1
|
Batista Napotnik T, Polajžer T, Miklavčič D. Cell death due to electroporation - A review. Bioelectrochemistry 2021; 141:107871. [PMID: 34147013 DOI: 10.1016/j.bioelechem.2021.107871] [Citation(s) in RCA: 232] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/12/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022]
Abstract
Exposure of cells to high voltage electric pulses increases transiently membrane permeability through membrane electroporation. Electroporation can be reversible and is used in gene transfer and enhanced drug delivery but can also lead to cell death. Electroporation resulting in cell death (termed as irreversible electroporation) has been successfully used as a new non-thermal ablation method of soft tissue such as tumours or arrhythmogenic heart tissue. Even though the mechanisms of cell death can influence the outcome of electroporation-based treatments due to use of different electric pulse parameters and conditions, these are not elucidated yet. We review the mechanisms of cell death after electroporation reported in literature, cell injuries that may lead to cell death after electroporation and membrane repair mechanisms involved. The knowledge of membrane repair and cell death mechanisms after cell exposure to electric pulses, targets of electric field in cells need to be identified to optimize existing and develop of new electroporation-based techniques used in medicine, biotechnology, and food technology.
Collapse
Affiliation(s)
- Tina Batista Napotnik
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Tamara Polajžer
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia.
| |
Collapse
|
2
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 459] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
3
|
Ciobanu F, Golzio M, Kovacs E, Teissié J. Control by Low Levels of Calcium of Mammalian Cell Membrane Electropermeabilization. J Membr Biol 2017; 251:221-228. [PMID: 28823021 DOI: 10.1007/s00232-017-9981-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 08/15/2017] [Indexed: 01/12/2023]
Abstract
Electric pulses, when applied to a cell suspension, induce a reversible permeabilization of the plasma membrane. This permeabilized state is a long-lived process (minutes). The biophysical molecular mechanisms supporting the membrane reorganization associated to its permeabilization remain poorly understood. Modeling the transmembrane structures as toroidal lipidic pores cannot explain why they are long-lived and why their resealing is under the control of the ATP level. Our results describe the effect of the level of free Calcium ions. Permeabilization induces a Ca2+ burst as previously shown by imaging of cells loaded with Fluo-3. But this sharp increase is reversible even when Calcium is present at a millimolar concentration. Viability is preserved to a larger extent when submillimolar concentrations are used. The effect of calcium ions is occurring during the resealing step not during the creation of permeabilization as the same effect is observed if Ca2+ is added in the few seconds following the pulses. The resealing time is faster when Ca2+ is present in a dose-dependent manner. Mg2+ is observed to play a competitive role. These observations suggest that Ca2+ is acting not on the external leaflet of the plasma membrane but due to its increased concentration in the cytoplasm. Exocytosis will be enhanced by this Ca2+ burst (but hindered by Mg2+) and occurs in the electropermeabilized part of the cell surface. This description is supported by previous theoretical and experimental results. The associated fusion of vesicles will be the support of resealing.
Collapse
Affiliation(s)
- Florin Ciobanu
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.,University Carol Davila, Bucarest, Romania
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Justin Teissié
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
4
|
Takao D, Kamimura S. Geometry-specific heterogeneity of the apparent diffusion rate of materials inside sperm cells. Biophys J 2010; 98:1582-8. [PMID: 20409478 DOI: 10.1016/j.bpj.2009.12.4314] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 12/15/2009] [Accepted: 12/24/2009] [Indexed: 11/28/2022] Open
Abstract
In sea urchin spermatozoa, the energy source powering flagellar motion is provided as ATP produced by mitochondria located at the proximal ends of flagella. However, the bottleneck structure between the sperm head and the flagellar tail seems to restrict the free entry of ATP from mitochondria into the tail region. To test this possibility, we investigated the diffusion properties in sperm cells using fluorescence recovery after photobleaching. We found that the rate of fluorescence recovery in the head region was approximately 10% of that observed in the flagellar tail regions. We also found that, even within the tail region, rates varied depending on location, i.e., rates were slower at the more distal regions. Using computational analysis, the rate heterogeneity was shown to be caused mainly by the geometry of the sperm structure, even if little or no difference in diffusion rates through the neck region was assumed. Therefore, we concluded that materials such as ATP would generally diffuse freely between the heads and the flagella of sperm cells. We believe these findings regarding the diffusion properties inside spermatozoa provide further insights into material transportation and chemical signaling inside eukaryotic cilia and flagella.
