1
|
Kotova MM, Amikishiev SV, Apukhtin KV, Galstyan DS, de Abreu MS, Stewart AM, Yang L, Kalueff AV. Prolonged 5-week and 12-week chronic stress differentially modulates CNS expression of pro- and anti-neuroinflammatory biomarkers, brain monoamines and affective behavior in adult zebrafish. J Comp Physiol B 2025:10.1007/s00360-025-01613-4. [PMID: 40220038 DOI: 10.1007/s00360-025-01613-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/23/2025] [Indexed: 04/14/2025]
Abstract
Chronic stress is a major cause of affective pathogenesis, such as anxiety and depression. Experimental animal models, including rodents and zebrafish, are a valuable tool for translational neuroscience research focusing on stress-related brain disorders. Here, we examined the effects of 5- and 12-week chronic unpredictable stress (CUS5 and CUS12) on zebrafish behavior, whole-body cortisol and neuroinflammation-related biomarker gene expression, including markers of pro-inflammatory microglia (NOS2a, COX2, P75NTR) and astroglia (C3, GBP), and markers of anti-inflammatory microglia (ARG-1, CD206) and astroglia (S100a10, PTX). We also assessed stress-induced changes in brain monoamine levels and brain-blood-barrier permeability. Overall, CUS5 induced anxiety-like behavior, accompanied by elevated CNS pro-inflammatory marker gene expression, cortisol signaling and norepinephrine levels. In contrast, CUS12 induced depression-like behavior, accompanied by lowered cortisol levels, impaired serotonin turnover and activated anti-inflammatory biomarker gene expression, as well as upregulated histone deacetylase 4 gene (suggesting the involvement of epigenetic regulation). Collectively, this confirms the importance of stress duration as a key factor in the development of stress-related disorders in zebrafish models, and further implicates pro- and inti-inflammatory neuroglia in affective pathogenesis.
Collapse
Affiliation(s)
- Maria M Kotova
- Neuroscience Department, Sirius University of Science and Technology, Sirius Federal Territory, Sochi, Russia
| | - Sahil V Amikishiev
- Neuroscience Department, Sirius University of Science and Technology, Sirius Federal Territory, Sochi, Russia
| | - Kirill V Apukhtin
- Neuroscience Department, Sirius University of Science and Technology, Sirius Federal Territory, Sochi, Russia
| | - David S Galstyan
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- World Class Research Center for Personalized Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Murilo S de Abreu
- Western Caspian University, Baku, Azerbaijan.
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil.
| | - Adam Michael Stewart
- The International Zebrafish Neuroscience Research Consortium (ZNRC), New Orleans, USA
| | - Longen Yang
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Allan V Kalueff
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
| |
Collapse
|
2
|
Lachowicz-Radulska J, Widelski J, Nowaczyński F, Serefko A, Sobczyński J, Ludwiczuk A, Kasica N, Szopa A. Zebrafish as a Suitable Model for Utilizing the Bioactivity of Coumarins and Coumarin-Based Compounds. Int J Mol Sci 2025; 26:1444. [PMID: 40003910 PMCID: PMC11855297 DOI: 10.3390/ijms26041444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
The aim of this review is to summarize the current knowledge on the use of coumarin-derived compounds in the zebrafish (Danio rerio) model. Coumarins, a class of naturally occurring compounds with diverse biological activities, including compounds such as coumarin, angelicin, and warfarin, have attracted considerable attention in the study of potential therapeutic agents for cancer, central nervous system disorders, and infectious diseases. The capabilities of coumarins as active compounds have led to synthesizing various derivatives with their own properties. While such variety is certainly promising, it is also cumbersome due to the large amount of research needed to find the most optimal compounds. The zebrafish model offers unique advantages for such studies, including high genetic and physiological homology to mammals, optical transparency of the embryos, and rapid developmental processes, facilitating the assessment of compound toxicity and underlying mechanisms of action. This review provides an in-depth analysis of the chemical properties of coumarins, their mechanisms of biological activity, and the results of previous studies evaluating the toxicity and efficacy of these compounds in zebrafish assays. The zebrafish model allows for a holistic assessment of the therapeutic potential of coumarin derivatives, offering valuable insights for advancing drug discovery and development.
Collapse
Affiliation(s)
- Joanna Lachowicz-Radulska
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
| | - Jarosław Widelski
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (J.W.); (A.L.)
| | - Filip Nowaczyński
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (J.W.); (A.L.)
| | - Anna Serefko
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
| | - Jan Sobczyński
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
| | - Agnieszka Ludwiczuk
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (J.W.); (A.L.)
| | - Natalia Kasica
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Aleksandra Szopa
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
| |
Collapse
|
3
|
Gusso D, da Silva Gobbo MO, Rübensam G, Bonan CD. Oxytetracycline and Florfenicol Association Affects Zebrafish Larvae Behavioral Repertoire. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2025; 88:167-177. [PMID: 39873737 DOI: 10.1007/s00244-025-01113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/19/2025] [Indexed: 01/30/2025]
Abstract
Oxytetracycline (OTC) and Florfenicol (FF) are prevalent antibiotics choices in both fish production and livestock farming. A comprehensive understanding of their effects is paramount for effective control of their use and for elucidating their physiological and pharmacological implications. In our investigation, zebrafish larvae were subjected to varying concentrations of OTC, FF or a combination of OTC + FF during 96 h. We observed behavioral alterations in the group exposed to OTC + FF. These fish displayed increased mobility, spent more time in the central zone, exhibited reduced turn angles, and experienced an impaired optomotor response. Coincidentally, our data provided evidence of reduced anxiety-like behavior in zebrafish larvae treated with OTC and FF, while also demonstrating the adverse effects of antibiotics on the optomotor response. Anxiety-like behavior plays an important role in species survival, acting as a key mechanism for adaptation and protection. The absence of such behavior can increase organism vulnerability in the environment. Thus, this study showed the behavioral consequences of OTC and FF exposure in zebrafish larvae, highlighting the impact of the combined toxicity of these antibiotics.
Collapse
Affiliation(s)
- Darlan Gusso
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, Prédio 12D, Sala 301, Porto Alegre, RS, 90619-900, Brazil.
| | - Marilia Oberto da Silva Gobbo
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, Prédio 12D, Sala 301, Porto Alegre, RS, 90619-900, Brazil
| | - Gabriel Rübensam
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, Prédio 12D, Sala 301, Porto Alegre, RS, 90619-900, Brazil
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
4
|
Millington ME, Lawrence C, Sneddon LU, Allen C. Environmental enrichment for zebrafish. Zebrafish 2024:6-52. [DOI: 10.1079/9781800629431.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
5
|
Subba R, Fasciolo G, Geremia E, Muscari Tomajoli MT, Petito A, Carrella S, Mondal AC, Napolitano G, Venditti P. Simultaneous induction of systemic hyperglycaemia and stress impairs brain redox homeostasis in the adult zebrafish. Arch Biochem Biophys 2024; 759:110101. [PMID: 39029645 DOI: 10.1016/j.abb.2024.110101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
For diabetic patients it is crucial to constantly monitor blood glucose levels to mitigate complications due to hyperglycaemia, including neurological issues and cognitive impairments. This activity leads to psychological stress, called "diabetes distress," a problem for most patients living with diabetes. Diabetes distress can exacerbate the hyperglycaemia effects on brain and negatively impact the quality of life, but the underlying mechanisms remain poorly explored. We simulated diabetes distress in adult zebrafish by modelling hyperglycaemia, through exposure to dextrose solution, along with chronic unpredictable mild stress (CUMS), and evaluated brain redox homeostasis by assessing reactive oxygen species (ROS) content, the antioxidant system, and effects on mitochondrial biogenesis and fission/fusion processes. We also evaluated the total, cytosolic and nuclear content of nuclear factor erythroid 2-related factor 2 (NRF2), a critical regulator of redox balance, in the whole brain and total NRF2 in specific brain emotional areas. The combined CUMS + Dextrose challenge, but not the individual treatments, reduced total NRF2 levels in the entire brain, but strongly increased its levels in the nuclear fraction. Compensatory upregulation of antioxidant genes appeared inadequate to combat elevated levels of ROS, leading to lowering of the reduced glutathione content and total antioxidant capacity. CUMS + Dextrose treatment also upregulated transcription factors implicated in mitochondrial biogenesis and dynamics with a predominance of fission, which is consistent with increased oxidative stress. In conclusion, this study highlights the close interplay between hyperglycaemia and psychological distress causing overriding oxidative stress in the brain, rendering the organism vulnerable to the development of disease complications.
Collapse
Affiliation(s)
- Rhea Subba
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India, 110067
| | - Gianluca Fasciolo
- Department of Biology, University of Naples Federico II, Naples, Italy; Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Acton 55, Napoli, 80133, Italy
| | - Eugenio Geremia
- International PhD Programme, UNESCO Chair "Environment, Resources and Sustainable Development", Department of Science and Technology, Parthenope University of Naples, 80143, Naples, Italy
| | - Maria Teresa Muscari Tomajoli
- International PhD Programme, UNESCO Chair "Environment, Resources and Sustainable Development", Department of Science and Technology, Parthenope University of Naples, 80143, Naples, Italy
| | - Adriana Petito
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Sabrina Carrella
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Acton 55, Napoli, 80133, Italy
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India, 110067.
| | - Gaetana Napolitano
- International PhD Programme, UNESCO Chair "Environment, Resources and Sustainable Development", Department of Science and Technology, Parthenope University of Naples, 80143, Naples, Italy.
| | - Paola Venditti
- Department of Biology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
6
|
Müller TE, Dos Santos MM, Ferreira SA, Claro MT, de Macedo GT, Fontana BD, Barbosa NV. Negative impacts of social isolation on behavior and neuronal functions are recovered after short-term social reintroduction in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111038. [PMID: 38810717 DOI: 10.1016/j.pnpbp.2024.111038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Recently, social isolation measures were crucial to prevent the spread of the coronavirus pandemic. However, the lack of social interactions affected the population mental health and may have long-term consequences on behavior and brain functions. Here, we evaluated the behavioral, physiological, and molecular effects of a social isolation (SI) in adult zebrafish, and whether the animals recover such changes after their reintroduction to the social environment. Fish were submitted to 12 days of SI, and then reintroduced to social context (SR). Behavioral analyses to evaluate locomotion, anxiety-like and social-related behaviors were performed after SI protocol, and 3 and 6 days after SR. Cortisol and transcript levels from genes involved in neuronal homeostasis (c-fos, egr, bdnf), and serotonergic (5-HT) and dopaminergic (DA) neurotransmission (thp, th) were also measured. SI altered social behaviors in zebrafish such as aggression, social preference, and shoaling. Fish submitted to SI also presented changes in the transcript levels of genes related to neural activity, and 5-HT/DA signaling. Interestingly, most of the behavioral and molecular changes induced by SI were not found again 6 days after SR. Thus, we highlight that SR of zebrafish to their conspecifics played a positive role in social behaviors and in the expression of genes involved in different neuronal signaling pathways that were altered after 12 days of SI. This study brings unprecedented data on the effects of SR in the recovery from SI neurobehavioral alterations, and reinforces the role of zebrafish as a translational model for understanding the neurobiological mechanisms adjacent to SI and resocialization.
