1
|
Kuang XY, Jiang XF, Chen C, Su XR, Shi Y, Wu JR, Zhang P, Zhang XL, Cui YH, Ping YF, Bian XW. Expressions of glia maturation factor-β by tumor cells and endothelia correlate with neovascularization and poor prognosis in human glioma. Oncotarget 2018; 7:85750-85763. [PMID: 26515590 PMCID: PMC5349871 DOI: 10.18632/oncotarget.5509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 10/13/2015] [Indexed: 11/30/2022] Open
Abstract
Glia maturation factor-β (GMF-β) has been reported to promote glial differentiation, and act as a negative prognostic indicator in certain cancers. However, its roles in glioma progression remain unclear. Since neurogenesis and vasculogenesis were proved to share some common regulators during gliomagenesis, we aim to explore the potential impact of GMF-β on tumor neovascularization and patient survival in glioma. In this study, we first detected GMF-β expression not only in tumor cells but also in microvascular endothelia by double immunohistochemical staining. Both tumoral and endothelial GMF-β expression levels were positively correlated with tumor grade and microvessel density (MVD), while negatively associated with poor prognoses of the patients. Interestingly, multivariate analysis demonstrated that endothelial GMF-β expression level was the only independent predictor of progression-free and overall survival of glioma patients. The results of in vitro angiogenesis assay showed that GMF-β knockdown significantly inhibited tubulogenesis of human U87 glioblastoma cells. Furthermore, GMF-β knockdown suppressed tumor growth and the formation of human-CD31 positive (glioma cell-derived) microvessels in a mouse orthotopic U87 glioma model. Our results demonstrated that GMF-β is an important player in glioma progression via promoting neovascularization. GMF-β may therefore be a novel prognostic marker as well as a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Xiao-Yan Kuang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xue-Feng Jiang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Cong Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiao-Rui Su
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jin-Rong Wu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Peng Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xin-Li Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Southwest Hospital, Third Military Medical University, Chongqing, China.,Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - You-Hong Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yi-Fang Ping
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Southwest Hospital, Third Military Medical University, Chongqing, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Schlee M, Krug T, Gires O, Zeidler R, Hammerschmidt W, Mailhammer R, Laux G, Sauer G, Lovric J, Bornkamm GW. Identification of Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA2) target proteins by proteome analysis: activation of EBNA2 in conditionally immortalized B cells reflects early events after infection of primary B cells by EBV. J Virol 2004; 78:3941-52. [PMID: 15047810 PMCID: PMC374249 DOI: 10.1128/jvi.78.8.3941-3952.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Epstein-Barr virus (EBV) is a ubiquitous B-lymphotropic herpesvirus associated with several malignant tumors, e.g., Burkitt's lymphoma and Hodgkin's disease, and is able to efficiently immortalize primary B lymphocytes in vitro. The growth program of infected B cells is initiated and maintained by the viral transcription factor EBV nuclear antigen 2 (EBNA2), which regulates viral and cellular genes, including the proto-oncogene c-myc. In our study, patterns of protein expression in B cells with and without EBNA2 were analyzed by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. For this purpose, we used a conditional immortalization system for EBV, a B cell line (EREB2-5) that expresses an estrogen receptor-EBNA2 fusion protein. In order to discriminate downstream targets of c-Myc from c-Myc-independent EBNA2 targets, we used an EREB2-5-derived cell line, P493-6, in which c-Myc is expressed under the control of a tetracycline-regulated promoter. Of 20 identified EBNA2 target proteins, 11 were c-Myc dependent and therefore most probably associated with proliferation, and one of these proteins was a posttranslationally modified protein, i.e., hypusinylated eIF5a. Finally, to estimate the relevance of EBNA2 targets during early EBV infection, we analyzed the proteomes of primary B cells before and after infection with EBV. The protein expression pattern induced upon EBV infection was similar to that following EBNA2 activation. These findings underscore the value of EREB2-5 cells as an appropriate model system for the analysis of early events in the process of EBV-mediated B-cell immortalization.