Collapse
Affiliation(s)
- Daisuke Takao
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
5
|
Takao D, Kamimura S. Single-Cell Electroporation of Fluorescent Probes into Sea Urchin Sperm Cells and Subsequent FRAP Analysis. Zoolog Sci 2010; 27:279-84. [DOI: 10.2108/zsj.27.279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Daisuke Takao
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
| | - Shinji Kamimura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
6
|
Ozil JP, Markoulaki S, Toth S, Matson S, Banrezes B, Knott JG, Schultz RM, Huneau D, Ducibella T. Egg activation events are regulated by the duration of a sustained [Ca2+]cyt signal in the mouse. Dev Biol 2005; 282:39-54. [PMID: 15936328 DOI: 10.1016/j.ydbio.2005.02.035] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 02/11/2005] [Accepted: 02/23/2005] [Indexed: 12/16/2022]
Abstract
Although the dynamics of oscillations of cytosolic Ca2+ concentration ([Ca2+]cyt) play important roles in early mammalian development, the impact of the duration when [Ca2+]cyt is elevated is not known. To determine the sensitivity of fertilization-associated responses [i.e., cortical granule exocytosis, resumption of the cell cycle, Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity, recruitment of maternal mRNAs] and developmental competence of the parthenotes to the duration of a [Ca2+]cyt transient, unfertilized mouse eggs were subjected to a prolonged [Ca2+]cyt change for 15, 25, or 50 min by means of repetitive Ca2+ electropermeabilization at 2-min intervals. The initiation and completion of fertilization-associated responses are correlated with the duration of time in which the [Ca2+]cyt is elevated, with the exception that autonomous CaMKII activity is down-regulated with prolonged elevated [Ca2+]cyt. Activated eggs from 25- or 50-min treatments readily develop to the blastocyst stage with no sign of apoptosis or necrosis and some implant. Ca2+ influx into unfertilized eggs causes neither Ca2+ release from intracellular stores nor rapid removal of cytosolic Ca2+. Thus, the total Ca2+ signal input appears to be an important regulatory parameter that ensures completion of fertilization-associated events and oocytes have a surprising degree of tolerance for a prolonged change in [Ca2+]cyt.
Collapse
Affiliation(s)
- Jean-Pierre Ozil
- Unité de Biologie du Développement et Reproduction, INRA, 78352 Jouy-en-Josas cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Avery J, Jahn R, Edwardson JM. Reconstitution of regulated exocytosis in cell-free systems: a critical appraisal. Annu Rev Physiol 1999; 61:777-807. [PMID: 10099710 DOI: 10.1146/annurev.physiol.61.1.777] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Regulated exocytosis involves the tightly controlled fusion of a transport vesicle with the plasma membrane. It includes processes as diverse as the release of neurotransmitters from presynaptic nerve endings and the sperm-triggered deposition of a barrier preventing polyspermy in oocytes. Cell-free model systems have been developed for studying the biochemical events underlying exocytosis. They range from semi-intact permeabilized cells to the reconstitution of membrane fusion from isolated secretory vesicles and their target plasma membranes. Interest in such cell-free systems has recently been reinvigorated by new evidence suggesting that membrane fusion is mediated by a basic mechanism common to all intracellular fusion events. In this chapter, we review some of the literature in the light of these new developments and attempt to provide a critical discussion of the strengths and limitations of the various cell-free systems.