Collapse
Affiliation(s)
- Talise E Müller
- Laboratory of Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil..
| | - Matheus M Dos Santos
- Laboratory of Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Sabrina A Ferreira
- Laboratory of Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Mariana T Claro
- Laboratory of Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Gabriel T de Macedo
- Laboratory of Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Barbara D Fontana
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Nilda V Barbosa
- Laboratory of Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil..
| |
Collapse
|
7
|
Dissinger A, Rimoldi S, Terova G, Kwasek K. Chronic social isolation affects feeding behavior of juvenile zebrafish (Danio rerio). PLoS One 2024; 19:e0307967. [PMID: 39058733 PMCID: PMC11280532 DOI: 10.1371/journal.pone.0307967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Many organisms exhibit social behaviors and are part of some scheme of social structure. Zebrafish are highly social, shoaling fish and therefore, social isolation may have notable impacts on their physiology and behavior. The objective of this study was to evaluate the effects of social isolation on feed intake, monoaminergic system related gene expression, and intestinal health of juvenile zebrafish fed a high-inclusion soybean meal based diet. At 20 days post-fertilization zebrafish were randomly assigned to chronic isolation (1 fish per 1.5 L tank) or social housing (6 fish per 9 L tank) with 18 tanks per treatment group (n = 18). Dividers were placed between all tanks to prevent visual cues between fish. Zebrafish were fed a commercial fishmeal based diet until 35 days post-fertilization and then fed the experimental high-inclusion soybean meal based diet until 50 days post-fertilization. At the end of the experiment (51 days post-fertilization), the mean total length, weight, and weight gain were not significantly different between treatment groups. Feed intake and feed conversion ratio were significantly higher in chronic isolation fish than in social housing fish. Expression of monoaminergic and appetite-related genes were not significantly different between groups. The chronic isolation group showed higher expression of the inflammatory gene il-1b, however, average intestinal villi width was significantly smaller and average length-to-width ratio was significantly higher in chronic isolation fish, suggesting morphological signs of inflammation were not present at the time of sampling. These results indicate that chronic isolation positively affects feed intake of juvenile zebrafish and suggest that isolation may be useful in promoting feed intake of less-palatable diets such as those based on soybean meal.
Collapse
Affiliation(s)
- Aubrey Dissinger
- Department of Zoology, Southern Illinois University – Carbondale, Carbondale, Illinois, United States of America
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Simona Rimoldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Karolina Kwasek
- Department of Zoology, Southern Illinois University – Carbondale, Carbondale, Illinois, United States of America
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, United States of America
| |
Collapse
|
8
|
Mando Z, Mando H, Afzan A, Shaari K, Hassan Z, Mohamad Taib MNA, Zakaria F. Biomarker triterpenoids of Centella asiatica as potential antidepressant agents: Combining in vivo and in silico studies. Behav Brain Res 2024; 466:114976. [PMID: 38599249 DOI: 10.1016/j.bbr.2024.114976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024]
Abstract
Although there are various treatments available for depression, some patients may experience resistance to treatment or encounter adverse effects. Centella asiatica (C. asiatica) is an ancient medicinal herb used in Ayurvedic medicine for its rejuvenating, neuroprotective and psychoactive properties. This study aims to explore the antidepressant-like effects of the major constituents found in C. asiatica, i.e., asiatic acid, asiaticoside, madecassic acid, and madecassoside at three doses (1.25, 2.5, and 5 mg/kg, i.p), on the behavioural and cortisol level of unpredictable chronic stress (UCS) zebrafish model. Based on the findings from the behavioural study, the cortisol levels in the zebrafish body after treatment with the two most effective compounds were measured using enzyme-linked immunosorbent assay (ELISA). Furthermore, a molecular docking study was conducted to predict the inhibitory impact of the triterpenoid compounds on serotonin reuptake. The in vivo results indicate that madecassoside (1.25, 2.5, and 5 mg/kg), asiaticoside and asiatic acid (5 mg/kg) activated locomotor behaviour. Madecassoside at all tested doses and asiaticoside at 2.5 and 5 mg/kg significantly decreased cortisol levels compared to the stressed group, indicating the potential regulation effect of madecassoside and asiaticoside on the hypothalamic-pituitary-adrenal axis overactivity. This study highlights the potential benefits of madecassoside and asiaticoside in alleviating depressive symptoms through their positive effects on behaviour and the hypothalamic-pituitary-adrenal (HPA)- axis in a chronic unpredictable stress zebrafish model. Furthermore, the in silico study provided additional evidence to support these findings. These promising results suggest that C. asiatica may be a valuable and cost-effective therapeutic option for depression, and further research should be conducted to explore its potential benefits.
Collapse
Affiliation(s)
- Zaynab Mando
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800 USM, Malaysia
| | - Huda Mando
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry and Drug Control, Arab International University, Daraa, Syrian Arab Republic
| | - Adlin Afzan
- Phytochemistry Unit, Herbal Medicine Research Institute, Institute for Medical Research, National Institutes of Health, Shah Alam 40170, Malaysia
| | - Khozirah Shaari
- Laboratory of Natural Medicines and Products (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Malaysia
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Penang 11800 USM, Malaysia
| | - Mohamad Nurul Azmi Mohamad Taib
- Natural Products and Synthesis Organic Laboratory (NPSOLab), School of Chemical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Fauziahanim Zakaria
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800 USM, Malaysia.
| |
Collapse
|
9
|
Yeramilli V, Rizek CS, Graham J, Taylor C, Cheddadi R, Patterson S, Watts S, Martin C. Parental preconception stress in zebrafish induces long-lasting anxiety in offspring. Physiol Behav 2024; 277:114477. [PMID: 38301945 DOI: 10.1016/j.physbeh.2024.114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
The growth and function of the vertebrate brain are impacted by environmental stimuli and early life stress. Adults who experience chronic stress during early life are more likely to suffer various neurodevelopmental and health issues. However, our understanding of how these specific environmental signals at different developmental stages affect brain development is poorly understood. In this study, we investigated if stress in parents prior to conception modulates neurodevelopment in offspring. We used a chronic unpredictable stress model adapted to zebrafish, which is an increasingly popular vertebrate model in neuroscience research to investigate the effects of both maternal and paternal preconception stress on offspring behavior. We evaluated the responsiveness of three anxiety-related behavioral paradigms in zebrafish: the novel tank test, thigmotaxis, and shoaling behavior. We found larvae from stressed females exhibited anxiety-like behavior in a thigmotaxis assay. As these larvae matured into adults, they continued to exhibit anxiety-like behavior in a novel tank and shoaling behavioral assay. These studies indicate preconception stress exposure in parents can induce life-long alterations in offspring neurodevelopment. Further, these results expand the hypothesis that chronically elevated glucocorticoid signaling not only in stressed mothers, but also stressed dads can affect neurodevelopment in offspring. We propose that zebrafish may be a useful model to study the transgenerational effects of chronic stress mediated via the maternal and paternal line.
Collapse
Affiliation(s)
- Venkata Yeramilli
- Dept of Surgery, Washington University School of Medicine, Saint Louis, MO, US
| | | | - Jessica Graham
- Dept of Surgery, Washington University School of Medicine, Saint Louis, MO, US
| | - Christopher Taylor
- Dept of Biology, University of Alabama at Birmingham, Birmingham, AL, US
| | - Riadh Cheddadi
- Dept of Surgery, Washington University School of Medicine, Saint Louis, MO, US
| | - Sophie Patterson
- Dept of Biology, University of Alabama at Birmingham, Birmingham, AL, US
| | - Stephen Watts
- Dept of Biology, University of Alabama at Birmingham, Birmingham, AL, US
| | - Colin Martin
- Dept of Surgery, Washington University School of Medicine, Saint Louis, MO, US.
| |
Collapse
|
10
|
Ilyin NP, Petersen EV, Kolesnikova TO, Demin KA, Khatsko SL, Apuhtin KV, Kalueff AV. Developing Peripheral Biochemical Biomarkers of Brain Disorders: Insights from Zebrafish Models. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:377-391. [PMID: 38622104 DOI: 10.1134/s0006297924020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/09/2024] [Accepted: 02/13/2024] [Indexed: 04/17/2024]
Abstract
High prevalence of human brain disorders necessitates development of the reliable peripheral biomarkers as diagnostic and disease-monitoring tools. In addition to clinical studies, animal models markedly advance studying of non-brain abnormalities associated with brain pathogenesis. The zebrafish (Danio rerio) is becoming increasingly popular as an animal model organism in translational neuroscience. These fish share some practical advantages over mammalian models together with high genetic homology and evolutionarily conserved biochemical and neurobehavioral phenotypes, thus enabling large-scale modeling of human brain diseases. Here, we review mounting evidence on peripheral biomarkers of brain disorders in zebrafish models, focusing on altered biochemistry (lipids, carbohydrates, proteins, and other non-signal molecules, as well as metabolic reactions and activity of enzymes). Collectively, these data strongly support the utility of zebrafish (from a systems biology standpoint) to study peripheral manifestations of brain disorders, as well as highlight potential applications of biochemical biomarkers in zebrafish models to biomarker-based drug discovery and development.
Collapse
Affiliation(s)
- Nikita P Ilyin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia.
| | - Elena V Petersen
- Moscow Institute of Physics and Technology, Moscow, 115184, Russia.
| | - Tatyana O Kolesnikova
- Neuroscience Program, Sirius University of Science and Technology, Sochi, 354340, Russia.
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia.
- Moscow Institute of Physics and Technology, Moscow, 115184, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of the Russian Federation, St. Petersburg, 197341, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of the Russian Federation, Pesochny, 197758, Russia
| | | | - Kirill V Apuhtin
- Laboratory of Biopsychiatry, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, 630117, Russia.
- Neuroscience Division, Sirius University of Science and Technology, Sirius Federal Territory, 354340, Russia
| | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia.
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of the Russian Federation, St. Petersburg, 197341, Russia
- Ural Federal University, Ekaterinburg, 620002, Russia
- Laboratory of Biopsychiatry, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, 630117, Russia
| |
Collapse
|
11
|
Abdulazeez I, Ismail IS, Mohd Faudzi SM, Christianus A, Chong SG. Study on the acute toxicity of sodium taurocholate via zebrafish mortality, behavioral response, and NMR-metabolomics analysis. Drug Chem Toxicol 2024; 47:115-130. [PMID: 37548163 DOI: 10.1080/01480545.2023.2242005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023]
Abstract
Sodium taurocholate (NaT) is a hydrophobic bile salt that exhibits varying toxicity and antimicrobial activity. The accumulation of BSs during their entero-hepatic cycle causes cytotoxicity in the liver and intestine and could also alter the intestinal microbiome leading to various diseases. In this research, the acute toxicity of sodium taurocholate in different concentrations (3000 mg/L, 1500 mg/L, 750 mg/L, 375 mg/L, and 0 mg/L) was investigated on four months old zebrafish by immersion in water for 96 h. The results were determined based on the fish mortality, behavioral response, and NMR metabolomics analysis which revealed LC50 of 1760.32 mg/L and 1050.42 mg/L after 72 and 96 h treatment, respectively. However, the non-lethal NaT concentrations of 750 mg/L and 375 mg/L at 96 h exposure significantly (p ≤ 0.05) decreased the total distance traveled and the activity duration, also caused surface respiration on the zebrafish. Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) revealed that the metabolome of the fish treated with 750 mg/L was discriminated from that of the control by PC1. Major significantly downregulated metabolites by NaT-induction include valine, isoleucine, 2-hydroxyvalerate, glycine, glycerol, choline, glucose, pyruvate, anserine, threonine, carnitine and homoserine. On the contrary, taurine, creatine, lactate, acetate and 3-hydroxybutyrate were upregulated suggesting cellular consumption of lipids, glucose and amino acids for adenosine triphosphate (ATP) generation during immune and inflammatory response. whereby these metabolites were released in the process. In conclusion, the research revealed the toxic effect of NaT and its potential to trigger changes in zebrafish metabolism.
