1
|
Yang C, Li J, Luo M, Zhou W, Xing J, Yang Y, Wang L, Rao W, Tao W. Unveiling the molecular mechanisms of Dendrobium officinale polysaccharides on intestinal immunity: An integrated study of network pharmacology, molecular dynamics and in vivo experiments. Int J Biol Macromol 2024; 276:133859. [PMID: 39009260 DOI: 10.1016/j.ijbiomac.2024.133859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/13/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Intestinal immunity plays a pivotal role in overall immunological defenses, constructing mechanisms against pathogens while maintaining balance with commensal microbial communities. Existing therapeutic interventions may lead to drug resistance and potential toxicity when immune capacity is compromised. Dendrobium officinale, a traditional Chinese medicine, contains components identified to bolster immunity. Employing network pharmacology strategies, this study identified constituents of Dendrobium officinale and their action targets in the TCMSP and Swiss Target Prediction databases, and compared them with intestinal immunity-related targets. Protein-protein interaction networks revealed the core targets of Dendrobium officinale polysaccharides, encompassing key pathways such as cell proliferation, inflammatory response, and immune reactions, particularly in association with the Toll-like receptor 4. Molecular docking and molecular dynamics simulation further confirmed the high affinity and stability between Dendrobium officinale polysaccharides and Toll-like receptor 4. In vivo experiments demonstrated that Dendrobium officinale polysaccharides modulates the expression of Toll-like receptor 4 and its downstream key proteins in the colonic mucosa of mice. Consequently, these findings suggest that Dendrobium officinale polysaccharides may serve as a potential modulator for intestinal immune functions, with its mechanism potentially related to the Toll-like receptor 4.
Collapse
Affiliation(s)
- Chenchen Yang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jingrui Li
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Mengfan Luo
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wanyi Zhou
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianrong Xing
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ying Yang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lu Wang
- School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Wenjia Rao
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Wenyang Tao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
2
|
Resistance to Trastuzumab. Cancers (Basel) 2022; 14:cancers14205115. [PMID: 36291900 PMCID: PMC9600208 DOI: 10.3390/cancers14205115] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Trastuzumab is a humanized antibody that has significantly improved the management and treatment outcomes of patients with cancers that overexpress HER2. Many research groups, both in academia and industry, have contributed towards understanding the various mechanisms engaged by trastuzumab to mediate its anti-tumor effects. Nevertheless, data from several clinical studies have indicated that a significant proportion of patients exhibit primary or acquired resistance to trastuzumab therapy. In this article, we discuss underlying mechanisms that contribute towards to resistance. Furthermore, we discuss the potential strategies to overcome some of the mechanisms of resistance to enhance the therapeutic efficacy of trastuzumab and other therapies based on it. Abstract One of the most impactful biologics for the treatment of breast cancer is the humanized monoclonal antibody, trastuzumab, which specifically recognizes the HER2/neu (HER2) protein encoded by the ERBB2 gene. Useful for both advanced and early breast cancers, trastuzumab has multiple mechanisms of action. Classical mechanisms attributed to trastuzumab action include cell cycle arrest, induction of apoptosis, and antibody-dependent cell-mediated cytotoxicity (ADCC). Recent studies have identified the role of the adaptive immune system in the clinical actions of trastuzumab. Despite the multiple mechanisms of action, many patients demonstrate resistance, primary or adaptive. Newly identified molecular and cellular mechanisms of trastuzumab resistance include induction of immune suppression, vascular mimicry, generation of breast cancer stem cells, deregulation of long non-coding RNAs, and metabolic escape. These newly identified mechanisms of resistance are discussed in detail in this review, particularly considering how they may lead to the development of well-rationalized, patient-tailored combinations that improve patient survival.
Collapse
|
3
|
Chen L, Qian J, You Q, Ma J. LIM domain-containing 2 (LIMD2) promotes the progress of ovarian cancer via the focal adhesion signaling pathway. Bioengineered 2021; 12:10089-10100. [PMID: 34724866 PMCID: PMC8809939 DOI: 10.1080/21655979.2021.2000732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/12/2022] Open
Abstract
Ovarian cancer (OC) is the leading cause of death from gynecological cancer. In this study, we aimed to explore the role and potential mechanism of LIMD2 during the progression of OC. The expression of LIMD2 was analyzed by GEPIA (Gene Expression Profiling Interactive Analysis) database. Western blot and real-time PCR were applied to detect the gene expression of LIMD2 in OC cell lines. Cell counting kit-8 (CCK-8) assay, transwell, wound healing assays, and tumor xenograft experiments were used to evaluate the function of LIMD2 in vitro and vivo. Further, the LIMD2-associated pathways in OC were predicted by RNA-seq analysis, and the involvement of the corresponding cell signaling activities were confirmed by Western blot. We found that LIMD2 was high expressed in OC. Additionally, we found that silencing of LIMD2 inhibited OC cell proliferation in vitro and reduced the growth of its xenograft tumors. Moreover, knockdown of LIMD2 significantly decreased the migration of OC cells. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that pathways regulating extracellular matrix (ECM)-receptor interactions and focal adhesion signaling, were deregulated by LIMD2. Particularly, we confirmed that reducing LIMD2 could decrease the expression of Focal adhesion kinase (FAK) pathway related molecules. In conclusion, LIMD2 promotes the proliferation and invasion of ovarian cancer in vitro and in vivo, potentially through regulating the focal adhesion signaling pathway.
Collapse
Affiliation(s)
- Lixin Chen
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Ji Qian
- Bio-teq Center, Fudan University, Shanghai, China
| | - Qinghua You
- Department of Pathology, Shanghai Pudong Hospital, Shanghai, China
| | - Jie Ma
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Ren S, Tan X, Fu MZ, Ren S, Wu X, Chen T, Latham PS, Lin P, Man YG, Fu SW. Downregulation of miR-375 contributes to ERBB2-mediated VEGFA overexpression in esophageal cancer. J Cancer 2021; 12:7138-7146. [PMID: 34729115 PMCID: PMC8558641 DOI: 10.7150/jca.63836] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/28/2021] [Indexed: 12/21/2022] Open
Abstract
Esophageal cancer (EC) is a lethal cancer with an extremely aggressive nature and poor survival rate. However, the molecular mechanisms driving the occurrence and progression of EC are not well understood. MicroRNAs (miRNAs) are small RNA molecules that regulate the expression of protein-coding genes. miRNA-mediated gene regulation plays an important role in EC. By cross-referencing studies from NCBI, we found that microRNA-375 (miR-375) is one of the most frequently downregulated miRNAs in EC. We assessed expression of miR-375 in EC cell lines and primary EC tissues and their matched normal tissues. We found significant downregulation of miR-375 in both cell lines and EC tissues. Forced expression of miR-375 attenuated EC cell proliferation and invasion. Human epidermal growth factor receptor 2 (HER2, ERBB2), a known proto-oncogene, was identified here as one of the potential target genes of miR-375. Ectopic expression of miR-375 significantly suppressed the expression of ERBB2 and subsequently downregulated one of its target genes, vascular endothelial growth factor A (VEGFA), which is related to cancer invasion and metastasis. These findings suggest that miR-375 acts as a tumor suppressor by blocking the ERBB2/VEGFA pathway with the potential to modulate the occurrence and/ or progression of EC.
Collapse
Affiliation(s)
- Shuchang Ren
- Department of Medicine, Division of Genomic Medicine, and Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Xiaohui Tan
- Department of Medicine, Division of Genomic Medicine, and Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Melinda Z Fu
- Department of Medicine, Division of Genomic Medicine, and Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Shuyang Ren
- Department of Medicine, Division of Genomic Medicine, and Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Xiaoling Wu
- Department of Medicine, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Tao Chen
- Department of Medicine, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Patricia S Latham
- Department of Pathology, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Paul Lin
- Department of Surgery, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Yan-Gao Man
- Department of Pathology, Hackensack Meridian Health-Hackensack, University Medical Center, Hackensack, NJ; the International Union for Difficult to treat Diseases (IUDD), Silver Spring, MD
| | - Sidney W Fu
- Department of Medicine, Division of Genomic Medicine, and Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC
| |
Collapse
|
5
|
The Multifaceted Roles of EGFL7 in Cancer and Drug Resistance. Cancers (Basel) 2021; 13:cancers13051014. [PMID: 33804387 PMCID: PMC7957479 DOI: 10.3390/cancers13051014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cancer growth and metastasis require interactions with the extracellular matrix (ECM), which is home to many biomolecules that support the formation of new vessels and cancer growth. One of these biomolecules is epidermal growth factor-like protein-7 (EGFL7). EGFL7 alters cellular adhesion to the ECM and migratory behavior of tumor and immune cells contributing to tumor metastasis. EGFL7 is engaged in the formation of new vessels and changes in ECM stiffness. One of its binding partners on the endothelial and cancer cell surface is beta 3 integrin. Beta 3 integrin pathways are under intense investigation in search of new therapies to kill cancer cells. All these properties enable EGFL7 to contribute to drug resistance. In this review, we give insight into recent studies on EGFL7 and its engagement with beta3 integrin, a marker predicting cancer stem cells and drug resistance. Abstract Invasion of cancer cells into surrounding tissue and the vasculature is an important step for tumor progression and the establishment of distant metastasis. The extracellular matrix (ECM) is home to many biomolecules that support new vessel formation and cancer growth. Endothelial cells release growth factors such as epidermal growth factor-like protein-7 (EGFL7), which contributes to the formation of the tumor vasculature. The signaling axis formed by EGFL7 and one of its receptors, beta 3 integrin, has emerged as a key mediator in the regulation of tumor metastasis and drug resistance. Here we summarize recent studies on the role of the ECM-linked angiocrine factor EGFL7 in primary tumor growth, neoangiogenesis, tumor metastasis by enhancing epithelial-mesenchymal transition, alterations in ECM rigidity, and drug resistance. We discuss its role in cellular adhesion and migration, vascular leakiness, and the anti-cancer response and provide background on its transcriptional regulation. Finally, we discuss its potential as a drug target as an anti-cancer strategy.
Collapse
|
6
|
Kaumaya PTP. B-cell epitope peptide cancer vaccines: a new paradigm for combination immunotherapies with novel checkpoint peptide vaccine. Future Oncol 2020; 16:1767-1791. [PMID: 32564612 PMCID: PMC7426751 DOI: 10.2217/fon-2020-0224] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022] Open
Abstract
In light of the numerous US FDA-approved humanized monoclonal antibodies (mAbs) for cancer immunotherapy, it is surprising that the advancement of B-cell epitope vaccines designed to elicit a natural humoral polyclonal antibody response has not gained traction in the immune-oncology landscape. Passive immunotherapy with humanized mAbs (Trastuzumab [Herceptin®]; Pertuzumab [Perjeta®]) has provided clinical benefit to breast cancer patients, albeit with significant shortcomings including toxicity problems and resistance, high costs, sophisticated therapeutic regimen and long half-life. The role of B-cell humoral immunity in cancer is under appreciated and underdeveloped. We have advanced the idea of active immunotherapy with chimeric B-cell epitope peptides incorporating a 'promiscuous' T-cell epitope that elicits a polyclonal antibody response, which provides safe, cost-effective therapeutic advantage over mAbs. We have created a portfolio of validated B-cell peptide epitopes against multiple receptor tyrosine kinases (HER-1, HER-3, IGF-1R and VEGF). We have successfully translated two HER-2 combination B-cell peptide vaccines in Phase I and II clinical trials. We have recently developed an effective novel PD-1 vaccine. In this article, I will review our approaches and strategies that focus on B-cell epitope cancer vaccines.
