamin C has a potential preventive and therapeutic effect on mental illness, such as major depressive disorder (MDD), schizophrenia, anxiety and Alzheimer's disease (AD). Although several studies support a possible role of vitamin C against mental disorders, more researches are essential to accelerate the knowledge and investigate the mechanism in this field.
Collapse
|
24
|
Cytotoxic and cytoprotective effects of tryptamine-4,5-dione on neuronal cells: a double-edged sword. Free Radic Res 2018; 51:545-553. [PMID: 28503967 DOI: 10.1080/10715762.2017.1331038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Serotonin (5-hydroxytryptamine) is a putative substrate for myeloperoxidase, which may convert it into the reactive quinone tryptamine-4,5-dione (TD). In this study, we found that the viability of human SH-SY5Y neuroblastoma cells treated with 25 μM TD was increased to approximately 117%. On the other hand, the cell viability was significantly decreased by exposure to TD (150-200 μM), with an increase in intracellular reactive oxygen species (ROS). Interestingly, pre-treatment of SH-SY5Y cells with 100 μM TD prevented cell death and suppressed intracellular ROS generation evoked by the addition of hydrogen peroxide (H2O2). Expression of the phase-II antioxidant enzyme NAD(P)H: quinone oxidoreductase 1 and haem oxygenase 1 were upregulated by TD at a concentration of 50-100 μM. Nuclear factor erythroid 2-related factor 2 (Nrf2), the regulator of these enzyme, was translocated from the cytosol to the nucleus by 100 μM TD. In summary, moderate concentrations of TD may increase the self-defence capacity of neuronal cells against oxidative stress.
Collapse
|
25
|
Kocot J, Luchowska-Kocot D, Kiełczykowska M, Musik I, Kurzepa J. Does Vitamin C Influence Neurodegenerative Diseases and Psychiatric Disorders? Nutrients 2017; 9:E659. [PMID: 28654017 PMCID: PMC5537779 DOI: 10.3390/nu9070659] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/15/2017] [Accepted: 06/21/2017] [Indexed: 02/07/2023] Open
Abstract
Vitamin C (Vit C) is considered to be a vital antioxidant molecule in the brain. Intracellular Vit C helps maintain integrity and function of several processes in the central nervous system (CNS), including neuronal maturation and differentiation, myelin formation, synthesis of catecholamine, modulation of neurotransmission and antioxidant protection. The importance of Vit C for CNS function has been proven by the fact that targeted deletion of the sodium-vitamin C co-transporter in mice results in widespread cerebral hemorrhage and death on post-natal day one. Since neurological diseases are characterized by increased free radical generation and the highest concentrations of Vit C in the body are found in the brain and neuroendocrine tissues, it is suggested that Vit C may change the course of neurological diseases and display potential therapeutic roles. The aim of this review is to update the current state of knowledge of the role of vitamin C on neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis and amyotrophic sclerosis, as well as psychiatric disorders including depression, anxiety and schizophrenia. The particular attention is attributed to understanding of the mechanisms underlying possible therapeutic properties of ascorbic acid in the presented disorders.
Collapse
Affiliation(s)
- Joanna Kocot
- Chair and Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland.
| | - Dorota Luchowska-Kocot
- Chair and Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland.
| | - Małgorzata Kiełczykowska
- Chair and Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland.
| | - Irena Musik
- Chair and Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland.
| | - Jacek Kurzepa
- Chair and Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland.
| |
Collapse
|
26
|
Moritz B, Schwarzbold ML, Guarnieri R, Diaz AP, Rodrigues ALS, Dafre AL. Effects of ascorbic acid on anxiety state and affect in a non-clinical sample. Acta Neurobiol Exp (Wars) 2017. [DOI: 10.21307/ane-2017-068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Duan J, Hu H, Li Q, Jiang L, Zou Y, Wang Y, Sun Z. Combined toxicity of silica nanoparticles and methylmercury on cardiovascular system in zebrafish (Danio rerio) embryos. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 44:120-7. [PMID: 27163730 DOI: 10.1016/j.etap.2016.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/29/2016] [Accepted: 05/01/2016] [Indexed: 05/12/2023]
Abstract
This study was to investigate the combined toxicity of silica nanoparticles (SiNPs) and methylmercury (MeHg) on cardiovascular system in zebrafish (Danio rerio) embryos. Ultraviolet absorption analysis showed that the co-exposure system had high absorption and stability. The dosages used in this study were based on the NOAEL level. Zebrafish embryos exposed to the co-exposure of SiNPs and MeHg did not show any cardiovascular malformation or atrioventricular block, but had an inhibition effect on bradycardia. Using o-Dianisidine for erythrocyte staining, the cardiac output of zebrafish embryos was decreased gradually in SiNPs, MeHg, co-exposure groups, respectively. Co-exposure of SiNPs and MeHg enhanced the vascular endothelial damage in Tg(fli-1:EGFP) transgenic zebrafish line. Moreover, the co-exposure significantly activated the oxidative stress and inflammatory response in neutrophils-specific Tg(mpo:GFP) transgenic zebrafish line. This study suggested that the combined toxic effects of SiNPs and MeHg on cardiovascular system had more severe toxicity than the single exposure alone.
Collapse
Affiliation(s)
- Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Hejing Hu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Qiuling Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Lizhen Jiang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yang Zou
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yapei Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
28
|
Perathoner S, Cordero-Maldonado ML, Crawford AD. Potential of zebrafish as a model for exploring the role of the amygdala in emotional memory and motivational behavior. J Neurosci Res 2016; 94:445-62. [DOI: 10.1002/jnr.23712] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Simon Perathoner
- Luxembourg Centre for Systems Biomedicine (LCSB); University of Luxembourg; Belvaux Luxembourg
| | | | - Alexander D. Crawford
- Luxembourg Centre for Systems Biomedicine (LCSB); University of Luxembourg; Belvaux Luxembourg
| |
Collapse
|