Collapse
Affiliation(s)
- Martin Schlee
- Institute of Clinical Molecular Biology and Tumor Genetics, GSF-National Research Center for EnvironmentHealth, Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Zamora R, Vodovotz Y, Aulak KS, Kim PKM, Kane JM, Alarcon L, Stuehr DJ, Billiar TR. A DNA microarray study of nitric oxide-induced genes in mouse hepatocytes: implications for hepatic heme oxygenase-1 expression in ischemia/reperfusion. Nitric Oxide 2002; 7:165-86. [PMID: 12381414 DOI: 10.1016/s1089-8603(02)00104-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) can modulate numerous genes directly; however, some genes may be modulated only in the presence of the inflammatory stimuli that increase the expression of the inducible nitric oxide synthase (iNOS). One method by which to examine changes in NO-mediated gene expression is to carry out a gene array analysis on NO-nai;ve cells. Herein, we report a gene array analysis on mRNA from iNOS-null (iNOS(-/-)) mouse hepatocytes harvested from mice exposed to NO by infection with an adenovirus expressing human iNOS (Ad-iNOS). Of the 6500 genes on this array, only approximately 200 were modulated either up or down by the increased iNOS activity according to our criteria for significance. Several clearly defined families of genes were modulated, including genes coding for proinflammatory transcription factors, cytokines, cytokine receptors, proteins associated with cell proliferation and cellular energetics, as well as proteins involved in apoptosis. Our results suggest that iNOS has a generally anti-inflammatory and anti-apoptotic role in hepatocytes but also acts to suppress proliferation and protein synthesis. The expression of iNOS results in increased expression of stress-related proteins, including heme oxygenase-1 (HO-1). We used HO-1 to confirm that a significant change identified by an analysis could be demonstrated as significant in cells and tissues. The elevation of HO-1 was confirmed at the protein level in hepatocytes in vitro. Furthermore, iNOS(-/-) mice experienced greatly increased liver injury subsequent to intestinal ischemia/reperfusion injury, associated with an inability to upregulate HO-1. This is the first study to address the global gene changes induced by iNOS in any cell type, and the findings presented herein may have clinical relevance for conditions such as septic or hemorrhagic shock in which hepatocytes, NO, and HO-1 play a crucial role.
Collapse
Affiliation(s)
- Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Nishiwaki A, Asai K, Tada T, Ueda T, Shimada S, Ogura Y, Kato T. Expression of glia maturation factor during retinal development in the rat. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 95:103-9. [PMID: 11687281 DOI: 10.1016/s0169-328x(01)00252-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Glia maturation factor plays important roles in the development and growth of glia and neurons. We investigated the expression and localization of Glia maturation factor-beta (GMFB) and Glia maturation factor-gamma (GMFG) in the rat retina. By northern blot analysis, both GMFB and GMFG mRNAs were detected in retina as early as embryonic day (E) 18 and persisted until adult. The expression of GMFB mRNA was always much greater than that of GMFG mRNA. In situ hybridization showed that the GMFB mRNA signal was positive in the retina from E14 till adult. Immunostaining revealed that GMFB protein was present in the inner layer of retina at E14 and P1, and in Müller cells in adult. GMFG immunoreactivity was observed only in the inner limiting membrane from E14 to P1 rat retina, and was not detected in the adult retina. These results show that GMFs are synthesized and localized mainly in Müller cells in the rat retina, and suggest that they may contribute to the development and growth of glia and neurons.