Collapse
Affiliation(s)
- Isah Abdulazeez
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang Selangor, Malaysia
| | - Intan Safinar Ismail
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang Selangor, Malaysia
- Natural Medicines and Product Research Laboratory (NaturMeds), Institute of Bioscience (IBS), Universiti Putra Malaysia, UPM Serdang Selangor, Malaysia
| | - Siti Munirah Mohd Faudzi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang Selangor, Malaysia
| | - Annie Christianus
- Department of Aquaculture, Faculty of Agricultural Sciences, Universiti Putra Malaysia, UPM Serdang Selangor, Malaysia
| | - Seok-Giok Chong
- Natural Medicines and Product Research Laboratory (NaturMeds), Institute of Bioscience (IBS), Universiti Putra Malaysia, UPM Serdang Selangor, Malaysia
| |
Collapse
|
12
|
Gallas-Lopes M, Bastos LM, Benvenutti R, Panzenhagen AC, Piato A, Herrmann AP. Systematic review and meta-analysis of 10 years of unpredictable chronic stress in zebrafish. Lab Anim (NY) 2023; 52:229-246. [PMID: 37709998 DOI: 10.1038/s41684-023-01239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/04/2023] [Indexed: 09/16/2023]
Abstract
The zebrafish (Danio rerio) is a model animal that is being increasingly used in neuroscience research. A decade ago, the first study on unpredictable chronic stress (UCS) in zebrafish was published, inspired by protocols established for rodents in the early 1980s. Since then, several studies have been published by different groups, in some cases with conflicting results. Here we conducted a systematic review to identify studies evaluating the effects of UCS in zebrafish and meta-analytically synthetized the data of neurobehavioral outcomes and relevant biomarkers. Literature searches were performed in three databases (PubMed, Scopus and Web of Science) with a two-step screening process based on inclusion/exclusion criteria. The included studies underwent extraction of qualitative and quantitative data, as well as risk-of-bias assessment. Outcomes of included studies (n = 38) were grouped into anxiety/fear-related behavior, locomotor function, social behavior or cortisol level domains. UCS increased anxiety/fear-related behavior and cortisol levels while decreasing locomotor function, but a significant summary effect was not observed for social behavior. Despite including a substantial number of studies, the high heterogeneity and the methodological and reporting problems evidenced in the risk-of-bias analysis made it difficult to assess the internal validity of most studies and the overall validity of the model. Our review thus evidences the need to conduct well-designed experiments to better evaluate the effects of UCS on diverse behavioral patterns displayed by zebrafish.
Collapse
Affiliation(s)
- Matheus Gallas-Lopes
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and Meta-Analysis (BRISA) Collaboration, Rio de Janeiro, Brazil
- Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Leonardo M Bastos
- Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Radharani Benvenutti
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alana C Panzenhagen
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and Meta-Analysis (BRISA) Collaboration, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Angelo Piato
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana P Herrmann
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and Meta-Analysis (BRISA) Collaboration, Rio de Janeiro, Brazil.
- Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
13
|
Lai NHY, Mohd Zahir IA, Liew AKY, Ogawa S, Parhar I, Soga T. Teleosts as behaviour test models for social stress. Front Behav Neurosci 2023; 17:1205175. [PMID: 37744951 PMCID: PMC10512554 DOI: 10.3389/fnbeh.2023.1205175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Stress is an important aspect of our everyday life and exposure to it is an unavoidable occurrence. In humans, this can come in the form of social stress or physical stress from an injury. Studies in animal models have helped researchers to understand the body's adaptive response to stress in human. Notably, the use of behavioural tests in animal models plays a pivotal role in understanding the neural, endocrine and behavioural changes induced by social stress. Under socially stressed conditions, behavioural parameters are often measured physiological and molecular parameters as changes in behaviour are direct responses to stress and are easily assessed by behavioural tests. Throughout the past few decades, the rodent model has been used as a well-established animal model for stress and behavioural changes. Recently, more attention has been drawn towards using fish as an animal model. Common fish models such as zebrafish, medaka, and African cichlids have the advantage of a higher rate of reproduction, easier handling techniques, sociability and most importantly, share evolutionary conserved genetic make-up, neural circuitry, neuropeptide molecular structure and function with mammalian species. In fact, some fish species exhibit a clear diurnal or seasonal rhythmicity in their stress response, similar to humans, as opposed to rodents. Various social stress models have been established in fish including but not limited to chronic social defeat stress, social stress avoidance, and social stress-related decision-making. The huge variety of behavioural patterns in teleost also aids in the study of more behavioural phenotypes than the mammalian species. In this review, we focus on the use of fish models as alternative models to study the effects of stress on different types of behaviours. Finally, fish behavioural tests against the typical mammalian model-based behavioural test are compared and discussed for their viability.
Collapse
Affiliation(s)
| | | | | | | | | | - Tomoko Soga
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
14
|
Wang L, Liu F, Fang Y, Ma J, Wang J, Qu L, Yang Q, Wu W, Jin L, Sun D. Advances in Zebrafish as a Comprehensive Model of Mental Disorders. Depress Anxiety 2023; 2023:6663141. [PMID: 40224594 PMCID: PMC11921866 DOI: 10.1155/2023/6663141] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/11/2023] [Accepted: 05/29/2023] [Indexed: 04/09/2025] Open
Abstract
As an important part in international disease, mental disorders seriously damage human health and social stability, which show the complex pathogenesis and increasing incidence year by year. In order to analyze the pathogenesis of mental disorders as soon as possible and to look for the targeted drug treatment for psychiatric diseases, a more reasonable animal model is imperious demands. Benefiting from its high homology with the human genome, its brain tissue is highly similar to that of humans, and it is easy to realize whole-body optical visualization and high-throughput screening; zebrafish stands out among many animal models of mental disorders. Here, valuable qualified zebrafish mental disorders models could be established through behavioral test and sociological analysis, which are simulated to humans, and combined with molecular analyses and other detection methods. This review focuses on the advances in the zebrafish model to simulate the human mental disorders; summarizes the various behavioral characterization means, the use of equipment, and operation principle; sums up the various mental disorder zebrafish model modeling methods; puts forward the current challenges and future development trend, which is to contribute the theoretical supports for the exploration of the mechanisms and treatment strategies of mental disorders.
Collapse
Affiliation(s)
- Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| | - Fan Liu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| | - Jiawei Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China
| | - Linkai Qu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
- Wenzhou City and Wenzhou OuTai Medical Laboratory Co., Ltd. Joint Doctoral Innovation Station, Wenzhou Association for Science and Technology, Wenzhou 325000, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| |
Collapse
|
15
|
Turrini L, Roschi L, de Vito G, Pavone FS, Vanzi F. Imaging Approaches to Investigate Pathophysiological Mechanisms of Brain Disease in Zebrafish. Int J Mol Sci 2023; 24:9833. [PMID: 37372981 DOI: 10.3390/ijms24129833] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Zebrafish has become an essential model organism in modern biomedical research. Owing to its distinctive features and high grade of genomic homology with humans, it is increasingly employed to model diverse neurological disorders, both through genetic and pharmacological intervention. The use of this vertebrate model has recently enhanced research efforts, both in the optical technology and in the bioengineering fields, aiming at developing novel tools for high spatiotemporal resolution imaging. Indeed, the ever-increasing use of imaging methods, often combined with fluorescent reporters or tags, enable a unique chance for translational neuroscience research at different levels, ranging from behavior (whole-organism) to functional aspects (whole-brain) and down to structural features (cellular and subcellular). In this work, we present a review of the imaging approaches employed to investigate pathophysiological mechanisms underlying functional, structural, and behavioral alterations of human neurological diseases modeled in zebrafish.
Collapse
Affiliation(s)
- Lapo Turrini
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Lorenzo Roschi
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Giuseppe de Vito
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Viale Gaetano Pieraccini 6, 50139 Florence, Italy
- Interdepartmental Centre for the Study of Complex Dynamics, University of Florence, Via Giovanni Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Via Giovanni Sansone 1, 50019 Sesto Fiorentino, Italy
- National Institute of Optics, National Research Council, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Francesco Vanzi
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
16
|
Perdikaris P, Dermon CR. Altered GABAergic, glutamatergic and endocannabinoid signaling is accompanied by neuroinflammatory response in a zebrafish model of social withdrawal behavior. Front Mol Neurosci 2023; 16:1120993. [PMID: 37284463 PMCID: PMC10239971 DOI: 10.3389/fnmol.2023.1120993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/27/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Deficits in social communication are in the core of clinical symptoms characterizing many neuropsychiatric disorders such as schizophrenia and autism spectrum disorder. The occurrence of anxiety-related behavior, a common co-morbid condition in individuals with impairments in social domain, suggests the presence of overlapping neurobiological mechanisms between these two pathologies. Dysregulated excitation/inhibition balance and excessive neuroinflammation, in specific neural circuits, are proposed as common etiological mechanisms implicated in both pathologies. Methods and Results In the present study we evaluated changes in glutamatergic/GABAergic neurotransmission as well as the presence of neuroinflammation within the regions of the Social Decision-Making Network (SDMN) using a zebrafish model of NMDA receptor hypofunction, following sub-chronic MK-801 administration. MK-801-treated zebrafish are characterized by impaired social communication together with increased anxiety levels. At the molecular level, the behavioral phenotype was accompanied by increased mGluR5 and GAD67 but decreased PSD-95 protein expression levels in telencephalon and midbrain. In parallel, MK-801-treated zebrafish exhibited altered endocannabinoid signaling as indicated by the upregulation of cannabinoid receptor 1 (CB1R) in the telencephalon. Interestingly, glutamatergic dysfunction was positively correlated with social withdrawal behavior whereas defective GABAergic and endocannabinoid activity were positively associated with anxiety-like behavior. Moreover, neuronal and astrocytic IL-1β expression was increased in regions of the SDMN, supporting the role of neuroinflammatory responses in the manifestation of MK-801 behavioral phenotype. Colocalization of interleukin-1β (IL-1β) with β2-adrenergic receptors (β2-ARs) underlies the possible influence of noradrenergic neurotransmission to increased IL-1β expression in comorbidity between social deficits and elevated anxiety comorbidity. Discussion Overall, our results indicate the contribution of altered excitatory and inhibitory synaptic transmission as well as excessive neuroinflammatory responses in the manifestation of social deficits and anxiety-like behavior of MK-801-treated fish, identifying possible novel targets for amelioration of these symptoms.
Collapse
|
17
|
Wu J, Yan B, Bao M, Shen J, Zheng P, Wu D, Wang J, Li Z, Jiang K. Early life exposure to chronic unpredictable stress induces anxiety-like behaviors and increases the excitability of cerebellar neurons in zebrafish. Behav Brain Res 2023; 437:114160. [PMID: 36257559 DOI: 10.1016/j.bbr.2022.114160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022]
Abstract
Anxiety is a common emotional disorder in children. To understand its underlying mechanisms, chronic unpredictable stress (CUS) has been established as a stress model in zebrafish. By using the tall tank test, the stress response reliability could be improved in adult fish which has not been confirmed in larvae. In addition, the increasing evidences have shown that cerebellum plays important roles in anxiety. Whether CUS will affect cerebellar neuronal activity remains unknown. We found that CUS exposure to larvae (from 10 to 17 days post fertilization) induced anxiety-like behaviors and social cohesion impairments within 1-2 d after CUS, including a prolonged freezing time, an increased time spent at the bottom of tank, an increased thigmotaxis index, and an increased interindividual distance. Our results showed that the four behavioral tests were homogeneous, especially the tall tank test either anxiety-like behaviors or the basal locomotion. Furthermore, we found that CUS enhanced the excitability of cerebellar neurons, as the amplitude, frequency, time to peak and half-width of spontaneous firing significantly decreased, as well as the amplitude of excitatory post-synaptic current when compared with the control group. CUS also activated hyperpolarization-activated cyclic nucleotide-gated and potassium channels of cerebellar neurons. Multiple linear regression analysis showed that the total distance in bottom (tall tank test) was correlated positively with outward Na+-K+ currents (r = 0.848, P = 0.016), and the thigmotaxis index (open field test) correlated with action potential amplitude (r = 0.854, P = 0.030). Altogether, early life CUS transiently induced an anxiety-like behavior which could be more accurately assessed by combining the tall tank test with other behavior tests in young zebrafish. CUS increased the excitability of cerebellar neurons might provide new targets to treat emotional diseases such as anxiety.