Collapse
Affiliation(s)
- Pravin TP Kaumaya
- Department of Obstetrics & Gynecology, College of Medicine, Wexner Medical Center, The James Cancer Hospital & Solove Research Institute, The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Dugaucquier L, Feyen E, Mateiu L, Bruyns TAM, De Keulenaer GW, Segers VFM. The role of endothelial autocrine NRG1/ERBB4 signaling in cardiac remodeling. Am J Physiol Heart Circ Physiol 2020; 319:H443-H455. [PMID: 32618511 DOI: 10.1152/ajpheart.00176.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neuregulin-1 (NRG1) is a paracrine growth factor, secreted by cardiac endothelial cells (ECs) in conditions of cardiac overload/injury. The current concept is that the cardiac effects of NRG1 are mediated by activation of erythroblastic leukemia viral oncogene homolog (ERBB)4/ERBB2 receptors on cardiomyocytes. However, recent studies have shown that paracrine effects of NRG1 on fibroblasts and macrophages are equally important. Here, we hypothesize that NRG1 autocrine signaling plays a role in cardiac remodeling. We generated EC-specific Erbb4 knockout mice to eliminate endothelial autocrine ERBB4 signaling without affecting paracrine NRG1/ERBB4 signaling in the heart. We first observed no basal cardiac phenotype in these mice up to 32 wk. We next studied these mice following transverse aortic constriction (TAC), exposure to angiotensin II (ANG II), or myocardial infarction in terms of cardiac performance, myocardial hypertrophy, myocardial fibrosis, and capillary density. In general, no major differences between EC-specific Erbb4 knockout mice and control littermates were observed. However, 8 wk following TAC both myocardial hypertrophy and fibrosis were attenuated by EC-specific Erbb4 deletion, albeit these responses were normalized after 20 wk. Similarly, 4 wk after ANG II treatment, myocardial fibrosis was less pronounced compared with control littermates. These observations were supported by RNA-sequencing experiments on cultured endothelial cells showing that NRG1 controls the expression of various hypertrophic and fibrotic pathways. Overall, this study shows a role of endothelial autocrine NRG1/ERBB4 signaling in the modulation of hypertrophic and fibrotic responses during early cardiac remodeling. This study contributes to understanding the spatiotemporal heterogeneity of myocardial autocrine and paracrine responses following cardiac injury.NEW & NOTEWORTHY The role of NRG1/ERBB signaling in endothelial cells is not completely understood. Our study contributes to the understanding of spatiotemporal heterogeneity of myocardial autocrine and paracrine responses following cardiac injury and shows a role of endothelial autocrine NRG1/ERBB4 signaling in the modulation of hypertrophic and fibrotic responses during early cardiac remodeling.
Collapse
Affiliation(s)
| | - Eline Feyen
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Ligia Mateiu
- VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
| | | | - Gilles W De Keulenaer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.,Department of Cardiology, Middelheim Hospital, Antwerp, Belgium
| | - Vincent F M Segers
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.,Department of Cardiology, University Hospital Antwerp, Edegem, Belgium
| |
Collapse
|
8
|
Lin L, Cheng J, Tang D, Zhang Y, Zhang F, Xu J, Jiang H, Wu H. The associations among quantitative spectral CT parameters, Ki-67 expression levels and EGFR mutation status in NSCLC. Sci Rep 2020; 10:3436. [PMID: 32103127 PMCID: PMC7044288 DOI: 10.1038/s41598-020-60445-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 01/30/2020] [Indexed: 01/12/2023] Open
Abstract
Dual-energy spectral computed tomography (DESCT) is based on fast switching between high and low voltages from view to view to obtain dual-energy imaging data, and it can generate monochromatic image sets, iodine-based material decomposition images and spectral CT curves. Quantitative spectral CT parameters may be valuable for reflecting Ki-67 expression and EGFR mutation status in non-small-cell lung cancer (NSCLC). We investigated the associations among the quantitative parameters generated in DESCT and Ki-67 expression and EGFR mutation in NSCLC. We studied sixty-five NSCLC patients with preoperative DESCT scans, and their specimens underwent Ki-67 and EGFR evaluations. Statistical analyses were performed to identify the spectral CT parameters for the diagnosis of Ki-67 expression and EGFR mutation status. We found that tumour grade and the slope of the spectral CT curve in the venous phase were the independent factors influencing the Ki-67 expression level, and the area under the curve (AUC) of the slope of the spectral CT curve in the venous phase in the receiver operating characteristic analysis for distinguishing different Ki-67 expression levels was 0.901. Smoking status and the normalized iodine concentration in the venous phase were independent factors influencing EGFR mutation, and the AUC of the two-factor combination for predicting the presence of EGFR mutation was 0.807. These results show that spectral CT parameters may be useful for predicting Ki-67 expression and the presence of EGFR mutation in NSCLC.
Collapse
Affiliation(s)
- Liaoyi Lin
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160, Pujian Road, Shanghai, 200127, China
| | - Jiejun Cheng
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160, Pujian Road, Shanghai, 200127, China
| | - Daoqiang Tang
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160, Pujian Road, Shanghai, 200127, China
| | - Ying Zhang
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160, Pujian Road, Shanghai, 200127, China
| | - Feng Zhang
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160, Pujian Road, Shanghai, 200127, China
| | - Jianrong Xu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160, Pujian Road, Shanghai, 200127, China
| | - Handong Jiang
- Department of Respiratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160, Pujian Road, Shanghai, 200127, China.
| | - Huawei Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160, Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
9
|
Sola AM, Johnson DE, Grandis JR. Investigational multitargeted kinase inhibitors in development for head and neck neoplasms. Expert Opin Investig Drugs 2019; 28:351-363. [PMID: 30753792 DOI: 10.1080/13543784.2019.1581172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Despite advances in treatment, head and neck squamous cell carcinoma (HNSCC) survival rates remain stagnant. Current treatment is associated with significant toxicities and includes chemotherapy, radiation, surgery, and few targeted treatments. Targeted treatments, epidermal growth factor receptor (EGFR)-targeted agent, cetuximab, and immune checkpoint inhibitors, pembrolizumab and nivolumab, show improved toxicity profiles and modestly improved survival in select patients. An urgent need remains to identify novel targeted treatments for single-agent or combined therapy use. AREAS COVERED Multitargeted kinase inhibitors are small molecule inhibitors with limited toxicity. This review will focus on early-stage investigations of multitargeted tyrosine kinase inhibitors (m-TKIs) (those that target at least two tyrosine kinases) for HNSCC. Preclinical and early trials investigating m-TKIs for various disease settings of HNSCC will be evaluated for efficacy, identification of significant biomarkers and potential for combination therapy. EXPERT OPINION Few single agent m-TKIs have demonstrated efficacy in unselected HNSCC populations. The most promising clinical results have been obtained when m-TKIs are tested in combination with other therapies, including immunotherapy, or in mutation-defined subgroups of patients. The future success of m-TKIs will rely on identification, in preclinical models and clinical trials, of predictive biomarkers of response and mechanisms of innate and acquired resistance.
Collapse
Affiliation(s)
- Ana Marija Sola
- a Department of Otolaryngology - Head and Neck Surgery , University of California , San Francisco , CA , USA
| | - Daniel E Johnson
- a Department of Otolaryngology - Head and Neck Surgery , University of California , San Francisco , CA , USA
| | - Jennifer R Grandis
- a Department of Otolaryngology - Head and Neck Surgery , University of California , San Francisco , CA , USA
| |
Collapse
|
10
|
da Silva SD, Xu B, Maschietto M, Marchi FA, Alkailani MI, Bijian K, Xiao D, Alaoui-Jamali MA. TRAF2 Cooperates with Focal Adhesion Signaling to Regulate Cancer Cell Susceptibility to Anoikis. Mol Cancer Ther 2018; 18:139-146. [PMID: 30373932 DOI: 10.1158/1535-7163.mct-17-1261] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/14/2018] [Accepted: 10/23/2018] [Indexed: 11/16/2022]
Abstract
TRAF2, a RING finger adaptor protein, plays an important function in tumor necrosis factor (TNF)- and TNF-like weak inducer of apoptosis (TWEAK)-dependent signaling, in particular during inflammatory and immune responses. We identified a functional interaction of TRAF2 with focal adhesion (FA) signaling involving the focal adhesion kinase (FAK) in the regulation of cell susceptibility to anoikis. Comparison of TRAF2-proficient (TRAF2+/+) versus TRAF2-deficient (TRAF2-/-), and FAK-proficient (FAK+/+) versus FAK-deficient (FAK-/-) mouse embryonic fibroblasts and their matched reconstituted cells demonstrated that TRAF2 interacts physically with the N-terminal portion of FAK and colocalizes to cell membrane protrusions. This interaction was found to be critical for promoting resistance to cell anoikis. Similar results were confirmed in the human breast cancer cell line MDA-MB-231, where TRAF2 and FAK downregulation promoted cell susceptibility to anoikis. In human breast cancer tissues, genomic analysis of The Cancer Genome Atlas database revealed coamplification of TRAF2 and FAK in breast cancer tissues with a predictive value for shorter survival, further supporting a potential role of TRAF2-FAK cooperative signaling in cancer progression.
Collapse
Affiliation(s)
- Sabrina Daniela da Silva
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Departments of Medicine, Oncology, and Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Otolaryngology Head and Neck Surgery, Sir Mortimer B. Davis-Jewish General Hospital, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Bin Xu
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Departments of Medicine, Oncology, and Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | | | - Fabio Albuquerque Marchi
- AC Camargo Cancer Center and National Institute of Science and Technology on Oncogenomics (INCITO), São Paulo, Brazil
| | - Maisa I Alkailani
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Departments of Medicine, Oncology, and Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Krikor Bijian
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Departments of Medicine, Oncology, and Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Dingzhang Xiao
- Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Moulay A Alaoui-Jamali
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Departments of Medicine, Oncology, and Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
11
|
Nguyen DQ, Hoang DH, Nguyen Vo TT, Huynh V, Ghoda L, Marcucci G, Nguyen LXT. The role of ErbB3 binding protein 1 in cancer: Friend or foe? J Cell Physiol 2018; 233:9110-9120. [PMID: 30076717 DOI: 10.1002/jcp.26951] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 06/12/2018] [Indexed: 12/20/2022]
Abstract
ErbB3, a member of the epidermal growth factor receptor family, reportedly plays an essential role in the regulation of cancer progression and therapeutic resistance. Numerous studies have indicated that ErbB3 binding protein 1 (Ebp1), a binding partner for ErbB3, plays an important regulatory role in the expression and function of ErbB3, but there is no agreement as to whether Ebp1 also has an ErbB3-independent function in cancer and how it might contribute to tumorigenesis. In this review, we will discuss the different functions of the two Ebp1 isoforms, p48 and p42, that may be responsible for the potentially dual role of Ebp1 in cancer growth.