Collapse
Affiliation(s)
- J Avery
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.
| | | | | |
Collapse
|
8
|
Swezey RR, Epel D. Caged substrates for measuring enzymatic activity in vivo: photoactivated caged glucose 6-phosphate. Methods Enzymol 1998; 291:278-88. [PMID: 9661155 DOI: 10.1016/s0076-6879(98)91019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- R R Swezey
- Department of Pharmacokinetics and Metabolism, Shaman Pharmaceuticals, Inc., South San Francisco, California 94080, USA
| | | |
Collapse
|
9
|
REES BERNARDB, SWEZEY ROBERTR, KIBAK HENRIK, EPEL DAVID. Regulation of the pentose phosphate pathway at fertilization in sea urchin eggs. INVERTEBR REPROD DEV 1996. [DOI: 10.1080/07924259.1996.9672538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Djuzenova CS, Zimmermann U, Frank H, Sukhorukov VL, Richter E, Fuhr G. Effect of medium conductivity and composition on the uptake of propidium iodide into electropermeabilized myeloma cells. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1284:143-52. [PMID: 8914578 DOI: 10.1016/s0005-2736(96)00119-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effects of ionic composition and conductivity of the medium on electropermeabilization of the plasma membrane of mammalian cells were studied. Temporal and spatial uptake of propidium iodide (PI) into field-treated cells was measured by means of flow cytometry, spectrofluorimetry and confocal laser scanning microscopy. Murine myeloma cells were electropulsed in iso-osmolar solutions. These contained 10-100 micrograms ml-1 PI at different conductivities (0.8-14 mS cm-1) and ionic strengths, adjusted by varying concentrations of K+, Na+, Cl- and SO4(2-). Field-induced incorporation of PI into reversibly permeabilized cells was (almost) independent of ionic composition and strength (at a fixed medium conductivity), but increased dramatically with decreasing medium conductivity at a fixed field strength. The time-course of PI uptake (which apparently reflected the resealing process of the membrane) could be fitted by single-exponential curve (relaxation time about 2 min in the absence of Ca2+) and was independent of medium conductivity and composition. These and other data suggested that the expansion of the 'electroleaks' during the breakdown process is field-controlled and depends, therefore, on the (conductivity-dependent) discharging process of the permeabilized membrane. The threshold field strength for dye uptake increased with increasing K+ concentration (about 0.6 kV cm-1 in K(+)-free, NaCl-containing medium and about 0.9 kV cm-1 in 30 mM KCl-containing medium). Also, the spatial uptake pattern of PI shifted from an asymmetric permeation through the cell hemisphere facing the anode to a more symmetric uptake through both hemispheres. These results suggested that the generated potential is superimposed on the (K(+)-dependent) resting membrane potential. Taking this into account, the breakdown voltage of the membrane was estimated to be about 1 V.
Collapse
Affiliation(s)
- C S Djuzenova
- Lehrstuhl für Biotechnologie, Biozentrum der Universität Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Hamann M, Attwell D. Non-synaptic release of ATP by electrical stimulation in slices of rat hippocampus, cerebellum and habenula. Eur J Neurosci 1996; 8:1510-5. [PMID: 8758958 DOI: 10.1111/j.1460-9568.1996.tb01613.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
ATP is thought to be a fast neurotransmitter in the medial habenula region of the brain, and may be coreleased with other transmitters, for example with glutamate in the hippocampus. We monitored ATP release in rat brain slices using the bioluminescent indicator system luciferin-luciferase. Electrical stimulation of the hippocampus, cerebellum or habenula led to ATP release, but this release was calcium-independent and was not blocked by tetrodotoxin, or by other agents found to block ATP release from red blood cells. Although calcium-dependent ATP release may occur in response to electrical stimulation, it appears to be overwhelmed by calcium-independent release, which may result from electroporation of cells close to the stimulating electrode. Consistent with this, uptake into cells of the fluorescent dye Lucifer yellow was promoted by electrical stimulation. Our data undermine a previous suggestion, based on use of the luciferin-luciferase technique, that ATP is synaptically released with glutamate in the hippocampus.