Collapse
Affiliation(s)
- Jing Wu
- Department of Child Psychology
| | | | | | - Jue Shen
- Department of Neurology, The Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center For Child Health, 3333 Binsheng Road, Hangzhou 310051, China
| | | | - Dian Wu
- Department of Child Psychology
| | | | - Zhongxia Li
- Department of Pediatrics, The seventh affiliated Hospital of Guangxi Medical University (Wuzhou GongRen Hospital), 1 Nansan Lane, Gaodi Road, Wuzhou City, Guangxi Province 543000, China
| | - Kewen Jiang
- Department of Child Psychology; Department of Biobank Center.
| |
Collapse
|
18
|
Xu C, Su L, Qiu N, Hou M, Yu F, Zou X, Wang J. The Effect of Unpredictable Chronic Stress on Rare Minnow ( Gobiocypris rarus): Growth, Behaviour and Physiology. BIOLOGY 2022; 11:1755. [PMID: 36552265 PMCID: PMC9775413 DOI: 10.3390/biology11121755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
Fishes often adjust their behaviour patterns and physiological responses to cope with changing environments, and different life experiences affect them differently. Fishes might adapt to short-term stress, whereas long-term unpredictable stress may lead to various adverse effects. Although some studies have constructed unpredictable stress models of fish, the effect of unpredictable chronic stress (UCS) in the laboratory is poorly understood in fishes. In the current study, we exposed adult rare minnow to an unpredictable chronic stress protocol over 7 and 14 days and measured their response in terms of growth performance, cortisol, neurotransmitter levels (DA, 5-HT, and related metabolites), and behaviour patterns to comprehensively assess the effects of UCS on laboratory rare minnow. We discovered that specific growth rates were significantly decreased, and cortisol levels were lowered in both 7-days and 14-days stress groups. In the behaviour test, the activity level of the 14-days stress group increased, but there was no significant difference in the number of crossings to the center areas, time spent in the center areas, or the speed. In addition, the levels of DA and 5-HT did not change in the stress groups, but the DOPAC and 5-HIAA levels in the 14 days stress group were significantly higher than those in the control group. These results suggested that UCS influences rare minnow growth performance, behaviour patterns, and cortisol levels, and similar stress should be minimised in the laboratory.
Collapse
Affiliation(s)
- Chunsen Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangxia Su
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ning Qiu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Miaomiao Hou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fandong Yu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinhua Zou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianwei Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- National Aquatic Biological Resource Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, China
| |
Collapse
|
19
|
Shishis S, Tsang B, Gerlai R. The effect of fish density and tank size on the behavior of adult zebrafish: A systematic analysis. Front Behav Neurosci 2022; 16:934809. [PMID: 36275854 PMCID: PMC9581232 DOI: 10.3389/fnbeh.2022.934809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/13/2022] [Indexed: 08/25/2023] Open
Abstract
The zebrafish has been employed in several fields of biology due to its translational relevance and its simplicity and ease of maintenance. As a result, zebrafish are kept in thousands of laboratories around the world. Current industry standards favor keeping the largest possible number of fish in the smallest possible volume of water to increase efficiency and reduce costs. However, physiological and psychological stress resulting from such crowding may impact a variety of phenotypes, from brain function and behavior to cardiovascular function and cancer. Nevertheless, surprisingly little is known about what constitutes an optimal housing environment for the zebrafish, e.g., no systematic analyses have been performed to test the role of housing density and tank volume despite recent sporadic reports implying negative effects of the standard practice of crowding. Here, we conduct the first proof of concept analysis examining the potential impact of housing density and tank volume on the behavior of zebrafish. We randomly assigned adult zebrafish to one of three tank sizes (1.5, 10, or 50 L) with one of three housing densities (1, 2, or 4 fish/L), a 3 × 3 between subject experimental design, and maintained the fish in their corresponding condition for 2 weeks. Subsequently, we tested the behavior of the fish singly in a novel open tank for 12 min and quantified several of their swim path parameters using a video-tracking system. We found significant additive and interacting effects of tank size and/or housing density on swim path parameters including immobility, swim speed, turn angle, and distance to bottom and to stimulus. Although we had only three fish densities and three tank sizes and we did not explore the effects of more extreme conditions and although the interpretation of the above behavioral effects is speculative at this point, the results already demonstrate that both tank size and housing density exerts significant effects on the zebrafish and thus should be considered in zebrafish husbandry.
Collapse
Affiliation(s)
- Stephanie Shishis
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Benjamin Tsang
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Critical Care Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Robert Gerlai
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
20
|
Andersson M, Roques JAC, Aliti GM, Ademar K, Sundh H, Sundell K, Ericson M, Kettunen P. Low Holding Densities Increase Stress Response and Aggression in Zebrafish. BIOLOGY 2022; 11:725. [PMID: 35625453 PMCID: PMC9139139 DOI: 10.3390/biology11050725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022]
Abstract
With laboratory zebrafish (Danio rerio) being an established and popular research model, there is a need for universal, research-based husbandry guidelines for this species, since guidelines can help promote good welfare through providing appropriate care. Despite the widespread use of zebrafish in research, it remains unclear how holding densities affect their welfare. Previous studies have mainly evaluated the effects of holding densities on a single parameter, such as growth, reproductive output, or social interactions, rather than looking at multiple welfare parameters simultaneously. Here we investigated how chronic (nine weeks) exposure to five different holding densities (1, 4, 8, 12, and 16 fish/L) affected multiple welfare indicators. We found that fish in the 1 fish/L density treatment had higher free water cortisol concentrations per fish, increased vertical distribution, and displayed aggressive behaviour more frequently than fish held at higher densities. On the other hand, density treatments had no effect on anxiety behaviour, whole-brain neurotransmitter levels, egg volume, or the proportion of fertilised eggs. Our results demonstrate that zebrafish can be held at densities between 4 and 16 fish/L without compromising their welfare. However, housing zebrafish in the density of 1 fish/L increased their stress level and aggressive behaviour.
Collapse
Affiliation(s)
- Marica Andersson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 413 45 Gothenburg, Sweden; (M.A.); (G.M.A.); (K.A.); (M.E.)
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden; (J.A.C.R.); (H.S.); (K.S.)
- Department of Marine Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
- Swedish Mariculture Research Center (SWEMARC), University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Jonathan A. C. Roques
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden; (J.A.C.R.); (H.S.); (K.S.)
- Swedish Mariculture Research Center (SWEMARC), University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Geoffrey Mukisa Aliti
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 413 45 Gothenburg, Sweden; (M.A.); (G.M.A.); (K.A.); (M.E.)
| | - Karin Ademar
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 413 45 Gothenburg, Sweden; (M.A.); (G.M.A.); (K.A.); (M.E.)
| | - Henrik Sundh
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden; (J.A.C.R.); (H.S.); (K.S.)
- Swedish Mariculture Research Center (SWEMARC), University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Kristina Sundell
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden; (J.A.C.R.); (H.S.); (K.S.)
- Swedish Mariculture Research Center (SWEMARC), University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Mia Ericson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 413 45 Gothenburg, Sweden; (M.A.); (G.M.A.); (K.A.); (M.E.)
| | - Petronella Kettunen
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 413 45 Gothenburg, Sweden; (M.A.); (G.M.A.); (K.A.); (M.E.)
| |
Collapse
|
21
|
Wang L, Ma J, Wu W, Fang Y, Liu F, Yang Q, Hu X, Gu X, He Z, Sun D, Jin L, Zhang X. Effect of aerobic exercise as a treatment on type 2 diabetes mellitus with depression-like behavior zebrafish. Life Sci 2022; 300:120578. [PMID: 35489565 DOI: 10.1016/j.lfs.2022.120578] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Depression is the most known complication of type 2 diabetes mellitus (T2DM). Aerobic exercise improves glycemic control in T2DM, although the underlying mechanisms of comorbid depression-like behaviors in T2DM have not yet been fully elucidated. METHODS 120 zebrafish were randomly assigned to four groups: Control, T2DM, T2DM + metformin, and T2DM + aerobic exercise. Then, all animals except the control group were fed with high glucose fairy shrimp (~40 g/kg/day) and exposed reserpine (40 μg/ml for 20 min) for 10 days. Here, behavioral tests were used for model verification. Following the verification, all groups were treated as before. Additionally, the T2DM + metformin group received metformin (~10.6 mg/kg/day) at the same time, while the T2DM + aerobic exercise group received aerobic exercise 30 min/day. Finally, blood glucose and behavioral tests, as well as protein and molecular levels were determined at Day 11 and 12. RESULTS Aerobic exercise alleviated depressive-like behavior and enhanced the levels of antidepressant biomarkers (NE, 5-HIAA) in zebrafish after 10 consecutive days of exercise. Additionally, 10 consecutive days of aerobic exercise decreased the levels of inflammatory biomarkers (IFN-γ, IL-1, IL-4) and depressive biomarkers (cortisol). Meanwhile, it also aided in the reduction of CD11b, IL-6, IL-6R, and caspase-3 expression to combat the neuroinflammation induced by T2DM, mediated the BDNF-TrkB pathway, and increased Bcl-2/Bax levels. CONCLUSION Given the remarkable similarity in neurochemistry between humans and zebrafish, this study supports the effectiveness of aerobic exercise as clinical guidance in preventing and treating T2DM complicated with depression.
Collapse
Affiliation(s)
- Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Fan Liu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Xiang Hu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xuejiang Gu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhiying He
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| | - Xingxing Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
22
|
Gatto E, Dadda M, Bruzzone M, Chiarello E, De Russi G, Maschio MD, Bisazza A, Lucon‐Xiccato T. Environmental enrichment decreases anxiety‐like behavior in zebrafish larvae. Dev Psychobiol 2022; 64:e22255. [PMID: 35312057 PMCID: PMC9313885 DOI: 10.1002/dev.22255] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Elia Gatto
- Department of Chemical Pharmaceutical and Agricultural Science University of Ferrara Ferrara Italy
- Department of Life Sciences and Biotechnology University of Ferrara Ferrara Italy
| | - Marco Dadda
- Department of General Psychology University of Padova Padova Italy
| | - Matteo Bruzzone
- Padua Neuroscience Center–PNC University of Padova Padova Italy
| | | | - Gaia De Russi
- Department of Life Sciences and Biotechnology University of Ferrara Ferrara Italy
| | - Marco Dal Maschio
- Padua Neuroscience Center–PNC University of Padova Padova Italy
- Department of Biomedical Sciences University of Padua Padova Italy
| | - Angelo Bisazza
- Department of General Psychology University of Padova Padova Italy
- Padua Neuroscience Center–PNC University of Padova Padova Italy
| | - Tyrone Lucon‐Xiccato
- Department of Life Sciences and Biotechnology University of Ferrara Ferrara Italy
| |
Collapse
|
23
|
Alone but not always Lonely: Social Cues Alleviate Isolation Induced Behavioural Stress in Wild Zebrafish. Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2022.105623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Pradhan LK, Sahoo PK, Chauhan NR, Das SK. Temporal exposure to chronic unpredictable stress induces precocious neurobehavioral deficits by distorting neuromorphology and glutathione biosynthesis in zebrafish brain. Behav Brain Res 2021; 418:113672. [PMID: 34785260 DOI: 10.1016/j.bbr.2021.113672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022]
Abstract
Modelling of chronic stress conditions in experimental animals and its neuropsychiatric outcomes has been well documented in literature. Zebrafish (Danio rerio) by exhibiting significant genetic and epidemiological similarities with human beings, has now emerged as a promising animal model of translational research. In this line, risk assessment following exposure to chronic unpredictable stress (CUS) towards neurobehavioral response and neuromorphology of sensitive brain region in zebrafish is the prime objective of the present study. With the existing knowledge on CUS in affecting diverse neurobehavioral aspects, we were primarily interested in whether this neurobehavioral transformation is an outcome of altered glutathione biosynthesis in zebrafish. We were also concerned about whether the precocious neurobehavioral transformation has been linked to altered neuromorphology in the periventricular grey zone (PGZ) of the zebrafish brain. Our basic findings showed that CUS itself represented as a universal factor in altering native bottom-dwelling and scototaxis behaviour of zebrafish. Our findings also backing the argument that CUS itself represented a collective stress regimen by altering the brain glutathione biosynthesis in zebrafish. Correspondingly, a temporal transformation in CUS instigated augmentation in neuronal pyknosis and chromatin condensation were observed in PGZ of the zebrafish brain. Collectively, these findings designate that CUS induced temporal neurobehavioral transformation is an outcome of augmented oxidative stress and neuromorphological alteration in the zebrafish brain. However, the underlying mechanism of such neuropathological manifestation associated with CUS might provide novel insight towards the development of prophylactic/therapeutic intervention to counter such co-morbid behavioral alteration.