Collapse
Affiliation(s)
- Dang Quan Nguyen
- Department of Medical Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Dinh Hoa Hoang
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California
| | - Thanh Thao Nguyen Vo
- Department of Medical Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Vu Huynh
- Department of Medical Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Lucy Ghoda
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California
| | - Guido Marcucci
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California
| | - Le Xuan Truong Nguyen
- Department of Medical Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam.,Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California
| |
Collapse
|
12
|
Arai RJ, Petry V, Hoff PM, Mano MS. Serum levels of VEGF and MCSF in HER2+ / HER2- breast cancer patients with metronomic neoadjuvant chemotherapy. Biomark Res 2018; 6:20. [PMID: 29946467 PMCID: PMC6001168 DOI: 10.1186/s40364-018-0135-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 05/30/2018] [Indexed: 12/17/2022] Open
Abstract
Metronomic therapy has been gaining importance in the neoadjuvant setting of breast cancer treatment. Its clinical benefits may involve antiangiogenic machinery. Cancer cells induce angiogenesis to support tumor growth by secreting factors, such as vascular endothelial growth factor (VEGF). In breast cancer, Trastuzumab (TZM) based treatment is of key importance and is believed to reduce diameter and volume of blood vessels as well as vascular permeability. Here in we investigated serum levels of angiogenic factors VEGF and MCSF in patients receiving metronomic neoadjuvant therapy with or without TZM. We observed in HER2+ cohort stable levels of MCSF through treatment, whereas VEGF trend was of decreasing levels. In HER2- cohort we observed increasing levels of MCSF and VEGF trend. Overall, HER2+ patients had better pathological response to treatment. These findings suggest that angiogenic pathway may be involved in TZM anti-tumoral effect in the neoadjuvant setting.
Collapse
Affiliation(s)
- Roberto J Arai
- Departamento de Radiologia e Oncologia, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, CEP 01246-000, Av. Dr. Arnaldo, São Paulo, SP 251 Brazil
| | - Vanessa Petry
- Departamento de Radiologia e Oncologia, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, CEP 01246-000, Av. Dr. Arnaldo, São Paulo, SP 251 Brazil
| | - Paulo M Hoff
- Departamento de Radiologia e Oncologia, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, CEP 01246-000, Av. Dr. Arnaldo, São Paulo, SP 251 Brazil
| | - Max S Mano
- Departamento de Radiologia e Oncologia, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, CEP 01246-000, Av. Dr. Arnaldo, São Paulo, SP 251 Brazil
| |
Collapse
|
13
|
Hong SH, Lee WJ, Kim YD, Kim H, Jeon YJ, Lim B, Cho DH, Heo WD, Yang DH, Kim CY, Yang HK, Yang JK, Jung YK. APIP, an ERBB3-binding partner, stimulates erbB2-3 heterodimer formation to promote tumorigenesis. Oncotarget 2017; 7:21601-17. [PMID: 26942872 PMCID: PMC5008309 DOI: 10.18632/oncotarget.7802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 02/20/2016] [Indexed: 01/07/2023] Open
Abstract
Despite the fact that the epidermal growth factor (EGF) family member ERBB3 (HER3) is deregulated in many cancers, the list of ERBB3-interacting partners remains limited. Here, we report that the Apaf-1-interacting protein (APIP) stimulates heregulin-β1 (HRG-β1)/ERBB3-driven cell proliferation and tumorigenesis. APIP levels are frequently increased in human gastric cancers and gastric cancer-derived cells. Cell proliferation and tumor formation are repressed by APIP downregulation and stimulated by its overexpression. APIP's role in the ERBB3 pathway is not associated with its functions within the methionine salvage pathway. In response to HRG-β1, APIP binds to the ERBB3 receptor, leading to an enhanced binding of ERBB3 and ERBB2 that results in sustained activations of ERK1/2 and AKT protein kinases. Furthermore, HRG-β1/ERBB3-dependent signaling is gained in APIP transgenic mouse embryonic fibroblasts (MEFs), but not lost in Apip−/− MEFs. Our findings offer compelling evidence that APIP plays an essential role in ERBB3 signaling as a positive regulator for tumorigenesis, warranting future development of therapeutic strategies for ERBB3-driven gastric cancer.
Collapse
Affiliation(s)
- Se-Hoon Hong
- School of Biological Science, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| | - Won Jae Lee
- School of Biological Science, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| | - Young Doo Kim
- School of Biological Science, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| | - Hyunjoo Kim
- School of Biological Science, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| | - Young-Jun Jeon
- School of Biological Science, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| | - Bitna Lim
- School of Biological Science, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| | - Dong-Hyung Cho
- Graduate School of East-West Medical Science, Kyung Hee University, Gyeoggi-Do 446-701, Korea
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Doo-Hyun Yang
- Department of Surgery, Chonbuk National University Medical School, Jeonju 561-180, Korea
| | - Chan-Young Kim
- Department of Surgery, Chonbuk National University Medical School, Jeonju 561-180, Korea
| | - Han-Kwang Yang
- Department of Surgery, Seoul National University College of Medicine, Seoul 110-744, Korea
| | - Jin Kuk Yang
- Department of Chemistry, College of Natural Sciences, Soongsil University, Seoul 156-743, Korea
| | - Yong-Keun Jung
- School of Biological Science, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| |
Collapse
|
14
|
Molla NW, Hassanain MM, Fadel Z, Boucher LM, Madkhali A, Altahan RM, Alrijraji EA, Simoneau EB, Alamri H, Salman A, Gao Z, Metrakos PP. Effect of non-alcoholic liver disease on recurrence rate and liver regeneration after liver resection for colorectal liver metastases. ACTA ACUST UNITED AC 2017; 24:e233-e243. [PMID: 28680292 DOI: 10.3747/co.24.3133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Resection of metastases is the only potential cure for patients with liver metastasis from colorectal cancer (crc-lm). But despite an improved overall 5-year survival, the recurrence rate is still as high as 60%. Non-alcoholic fatty liver disease (nafld) can decrease the liver's capacity to regenerate after resection and might also affect cancer recurrence, potentially by elevating transforming growth factor β, levels of specific metalloproteinases, and oxidative stress. The objective of the present work was to determine the effect of the histologic features of nafld on cancer recurrence and liver regeneration. METHODS This retrospective analysis considered 60 patients who underwent an R0 hepatectomy for crc-lm. Volumetric analysis of the liver was calculated using axial view, portovenous phase, 2.5 mm thickness, multiphasic computed tomography images taken before and after surgery. The histologic features of nafld (steatosis, inflammation, and ballooning) were scored using the nafld activity score, and the degree of fibrosis was determined. RESULTS The hepatic recurrence rate was 38.33%. Median overall survival duration was 56 months. Median disease-free survival duration was 14 months, and median hepatic disease-free survival duration was 56 months. Multivariate analysis revealed significant correlations of hepatic disease-free survival with hepatocyte ballooning (p = 0.0009), lesion diameter (p = 0.014), and synchronous disease (p = 0.006). Univariate and multivariate analyses did not reveal any correlation with degree of steatosis or recurrence rate. CONCLUSIONS This study reveals an important potential negative effect of hepatocyte ballooning on hepatic disease-free survival.
Collapse
Affiliation(s)
- N W Molla
- Department of Surgery, Section of Hepatopancreatobiliary, and.,Department of Radiology, McGill University Health Centre, Montreal, QC.,Department of Radiology and
| | - M M Hassanain
- Department of Surgery, Section of Hepatopancreatobiliary, and.,Department of Surgery, King Saud University, Riyadh, Saudi Arabia
| | - Z Fadel
- Department of Surgery, Section of Hepatopancreatobiliary, and
| | - L M Boucher
- Department of Radiology, McGill University Health Centre, Montreal, QC
| | - A Madkhali
- Department of Surgery, Section of Hepatopancreatobiliary, and.,Department of Surgery, King Saud University, Riyadh, Saudi Arabia
| | - R M Altahan
- Department of Surgery, Section of Hepatopancreatobiliary, and
| | - E A Alrijraji
- Department of Surgery, Section of Hepatopancreatobiliary, and
| | - E B Simoneau
- Department of Surgery, Section of Hepatopancreatobiliary, and
| | - H Alamri
- Department of Surgery, Section of Hepatopancreatobiliary, and.,Department of Surgery, King Saud University, Riyadh, Saudi Arabia
| | - A Salman
- Department of Surgery, Section of Hepatopancreatobiliary, and
| | - Z Gao
- Department of Pathology, McGill University Health Centre, Montreal, QC
| | - P P Metrakos
- Department of Surgery, Section of Hepatopancreatobiliary, and.,Department of Pathology, McGill University Health Centre, Montreal, QC
| |
Collapse
|
15
|
Wu G, Liu XX, Lu NN, Liu QB, Tian Y, Ye WF, Jiang GJ, Tao RR, Han F, Lu YM. Endothelial ErbB4 deficit induces alterations in exploratory behavior and brain energy metabolism in mice. CNS Neurosci Ther 2017; 23:510-517. [PMID: 28421673 DOI: 10.1111/cns.12695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/12/2017] [Accepted: 03/15/2017] [Indexed: 12/17/2022] Open
Abstract
AIMS The receptor tyrosine kinase ErbB4 is present throughout the primate brain and has a distinct functional profile. In this study, we investigate the potential role of endothelial ErbB4 receptor signaling in the brain. RESULTS Here, we show that the endothelial cell-specific deletion of ErbB4 induces decreased exploratory behavior in adult mice. However, the water maze task for spatial memory and the memory reconsolidation test reveal no changes; additionally, we observe no impairment in CaMKII phosphorylation in Cdh5Cre;ErbB4f/f mice, which indicates that the endothelial ErbB4 deficit leads to decreased exploratory activity rather than direct memory deficits. Furthermore, decreased brain metabolism, which was measured using micro-positron emission tomography, is observed in the Cdh5Cre;ErbB4f/f mice. Consistently, the immunoblot data demonstrate the downregulation of brain Glut1, phospho-ULK1 (Ser555), and TIGAR in the endothelial ErbB4 conditional knockout mice. Collectively, our findings suggest that endothelial ErbB4 plays a critical role in regulating brain function, at least in part, through maintaining normal brain energy homeostasis. CONCLUSIONS Targeting ErbB4 or the modulation of endothelial ErbB4 signaling may represent a rational pharmacological approach to treat neurological disorders.
Collapse
Affiliation(s)
- Gang Wu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Xiu-Xiu Liu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Nan-Nan Lu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qi-Bing Liu
- School of Pharmacy, Hainan Medical College, Haikou, China
| | - Yun Tian
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Wei-Feng Ye
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Guo-Jun Jiang
- Department of Pharmacy, Zhejiang Xiaoshan Hospital, Hangzhou, Zhejiang, China
| | - Rong-Rong Tao
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Feng Han
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ying-Mei Lu
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
ErbB Proteins as Molecular Target of Dietary Phytochemicals in Malignant Diseases. JOURNAL OF ONCOLOGY 2017; 2017:1532534. [PMID: 28286519 PMCID: PMC5327764 DOI: 10.1155/2017/1532534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/30/2016] [Accepted: 01/17/2017] [Indexed: 12/16/2022]
Abstract
ErbB proteins overexpression, in both normal and mutated forms, is associated with invasive forms of cancer prone to metastasis and with stronger antiapoptotic mechanisms and therefore more challenging to treat. Downstream effectors of ErbB receptors mediating these phenotypic traits include MAPK, STAT, and PI3K/AKT/mTOR pathways. Various phytochemical compounds were studied for their large number of biological effects including anticancer activity. Among these compounds, epigallocatechin-3-gallate (EGCG), the main catechin from green tea leaves, and curcumin, component of the curry powder, constituted the object of numerous studies. Both compounds were shown to act directly either on ErbB expression, or on their downstream signaling molecules. In this paper we aim to review the involvement of ErbB proteins in cancer as well as the biologic activity of EGCG and curcumin in ErbB expressing and overexpressing malignancies. The problems arising in the administration of the two compounds due to their reduced bioavailability when orally administered, as well as the progress made in this field, from using novel formulations to improved dosing regimens or improved synthetic analogs, are also discussed.