Collapse
Affiliation(s)
- A Nishiwaki
- Department of Ophthalmology, Nagoya City University Medical School, 1 Kawasumi, Mizuho-cho, Mizuho-ku, 467-8601, Nagoya, Japan.
| | | | | | | | | | | | | |
Collapse
|
5
|
Asai K, Fujita K, Yamamoto M, Hotta T, Morikawa M, Kokubo M, Moriyama A, Kato T. Isolation of novel human cDNA (hGMF-gamma) homologous to Glia Maturation Factor-beta gene. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1396:242-4. [PMID: 9545571 DOI: 10.1016/s0167-4781(97)00222-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A novel full-length human cDNA homologous to Glia Maturation Factor-beta (GMF-beta) gene was isolated. Sequence analysis of the entire cDNA revealed an open reading frame of 426 nucleotides with a deduced protein sequence of 142 amino acid residues. The deduced amino acid sequences of its putative product is highly homologous to human GMF-beta (82% identity) and named for GMF-gamma. Northern blot analysis indicated that a message of 0.9 kb long, but not 4.1 kb of GMF-beta, is predominantly expressed in human lung, heart, and placenta.
Collapse
Affiliation(s)
- K Asai
- Department of Bioregulation Research, Nagoya City University Medical School, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Recently we identified three novel Schwann cell mitogens named GGF (glial growth factor)-I (34 kDa), GGF-II (59 kDa), and GGF-III (45 kDa), and provided evidence that they are three distinct but structurally related members of a larger family of factors, which includes heregulin, neu differentiation factor, and acetylcholine receptor-inducing activity (ARIA). We report here the characterization of the mitogenic and trophic activities for all three forms of GGF on rat Schwann cells and several other cell types. GGF-I, GGF-II, and GGF-III are potent mitogens for rat Schwann cells in vitro at nanomolar concentrations, whereas at lower concentrations they promote Schwann cell survival, in the absence of cAMP elevating agents. Forskolin, an adenylate cyclase activator, potently synergizes with the GGFs by an indirect mechanism, possibly involving transcriptional activation of GGF receptor(s). In addition, the GGFs stimulate DNA synthesis in rat glioma C6 cells, and in SK-BR-3 cells, which overexpress the p185 neu/erbB2. Fibroblasts obtained from different sources are weakly stimulated by GGFs, whereas PC12 cells are unable to respond under a variety of experimental conditions. These observations are consistent with the proposal that GGF-I, GGF-II, and GGF-III are a set of potent glial cell mitogens and putative ligands of members of the EGF receptor family, namely p185 neu/erbB2, p160/erbB3, and p180/erbB4, which may play important roles in the development, regeneration, and tumor biology of the peripheral nervous system.
Collapse
Affiliation(s)
- L Minghetti
- Ludwing Institute for Cancer Research, University College/Middlesex Hospital Branch, London, UK
| | | | | | | |
Collapse
|
7
|
Zaheer A, Zhong W, Uc EY, Moser DR, Lim R. Expression of mRNAs of multiple growth factors and receptors by astrocytes and glioma cells: detection with reverse transcription-polymerase chain reaction. Cell Mol Neurobiol 1995; 15:221-37. [PMID: 8590453 PMCID: PMC11563123 DOI: 10.1007/bf02073330] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/1994] [Accepted: 12/05/1994] [Indexed: 01/31/2023]
Abstract
1. Although glial cells in culture are known to secrete growth factors and are also known to be responsive to some of them, detailed comparisons are difficult because the bulk of information was based on various animals of origin, developmental stages, growth properties, culture age, and culture conditions. 2. To present a unified picture of the growth factors and their receptors found in glial cells, we surveyed the expression of messenger RNAs of a panel of growth factors and receptors, using reverse transcription-polymerase chain reaction (RT-PCR), in three common glial cell types: rat astrocytes in primary culture, rat glioma line C6, and human glioma line A172. 3. We observed that normal and neoplastic glial cells in culture express multiple growth factors and also possess most of the receptors to the factors, suggesting multiple autocrine functions. In addition, glia produce growth factors known to be capable of acting on neurons, implicating paracrine function involving glia-neuron interaction. Glial cells also produce growth factors and receptors that are capable of communicating with hematopoietic cells, suggesting neuroimmunologic interaction. What is most interesting is that glial cells express receptors for growth factors previously thought to be acting on neurons only. 4. The current study demonstrates the feasibility of screening from a small sample a large number of growth factors and receptors. The method portends future clinical application to biopsy or necropsy samples from brain tumors or pathologic brains suffering from degenerative diseases such as Alzheimer's or Parkinson's disease.