Collapse
Affiliation(s)
- Lilesh Kumar Pradhan
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, India
| | - Pradyumna Kumar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, India
| | - Nishant Ranjan Chauhan
- Infectious Disease Biology Division, Institute of Life Sciences, Bhubaneswar 751023, India
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, India.
| |
Collapse
|
25
|
Hubená P, Horký P, Slavík O. Fish self-awareness: limits of current knowledge and theoretical expectations. Anim Cogn 2021; 25:447-461. [PMID: 34655023 DOI: 10.1007/s10071-021-01566-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 09/15/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
Animal self-awareness is divided into three levels: bodily, social, and introspective self-awareness. Research has focused mainly on the introspection of so-called higher organisms such as mammals. Herein, we turn our attention to fish and provide opinions on their self-awareness based on a review of the scientific literature. Our specific aims are to discuss whether fish (A) could have a neural substrate supporting self-awareness and whether they display signs of (B) social and (C) introspective self-awareness. The present knowledge does not exclude the possibility that fish could have a simple neocortex or other structures that support certain higher cognitive processes, as the function of the primate cerebral cortex can be replaced by other neurological structures. Fish are known to display winner, loser, and audience effects, which could be interpreted as signs of social self-awareness. The audience effect may be explained not only by ethological cost and benefit theory but also by the concept of public self-awareness, which comes from human studies. The behavioural and neural manifestations of depression may be induced in fish under social subordination and may be viewed as certain awareness of a social status. The current findings on fish introspective self-awareness have been debated in the scientific community and, therefore, demand replication to provide more evidence. Further research is needed to verify the outlined ideas; however, the current knowledge indicates that fish are capable of certain higher cognitive processes, which raises questions and implications regarding ethics and welfare in fish-related research and husbandry.
Collapse
Affiliation(s)
- Pavla Hubená
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00, Suchdol, Czech Republic.
| | - Pavel Horký
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00, Suchdol, Czech Republic
| | - Ondřej Slavík
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00, Suchdol, Czech Republic
| |
Collapse
|
26
|
Buenhombre J, Daza-Cardona EA, Sousa P, Gouveia A. Different influences of anxiety models, environmental enrichment, standard conditions and intraspecies variation (sex, personality and strain) on stress and quality of life in adult and juvenile zebrafish: A systematic review. Neurosci Biobehav Rev 2021; 131:765-791. [PMID: 34592257 DOI: 10.1016/j.neubiorev.2021.09.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/14/2021] [Accepted: 09/26/2021] [Indexed: 12/14/2022]
Abstract
Antagonist and long-lasting environmental manipulations (EM) have successfully induced or reduced the stress responses and quality of life of zebrafish. For instance, environmental enrichment (EE) generally reduces anxiety-related behaviours and improves immunity, while unpredictable chronic stress (UCS) and aquarium-related stressors generate the opposite effects. However, there is an absence of consistency in outcomes for some EM, such as acute exposure to stressors, social enrichment and some items of structural enrichment. Therefore, considering intraspecies variation (sex, personality, and strain), increasing intervention complexity while improving standardisation of protocols and contemplating the possibility that EE may act as a mild stressor on a spectrum between too much (UCS) and too little (standard conditions) stress intensity or stimulation, would reduce the inconsistencies of these outcomes. It would also help explore the mechanism behind stress resilience and to standardise EM protocols. Thus, this review critically analyses and compares knowledge existing over the last decade concerning environmental manipulations for zebrafish and the influences that sex, strain, and personality may have on behavioural, physiological, and fitness-related responses.
Collapse
Affiliation(s)
- Jhon Buenhombre
- ICB Biological Sciences, Federal University of Pará, Rua Augusto Correa 01, Belém, PA, Brazil.
| | | | - Pêssi Sousa
- ICB Biological Sciences, Federal University of Pará, Rua Augusto Correa 01, Belém, PA, Brazil
| | - Amauri Gouveia
- ICB Biological Sciences, Federal University of Pará, Rua Augusto Correa 01, Belém, PA, Brazil
| |
Collapse
|
27
|
Eachus H, Choi MK, Ryu S. The Effects of Early Life Stress on the Brain and Behaviour: Insights From Zebrafish Models. Front Cell Dev Biol 2021; 9:657591. [PMID: 34368117 PMCID: PMC8335398 DOI: 10.3389/fcell.2021.657591] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/20/2021] [Indexed: 01/27/2023] Open
Abstract
The early life period represents a window of increased vulnerability to stress, during which exposure can lead to long-lasting effects on brain structure and function. This stress-induced developmental programming may contribute to the behavioural changes observed in mental illness. In recent decades, rodent studies have significantly advanced our understanding of how early life stress (ELS) affects brain development and behaviour. These studies reveal that ELS has long-term consequences on the brain such as impairment of adult hippocampal neurogenesis, altering learning and memory. Despite such advances, several key questions remain inadequately answered, including a comprehensive overview of brain regions and molecular pathways that are altered by ELS and how ELS-induced molecular changes ultimately lead to behavioural changes in adulthood. The zebrafish represents a novel ELS model, with the potential to contribute to answering some of these questions. The zebrafish offers some important advantages such as the ability to non-invasively modulate stress hormone levels in a whole animal and to visualise whole brain activity in freely behaving animals. This review discusses the current status of the zebrafish ELS field and its potential as a new ELS model.
Collapse
Affiliation(s)
- Helen Eachus
- Living Systems Institute and College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Min-Kyeung Choi
- Living Systems Institute and College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Soojin Ryu
- Living Systems Institute and College of Medicine and Health, University of Exeter, Exeter, United Kingdom.,Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
28
|
Modulation of behavioral and neurochemical responses of adult zebrafish by fluoxetine, eicosapentaenoic acid and lipopolysaccharide in the prolonged chronic unpredictable stress model. Sci Rep 2021; 11:14289. [PMID: 34253753 PMCID: PMC8275758 DOI: 10.1038/s41598-021-92422-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Long-term recurrent stress is a common cause of neuropsychiatric disorders. Animal models are widely used to study the pathogenesis of stress-related psychiatric disorders. The zebrafish (Danio rerio) is emerging as a powerful tool to study chronic stress and its mechanisms. Here, we developed a prolonged 11-week chronic unpredictable stress (PCUS) model in zebrafish to more fully mimic chronic stress in human populations. We also examined behavioral and neurochemical alterations in zebrafish, and attempted to modulate these states by 3-week treatment with an antidepressant fluoxetine, a neuroprotective omega-3 polyunsaturated fatty acid eicosapentaenoic acid (EPA), a pro-inflammatory endotoxin lipopolysaccharide (LPS), and their combinations. Overall, PCUS induced severe anxiety and elevated norepinephrine levels, whereas fluoxetine (alone or combined with other agents) corrected most of these behavioral deficits. While EPA and LPS alone had little effects on the zebrafish PCUS-induced anxiety behavior, both fluoxetine (alone or in combination) and EPA restored norepinephrine levels, whereas LPS + EPA increased dopamine levels. As these data support the validity of PCUS as an effective tool to study stress-related pathologies in zebrafish, further research is needed into the ability of various conventional and novel treatments to modulate behavioral and neurochemical biomarkers of chronic stress in this model organism.
Collapse
|
29
|
Bakhtiari-Dovvombaygi H, Izadi S, Zare Moghaddam M, Hashemzehi M, Hosseini M, Azhdari-Zarmehri H, Dinpanah H, Beheshti F. Beneficial effects of vitamin D on anxiety and depression-like behaviors induced by unpredictable chronic mild stress by suppression of brain oxidative stress and neuroinflammation in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:655-667. [PMID: 33106919 DOI: 10.1007/s00210-020-02002-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
The objective of this study was to investigate the protective effects of vitamin D (Vit D) on anxiety and depression-like behaviors induced by unpredictable chronic mild stress and brain tissue oxidative damage criteria and neuroinflammation in rats. The rats were treated as follows: (1) control, (2) UCMS, (3-5) Vit D 100, 1000, and 10,000 iu + UCMS. Rats were subjected to UCMS for a total of 4 weeks. During week 4, they received seven training trials. The brains were then collected to examine inflammation and oxidative stress criteria. Pretreatment with Vit D enhanced performances of the rats in the elevated plus maze (EPM) and open field (OF) and forced swimming test (FST). UCMS also increased MDA and interleukin-6 (IL-6) levels while decreased CAT, SOD, and thiol. Vit D reversed the effects of UCMS. The results of the current research revealed that Vit D improved UCMS-induced anxiety and depression via decreasing brain oxidative stress and inhibiting neuroinflammation.
Collapse
Affiliation(s)
| | - Saeed Izadi
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mostafa Zare Moghaddam
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | | | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hassan Azhdari-Zarmehri
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Departments of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Hossein Dinpanah
- Department of Emergency Medicine, 9-Day Hospital, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
- Departments of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
| |
Collapse
|
30
|
Zakaria F, Akhtar MT, Wan Ibrahim WN, Abu Bakar N, Muhamad A, Shohaimi S, Maulidiani M, Ahmad H, Ismail IS, Shaari K. Perturbations in Amino Acid Metabolism in Reserpine-Treated Zebrafish Brain Detected by 1H Nuclear Magnetic Resonance-Based Metabolomics. Zebrafish 2021; 18:42-54. [PMID: 33538644 DOI: 10.1089/zeb.2020.1895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Depression is a complex and disabling psychiatric disorder, which is expected to be a leading cause for disability by 2030. According to World Health Organization, about 350 million people are suffering with mental health disorders around the globe, especially depression. However, the mechanisms involved in stress-induced depression have not been fully elucidated. In this study, a stress-like state was pharmacologically induced in zebrafish using reserpine, a drug widely used to mediate depression in experimental animal models. Zebrafish received single intraperitoneal (i.p.) injections of 20, 40, and 80 mg/kg body weight reserpine doses and were subjected to open-field test at 2, 24, 48, 72, and 96 h after the treatment. Along with observed changes in behavior and measurement of cortisol levels, the fish were further examined for perturbations in their brain metabolites by 1H nuclear magnetic resonance (NMR)-based metabolomics. We found a significant increase in freezing duration, whereas total distance travelled was decreased 24 h after single intraperitoneal injection of reserpine. Cortisol level was also found to be higher after 48 h of reserpine treatment. The 1H NMR data showed that the levels of metabolites such as glutamate, glutamine, histamine, valine, leucine and histidine, lactate, l-fucose, betaine and γ-amino butyric acid (GABA), β-hydroxyisovalerate, and glutathione were significantly decreased in the reserpine-treated group. This study provided some insights into the molecular nature of stress that could contribute toward a better understanding of depression disorder.
Collapse
Affiliation(s)
- Fauziahanim Zakaria
- Discipline of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia.,Laboratory of Natural Medicines and Products (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Muhammad Tayyab Akhtar
- Laboratory of Natural Medicines and Products (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia.,Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Wan Norhamidah Wan Ibrahim
- Laboratory of Natural Medicines and Products (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Noraini Abu Bakar
- Laboratory of Natural Medicines and Products (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Azira Muhamad
- Malaysia Genome Institute, National Institutes of Biotechnology Malaysia (NIBM), Bangi, Malaysia
| | - Shamarina Shohaimi
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Maulidiani Maulidiani
- Laboratory of Natural Medicines and Products (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hafandi Ahmad
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Intan Safinar Ismail
- Laboratory of Natural Medicines and Products (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Khozirah Shaari
- Laboratory of Natural Medicines and Products (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
31
|
Fontana BD, Müller TE, Cleal M, de Abreu MS, Norton WHJ, Demin KA, Amstislavskaya TG, Petersen EV, Kalueff AV, Parker MO, Rosemberg DB. Using zebrafish (Danio rerio) models to understand the critical role of social interactions in mental health and wellbeing. Prog Neurobiol 2021; 208:101993. [PMID: 33440208 DOI: 10.1016/j.pneurobio.2021.101993] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/24/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
Social behavior represents a beneficial interaction between conspecifics that is critical for maintaining health and wellbeing. Dysfunctional or poor social interaction are associated with increased risk of physical (e.g., vascular) and psychiatric disorders (e.g., anxiety, depression, and substance abuse). Although the impact of negative and positive social interactions is well-studied, their underlying mechanisms remain poorly understood. Zebrafish have well-characterized social behavior phenotypes, high genetic homology with humans, relative experimental simplicity and the potential for high-throughput screens. Here, we discuss the use of zebrafish as a candidate model organism for studying the fundamental mechanisms underlying social interactions, as well as potential impacts of social isolation on human health and wellbeing. Overall, the growing utility of zebrafish models may improve our understanding of how the presence and absence of social interactions can differentially modulate various molecular and physiological biomarkers, as well as a wide range of other behaviors.