Collapse
|
17
|
Nam KJ, Choo KS, Jeon UB, Kim TU, Hwang JY, Yeom JA, Jeong HS, Choi YY, Kim JY, Lee SH, Kim HY, Jung YJ, Cho YH. Comparison of diameters of ipsilateral and contralateral internal mammary arteries by breast MRI in patients with unilateral breast cancer. Jpn J Radiol 2016; 34:409-13. [PMID: 27012963 DOI: 10.1007/s11604-016-0537-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/14/2016] [Indexed: 11/29/2022]
Abstract
PURPOSE We compared maximal diameters of ipsilateral (IMA) and contralateral (IMA) internal mammary arteries in patients with unilateral breast cancer and analyze the implications of enlargements of ipsilateral or contralateral IMAs in relation to histopathologic factors. MATERIALS AND METHODS Of 568 women who underwent breast magnetic resonance imaging (MRI) examinations from January 2009 to May 2012, 196 had unilateral, histologically proven breast cancer. In 156 women, maximal IMA diameters in the second intercostal space were measured by two blinded radiologists in left and right sides using nonenhanced axial T2-weighted turbo spin-echo sequence images. RESULTS In the 156 study patients, mean maximal diameter of ipsilateral IMAs (2.37 ± 0.60 mm) was significantly larger than that of contralateral IMAs (2.03 ± 0.58 mm) (p = 0.00). Ipsilateral IMA enlargement was present in 66.7 % of the patients (104 of 156). Furthermore, ipsilateral IMA enlargement was found to be significantly associated with human epidermal growth factor receptor-2 (HER-2) expression (p = 0.039). CONCLUSIONS Maximal IMA diameter was significantly greater in ipsilateral sides in breast cancer patients. Findings suggest ipsilateral IMA enlargement detected by MRI might be a useful additional predictor of HER-2 expression in unilateral breast cancer.
Collapse
Affiliation(s)
- Kyung Jin Nam
- Department of Radiology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, 20, Geumo-ro, Mulgeum-eup, Yangsan-si, Gyungnam, 626-770, Korea
| | - Ki Seok Choo
- Department of Radiology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, 20, Geumo-ro, Mulgeum-eup, Yangsan-si, Gyungnam, 626-770, Korea.
| | - Ung Bae Jeon
- Department of Radiology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, 20, Geumo-ro, Mulgeum-eup, Yangsan-si, Gyungnam, 626-770, Korea
| | - Tae Un Kim
- Department of Radiology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, 20, Geumo-ro, Mulgeum-eup, Yangsan-si, Gyungnam, 626-770, Korea
| | - Jae-Yeon Hwang
- Department of Radiology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, 20, Geumo-ro, Mulgeum-eup, Yangsan-si, Gyungnam, 626-770, Korea
| | - Jeong A Yeom
- Department of Radiology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, 20, Geumo-ro, Mulgeum-eup, Yangsan-si, Gyungnam, 626-770, Korea
| | - Hee Seok Jeong
- Department of Radiology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, 20, Geumo-ro, Mulgeum-eup, Yangsan-si, Gyungnam, 626-770, Korea
| | - Yoon Young Choi
- Department of Radiology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, 20, Geumo-ro, Mulgeum-eup, Yangsan-si, Gyungnam, 626-770, Korea
| | - Jin You Kim
- Department of Radiology, Pusan National University Hospital, Pusan National University School of Medicine, 179 Gudeok-ro, Seo-gu, Busan-si, 602-739, Korea
| | - Sang Hyup Lee
- Department of Surgery, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, 20, Geumo-ro, Mulgeum-eup, Yangsan-si, Gyungnam, 626-770, Korea
| | - Hyun Yul Kim
- Department of Surgery, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, 20, Geumo-ro, Mulgeum-eup, Yangsan-si, Gyungnam, 626-770, Korea
| | - Youn Joo Jung
- Department of Surgery, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, 20, Geumo-ro, Mulgeum-eup, Yangsan-si, Gyungnam, 626-770, Korea
| | - Young Hye Cho
- Department of Family Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, 20, Geumo-ro, Mulgeum-eup, Yangsan-si, Gyungnam, 626-770, Korea
| |
Collapse
|
18
|
Kaumaya PTP. A paradigm shift: Cancer therapy with peptide-based B-cell epitopes and peptide immunotherapeutics targeting multiple solid tumor types: Emerging concepts and validation of combination immunotherapy. Hum Vaccin Immunother 2016; 11:1368-86. [PMID: 25874884 DOI: 10.1080/21645515.2015.1026495] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is a recognizable and urgent need to speed the development and application of novel, more efficacious anti-cancer vaccine therapies that inhibit tumor progression and prevent acquisition of tumor resistance. We have created and established a portfolio of validated peptide epitopes against multiple receptor tyrosine kinases and we have identified the most biologically effective combinations of EGFR (HER-1), HER-2, HER-3, VEGF and IGF-1R peptide vaccines/mimics to selectively inhibit multiple receptors and signaling pathways. The strategy is based on the use of chimeric conformational B-cell epitope peptides incorporating "promiscuous" T-cell epitopes that afford the possibility of generating an enduring immune response, eliciting protein-reactive high-affinity anti-peptide antibodies as potential vaccines and peptide mimics that act as antagonists to receptor signaling that drive cancer metastasis. In this review we will summarize our ongoing studies based on the development of combinatorial immunotherapeutic strategies that act synergistically to enhance immune-mediated tumor killing aimed at addressing mechanisms of tumor resistance for several tumor types.
Collapse
Affiliation(s)
- Pravin T P Kaumaya
- a Department of Obstetrics and Gynecology; The Ohio State University Wexner Medical Center ; Columbus , OH , USA
| |
Collapse
|
19
|
Pnck overexpression in HER-2 gene-amplified breast cancer causes Trastuzumab resistance through a paradoxical PTEN-mediated process. Breast Cancer Res Treat 2015; 150:347-61. [DOI: 10.1007/s10549-015-3337-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 03/07/2015] [Indexed: 01/12/2023]
|
20
|
Gong C, Zhang Y, Shankaran H, Resat H. Integrated analysis reveals that STAT3 is central to the crosstalk between HER/ErbB receptor signaling pathways in human mammary epithelial cells. MOLECULAR BIOSYSTEMS 2015; 11:146-58. [PMID: 25315124 PMCID: PMC4540226 DOI: 10.1039/c4mb00471j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Human epidermal growth factor receptors (HER, also known as ErbB) drive cellular proliferation, pro-survival and stress responses by activating several downstream kinases, in particular ERK, p38 MAPK, JNK (SAPK), the PI3K/AKT, as well as various transcriptional regulators such as STAT3. When co-expressed, the first three members of HER family (HER1-3) can form homo- and hetero-dimers, and there is considerable evidence suggesting that the receptor dimers differentially activate intracellular signaling pathways. To better understand the interactions in this system, we pursued multi-factorial experiments where HER dimerization patterns and signaling pathways were rationally perturbed. We measured the activation of HER1-3 receptors and of the sentinel signaling proteins ERK, AKT, p38 MAPK, JNK, STAT3 as a function of time in a panel of human mammary epithelial (HME) cells expressing different levels of HER1-3 stimulated with various ligand combinations. We hypothesized that the HER dimerization pattern is a better predictor of downstream signaling than the total receptor activation levels. We validated this hypothesis using a combination of model-based analysis to quantify the HER dimerization patterns, and by clustering the activation data in multiple ways to confirm that the HER receptor dimer is a better predictor of the signaling through p38 MAPK, ERK and AKT pathways than the total HER receptor expression and activation levels. We then pursued combinatorial inhibition studies to identify the causal regulatory interactions between sentinel signaling proteins. Quantitative analysis of the collected data using the modular response analysis (MRA) and its Bayesian Variable Selection Algorithm (BVSA) version allowed us to obtain a consensus regulatory interaction model, which revealed that STAT3 occupies a central role in the crosstalk between the studied pathways in HME cells. Results of the BVSA/MRA and cluster analysis were in agreement with each other.
Collapse
Affiliation(s)
- Chunhong Gong
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yi Zhang
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Harish Shankaran
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Haluk Resat
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
21
|
Growth hormone-releasing hormone antagonists abolish the transactivation of human epidermal growth factor receptors in advanced prostate cancer models. Invest New Drugs 2014; 32:871-82. [DOI: 10.1007/s10637-014-0131-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 06/23/2014] [Indexed: 02/04/2023]
|
22
|
Mazurais D, Ferraresso S, Gatta PP, Desbruyères E, Severe A, Corporeau C, Claireaux G, Bargelloni L, Zambonino-Infante JL. Identification of hypoxia-regulated genes in the liver of common sole (Solea solea) fed different dietary lipid contents. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:277-288. [PMID: 24091821 DOI: 10.1007/s10126-013-9545-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 09/15/2013] [Indexed: 06/02/2023]
Abstract
Coastal systems could be affected by hypoxic events brought about by global change. These areas are essential nursery habitats for several fish species including the common sole (Solea solea L.). Tolerance of fish to hypoxia depends on species and also on their physiological condition and nutritional status. Indeed, high dietary lipid content has been recently shown to negatively impact the resistance of sole to a severe hypoxic challenge. In order to study the molecular mechanisms involved in the early response to hypoxic stress, the present work examined the hepatic transcriptome in common sole fed diets with low and high lipid content, exposed to severe hypoxia. The activity of AMP-activated protein kinase (AMPK) was also investigated through the quantification of threonine-172 phosphorylation in the alpha subunit. The results show that hypoxia consistently regulates several actors involved in energy metabolism pathways and particularly AMPKα, as well as some involved in cell growth and maintenance or unfolded protein response. Our findings reveal that (1) the expression of genes involved in biological processes with high energy cost or implicated in aerobic ATP synthesis was down-regulated by hypoxia, contrary to genes involved in neoglucogenesis or in angiogenesis, (2) the consumption of high lipid induced regulation of metabolic pathways going against this energy saving, and (3) this control was fine-tuned by the regulation of several transcriptomic factors. These results provide insight into the biological processes involved in the hepatic response to hypoxic stress and underline the negative impact of high lipid consumption on the tolerance of common sole to hypoxia.