Collapse
Affiliation(s)
- A Zaheer
- Department of Neurology (Division of Neurochemistry and Neurobiology), University of Iowa College of Medicine, Iowa City, USA
| | | | | | | | | |
Collapse
|
8
|
Abstract
Why should we consider Schwann cells when we are interested in the biology of neuroblastomas (NBs)? Although we are familiar with the term "stroma-rich" NB, we basically think of a favourable prognostic subgroup, histologically distinguished by the development of a prominent Schwann cell-stroma. According to current opinion on the maturation processes in NBs, the NB-associated Schwann cell is believed to represent a differentiation product of the NB cell, and we therefore do not envisage the Schwann cell as having any important role in NBs. However, our interest was raised after having realised that Schwann cells in NBs are normal cells, very likely attracted to the neoplastic neuroblasts. But what role does this cell play in these tumours? Can we still reduce the appearance of Schwann cells in NBs to an epi-phenomenon or is this cell population responsible for the differentiation of certain NBs? If so, will it be possible to use their strategies to induce differentiation of neuroblasts and so render them non-aggressive, mature ganglionic cells? To shed light on the possible interactions between normal Schwann cells and NB cells, the maturation capacity of NBs and the genetic constitution of the two main cell populations in these tumours are briefly reviewed. Some data leading to the current view on the origin of the Schwann cells in NBs, and several physiological aspects of the Schwann cells, including normal neurone-Schwann cell interactions, are detailed.
Collapse
Affiliation(s)
- I M Ambros
- CCRI, Children's Cancer Research Institute, St. Anna Kinderspital, Vienna, Austria
| | | |
Collapse
|
9
|
Siironen J, Collan Y, Röyttä M. Axonal reinnervation does not influence Schwann cell proliferation after rat sciatic nerve transection. Brain Res 1994; 654:303-11. [PMID: 7987679 DOI: 10.1016/0006-8993(94)90492-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We asked whether reinnervating axons are Schwann cell mitogens in vivo as they are in vitro. Left sciatic nerves of 50 Wistar rats were transected. In one-half of the animals, axonal reinnervation from the proximal to the distal stump was allowed to take place, while in the other half, sutures were placed on the transected nerve ends to prevent reinnervation. Samples were collected from 3 days up to 8 weeks after the transection proximally and distally from the point of transection. PCNA-immunostaining was performed on paraffin sections to determine the number of proliferating cells. Axonal reinnervation was followed by Bielschowsky staining and Schwann cell number was determined by counting S-100-immunopositive cells from paraffin sections. In the distal stump Schwann cell proliferation was similar in both experimental groups. There was no statistical evidence of S-100 negative cell proliferation during the study. Proximally to the site of transection the number of small initial axonal sprouts and also the number of Schwann cells increased if the nerve stump had been sutured. In conclusion, although axons may be mitogenic for Schwann cells, axonal reinnervation into the distal stump of the transected peripheral nerve does not influence the proliferation of Schwann cells to a greater extent than other potential effects associated with nerve transection.
Collapse
Affiliation(s)
- J Siironen
- Department of Pathology, University of Turku, Finland
| | | | | |
Collapse
|
10
|
Abstract
Cell proliferation is governed by the influence of both mitogens and inhibitors. Although cell contact has long been thought to play a fundamental role in cell cycling regulation, and negative regulators have long been suspected to exist, their isolation and purification has been complicated by a variety of technical difficulties. Nevertheless, over recent years an ever-expanding list of putative negative regulators have emerged. In many cases, their biological inhibitory activities are consistent with density-dependent growth inhibition. Most likely their interactions with mitogenic agents, at an intracellular level, are responsible for either mitotic arrest or continued cell cycling. A review of naturally occurring cell growth inhibitors is presented with an emphasis on those factors shown to be residents of the cell surface membrane. Particular attention is focused on a cell surface sialoglycopeptide, isolated from intact bovine cerebral cortex cells, which has been shown to inhibit the proliferation of an unusually wide range of target cells. The glycopeptide arrest cells obtained from diverse species, both fibroblasts and epithelial cells, and a broad variety of transformed cells. Signal transduction events and a limited spectrum of cells that are refractory to the sialoglycopeptide have provided insight into the molecular events mediated by this cell surface inhibitor.