Collapse
Affiliation(s)
- Barbara D Fontana
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK.
| | - Talise E Müller
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil; Laboratory of Experimental Neuropscychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Madeleine Cleal
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - William H J Norton
- Department of Neuroscience, Psychology and Behaviour, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, UK; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Center, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Scientific Research Center of Radiology and Surgical Technologies, St. Petersburg, Russia
| | | | - Elena V Petersen
- Laboratory of Molecular Biology, Neuroscience and Bioscreening, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Beibei, Chongqing, China; Ural Federal University, Ekaterinburg, Russia
| | - Matthew O Parker
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Denis B Rosemberg
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil; Laboratory of Experimental Neuropscychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA.
| |
Collapse
|
32
|
Serikuly N, Alpyshov ET, Wang D, Wang J, Yang L, Hu G, Yan D, Demin KA, Kolesnikova TO, Galstyan D, Amstislavskaya TG, Babashev AM, Mor MS, Efimova EV, Gainetdinov RR, Strekalova T, de Abreu MS, Song C, Kalueff AV. Effects of acute and chronic arecoline in adult zebrafish: Anxiolytic-like activity, elevated brain monoamines and the potential role of microglia. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:109977. [PMID: 32454162 DOI: 10.1016/j.pnpbp.2020.109977] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/11/2020] [Accepted: 05/19/2020] [Indexed: 02/08/2023]
Abstract
Arecoline is a naturally occurring psychoactive alkaloid with partial agonism at nicotinic and muscarinic acetylcholine receptors. Arecoline consumption is widespread, making it the fourth (after alcohol, nicotine and caffeine) most used substance by humans. However, the mechanisms of acute and chronic action of arecoline in-vivo remain poorly understood. Animal models are a valuable tool for CNS disease modeling and drug screening. Complementing rodent studies, the zebrafish (Danio rerio) emerges as a promising novel model organism for neuroscience research. Here, we assessed the effects of acute and chronic arecoline on adult zebrafish behavior and physiology. Overall, acute and chronic arecoline treatments produced overt anxiolytic-like behavior (without affecting general locomotor activity and whole-body cortisol levels), with similar effects also caused by areca nut water extracts. Acute arecoline at 10 mg/L disrupted shoaling, increased social preference, elevated brain norepinephrine and serotonin levels and reduced serotonin turnover. Acute arecoline also upregulated early protooncogenes c-fos and c-jun in the brain, whereas chronic treatment with 1 mg/L elevated brain expression of microglia-specific biomarker genes egr2 and ym1 (thus, implicating microglial mechanisms in potential effects of long-term arecoline use). Finally, acute 2-h discontinuation of chronic arecoline treatment evoked withdrawal-like anxiogenic behavior in zebrafish. In general, these findings support high sensitivity of zebrafish screens to arecoline and related compounds, and reinforce the growing utility of zebrafish for probing molecular mechanisms of CNS drugs. Our study also suggests that novel anxiolytic drugs can eventually be developed based on arecoline-like molecules, whose integrative mechanisms of CNS action may involve monoaminergic and neuro-immune modulation.
Collapse
Affiliation(s)
- Nazar Serikuly
- School of Pharmacy, Southwest University, Chongqing, China
| | | | - DongMei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - JingTao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - LongEn Yang
- School of Pharmacy, Southwest University, Chongqing, China
| | - GuoJun Hu
- School of Pharmacy, Southwest University, Chongqing, China
| | - DongNi Yan
- School of Pharmacy, Southwest University, Chongqing, China
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Tatyana O Kolesnikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - David Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Granov Russian Research Center of Radiology and Surgical Technologies, St. Petersburg, Russia
| | | | | | - Mikael S Mor
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Evgeniya V Efimova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Tatyana Strekalova
- Laboratory of Psychiatric Neurobiology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands; Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Cai Song
- Guangdong Ocean University, Zhanjiang, China
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
33
|
Sivakrishnan S, Anbiah SV. Animals Used in Experimental Pharmacology and 3 Rs. PHARMACOPHORE 2021. [DOI: 10.51847/mixpbfzddp] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
34
|
Demin KA, Taranov AS, Ilyin NP, Lakstygal AM, Volgin AD, de Abreu MS, Strekalova T, Kalueff AV. Understanding neurobehavioral effects of acute and chronic stress in zebrafish. Stress 2021; 24:1-18. [PMID: 32036720 DOI: 10.1080/10253890.2020.1724948] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Stress is a common cause of neuropsychiatric disorders, evoking multiple behavioral, endocrine and neuro-immune deficits. Animal models have been extensively used to understand the mechanisms of stress-related disorders and to develop novel strategies for their treatment. Complementing rodent and clinical studies, the zebrafish (Danio rerio) is one of the most important model organisms in biomedicine. Rapidly becoming a popular model species in stress neuroscience research, zebrafish are highly sensitive to both acute and chronic stress, and show robust, well-defined behavioral and physiological stress responses. Here, we critically evaluate the utility of zebrafish-based models for studying acute and chronic stress-related CNS pathogenesis, assess the advantages and limitations of these aquatic models, and emphasize their relevance for the development of novel anti-stress therapies. Overall, the zebrafish emerges as a powerful and sensitive model organism for stress research. Although these fish generally display evolutionarily conserved behavioral and physiological responses to stress, zebrafish-specific aspects of neurogenesis, neuroprotection and neuro-immune responses may be particularly interesting to explore further, as they may offer additional insights into stress pathogenesis that complement (rather than merely replicate) rodent findings. Compared to mammals, zebrafish models are also characterized by increased availability of gene-editing tools and higher throughput of drug screening, thus being able to uniquely empower translational research of genetic determinants of stress and resilience, as well as to foster innovative CNS drug discovery and the development of novel anti-stress therapies.
Collapse
Affiliation(s)
- Konstantin A Demin
- Institute of Experimental Biomedicine, Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Alexander S Taranov
- Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | - Nikita P Ilyin
- Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | - Anton M Lakstygal
- Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | - Andrey D Volgin
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Tatyana Strekalova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Maastricht University, Maastricht, The Netherlands
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China
- Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
35
|
Anneser L, Alcantara IC, Gemmer A, Mirkes K, Ryu S, Schuman EM. The neuropeptide Pth2 dynamically senses others via mechanosensation. Nature 2020; 588:653-657. [PMID: 33268890 DOI: 10.1038/s41586-020-2988-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022]
Abstract
Species that depend on membership in social groups for survival exhibit changes in neuronal gene expression and behaviour when they face restricted social interactions or isolation1-3. Here we show that, across the lifespan of zebrafish (Danio rerio), social isolation specifically decreased the level of transcription of pth2, the gene that encodes the vertebrate-specific neuropeptide Pth2. However, 30 minutes of exposure to conspecifics was sufficient to initiate a significant rescue of pth2 transcript levels in previously isolated zebrafish. Transcription of pth2 exhibited bidirectional dynamics; following the acute isolation of socially reared fish, a rapid reduction in the levels of pth2 was observed. The expression of pth2 tracked not only the presence of other fish but also the density of the group. The sensory modality that controls the expression of pth2 was neither visual nor chemosensory in origin but instead was mechanical, induced by the movements of neighbouring fish. Chemical ablation of the mechanosensitive neuromast cells within the lateral line of fish prevented the rescue of pth2 levels that was induced by the social environment. In addition, mechanical perturbation of the water at frequencies similar to the movements of the zebrafish tail was sufficient to rescue the levels of pth2 in previously isolated fish. These data indicate a previously underappreciated role for the relatively unexplored neuropeptide Pth2 in both tracking and responding to the population density of the social environment of an animal.
Collapse
Affiliation(s)
- Lukas Anneser
- Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Ivan C Alcantara
- Max Planck Institute for Brain Research, Frankfurt, Germany.,Brown University, Providence, RI, USA
| | - Anja Gemmer
- Max Planck Institute for Brain Research, Frankfurt, Germany
| | | | - Soojin Ryu
- Johannes Gutenberg University Medical Center, Mainz, Germany.,Living Systems Institute, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt, Germany.
| |
Collapse
|
36
|
Understanding complex dynamics of behavioral, neurochemical and transcriptomic changes induced by prolonged chronic unpredictable stress in zebrafish. Sci Rep 2020; 10:19981. [PMID: 33203921 PMCID: PMC7673038 DOI: 10.1038/s41598-020-75855-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Stress-related neuropsychiatric disorders are widespread, debilitating and often treatment-resistant illnesses that represent an urgent unmet biomedical problem. Animal models of these disorders are widely used to study stress pathogenesis. A more recent and historically less utilized model organism, the zebrafish (Danio rerio), is a valuable tool in stress neuroscience research. Utilizing the 5-week chronic unpredictable stress (CUS) model, here we examined brain transcriptomic profiles and complex dynamic behavioral stress responses, as well as neurochemical alterations in adult zebrafish and their correction by chronic antidepressant, fluoxetine, treatment. Overall, CUS induced complex neurochemical and behavioral alterations in zebrafish, including stable anxiety-like behaviors and serotonin metabolism deficits. Chronic fluoxetine (0.1 mg/L for 11 days) rescued most of the observed behavioral and neurochemical responses. Finally, whole-genome brain transcriptomic analyses revealed altered expression of various CNS genes (partially rescued by chronic fluoxetine), including inflammation-, ubiquitin- and arrestin-related genes. Collectively, this supports zebrafish as a valuable translational tool to study stress-related pathogenesis, whose anxiety and serotonergic deficits parallel rodent and clinical studies, and genomic analyses implicate neuroinflammation, structural neuronal remodeling and arrestin/ubiquitin pathways in both stress pathogenesis and its potential therapy.
Collapse
|
37
|
Menezes FP, Padilha de Sousa I, Luchiari AC. Early Mistreatment Contributes to Social Behavior Disorders in Zebrafish. Front Behav Neurosci 2020; 14:578242. [PMID: 33177998 PMCID: PMC7596165 DOI: 10.3389/fnbeh.2020.578242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
Adverse experiences during childhood have been the focus of a series of studies due to the psychological damage observed in individuals who suffered abuse during their youth. Studies with model animals that can mimic these observations can significantly contribute to understanding the mechanisms behind this phenomenon. In our experiments, young zebrafish (20 dpf) were exposed to aggressive alcoholized male adults for 30 min for 10 days. At 30 dpf, the animals were tested for shoal formation, and at 60 dpf, locomotion and aggression were evaluated. Animals that suffered oppression from adults showed greater group cohesion and lower attack emission and higher distance from the image in the mirror test. Locomotor parameters were not changed. These results show that the stress caused by aggression exposure in the juvenile phase led to increased fear and avoidance behavior later in life. Moreover, we confirm the importance of the zebrafish as a sensitive tool for studies on the effects of early mistreatment and its consequences to adult behavior.
Collapse
Affiliation(s)
- Fabiano Peres Menezes
- Departamento de Fisiologia e Comportamento, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Igo Padilha de Sousa
- Departamento de Fisiologia e Comportamento, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Ana Carolina Luchiari
- Departamento de Fisiologia e Comportamento, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
38
|
Samaras A, Pavlidis M. Behavioural and physiological responses to a conditioning protocol for adult zebrafish, Danio rerio, held in groups. Behav Processes 2020; 179:104201. [DOI: 10.1016/j.beproc.2020.104201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023]
|
39
|
Golla A, Østby H, Kermen F. Chronic unpredictable stress induces anxiety-like behaviors in young zebrafish. Sci Rep 2020; 10:10339. [PMID: 32587370 PMCID: PMC7316714 DOI: 10.1038/s41598-020-67182-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 06/02/2020] [Indexed: 01/12/2023] Open
Abstract
Exposure to stress during early life affects subsequent behaviors and increases the vulnerability to adult pathologies, a phenomenon that has been well documented in humans and rodents. In this study, we introduce a chronic unpredictable stress protocol adapted to young zebrafish, which is an increasingly popular vertebrate model in neuroscience research. We exposed zebrafish to a series of intermittent and unpredictable mild stressors from day 10 to 17 post-fertilization. The stressed fish showed a reduced exploration of a novel environment one day post-stress and an increased responsiveness to dark-light transition two days post-stress, indicative of heightened anxiety-related behaviors. The stress-induced decrease in exploration lasted for at least three days and returned to control levels within one week. Moreover, stressed fish were on average 8% smaller than their control siblings two days post-stress and returned to control levels within one week. All together, our results demonstrate that young zebrafish exposed to chronic unpredictable stress develop growth and behavioral alterations akin to those observed in rodent models.