Collapse
Affiliation(s)
- M Hamann
- Department of Physiology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
12
|
King-Smith C, Chen P, Garcia D, Rey H, Burnside B. Calcium-independent regulation of pigment granule aggregation and dispersion in teleost retinal pigment epithelial cells. J Cell Sci 1996; 109 ( Pt 1):33-43. [PMID: 8834788 DOI: 10.1242/jcs.109.1.33] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the eyes of teleosts and amphibians, melanin pigment granules of the retinal pigment epithelium (RPE) migrate in response to changes in light conditions. In the light, pigment granules disperse into the cells' long apical projections, thereby shielding the rod photoreceptor outer segments and reducing their extent of bleach. In darkness, pigment granules aggregate towards the base of the RPE cells. In vitro, RPE pigment granule aggregation can be induced by application of nonderivatized cAMP, and pigment granule dispersion can be induced by cAMP washout. In previous studies based on RPE-retina co-cultures, extracellular calcium was found to influence pigment granule migration. To examine the role of calcium in regulation of RPE pigment granule migration in the absence of retinal influences, we have used isolated RPE sheets and dissociated, cultured RPE cells. Under these conditions depletion of extracellular or intracellular calcium ([Ca2+]o, [Ca2+]i) had no effect on RPE pigment granule aggregation or dispersion. Using the intracellular calcium dye fura-2 and a new dye, fura-pe3, to monitor calcium dynamics in isolated RPE cells, we found that [Ca2+]i did not change from basal levels when pigment granule aggregation was triggered by cAMP, or dispersion was triggered by cAMP washout. Also, no change in [Ca2+]i was detected when dispersion was triggered by cAMP washout in the presence of 10 microM dopamine, a treatment previously shown to enhance dispersion. In addition, elevation of [Ca2+]i by addition of ionomycin neither triggered pigment movements, nor interfered with pigment granule motility elicited by cAMP addition or washout. Since other studies have indicated that actin plays a role in both pigment granule dispersion and aggregation in RPE, our findings suggest that RPE pigment granule migration depends on an actin-based motility system that is not directly regulated by calcium.
Collapse
Affiliation(s)
- C King-Smith
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | | | | | |
Collapse
|
13
|
Abstract
1. We have combined cell membrane electroporation by electrical field (EF) stimulation with a rapid perfusion system in order to stimulate repetitive increases in cytoplasmic free [Ca2+] ([Ca2+]i) in mouse eggs. [Ca2+]i was monitored by ratio fluorescent measurements of intracellular indo-1 on individual eggs. The conditions required to cause different types of [Ca2+]i increases were established and the effects of these [Ca2+]i changes upon egg activation examined. 2. The rapid perfusion of non-ionic medium caused a single [Ca2+]i increase. However, to generate repetitive [Ca2+]i increases, eggs were exposed to EF pulses in the presence of Ca2+ and then washed rapidly with culture medium. Sequential EF pulse application led to prolonged elevation of [Ca2+]i levels and eventual cell lysis unless rapid reperfusion with culture medium was achieved. Transient increases in [Ca2+]i in eggs could also be generated by EF pulses in the presence of inositol 1,4,5-trisphosphate (InsP3). 3. In response to EF stimulation fertilized eggs showed [Ca2+]i increases that were enhanced relative to unfertilized eggs. The responses in these fertilized eggs were often followed by repetitive [Ca2+]i oscillations, despite the fact that the [Ca2+]i oscillations associated with sperm penetration had ceased by this stage. 4. In unfertilized mouse eggs the [Ca2+]i increases appeared to be due to direct cation influx since repeated EF pulses caused repeated influx of Mn2+ as monitored by quenching of fluorescence of fura-2 loaded eggs. 5. Under conditions that stimulated reproducible patterns of [Ca2+]i transients we found that a single large [Ca2+]i transient did not cause significant egg activation, but that inducing repetitive [Ca2+]i transients was effective in activating eggs. The speed of activation as judged by the rate of pronuclear formation was also dependent upon the frequency of pulse application. 6. These data show that combining EF pulses with a rapid and precise sequential perfusion system can be used to manipulate [Ca2+]i levels in mammalian eggs. This provides a means of artificial mimicry of the [Ca2+]i transients seen after fertilization. It appears that Ca2+ influx during EF pulses does not cause significant Ca2+ release from internal stores in unfertilized eggs, but after fertilization Ca2+ influx does induce Ca2+ release. It is also apparent that mouse eggs are more successfully activated by repetitive [Ca2+]i increases than by single large [Ca2+]i rises. We suggest that our data provide direct evidence for the hypothesis that a cellular response to oscillations of intracellular [Ca2+]i can be distinct from that to monotonic rises in [Ca2+]i.