Collapse
Affiliation(s)
- David Mazurais
- Ifremer, UMR 6539 LEMAR, Unité de Physiologie Fonctionnelle des Organismes Marins, Ifremer, CS 10070, 29280, Plouzané, France,
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Correlation of breast cancer subtypes, based on estrogen receptor, progesterone receptor, and HER2, with functional imaging parameters from ⁶⁸Ga-RGD PET/CT and ¹⁸F-FDG PET/CT. Eur J Nucl Med Mol Imaging 2014; 41:1534-43. [PMID: 24652232 DOI: 10.1007/s00259-014-2744-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/21/2014] [Indexed: 12/19/2022]
Abstract
PURPOSE Imaging biomarkers from functional imaging modalities were assessed as potential surrogate markers of disease status. Specifically, in this prospective study, we investigated the relationships between functional imaging parameters and histological prognostic factors and breast cancer subtypes. METHODS In total, 43 patients with large or locally advanced invasive ductal carcinoma (IDC) were analyzed (47.6 ± 7.5 years old). (68)Ga-Labeled arginine-glycine-aspartic acid (RGD) and (18)F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) were performed. The maximum and average standardized uptake values (SUVmax and SUVavg) from RGD PET/CT and SUVmax and SUVavg from FDG PET/CT were the imaging parameters used. For histological prognostic factors, estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression was identified using immunohistochemistry (IHC) or fluorescent in situ hybridization (FISH). Four breast cancer subtypes, based on ER/PR and HER2 expression (ER/PR+,Her2-, ER/PR+,Her2+, ER/PR-,Her2+, and ER/PR-,Her2-), were considered. RESULTS Quantitative FDG PET parameters were significantly higher in the ER-negative group (15.88 ± 8.73 vs 10.48 ± 6.01, p = 0.02 for SUVmax; 9.40 ± 5.19 vs 5.92 ± 4.09, p = 0.02 for SUVavg) and the PR-negative group (8.37 ± 4.94 vs 4.79 ± 3.93, p = 0.03 for SUVavg). Quantitative RGD PET parameters were significantly higher in the HER2-positive group (2.42 ± 0.59 vs 2.90 ± 0.75, p = 0.04 for SUVmax; 1.60 ± 0.38 vs 1.95 ± 0.53, p = 0.04 for SUVavg) and showed a significant positive correlation with the HER2/CEP17 ratio (r = 0.38, p = 0.03 for SUVmax and r = 0.46, p < 0.01 for SUVavg). FDG PET parameters showed significantly higher values in the ER/PR-,Her2- subgroup versus the ER/PR+,Her2- or ER/PR+,Her2+ subgroups, while RGD PET parameters showed significantly lower values in the ER/PR-,Her2- subgroup versus the other subgroups. There was no correlation between FDG and RGD PET parameters in the overall group. Only the ER/PR-,Her2- subgroup showed a significant positive correlation between FDG and RGD PET parameters (r = 0.59, p = 0.03 for SUVmax). CONCLUSION (68)Ga-RGD and (18)F-FDG PET/CT are promising functional imaging modalities for predicting biomarkers and molecular phenotypes in breast cancer patients.
Collapse
|
24
|
Bijian K, Lougheed C, Su J, Xu B, Yu H, Wu JH, Riccio K, Alaoui-Jamali MA. Targeting focal adhesion turnover in invasive breast cancer cells by the purine derivative reversine. Br J Cancer 2013; 109:2810-8. [PMID: 24169345 PMCID: PMC3844920 DOI: 10.1038/bjc.2013.675] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/01/2013] [Accepted: 10/04/2013] [Indexed: 12/29/2022] Open
Abstract
Background: The dynamics of focal adhesion (FA) turnover is a key determinant for the regulation of cancer cell migration. Here we investigated FA turnover in a panel of breast cancer models with distinct invasive properties and evaluated the impact of reversine on this turnover in relation to cancer cell invasion in in vitro and in vivo conditions. Methods: Live imaging and immunofluorescence assays were used to investigate FA turnover in breast cancer cells. Biochemical studies were used to investigate the impact of reversine on FA signalling and turnover. In vivo activity was investigated using orthotopic breast cancer mouse models. Results: Accelerated FA disassembly from plasma membrane protrusions was observed in invasive compared with non-invasive breast cancer cells or non-immortalised mammary epithelial cells. Reversine significantly inhibited FA disassembly leading to stable FAs, which was associated with reduced cell motility and invasion. The inhibitory effect of reversine on FA turnover accounted for a large part on its capacity to interfere with FAK function on regulating its downstream targets. In orthotopic breast cancer mouse models, reversine revealed a potent inhibitory activity on tumour progression to metastasis. Conclusion: These results support the utility of targeting FA turnover as a therapeutic approach for invasive breast cancer.
Collapse
Affiliation(s)
- K Bijian
- Departments of Medicine and Oncology, Segal Cancer Centre and Lady Davis Institute of the Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Shankaran H, Zhang Y, Tan Y, Resat H. Model-based analysis of HER activation in cells co-expressing EGFR, HER2 and HER3. PLoS Comput Biol 2013; 9:e1003201. [PMID: 23990774 PMCID: PMC3749947 DOI: 10.1371/journal.pcbi.1003201] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/26/2013] [Indexed: 12/21/2022] Open
Abstract
The HER/ErbB family of receptor tyrosine kinases drives critical responses in normal physiology and cancer, and the expression levels of the various HER receptors are critical determinants of clinical outcomes. HER activation is driven by the formation of various dimer complexes between members of this receptor family. The HER dimer types can have differential effects on downstream signaling and phenotypic outcomes. We constructed an integrated mathematical model of HER activation, and trafficking to quantitatively link receptor expression levels to dimerization and activation. We parameterized the model with a comprehensive set of HER phosphorylation and abundance data collected in a panel of human mammary epithelial cells expressing varying levels of EGFR/HER1, HER2 and HER3. Although parameter estimation yielded multiple solutions, predictions for dimer phosphorylation were in agreement with each other. We validated the model using experiments where pertuzumab was used to block HER2 dimerization. We used the model to predict HER dimerization and activation patterns in a panel of human mammary epithelial cells lines with known HER expression levels in response to stimulations with ligands EGF and HRG. Simulations over the range of expression levels seen in various cell lines indicate that: i) EGFR phosphorylation is driven by HER1-HER1 and HER1-HER2 dimers, and not HER1-HER3 dimers, ii) HER1-HER2 and HER2-HER3 dimers both contribute significantly to HER2 activation with the EGFR expression level determining the relative importance of these species, and iii) the HER2-HER3 dimer is largely responsible for HER3 activation. The model can be used to predict phosphorylated dimer levels for any given HER expression profile. This information in turn can be used to quantify the potencies of the various HER dimers, and can potentially inform personalized therapeutic approaches. A family of cell surface molecules called the HER receptor family plays important roles in normal physiology and cancer. This family has four members, HER1-4. These receptors convert signals received from the extracellular environment into cell decisions such as growth and survival – a process termed signal transduction. In particular, HER2 and HER3 are over-expressed in a number of tumors, and their expression levels are associated with abnormal growth and poor clinical prognosis. A key step in HER-mediated signal transduction is the formation of dimer complexes between members of this family. Different dimer types have different potencies for activating normal and aberrant responses. Prediction of the dimerization pattern for a given HER expression level may pave the way for personalized therapeutic approaches targeting specific dimers. Towards this end, we constructed a mathematical model for HER dimerization and activation. We determined unknown model parameters by analyzing HER activation data collected in a panel of human mammary epithelial cells that express different levels of the HER molecules. The model enables us to quantitatively link HER expression levels to receptor dimerization and activation. Further, the model can be used to support additional quantitative investigations into the basic biology of HER-mediated signal transduction.
Collapse
Affiliation(s)
- Harish Shankaran
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Yi Zhang
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Yunbing Tan
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, Washington, United States of America
| | - Haluk Resat
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, Washington, United States of America
- * E-mail:
| |
Collapse
|
26
|
Kara O, Duman BB, Kara B, Erdogan S, Parsak CK, Sakman G. Analysis of PTEN, VEGF, HER2 and P53 Status in Determining Colorectal Cancer Benefit from Bevacizumab Therapy. Asian Pac J Cancer Prev 2012; 13:6397-401. [DOI: 10.7314/apjcp.2012.13.12.6397] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
27
|
Kaumaya PTP, Foy KC. Peptide vaccines and targeting HER and VEGF proteins may offer a potentially new paradigm in cancer immunotherapy. Future Oncol 2012; 8:961-87. [PMID: 22894670 DOI: 10.2217/fon.12.95] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ErbB family (HER-1, HER-2, HER-3 and HER-4) of receptor tyrosine kinases has been the focus of cancer immunotherapeutic strategies while antiangiogenic therapies have focused on VEGF and its receptors VEGFR-1 and VEGFR-2. Agents targeting receptor tyrosine kinases in oncology include therapeutic antibodies to receptor tyrosine kinase ligands or the receptors themselves, and small-molecule inhibitors. Many of the US FDA-approved therapies targeting HER-2 and VEGF exhibit unacceptable toxicities, and show problems of efficacy, development of resistance and unacceptable safety profiles that continue to hamper their clinical progress. The combination of different peptide vaccines and peptidomimetics targeting specific molecular pathways that are dysregulated in tumors may potentiate anticancer immune responses, bypass immune tolerance and circumvent resistance mechanisms. The focus of this review is to discuss efforts in our laboratory spanning two decades of rationally developing peptide vaccines and therapeutics for breast cancer. This review highlights the prospective benefit of a new, untapped category of therapies biologically targeted to EGF receptor (HER-1), HER-2 and VEGF with potential peptide 'blockbusters' that could lay the foundation of a new paradigm in cancer immunotherapy by creating clinical breakthroughs for safe and efficacious cancer cures.
Collapse
Affiliation(s)
- Pravin T P Kaumaya
- Departments of Obstetrics & Gynecology, OSU Wexner Medical Center, James Cancer Hospital & Solove Research Institute & the Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | | |
Collapse
|
28
|
Abstract
HER3 (ErbB3) is a unique member of the human epidermal growth factor receptor (EGFR) family (ErbB family). It functions only through dimerization with other members of the ErbB family and modulates activity and sensitivity to targeted cancer therapies. This paper briefly describes the mechanism of HER3 in signal transduction and its potential role in acquired resistance to EGFR- and HER2-targeted therapies. We also consider recent developments in HER3-targeting therapeutics and their combination with inhibitors of other ErbB members in clinical applications.
Collapse
|
29
|
Shankaran H, Zhang Y, Chrisler WB, Ewald JA, Wiley HS, Resat H. Integrated experimental and model-based analysis reveals the spatial aspects of EGFR activation dynamics. MOLECULAR BIOSYSTEMS 2012; 8:2868-82. [PMID: 22952062 DOI: 10.1039/c2mb25190f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The epidermal growth factor receptor (EGFR) belongs to the ErbB family of receptor tyrosine kinases, and controls a diverse set of cellular responses relevant to development and tumorigenesis. ErbB activation is a complex process involving receptor-ligand binding, receptor dimerization, phosphorylation, and trafficking (internalization, recycling and degradation), which together dictate the spatio-temporal distribution of active receptors within the cell. The ability to predict this distribution, and elucidation of the factors regulating it, would help to establish a mechanistic link between ErbB expression levels and the cellular response. Towards this end, we constructed mathematical models to determine the contributions of receptor dimerization and phosphorylation to EGFR activation, and to examine the dependence of these processes on sub-cellular location. We collected experimental datasets for EGFR activation dynamics in human mammary epithelial cells, with the specific goal of model parameterization, and used the data to estimate parameters for several alternate models. Model-based analysis indicated that: (1) signal termination via receptor dephosphorylation in late endosomes, prior to degradation, is an important component of the response, (2) less than 40% of the receptors in the cell are phosphorylated at any given time, even at saturating ligand doses, and (3) receptor phosphorylation kinetics at the cell surface and early endosomes are comparable. We validated the last finding by measuring the EGFR dephosphorylation rates at various times following ligand addition both in whole cells and in endosomes using ELISAs and fluorescent imaging. Overall, our results provide important information on how EGFR phosphorylation levels are regulated within cells. This study demonstrates that an iterative cycle of experiments and modeling can be used to gain mechanistic insight regarding complex cell signaling networks.