Collapse
Affiliation(s)
- Archana Golla
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Henrik Østby
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Florence Kermen
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway.
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030, Trondheim, Norway.
| |
Collapse
|
40
|
Fontana BD, Gibbon AJ, Cleal M, Sudwarts A, Pritchett D, Miletto Petrazzini ME, Brennan CH, Parker MO. Moderate early life stress improves adult zebrafish (Danio rerio) working memory but does not affect social and anxiety-like responses. Dev Psychobiol 2020; 63:54-64. [PMID: 32497270 DOI: 10.1002/dev.21986] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 12/26/2022]
Abstract
Early life stress (ELS) is defined as a short or chronic period of trauma, environmental or social deprivation, which can affect different neurochemical and behavioral patterns during adulthood. Zebrafish (Danio rerio) have been widely used as a model system to understand human neurodevelopmental disorders and display translationally relevant behavioral and stress-regulating systems. In this study, we aimed to investigate the effects of moderate ELS by exposing young animals (6-weeks postfertilization), for 3 consecutive days, to three stressors, and analyzing the impact of this on adult zebrafish behavior (16-week postfertilization). The ELS impact in adults was assessed through analysis of performance on tests of unconditioned memory (free movement pattern Y-maze test), exploratory and anxiety-related task (novel tank diving test), and social cohesion (shoaling test). Here, we show for the first time that moderate ELS increases the number of alternations in turn-direction compared to repetitions in the unconditioned Y-maze task, suggesting increased working memory, but has no effect on shoal cohesion, locomotor profile, or anxiety-like behavior. Overall, our data suggest that moderate ELS may be linked to adaptive flexibility which contributes to build "resilience" in adult zebrafish by improving working memory performance.
Collapse
Affiliation(s)
- Barbara D Fontana
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Alistair J Gibbon
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Madeleine Cleal
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Ari Sudwarts
- School of Biological and Chemical Sciences, Queen Mary University London, London, UK
| | - David Pritchett
- School of Biological and Chemical Sciences, Queen Mary University London, London, UK
| | | | - Caroline H Brennan
- School of Biological and Chemical Sciences, Queen Mary University London, London, UK
| | - Matthew O Parker
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.,The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| |
Collapse
|
41
|
Yang L, Wang J, Wang D, Hu G, Liu Z, Yan D, Serikuly N, Alpyshov ET, Demin KA, Strekalova T, de Abreu MS, Song C, Kalueff AV. Delayed behavioral and genomic responses to acute combined stress in zebrafish, potentially relevant to PTSD and other stress-related disorders: Focus on neuroglia, neuroinflammation, apoptosis and epigenetic modulation. Behav Brain Res 2020; 389:112644. [PMID: 32344037 DOI: 10.1016/j.bbr.2020.112644] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/22/2020] [Accepted: 04/05/2020] [Indexed: 12/30/2022]
Abstract
Stress is a common trigger of stress-related illnesses, such as anxiety, phobias, depression and post-traumatic stress disorder (PTSD). Various animal models successfully reproduce core behaviors of these clinical conditions. Here, we develop a novel zebrafish model of stress (potentially relevant to human stress-related disorders), based on delayed persistent behavioral, endocrine and genomic responses to an acute severe 'combined' stressor. Specifically, one week after adult zebrafish were exposed to a complex combined 90-min stress, we assessed their behaviors in the novel tank and the light-dark box tests, as well as whole-body cortisol and brain gene expression, focusing on genomic biomarkers of microglia, astrocytes, neuroinflammation, apoptosis and epigenetic modulation. Overall, stressed fish displayed persistent anxiety-like behavior, elevated whole-body cortisol, as well as upregulated brain mRNA expression of genes encoding the glucocorticoid receptor, neurotrophin BDNF and its receptors (TrkB and P75), CD11b (a general microglial biomarker), COX-2 (an M1-microglial biomarker), CD206 (an M2-microglial biomarker), GFAP (a general astrocytal biomarker), C3 (an A1-astrocytal biomarker), S100α10 (an A2-astrocytal biomarker), as well as pro-inflammatory cytokines IL-6, IL-1β, IFN-γ and TNF-α. Stress exposure also persistently upregulated the brain expression of several key apoptotic (Bax, Caspase-3, Bcl-2) and epigenetic genes (DNMT3a, DNMT3b, HAT1, HDAC4) in these fish. Collectively, the present model not only successfully recapitulates lasting behavioral and endocrine symptoms of clinical stress-related disorders, but also implicates changes in neuroglia, neuroinflammation, apoptosis and epigenetic modulation in long-term effects of stress pathogenesis in vivo.
Collapse
Affiliation(s)
- LongEn Yang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Jingtao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Dongmei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Guojun Hu
- School of Pharmacy, Southwest University, Chongqing, China
| | - ZiYuan Liu
- School of Pharmacy, Southwest University, Chongqing, China
| | - Dongni Yan
- School of Pharmacy, Southwest University, Chongqing, China
| | - Nazar Serikuly
- School of Pharmacy, Southwest University, Chongqing, China
| | - Erik T Alpyshov
- School of Pharmacy, Southwest University, Chongqing, China; Granov Russian Scientific Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov Medical Research Center, Ministy of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Tatyana Strekalova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Maastricht University, Maastricht, the Netherlands; Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Cai Song
- Institute for Marine Drugs and Nutrition, Marine Medicine Development Center, Shenzhen Institute, Guangdong Ocean University, Zhanjiang, China
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
42
|
de Abreu MS, Giacomini ACVV, Genario R, Rech N, Carboni J, Lakstygal AM, Amstislavskaya TG, Demin KA, Leonard BE, Vlok M, Harvey BH, Piato A, Barcellos LJG, Kalueff AV. Non-pharmacological and pharmacological approaches for psychiatric disorders: Re-appraisal and insights from zebrafish models. Pharmacol Biochem Behav 2020; 193:172928. [PMID: 32289330 DOI: 10.1016/j.pbb.2020.172928] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022]
Abstract
Acute and chronic stressors are common triggers of human mental illnesses. Experimental animal models and their cross-species translation to humans are critical for understanding of the pathogenesis of stress-related psychiatric disorders. Mounting evidence suggests that both pharmacological and non-pharmacological approaches can be efficient in treating these disorders. Here, we analyze human, rodent and zebrafish (Danio rerio) data to compare the impact of non-pharmacological and pharmacological therapies of stress-related psychopathologies. Emphasizing the likely synergism and interplay between pharmacological and environmental factors in mitigating daily stress both clinically and in experimental models, we argue that environmental enrichment emerges as a promising complementary therapy for stress-induced disorders across taxa. We also call for a broader use of novel model organisms, such as zebrafish, to study such treatments and their potential interplay.
Collapse
Affiliation(s)
- Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA.
| | - Ana C V V Giacomini
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; Postgraduate Program in Environmental Sciences, University of Passo Fundo (UPF), Passo Fundo, Brazil
| | - Rafael Genario
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Nathália Rech
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Júlia Carboni
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Anton M Lakstygal
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Center, St. Petersburg, Russia; Granov Russian Scientific Center of Radiology and Surgical Technologies, St. Petersburg, Russia
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Center, St. Petersburg, Russia
| | - Brian E Leonard
- University College Galway, Pharmacology Department, Galway, Ireland
| | - Marli Vlok
- Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Potchefstroom, South Africa
| | - Brian H Harvey
- Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Potchefstroom, South Africa
| | - Angelo Piato
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Postgraduate Program in Neurosciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Leonardo J G Barcellos
- Postgraduate Program in Environmental Sciences, University of Passo Fundo (UPF), Passo Fundo, Brazil; Postgraduate Program in Bio-Experimentation, University of Passo Fundo (UPF), Passo Fundo, Brazil; Postgraduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
43
|
Wang D, Yang L, Wang J, Hu G, Liu Z, Yan D, Serikuly N, Alpyshov ET, Demin KA, Galstyan DS, Strekalova T, de Abreu MS, Amstislavskaya TG, Kalueff AV. Behavioral and physiological effects of acute and chronic kava exposure in adult zebrafish. Neurotoxicol Teratol 2020; 79:106881. [PMID: 32240749 DOI: 10.1016/j.ntt.2020.106881] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
Abstract
Kava kava (Piper methysticum) is a medicinal plant containing kavalactones that exert potent sedative, analgesic and anti-stress action. However, their pharmacological effects and molecular targets remain poorly understood. The zebrafish (Danio rerio) has recently emerged as a powerful new model organism for neuroscience research and drug discovery. Here, we evaluate the effects of acute and chronic exposure to kava and kavalactones on adult zebrafish anxiety, aggression and sociality, as well as on their neurochemical, neuroendocrine and genomic responses. Supporting evolutionarily conserved molecular targets, acute kava and kavalactones evoked dose-dependent behavioral inhibition, upregulated brain expression of early protooncogenes c-fos and c-jun, elevated brain monoamines and lowered whole-body cortisol. Chronic 7-day kava exposure evoked similar behavioral effects, did not alter cortisol levels, and failed to evoke withdrawal-like states upon discontinuation. However, chronic kava upregulated several microglial (iNOS, Egr-2, CD11b), astrocytal (C3, C4B, S100a), epigenetic (ncoa-1) and pro-inflammatory (IL-1β, IL-6, TNFa) biomarker genes, downregulated CD206 and IL-4, and did not affect major apoptotic genes in the brain. Collectively, this study supports robust, evolutionarily conserved behavioral and physiological effects of kava and kavalactones in zebrafish, implicates brain monoamines in their acute effects, and provides novel important insights into potential role of neuroglial and epigenetic mechanisms in long-term kava use.
Collapse
Affiliation(s)
- Dongmei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - LongEn Yang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Jingtao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Guojun Hu
- School of Pharmacy, Southwest University, Chongqing, China
| | - ZiYuan Liu
- School of Pharmacy, Southwest University, Chongqing, China
| | - Dongni Yan
- School of Pharmacy, Southwest University, Chongqing, China
| | - Nazar Serikuly
- School of Pharmacy, Southwest University, Chongqing, China
| | | | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; St. Petersburg State University, St. Petersburg, Russia
| | - David S Galstyan
- St. Petersburg State University, St. Petersburg, Russia; Russian National Research Centre of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Tatiana Strekalova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Maastricht University, Maastricht, the Netherlands; Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
44
|
Demin KA, Lakstygal AM, Chernysh MV, Krotova NA, Taranov AS, Ilyin NP, Seredinskaya MV, Tagawa N, Savva AK, Mor MS, Vasyutina ML, Efimova EV, Kolesnikova TO, Gainetdinov RR, Strekalova T, Amstislavskaya TG, de Abreu MS, Kalueff AV. The zebrafish tail immobilization (ZTI) test as a new tool to assess stress-related behavior and a potential screen for drugs affecting despair-like states. J Neurosci Methods 2020; 337:108637. [PMID: 32081675 DOI: 10.1016/j.jneumeth.2020.108637] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Affective disorders, especially depression and anxiety, are highly prevalent, debilitating mental illnesses. Animal experimental models are a valuable tool in translational affective neuroscience research. A hallmark phenotype of clinical and experimental depression, the learned helplessness, has become a key target for 'behavioral despair'-based animal models of depression. The zebrafish (Danio rerio) has recently emerged as a promising novel organism for affective disease modeling and CNS drug screening. Despite being widely used to assess stress and anxiety-like behaviors, there are presently no clear-cut despair-like models in zebrafish. NEW METHOD Here, we introduce a novel behavioral paradigm, the zebrafish tail immobilization (ZTI) test, as a potential tool to assess zebrafish despair-like behavior. Conceptually similar to rodent 'despair' models, the ZTI protocol involves immobilizing the caudal half of the fish body for 5 min, leaving the cranial part to move freely, suspended vertically in a small beaker with water. RESULTS To validate this model, we used exposure to low-voltage electric shock, alarm pheromone, selected antidepressants (sertraline and amitriptyline) and an anxiolytic drug benzodiazepine (phenazepam), assessing the number of mobility episodes, time spent 'moving', total distance moved and other activity measures of the cranial part of the body, using video-tracking. Both electric shock and alarm pheromone decreased zebrafish activity in this test, antidepressants increased it, and phenazepam was inactive. Furthermore, a 5-min ZTI exposure increased serotonin turnover, elevating the 5-hydroxyindoleacetic acid/serotonin ratio in zebrafish brain, while electric shock prior to ZTI elevated both this and the 3,4-dihydroxyphenylacetic acid/dopamine ratios. In contrast, preexposure to antidepressants sertraline and amitriptyline lowered both ratios, compared to the ZTI test-exposed fish. COMPARISON WITH EXISTINGMETHOD(S) The ZTI test is the first despair-like experimental model in zebrafish. CONCLUSIONS Collectively, this study suggests the ZTI test as a potentially useful protocol to assess stress-/despair-related behaviors, potentially relevant to CNS drug screening and behavioral phenotyping of zebrafish.