Collapse
Affiliation(s)
- J P Ozil
- Institut National de la Recherche Agronomique, Unité de Biologie de la Fécondation, Jouy en Josas, France
| | | |
Collapse
|
14
|
Steinhardt RA, Bi G, Alderton JM. Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Science 1994; 263:390-3. [PMID: 7904084 DOI: 10.1126/science.7904084] [Citation(s) in RCA: 397] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
After injury to the cell membrane, rapid resealing of the membrane occurs with little loss of intracellular contents. This process has been studied by measurement of the rate of dye loss after membrane puncture in both the sea urchin embryo and 3T3 fibroblasts. Resealing of disrupted cell membranes requires external calcium that can be antagonized by magnesium. Block of multifunctional calcium/calmodulin kinase, which regulates exocytotic vesicle availability at synapses, and of kinesin, which is required for outward-directed transport of vesicles, inhibited membrane resealing. Resealing was also inhibited by botulinum neurotoxins B and A, suggesting that the two synaptosomal-associated proteins synaptobrevin and SNAP-25 also participate in resealing. This pattern of inhibition indicates that the calcium-dependent mechanisms for cell membrane resealing may involve vesicle delivery, docking, and fusion, similar to the exocytosis of neurotransmitters.
Collapse
Affiliation(s)
- R A Steinhardt
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | | | |
Collapse
|
15
|
Lee HC, Galione A, Walseth TF. Cyclic ADP-ribose: metabolism and calcium mobilizing function. VITAMINS AND HORMONES 1994; 48:199-257. [PMID: 7941427 DOI: 10.1016/s0083-6729(08)60499-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- H C Lee
- Department of Physiology, University of Minnesota, Minneapolis
| | | | | |
Collapse
|
16
|
Orlowski S, Mir LM. Cell electropermeabilization: a new tool for biochemical and pharmacological studies. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1154:51-63. [PMID: 8507646 DOI: 10.1016/0304-4157(93)90016-h] [Citation(s) in RCA: 200] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cell electropermeabilization is the transient permeabilization of the plasma membrane by means of short and intense electric pulses. Under optimized conditions, electropermeabilization is compatible with cell survival. It provides a direct access into the cytosol to ions, small molecules, exogenous drugs and macromolecules. As cells remain functional, a large variety of cell biology questions can be addressed. Such 'in situ biochemistry' opens new possibilities beside the more classical studies dealing with unpermeabilized cells or subcellular extracts. Electropermeabilization also allows pharmacological studies with cells, cultured monolayers and in vivo tissues as well as the design of drug controlled-release systems.
Collapse
Affiliation(s)
- S Orlowski
- Laboratoire de Biophysique des Systèmes Membranaires, SBPM/DBCM/DSV (CEA), Gif-sur-Yvette, France
| | | |
Collapse
|
17
|
Swezey RR, Epel D. The use of caged substrates to assess the activity of 6-phosphogluconate dehydrogenase in living sea urchin eggs. Exp Cell Res 1992; 201:366-72. [PMID: 1639134 DOI: 10.1016/0014-4827(92)90285-g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
As part of our inquiries into the regulation of the hexose monophosphate shunt in the early development of sea urchin eggs and embryos, we have developed a novel method to assess the in vivo activity of the enzyme 6-phosphogluconate dehydrogenase (6PGDH) before and after fertilization. Our measurements show that the intracellular level of 6-phosphogluconate (6PG) in eggs decreases 60% after fertilization, which is consistent with the increase in the activity of 6PGDH previously reported using irreversibly permeabilized cell assays (Swezey and Epel, Proc. Natl. Acad. Sci USA 85, 812-816, 1988). The in vivo turnover of the 6PG pool was assessed using a new radioisotopic technique. 1-14C-labeled 6PG was chemically modified such that it was not metabolized by cellular 6PGDH and could be rapidly converted back to 6PG by photolysis. This "caged" 6PG was introduced into unfertilized sea urchin eggs using a transient permeabilization procedure, and then the oxidation of [1-14C]6PG in vivo upon irradiation was followed. Oxidation of 6PG was complete within 7-11 s of irradiation, indicating an extremely rapid turnover of this pool in sea urchin eggs. Based on the 6PG pool sizes and the kinetic properties of 6PGDH, determined here, along with the activity levels seen in permeabilized cells, the half-time for the label in the 6PG pool in sea urchin eggs is calculated to be 26 s. This is inconsistent with the in vivo turnover rates seen in these studies, indicating that the permeabilized cell assays overestimate the degree of inhibition of 6PGDH before fertilization. These results suggest that caution should be exercised in extrapolating data obtained from permeabilized cells to the situation in vivo.