Collapse
Affiliation(s)
- Harish Shankaran
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, MS J4-33, Richland, WA 99352, USA
| | | | | | | | | | | |
Collapse
|
30
|
Garcia AG, Nedev H, Bijian K, Su J, Alaoui-Jamali MA, Saragovi HU. Reduced in vivo lung metastasis of a breast cancer cell line after treatment with Herceptin mAb conjugated to chemotherapeutic drugs. Oncogene 2012; 32:2527-33. [PMID: 22797066 DOI: 10.1038/onc.2012.283] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Anthracyclines and taxanes have remarkable anticancer efficacy, but have poor selectivity and high toxicity. Targeted delivery of chemotherapeutics has emerged as a strategy to achieve higher drug levels at the tumor site, to spare noncancerous tissue and potentially to use lower systemic drug doses, thus preventing side effects. In this study, we targeted the HER2 receptor using the monoclonal antibody (mAb) Herceptin (Trastuzumab) chemically conjugated to Doxorubicin or Taxol. In vitro, drug-Herceptin conjugates exhibited cytotoxicity comparable to equimolar concentrations of free drugs, with the benefit that the cytotoxicity of the conjugates was selective for cells expressing the HER2 target. In vivo, treatment of tumor-bearing mice with Taxol-Herceptin conjugates had a reduction of primary tumors comparable to equivalent doses of free drugs. However, Taxol-Herceptin conjugates significantly reduced metastasis compared with equivalent doses of free drugs. Thus, the data support the concept that conjugates might target metastasis better than primary tumors. This would offer a potential therapeutic approach for management of metastatic breast cancer.
Collapse
Affiliation(s)
- A Galan Garcia
- Lady Davis Institute-Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Shoda J, Ishige K, Sugiyama H, Kawamoto T. Biliary tract carcinoma: clinical perspectives on molecular targeting strategies for therapeutic options. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2012; 19:342-53. [DOI: 10.1007/s00534-012-0520-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Junichi Shoda
- Field of Basic Sports Medicine, Sports Medicine; University of Tsukuba Graduate School of Comprehensive Human Sciences; Tsukuba-shi Ibaraki Japan
- Department of Gastroenterology, Institute of Clinical Medicine; University of Tsukuba Graduate School of Comprehensive Human Sciences; Tsukuba-shi Ibaraki Japan
| | - Kazunori Ishige
- Department of Gastroenterology, Institute of Clinical Medicine; University of Tsukuba Graduate School of Comprehensive Human Sciences; Tsukuba-shi Ibaraki Japan
| | - Hiroaki Sugiyama
- Department of Gastroenterology, Institute of Clinical Medicine; University of Tsukuba Graduate School of Comprehensive Human Sciences; Tsukuba-shi Ibaraki Japan
| | - Toru Kawamoto
- Department of Surgery, Institute of Gastroenterology; Tokyo Women's Medical University; Shinjuku-ku Tokyo Japan
| |
Collapse
|
32
|
Enhancement of the cytotoxic potential of the mixed EGFR and DNA-targeting ‘combi-molecule’ ZRBA1 against human solid tumour cells by a bis-quinazoline-based drug design approach. Anticancer Drugs 2012; 23:483-93. [DOI: 10.1097/cad.0b013e328351c101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Hsueh SP, Hsu WB, Wen CC, Wang WB. SV40 T/t-common polypeptide inhibits angiogenesis and growth of HER2-overexpressing human ovarian cancer. Cancer Gene Ther 2011; 18:859-70. [PMID: 21869825 DOI: 10.1038/cgt.2011.55] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2) is frequently overexpressed in human ovarian cancers and its overexpression is associated with increased angiogenesis, increased metastasis and reduced survival. Inhibition of HER2 in HER2-overexpressing cancers can lead to reduced angiogenesis and improved survival. Previously, we reported that SV40 T/t-common polypeptide has transcriptional repression activity and can inhibit HER2 expression. In this study, we investigated the effect of T/t-common on the angiogenesis-inducing activity of HER2-overexpressing human SK-OV-3 ovarian cancer cells. We found that compared to conditioned medium from control SK-OV-3 cancer cells, conditioned medium from T/t-common-expressing SK-OV-3 cells had a reduced ability to induce endothelial cell migration and tube formation in vitro and microvessel formation in vivo. These data indicate that T/t-common can inhibit the ability of SK-OV-3 cancer cells to induce angiogenesis. T/t-common was found to be able to downregulate the expression of several proangiogenic factors, including vascular endothelial growth factor-A, interleukin-8, basic fibroblast growth factor, matrix metalloproteinase-2 and urokinase-type plasminogen activator, and upregulate antiangiogenic factors, including thrombospondin-1 and tissue inhibitor of metalloproteinases-1 in SK-OV-3 cancer cells. Finally, we demonstrated that T/t-common could inhibit the angiogenesis and growth of HER2-overexpressing human ovarian tumor in NOD/SCID mice. Taken together, the data suggest that T/t-common had the potential to be developed as a new antiangiogenic agent specific for treating HER2-overexpressing ovarian cancers.
Collapse
Affiliation(s)
- S-P Hsueh
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
34
|
Li Q, Wang D, Li J, Chen P. Clinicopathological and prognostic significance of HER-2/neu and VEGF expression in colon carcinomas. BMC Cancer 2011; 11:277. [PMID: 21708009 PMCID: PMC3144457 DOI: 10.1186/1471-2407-11-277] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Accepted: 06/27/2011] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND HER-2/neu and VEGF expression is correlated with disease behaviors in various cancers. However, evidence for their expression in colon cancer is rather contradictory both for the protein expression status and prognostic value. HER-2/neu is found to participate in VEGF regulation, and has known correlation with VEGF expression in some tumors. In this study, we investigated HER-2/neu and VEGF expression in Chinese colon patients and explored whether there was any correlation between their expression patterns. METHODS HER-2/neu and VEGF were investigated immunohistochemically using tumor samples obtained from 317 colon cancer patients with all tumor stages. Correlation of the degree of staining with clinicopathological parameters and survival was investigated. RESULTS Positive expression rates of HER-2/neu and VEGF in colon cancer were 15.5% and 55.5% respectively. HER-2/neu expression was significantly correlated with tumor size and distant metastases (P < 0.05), but was not an independent prognostic marker of survival (P > 0.05). Expression of VEGF was significantly correlated with tumor size, tumor stage, lymph node metastases, and distant metastases (P < 0.05). The 5-year survival rate in patients with negative and positive VEGF expression was 70.2% and 61.9% respectively; the difference was not statistically significant (P = 0.146). No correlation between HER-2/neu and VEGF expression was detected (P = 0.151). CONCLUSIONS HER-2/neu and VEGF are not important prognostic markers of colon cancer. The present results do not support any association between HER2/neu and VEGF expression in this setting.
Collapse
Affiliation(s)
- Qingguo Li
- Department of General Surgery, First Clinic Medical School of Yangzhou University, Yangzhou, China
| | | | | | | |
Collapse
|
35
|
Trastuzumab has anti-metastatic and anti-angiogenic activity in a spontaneous metastasis xenograft model of esophageal adenocarcinoma. Cancer Lett 2011; 308:54-61. [PMID: 21570176 DOI: 10.1016/j.canlet.2011.04.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/15/2011] [Accepted: 04/18/2011] [Indexed: 01/02/2023]
Abstract
HER-2/neu over-expression occurs in 10-40% of patients with esophageal adenocarcinoma. Therefore, inhibitory effects of trastuzumab on proliferation, neoangiogenesis and metastatic spread of the esophageal adenocarcinoma cell line PT1590 were investigated (subcutaneous xenograft model). PT1590 revealed an amplified copy number of c-erbB2 and HER-2/neu over-expression occured in xenograft tumors and spontaneous lung metastases. PT1590 proliferation was significantly inhibited by trastuzumab in vitro. In vivo, tumor weight, volume, microvessel density and number of lung metastases decreased significantly after three weeks of treatment. These data suggest the importance of HER-2/neu for metastatic spread in esophageal adenocarcinoma and encourages clinical trials.
Collapse
|
36
|
Nejatollahi F, Asgharpour M, Jaberipour M. Down-regulation of vascular endothelial growth factor expression by anti-Her2/neu single chain antibodies. Med Oncol 2011; 29:378-83. [PMID: 21267676 DOI: 10.1007/s12032-010-9796-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 12/20/2010] [Indexed: 01/17/2023]
Abstract
HER-2/neu is overexpressed in 25-30% of breast tumors. Signaling through HER-2/neu leads to an increase in the production of vascular endothelial growth factor (VEGF) and enhances angiogenesis. We evaluated the effects of three specific anti-HER2/neu single chain-Fv (scFv) antibodies on the expression level of VEGF in HER2/neu-expressing breast cancer cell lines. A nonimmunized human scFv library was panned against three epitopes of HER2/neu. BT-474 human breast cancer cell line was treated with three specific anti-HER2/neu scFv antibodies and the amount of VEGF gene transcript was determined by quantitative real-time PCR. The expression of VEGF protein was analyzed by western blot. All three scFv antibodies along with their combination inhibited VEGF expression at both the gene and protein levels. Our results show that anti-HER2/neu recombinant antibodies can be considered as anti-angiogenic agents in HER2/neu-positive breast cancers.
Collapse
Affiliation(s)
- Foroogh Nejatollahi
- Recombinant Antibody Laboratory, Department of Immunology, Graduate School for Advanced Biomedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | |
Collapse
|
37
|
Safa RN, Peng XY, Pentassuglia L, Lim CC, Lamparter M, Silverstein C, Walker J, Chen B, Geisberg C, Hatzopoulos AK, Sawyer DB. Neuregulin-1β regulation of embryonic endothelial progenitor cell survival. Am J Physiol Heart Circ Physiol 2011; 300:H1311-9. [PMID: 21239627 DOI: 10.1152/ajpheart.01104.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelial progenitor cells (EPCs) are mobilized into the vascular space and home to damaged tissues, where they promote repair in part through a process of angiogenesis. Neuregulins (NRGs) are ligands in the epidermal growth factor family that signal through type I receptor tyrosine kinases in the erbB family (erbB2, erbB3, and erbB4) and regulate endothelial cell biology, promoting angiogenesis. Stimuli such as ischemia and exercise that promote EPC mobilization also induce cleavage and release of transmembrane NRG from cardiac microvascular endothelial cells (CMECs). We hypothesized that NRG/erbB signaling may regulate EPC biology. Using an embryonic (e)EPC cell line that homes to and repairs injured myocardium, we were able to detect erbB2 and erbB3 transcripts. Identical receptor expression was found in EPCs isolated from rat bone marrow and human whole blood. NRG treatment of eEPCs induces phosphorylation of kinases including Akt, GSK-3β, and Erk1/2 and the nuclear accumulation and transcriptional activation of β-catenin. NRG does not induce eEPC proliferation or migration but does protect eEPCs against serum deprivation-induced apoptosis. These results suggest a role for tissue-derived NRG in the regulation of EPC survival.