Collapse
Affiliation(s)
- T C Johnson
- Center for Basic Cancer Research, Kansas State University, Manhattan 66506
| |
Collapse
|
11
|
Abstract
Rat glia maturation factor beta (GMF-beta) cDNA was obtained by reverse transcription of rat brain mRNA followed by polymerase chain reaction amplification, using primers from the human sequence. The deduced amino acid sequence of rat GMF-beta differed from the human counterpart in only three places: His27 in place of Asn, Val51 in place of Ile, and Leu93 in place of Val. The high degree of evolutionary conservation suggests that GMF-beta plays an essential role in animal cell physiology. The expression of GMF-beta mRNA in the rat was studied by the northern blot technique, using a rat cRNA probe corresponding to the entire coding region. GMF-beta mRNA was predominantly expressed in the brain and spinal cord, although trace levels were found in other organs, including testis and ovary. In the brain GMF-beta mRNA was detectable at as early as embryonic day 10, and persisted through as late as postnatal month 14, with minor variations in between. On the other hand, GMF-beta protein exhibited more obvious developmental changes, with its level increasing slowly prenatally and plateauing at 1 week after birth. GMF-beta mRNA and protein were also observed in several cultured cells. Some cells of neural origin contained higher levels of GMF-beta protein compared with cells derived from other sources. Through demonstration of mRNA and confirmation by immunoblotting, we conclude that GMF-beta is synthesized by rat organs and that GMF-beta is predominantly a brain protein.
Collapse
Affiliation(s)
- A Zaheer
- Department of Neurology, Division of Neurochemistry and Neurobiology, University of Iowa College of Medicine, Iowa City 52242
| | | | | |
Collapse
|
12
|
Wang BR, Zaheer A, Lim R. Polyclonal antibody localizes glia maturation factor beta-like immunoreactivity in neurons and glia. Brain Res 1992; 591:1-7. [PMID: 1446220 DOI: 10.1016/0006-8993(92)90971-b] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A rabbit polyclonal antibody (91-01) was raised against recombinant human glia maturation factor beta (r-hGMF-beta). The antibody did not cross-react with a number of other growth factors on ELISA test. When compared with the monoclonal antibody G2-09 previously obtained, 91-01 immunoblotted the same protein band in rat brain extract. However, unlike G2-09 which immunostained only astrocytes and Bergmann glia, 91-01 stained neurons as well. Many but not all neurons in the central and peripheral nervous system were positive for GMF-beta. The larger cell population stained by the polyclonal antibody was most likely due to its increased sensitivity, although other explanations are possible. The presence of GMF-beta-like immunoreactivity in both neurons and glia raises the possibility of a wider range of cell-cell interaction than was previously considered.
Collapse
Affiliation(s)
- B R Wang
- Department of Neurology, University of Iowa College of Medicine, Iowa City 52242
| | | | | |
Collapse
|
13
|
Eccleston PA. Regulation of Schwann cell proliferation: mechanisms involved in peripheral nerve development. Exp Cell Res 1992; 199:1-9. [PMID: 1735450 DOI: 10.1016/0014-4827(92)90455-h] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- P A Eccleston
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala, Sweden
| |
Collapse
|
14
|
Lim R, Zaheer A. Structure and function of glia maturation factor beta. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1991; 296:161-4. [PMID: 1781325 DOI: 10.1007/978-1-4684-8047-4_16] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- R Lim
- Department of Neurology, University of Iowa College of Medicine, Iowa City 52242
| | | |
Collapse
|