Collapse
Affiliation(s)
- Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.
| | - Anton M Lakstygal
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | - Maria V Chernysh
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Natalia A Krotova
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Aleksandr S Taranov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Nikita P Ilyin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Maria V Seredinskaya
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Natsuki Tagawa
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Anna K Savva
- Laboratory of Insect Biopharmacology and Immunology, Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Mikael S Mor
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Marina L Vasyutina
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Evgeniya V Efimova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Tatyana O Kolesnikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Tatyana Strekalova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Maastricht University, Maastricht, The Netherlands; Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | | | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
45
|
O'Daniel MP, Petrunich-Rutherford ML. Effects of chronic prazosin, an alpha-1 adrenergic antagonist, on anxiety-like behavior and cortisol levels in a chronic unpredictable stress model in zebrafish ( Danio rerio). PeerJ 2020; 8:e8472. [PMID: 32030326 PMCID: PMC6996499 DOI: 10.7717/peerj.8472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/27/2019] [Indexed: 01/05/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is often associated with significant neuroendocrine dysfunction and a variety of other symptoms. Today, there are limited efficacious treatment options for PTSD, none of which directly target the dysfunction observed with the hypothalamic-pituitary-adrenal (HPA) axis. The development of new pharmacological treatments is expensive and time consuming; thus, there is utility in repurposing compounds already approved for use in other conditions. One medication in particular that has shown promise for the alleviation of PTSD symptoms is prazosin, an alpha-1 adrenergic receptor antagonist used to treat hypertension. While there have been many studies indicating the efficacy of prazosin in the treatment of PTSD symptoms, no studies fully elucidate mechanisms elicited by this treatment, nor is it clear if prazosin normalizes neuroendocrine dysfunction associated with trauma exposure. The use of zebrafish (Danio rerio) has been growing in popularity, in part, due to the homology of the stress response system with mammals. In this study, the zebrafish model was utilized to determine behavioral and biological changes induced by chronic unpredictable stress (CUS) and how these effects could be modulated by chronic prazosin treatment. The results indicated that 7d of CUS increased anxiety-like behavior in the novel tank test and decreased basal levels of cortisol. Chronic (7d) prazosin treatment decreased anxiety-like behaviors overall but did not appear to affect CUS-induced changes in behavior and basal cortisol levels. This suggests that the clinical effectiveness of prazosin may not normalize dysregulated stress responses prevalent in many patients with PTSD, but that prazosin-induced relief from anxiety in stress-related conditions may involve an alternative mechanism other than by normalizing neuroendocrine dysfunction.
Collapse
Affiliation(s)
- Michael P O'Daniel
- Department of Psychology, Indiana University Northwest, Gary, IN, United States of America
| | | |
Collapse
|
46
|
Giacomini AC, Piassetta AS, Genario R, Bonan CD, Piato A, Barcellos LJ, de Abreu MS. Tryptophan alleviates neuroendocrine and behavioral responses to stress in zebrafish. Behav Brain Res 2020; 378:112264. [DOI: 10.1016/j.bbr.2019.112264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 02/03/2023]
|
47
|
Geng Y, Peterson RT. The zebrafish subcortical social brain as a model for studying social behavior disorders. Dis Model Mech 2019; 12:dmm039446. [PMID: 31413047 PMCID: PMC6737945 DOI: 10.1242/dmm.039446] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Social behaviors are essential for the survival and reproduction of social species. Many, if not most, neuropsychiatric disorders in humans are either associated with underlying social deficits or are accompanied by social dysfunctions. Traditionally, rodent models have been used to model these behavioral impairments. However, rodent assays are often difficult to scale up and adapt to high-throughput formats, which severely limits their use for systems-level science. In recent years, an increasing number of studies have used zebrafish (Danio rerio) as a model system to study social behavior. These studies have demonstrated clear potential in overcoming some of the limitations of rodent models. In this Review, we explore the evolutionary conservation of a subcortical social brain between teleosts and mammals as the biological basis for using zebrafish to model human social behavior disorders, while summarizing relevant experimental tools and assays. We then discuss the recent advances gleaned from zebrafish social behavior assays, the applications of these assays to studying related disorders, and the opportunities and challenges that lie ahead.
Collapse
Affiliation(s)
- Yijie Geng
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, 30 S. 2000 East, Salt Lake City, UT 84112, USA
| | - Randall T Peterson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, 30 S. 2000 East, Salt Lake City, UT 84112, USA
| |
Collapse
|
48
|
Demin KA, Sysoev M, Chernysh MV, Savva AK, Koshiba M, Wappler-Guzzetta EA, Song C, De Abreu MS, Leonard B, Parker MO, Harvey BH, Tian L, Vasar E, Strekalova T, Amstislavskaya TG, Volgin AD, Alpyshov ET, Wang D, Kalueff AV. Animal models of major depressive disorder and the implications for drug discovery and development. Expert Opin Drug Discov 2019; 14:365-378. [PMID: 30793996 DOI: 10.1080/17460441.2019.1575360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Depression is a highly debilitating psychiatric disorder that affects the global population and causes severe disabilities and suicide. Depression pathogenesis remains poorly understood, and the disorder is often treatment-resistant and recurrent, necessitating the development of novel therapies, models and concepts in this field. Areas covered: Animal models are indispensable for translational biological psychiatry, and markedly advance the study of depression. Novel approaches continuously emerge that may help untangle the disorder heterogeneity and unclear categories of disease classification systems. Some of these approaches include widening the spectrum of model species used for translational research, using a broader range of test paradigms, exploring new pathogenic pathways and biomarkers, and focusing more closely on processes beyond neural cells (e.g. glial, inflammatory and metabolic deficits). Expert opinion: Dividing the core symptoms into easily translatable, evolutionarily conserved phenotypes is an effective way to reevaluate current depression modeling. Conceptually novel approaches based on the endophenotype paradigm, cross-species trait genetics and 'domain interplay concept', as well as using a wider spectrum of model organisms and target systems will enhance experimental modeling of depression and antidepressant drug discovery.
Collapse
Affiliation(s)
- Konstantin A Demin
- a Institute of Experimental Medicine , Almazov National Medical Research Centre , St. Petersburg , Russia.,b Institute of Translational Biomedicine , St. Petersburg State University , St. Petersburg , Russia
| | - Maxim Sysoev
- c Laboratory of Preclinical Bioscreening , Russian Research Center for Radiology and Surgical Technologies , St. Petersburg , Russia.,d Institute of Experimental Medicine , St. Petersburg , Russia
| | - Maria V Chernysh
- b Institute of Translational Biomedicine , St. Petersburg State University , St. Petersburg , Russia
| | - Anna K Savva
- e Faculty of Biology , St. Petersburg State University , St. Petersburg , Russia
| | | | | | - Cai Song
- h Research Institute of Marine Drugs and Nutrition , Guangdong Ocean University , Zhanjiang , China.,i Marine Medicine Development Center, Shenzhen Institute , Guangdong Ocean University , Shenzhen , China
| | - Murilo S De Abreu
- j Bioscience Institute , University of Passo Fundo (UPF) , Passo Fundo , Brazil
| | | | - Matthew O Parker
- l Brain and Behaviour Lab , School of Pharmacy and Biomedical Science, University of Portsmouth , Portsmouth , UK
| | - Brian H Harvey
- m Center of Excellence for Pharmaceutical Sciences , Division of Pharmacology, School of Pharmacy, North-West University , Potchefstroom , South Africa
| | - Li Tian
- n Institute of Biomedicine and Translational Medicine , University of Tartu , Tartu , Estonia
| | - Eero Vasar
- n Institute of Biomedicine and Translational Medicine , University of Tartu , Tartu , Estonia
| | - Tatyana Strekalova
- o Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, and Department of Normal Physiology , Sechenov First Moscow State Medical University , Moscow , Russia.,p Laboratory of Cognitive Dysfunctions , Institute of General Pathology and Pathophysiology , Moscow , Russia.,q Department of Neuroscience , Maastricht University , Maastricht , The Netherlands
| | | | - Andrey D Volgin
- g The International Zebrafish Neuroscience Research Consortium (ZNRC) , Slidell , LA , USA.,r Scientific Research Institute of Physiology and Basic Medicine , Novosibirsk , Russia
| | - Erik T Alpyshov
- s School of Pharmacy , Southwest University , Chongqing , China
| | - Dongmei Wang
- s School of Pharmacy , Southwest University , Chongqing , China
| | - Allan V Kalueff
- s School of Pharmacy , Southwest University , Chongqing , China.,t Almazov National Medical Research Centre , St. Petersburg , Russia.,u Ural Federal University , Ekaterinburg , Russia.,v Granov Russian Research Center of Radiology and Surgical Technologies , St. Petersburg , Russia.,w Laboratory of Biological Psychiatry, Institute of Translational Biomedicine , St. Petersburg State University , St. Petersburg , Russia.,x Laboratory of Translational Biopsychiatry , Scientific Research Institute of Physiology and Basic Medicine , Novosibirsk , Russia.,y ZENEREI Institute , Slidell , LA , USA.,z The International Stress and Behavior Society (ISBS), US HQ , New Orleans , LA , USA
| |
Collapse
|
49
|
de Abreu MS, Giacomini AC, Echevarria DJ, Kalueff AV. Legal aspects of zebrafish neuropharmacology and neurotoxicology research. Regul Toxicol Pharmacol 2019; 101:65-70. [DOI: 10.1016/j.yrtph.2018.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 12/31/2022]
|
50
|
The swimming plus-maze test: a novel high-throughput model for assessment of anxiety-related behaviour in larval and juvenile zebrafish (Danio rerio). Sci Rep 2018; 8:16590. [PMID: 30410116 PMCID: PMC6224510 DOI: 10.1038/s41598-018-34989-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/10/2018] [Indexed: 01/17/2023] Open
Abstract
Larval zebrafish (Danio rerio) has the potential to supplement rodent models due to the availability of resource-efficient, high-throughput screening and high-resolution imaging techniques. Although behavioural models are available in larvae, only a few can be employed to assess anxiety. Here we present the swimming plus-maze (SPM) test paradigm, a tool to assess anxiety-related avoidance of shallow water bodies in early developmental stages. The “+” shaped apparatus consists of arms of different depth, representing different levels of aversiveness similarly to the rodent elevated plus-maze. The paradigm was validated (i) in larval and juvenile zebrafish, (ii) after administration of compounds affecting anxiety and (iii) in differentially aversive experimental conditions. Furthermore, we compared the SPM with conventional “anxiety tests” of zebrafish to identify their shared characteristics. We have clarified that the preference of deeper arms is ontogenetically conserved and can be abolished by anxiolytic or enhanced by anxiogenic agents, respectively. The behavioural readout is insensitive to environmental aversiveness and is unrelated to behaviours assessed by conventional tests involving young zebrafish. Taken together, we have developed a sensitive high-throughput test allowing the assessment of anxiety-related responses of zebrafish regardless of developmental stage, granting the opportunity to combine larva-based state-of-the-art methods with detailed behavioral analysis.
Collapse
|