Collapse
Affiliation(s)
- Radwan N Safa
- Department of Molecular Medicine, Boston University, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Prabhu V, Guruvayoorappan C. Prolyl hydroxylase and hypoxia inducible factor: potential targets for cancer therapy. Immunopharmacol Immunotoxicol 2011; 33:568-75. [DOI: 10.3109/08923973.2010.545418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
39
|
Xu Y, Bismar TA, Su J, Xu B, Kristiansen G, Varga Z, Teng L, Ingber DE, Mammoto A, Kumar R, Alaoui-Jamali MA. Filamin A regulates focal adhesion disassembly and suppresses breast cancer cell migration and invasion. ACTA ACUST UNITED AC 2010; 207:2421-37. [PMID: 20937704 PMCID: PMC2964581 DOI: 10.1084/jem.20100433] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The actin cross-linking protein filamin A reduces migration, invasion, and metastasis of breast cancer cells. The actin cross-linking protein filamin A (FLNa) functions as a scaffolding protein and couples cell cytoskeleton to extracellular matrix and integrin receptor signaling. In this study, we report that FLNa suppresses invasion of breast cancer cells and regulates focal adhesion (FA) turnover. Two large progression tissue microarrays from breast cancer patients revealed a significant decrease of FLNa levels in tissues from invasive breast cancer compared with benign disease and in lymph node–positive compared with lymph node–negative breast cancer. In breast cancer cells and orthotopic mouse breast cancer models, down-regulation of FLNa stimulated cancer cell migration, invasion, and metastasis formation. Time-lapse microscopy and biochemical assays after FLNa silencing and rescue with wild-type or mutant protein resistant to calpain cleavage revealed that FLNa regulates FA disassembly at the leading edge of motile cells. Moreover, FLNa down-regulation enhanced calpain activity through the mitogen-activated protein kinase–extracellular signal-regulated kinase cascade and stimulated the cleavage of FA proteins. These results document a regulation of FA dynamics by FLNa in breast cancer cells.
Collapse
Affiliation(s)
- Yingjie Xu
- Lady Davis Institute for Medical Research, Jewish General Hospital, Faculty of Medicine, McGill University, Montreal, Quebec H3T 1E2, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sphingosine kinase 1 induces tolerance to human epidermal growth factor receptor 2 and prevents formation of a migratory phenotype in response to sphingosine 1-phosphate in estrogen receptor-positive breast cancer cells. Mol Cell Biol 2010; 30:3827-41. [PMID: 20516217 DOI: 10.1128/mcb.01133-09] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We demonstrate here a new concept termed "oncogene tolerance" whereby human EGF receptor 2 (HER2) increases sphingosine kinase 1 (SK1) expression in estrogen receptor-positive (ER(+)) MCF-7 HER2 cells and SK1, in turn, limits HER2 expression in a negative-feedback manner. The HER2-dependent increase in SK1 expression also limits p21-activated protein kinase 1 (p65 PAK1) and extracellular signal regulated kinase 1/2 (ERK-1/2) signaling. Sphingosine 1-phosphate signaling via S1P(3) is also altered in MCF-7 HER2 cells. In this regard, S1P binding to S1P(3) induces a migratory phenotype via an SK1-dependent mechanism in ER(+) MCF-7 Neo cells, which lack HER2. This involves the S1P stimulated accumulation of phosphorylated ERK-1/2 and actin into membrane ruffles/lamellipodia and migration. In contrast, S1P failed to promote redistribution of phosphorylated ERK-1/2 and actin into membrane ruffles/lamellipodia or migration of MCF-7 HER2 cells. However, a migratory phenotype in these cells could be induced in response to S1P when SK1 expression had been knocked down with a specific siRNA or when recombinant PAK1 was ectopically overexpressed. Thus, the HER2-dependent increase in SK1 expression functions to desensitize the S1P-induced formation of a migratory phenotype. This is correlated with improved prognosis in patients who have a low HER1-3/SK1 expression ratio in their ER(+) breast cancer tumors compared to patients that have a high HER1-3/SK1 expression ratio.
Collapse
|
41
|
Abstract
IMPORTANCE OF THE FIELD The overexpression of EGFR has been documented in 30-90% of cases of advanced colorectal cancer (CRC). An increased understanding of the EGFR pathway in CRC has paved the way for the development of other targeted agents to augment therapeutic efficacy as well as for efforts to circumvent tumor resistance to therapy. AREAS COVERED IN THIS REVIEW Our aim is to discuss the recent progress in the role of the EGFR pathway, the status of anti-EGFR therapeutic agents currently in use and the rationale for the development of novel agents that work along the pathway for the treatment of CRC. WHAT THE READER WILL GAIN The readers will learn about the development and evolution of mAbs directed against EGFR as well as tyrosine kinase inhibitors in the management of CRC patients. In the same vein, determination of optimal dosing and better methods of defining those subsets of patients most likely to benefit will be discussed. TAKE HOME MESSAGE All these data must encourage clinicians and basic researches to continue in their efforts to untangle the network behind EGFR and try to focus all that effort towards improving patient's quality of life as well as survival.
Collapse
Affiliation(s)
- Muhammad W Saif
- Yale University School of Medicine, Section of Medical Oncology, 333 Cedar Street, FMP 116, New Haven, CT 06520, USA.
| |
Collapse
|
42
|
Chen J, Li Q, Wang C, Wu J, Zhao G. Prognostic significance of c-erbB-2 and vascular endothelial growth factor in colorectal liver metastases. Ann Surg Oncol 2010; 17:1555-63. [PMID: 20069460 DOI: 10.1245/s10434-009-0897-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Indexed: 12/22/2022]
Abstract
BACKGROUND The prognostic value of c-erbB-2 and vascular endothelial growth factor (VEGF) expression in colorectal liver metastases (CLM) is unclear. The purpose of this study was to clarify the relationship of c-erbB-2 and VEGF with the clinicopathological parameters and the survival results in CLM. METHODS For 44 patients who had undergone liver resection for CLM at Fudan University Cancer Hospital from 2000 to 2007, the expression of c-erbB-2 and VEGF in CLM and the corresponding primary cancer specimens were evaluated immunohistochemically. The correlations among c-erbB-2 and VEGF, clinicopathologic factors, and survival were then statistically analyzed. RESULTS Positive expression rates of c-erbB-2 and VEGF in CLM lesions were 38.64% and 52.72%, respectively. The expression of c-erbB-2 and VEGF in CLM were similar to that of corresponding primary tumor. c-erbB-2 expression correlated with number of metastatic lesions and the distribution of liver metastases. The expression of VEGF correlated with the size of liver metastatic lesion and distribution of liver metastases. A statistically significant association between the expression of c-erbB-2 and VEGF in both CLM and primary tumor was noted. Univariate analysis showed that VEGF was a prognostic factor. However, on multivariate analysis, expression of VEGF was not an independent prognostic marker. Patients with both negative expression of c-erbB-2 and VEGF expression had a better outcome than others. CONCLUSIONS VEGF might be a statistically significant prognostic factor. The combined analysis of c-erbB-2 and VEGF is of added prognostic value. An association exists between c-erbB-2 and VEGF. However, further studies are required to confirm this issue.
Collapse
Affiliation(s)
- Jinggui Chen
- Department of Abdominal Surgery, Cancer Hospital, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
43
|
Grépin R, Pagès G. Le Vascular Endothelial Growth Factor (VEGF) : un modèle de régulation d'expression génique et un marqueur d'agressivité tumorale. Une cible thérapeutique évidente ? ACTA ACUST UNITED AC 2009; 203:181-92. [DOI: 10.1051/jbio/2009022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
44
|
Abstract
Significant advances in molecular-targeted therapies have provided more effective and less aggressive forms of therapy for patients with HER2-overexpressing metastatic breast cancers. Despite the initial encouraging results of many therapeutic randomized trials that have been undertaken in this setting, de novo and acquired resistance to trastuzumab, the first anti-HER2 monoclonal antibody to demonstrate significant activity in this setting, can occur. Because recent studies strongly support a role for trastuzumab in not only the management of metastatic disease but also the adjuvant setting for HER2-overexpressing breast cancers, the clinical problem of trastuzumab resistance is becoming increasingly important. Specific recommendations for the optimal treatment of HER2-overexpressing metastatic disease are challenging because considerable advances in the field have been made. This article will review some of the main points to be considered for decision-making in anti-HER2 treatment in the metastatic setting: (1) the benefit of continued trastuzumab after progression on a first-line trastuzumab-containing regimen, (2) novel agents that have been recently added to the plethora of drugs available to treat HER2-overexpressing breast cancers, and (3) molecular mechanisms that contribute to trastuzumab resistance. These issues are imperative in identifying novel therapeutic targets with the goal of increasing the magnitude and duration of response to trastuzumab-based treatment.
Collapse
Affiliation(s)
- Ingrid A Mayer
- Department of Medicine and Breast Cancer Research Program, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
45
|
Chen B, Su B, Chen S. A COX-2 inhibitor nimesulide analog selectively induces apoptosis in Her2 overexpressing breast cancer cells via cytochrome c dependent mechanisms. Biochem Pharmacol 2009; 77:1787-94. [PMID: 19428334 DOI: 10.1016/j.bcp.2009.03.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 03/11/2009] [Accepted: 03/17/2009] [Indexed: 11/16/2022]
Abstract
Epidemiological and animal model studies have suggested that non-steroidal anti-inflammatory drugs (NSAIDs) can act as chemopreventive agents. The cyclooxygenase-2 (COX-2) inhibitor nimesulide shows anti-cancer effect in different type of cancers. In the current study, five breast carcinoma cell lines were used to explore the anti-cancer mechanisms of a nimesulide derivative compound 76. The compound dose dependently suppressed SKBR-3, BT474 and MDA-MB-453 breast cancer cell proliferation with IC(50) of 0.9microM, 2.2microM and 4.0microM, respectively. However, it needs much higher concentrations to inhibit MCF-7 and MDA-MB-231 breast cancer cell growth with IC(50) at 22.1microM and 19.6microM, respectively. Further investigation reveals that compound 76 induced apoptosis in SKBR-3 and BT474 cells. Since these cells are Her2 overexpressing cells, the Her2 intracellular signaling pathways were examined after the treatment. There was no significant changing of kinase activity. However, the cytochrome c release assay indicated that the apoptosis induced by the compound was mediated by the mitochondria. These results suggest that compound 76 selectively induce apoptosis in Her2 overexpressing breast cancer cells through the mitochondria, and could be used as a lead to design more potent derivatives.
Collapse
Affiliation(s)
- Bin Chen
- Division of Tumor Cell Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | |
Collapse
|
46
|
Xu Y, Benlimame N, Su J, He Q, Alaoui-Jamali MA. Regulation of focal adhesion turnover by ErbB signalling in invasive breast cancer cells. Br J Cancer 2009; 100:633-43. [PMID: 19190626 PMCID: PMC2653743 DOI: 10.1038/sj.bjc.6604901] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A crucial early event by which cancer cells switch from localised to invasive phenotype is initiated by the acquisition of autonomous motile properties; a process driven by dynamic assembly and disassembly of multiple focal adhesion (FA) proteins, which mediate cell–matrix attachments, extracellular matrix degradation, and serve as traction sites for cell motility. We have reported previously that cancer cell invasion induced by overexpression of members of the ErbB tyrosine kinase receptors, including ErbB2, is dependent on FA signalling through FA kinase (FAK). Here, we show that ErbB2 receptor signalling regulates FA turnover, and cell migration and invasion through the Src–FAK pathway. Inhibition of the Src–FAK signalling in ErbB2-positive cells by Herceptin or RNA interference selectively regulates FA turnover, leading to enhanced number and size of peripherally localised adhesions and inhibition of cell invasion. Inhibition of ErbB2 signalling failed to regulate FA and cell migration and invasion in cells lacking FAK or Src but gains this activity after restoration of these proteins. Taken together, our results show a regulation of FA turnover by ErbB2 signalling.