Collapse
Affiliation(s)
- R R Swezey
- Department of Biological Sciences, Stanford University, Pacific Grove, California 93950
| | | |
Collapse
|
18
|
Larochelle DA, Epel D. In vivo protein phosphorylation and labeling of ATP in sea urchin eggs loaded with 32PO4 via electroporation. Dev Biol 1991; 148:156-64. [PMID: 1936555 DOI: 10.1016/0012-1606(91)90326-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protein phosphorylation was examined in sea urchin eggs in which the ATP was labeled with 32P over a brief period of time using reversible electrical poration to gain access to the cytoplasm. Unfertilized eggs from two species, Lytechinus pictus and Strongylocentrotus purpuratus, were electrically permeabilized and incubated in the presence of [32P]H3PO4, under conditions allowing label uptake. After a 5-min loading period the eggs were resealed and the fate of the label was monitored. The label had equilibrated with the cellular ATP pool within the 13-min period required for loading and resealing the eggs. Furthermore, this equilibrium was maintained for at least 2 hr beyond the loading period in either unfertilized or fertilized eggs (i.e., the specific activity of ATP was the same for fertilized and unfertilized eggs). We also examined the position of the label within the ATP and found that 40-45% of the label isolated with the ATP was in the gamma phosphate of ATP and hence was immediately available for protein phosphorylation. The label was maintained in this position in the ATP for at least 2 hr following the loading period and was not affected by fertilization (determined for L. pictus only). The phosphoprotein banding pattern was determined by gel electrophoresis and autoradiography at various time points following the loading period. There was a continuous increase of label incorporated into protein over time; however, the banding pattern did not change. This pattern was not affected by fertilization. Furthermore, inhibition of protein synthesis (with emetine) had no effect on this phosphoprotein banding pattern. Although the loading period was brief there was sufficient incorporation of label into protein during this time to obscure potential regulatory phosphorylation events.
Collapse
Affiliation(s)
- D A Larochelle
- Stanford University, Hopkins Marine Station, Pacific Grove, California 93950
| | | |
Collapse
|
19
|
Shen SS, Buck WR. A synthetic peptide of the pseudosubstrate domain of protein kinase C blocks cytoplasmic alkalinization during activation of the sea urchin egg. Dev Biol 1990; 140:272-80. [PMID: 2373253 DOI: 10.1016/0012-1606(90)90077-v] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multiple second messenger pathways have been proposed for transduction of the sperm-egg fusion event during fertilization of sea urchin eggs. Cytoplasmic alkalinization due to increased Na(+)-H+ antiport has been causally linked to many of the metabolic events during fertilization. Two possible second messenger pathways coupling sperm-egg fusion and antiporter activity are activation of protein kinase C (PKC) and Ca2(+)-calmodulin kinase. A selective inhibitor of PKC is PKC(19-36), a synthetic peptide of the pseudosubstrate domain of the kinase. Injection of PKC(19-36) into unfertilized sea urchin eggs blocked cytoplasmic alkalinization during activation by phorbol 12-myristate 13-acetate, a PKC agonist. The rise in pH during fertilization was partially blocked by PKC(19-36), which suggested that multiple pathways regulate the antiporter during fertilization. The use of fluorescein chromophores to measure intracellular pH in sea urchin eggs is also discussed.
Collapse
Affiliation(s)
- S S Shen
- Department of Zoology, Iowa State University, Ames 50011
| | | |
Collapse
|