Collapse
Affiliation(s)
- Y Xu
- Department of Medicine, Lady Davis Institute of the Sir Mortimer B. Davis Jewish General Hospital, Segal Comprehensive Cancer Center, McGill University, Montréal, Canada
| | | | | | | | | |
Collapse
|
47
|
Zhang Y, Shankaran H, Opresko L, Resat H. System theoretical investigation of human epidermal growth factor receptor-mediated signalling. IET Syst Biol 2009; 2:273-84. [PMID: 19045822 DOI: 10.1049/iet-syb:20080116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The partitioning of biological networks into coupled-functional modules is being increasingly applied for developing predictive models of biological systems. This approach has the advantage that predicting a system-level response does not require a mechanistic description of the internal dynamics of each module. Identification of the input-output characteristics of the network modules and the connectivity between the modules provide the necessary quantitative representation of system dynamics. However, the determination of the input-output relationships of the modules is not trivial; it requires the controlled perturbation of module inputs and systematic analysis of experimental data. In this report, the authors apply a system theoretical analysis approach to derive the time-dependent input-output relationships of the functional module for the human epidermal growth factor receptor (HER) mediated Erk and Akt signalling pathways. Using a library of cell lines expressing endogenous levels of epidermal growth factor receptor (EGFR) and varying levels of HER2, the authors show that a transfer function-based representation can be successfully applied to quantitatively characterise information transfer in this system.
Collapse
Affiliation(s)
- Y Zhang
- Pacific Northwest National Laboratory, Computational Biology and Bioinformatics Group, Richland, WA 99352, USA
| | | | | | | |
Collapse
|
48
|
Poondra RR, Kumar NN, Bijian K, Prakesch M, Campagna-Slater V, Reayi A, Reddy PT, Choudhry A, Barnes ML, Leek DM, Daroszewska M, Lougheed C, Xu B, Schapira M, Alaoui-Jamali MA, Arya P. Discovery of Indoline-Based, Natural-Product-like Compounds as Probes of Focal Adhesion Kinase Signaling Pathways. ACTA ACUST UNITED AC 2009; 11:303-9. [DOI: 10.1021/cc8001525] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rajamohan R. Poondra
- Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario, Canada, K1A 0R6, Ontario Institute for Cancer Research, MaRS Centre, South Tower, 101 College Street, Toronto, Ontario, Canada, M5G 0A3, Lady Davis Institute for Medical Research, 3755 Chemin Cote-Ste-Catherine, Room E524, Montreal, Quebec, Canada, H3T 1E2, Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower, Suite 700, Toronto, Ontario, M5G 1L7, and
| | - N. Niranjan Kumar
- Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario, Canada, K1A 0R6, Ontario Institute for Cancer Research, MaRS Centre, South Tower, 101 College Street, Toronto, Ontario, Canada, M5G 0A3, Lady Davis Institute for Medical Research, 3755 Chemin Cote-Ste-Catherine, Room E524, Montreal, Quebec, Canada, H3T 1E2, Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower, Suite 700, Toronto, Ontario, M5G 1L7, and
| | - Krikor Bijian
- Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario, Canada, K1A 0R6, Ontario Institute for Cancer Research, MaRS Centre, South Tower, 101 College Street, Toronto, Ontario, Canada, M5G 0A3, Lady Davis Institute for Medical Research, 3755 Chemin Cote-Ste-Catherine, Room E524, Montreal, Quebec, Canada, H3T 1E2, Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower, Suite 700, Toronto, Ontario, M5G 1L7, and
| | - Michael Prakesch
- Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario, Canada, K1A 0R6, Ontario Institute for Cancer Research, MaRS Centre, South Tower, 101 College Street, Toronto, Ontario, Canada, M5G 0A3, Lady Davis Institute for Medical Research, 3755 Chemin Cote-Ste-Catherine, Room E524, Montreal, Quebec, Canada, H3T 1E2, Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower, Suite 700, Toronto, Ontario, M5G 1L7, and
| | - Valérie Campagna-Slater
- Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario, Canada, K1A 0R6, Ontario Institute for Cancer Research, MaRS Centre, South Tower, 101 College Street, Toronto, Ontario, Canada, M5G 0A3, Lady Davis Institute for Medical Research, 3755 Chemin Cote-Ste-Catherine, Room E524, Montreal, Quebec, Canada, H3T 1E2, Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower, Suite 700, Toronto, Ontario, M5G 1L7, and
| | - Ayub Reayi
- Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario, Canada, K1A 0R6, Ontario Institute for Cancer Research, MaRS Centre, South Tower, 101 College Street, Toronto, Ontario, Canada, M5G 0A3, Lady Davis Institute for Medical Research, 3755 Chemin Cote-Ste-Catherine, Room E524, Montreal, Quebec, Canada, H3T 1E2, Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower, Suite 700, Toronto, Ontario, M5G 1L7, and
| | - P. Thirupathi Reddy
- Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario, Canada, K1A 0R6, Ontario Institute for Cancer Research, MaRS Centre, South Tower, 101 College Street, Toronto, Ontario, Canada, M5G 0A3, Lady Davis Institute for Medical Research, 3755 Chemin Cote-Ste-Catherine, Room E524, Montreal, Quebec, Canada, H3T 1E2, Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower, Suite 700, Toronto, Ontario, M5G 1L7, and
| | - Asna Choudhry
- Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario, Canada, K1A 0R6, Ontario Institute for Cancer Research, MaRS Centre, South Tower, 101 College Street, Toronto, Ontario, Canada, M5G 0A3, Lady Davis Institute for Medical Research, 3755 Chemin Cote-Ste-Catherine, Room E524, Montreal, Quebec, Canada, H3T 1E2, Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower, Suite 700, Toronto, Ontario, M5G 1L7, and
| | - Michael L. Barnes
- Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario, Canada, K1A 0R6, Ontario Institute for Cancer Research, MaRS Centre, South Tower, 101 College Street, Toronto, Ontario, Canada, M5G 0A3, Lady Davis Institute for Medical Research, 3755 Chemin Cote-Ste-Catherine, Room E524, Montreal, Quebec, Canada, H3T 1E2, Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower, Suite 700, Toronto, Ontario, M5G 1L7, and
| | - Donald M. Leek
- Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario, Canada, K1A 0R6, Ontario Institute for Cancer Research, MaRS Centre, South Tower, 101 College Street, Toronto, Ontario, Canada, M5G 0A3, Lady Davis Institute for Medical Research, 3755 Chemin Cote-Ste-Catherine, Room E524, Montreal, Quebec, Canada, H3T 1E2, Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower, Suite 700, Toronto, Ontario, M5G 1L7, and
| | - Malgosia Daroszewska
- Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario, Canada, K1A 0R6, Ontario Institute for Cancer Research, MaRS Centre, South Tower, 101 College Street, Toronto, Ontario, Canada, M5G 0A3, Lady Davis Institute for Medical Research, 3755 Chemin Cote-Ste-Catherine, Room E524, Montreal, Quebec, Canada, H3T 1E2, Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower, Suite 700, Toronto, Ontario, M5G 1L7, and
| | - Caroline Lougheed
- Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario, Canada, K1A 0R6, Ontario Institute for Cancer Research, MaRS Centre, South Tower, 101 College Street, Toronto, Ontario, Canada, M5G 0A3, Lady Davis Institute for Medical Research, 3755 Chemin Cote-Ste-Catherine, Room E524, Montreal, Quebec, Canada, H3T 1E2, Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower, Suite 700, Toronto, Ontario, M5G 1L7, and
| | - Bin Xu
- Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario, Canada, K1A 0R6, Ontario Institute for Cancer Research, MaRS Centre, South Tower, 101 College Street, Toronto, Ontario, Canada, M5G 0A3, Lady Davis Institute for Medical Research, 3755 Chemin Cote-Ste-Catherine, Room E524, Montreal, Quebec, Canada, H3T 1E2, Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower, Suite 700, Toronto, Ontario, M5G 1L7, and
| | - Matthieu Schapira
- Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario, Canada, K1A 0R6, Ontario Institute for Cancer Research, MaRS Centre, South Tower, 101 College Street, Toronto, Ontario, Canada, M5G 0A3, Lady Davis Institute for Medical Research, 3755 Chemin Cote-Ste-Catherine, Room E524, Montreal, Quebec, Canada, H3T 1E2, Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower, Suite 700, Toronto, Ontario, M5G 1L7, and
| | - Moulay A. Alaoui-Jamali
- Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario, Canada, K1A 0R6, Ontario Institute for Cancer Research, MaRS Centre, South Tower, 101 College Street, Toronto, Ontario, Canada, M5G 0A3, Lady Davis Institute for Medical Research, 3755 Chemin Cote-Ste-Catherine, Room E524, Montreal, Quebec, Canada, H3T 1E2, Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower, Suite 700, Toronto, Ontario, M5G 1L7, and
| | - Prabhat Arya
- Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario, Canada, K1A 0R6, Ontario Institute for Cancer Research, MaRS Centre, South Tower, 101 College Street, Toronto, Ontario, Canada, M5G 0A3, Lady Davis Institute for Medical Research, 3755 Chemin Cote-Ste-Catherine, Room E524, Montreal, Quebec, Canada, H3T 1E2, Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower, Suite 700, Toronto, Ontario, M5G 1L7, and
| |
Collapse
|
49
|
Sirica AE. Role of ErbB family receptor tyrosine kinases in intrahepatic cholangiocarcinoma. World J Gastroenterol 2008; 14:7033-58. [PMID: 19084911 PMCID: PMC2776834 DOI: 10.3748/wjg.14.7033] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2008] [Revised: 10/21/2008] [Accepted: 10/28/2008] [Indexed: 02/06/2023] Open
Abstract
Aberrant expression and signaling of epidermal growth factor receptor (ErbB) family receptor tyrosine kinases, most notably that of ErbB2 and ErbB1, have been implicated in the molecular pathogenesis of intrahepatic cholangiocarcinoma. Constitutive overexpression of ErbB2 and/or ErbB1 in malignant cholangiocytes has raised interest in the possibility that agents which selectively target these receptors could potentially be effective in cholangiocarcinoma therapy. However, current experience with such ErbB-directed therapies have at best produced only modest responses in patients with biliary tract cancers. This review provides a comprehensive and critical analysis of both preclinical and clinical studies aimed at assessing the role of altered ErbB2 and/or ErbB1 expression, genetic modifications, and dysregulated signaling on cholangiocarcinoma development and progression. Specific limitations in experimental approaches that have been used to assess human cholangiocarcinoma specimens for ErbB2 and/or ErbB1 overexpression and gene amplification are discussed. In addition, current rodent models of intrahepatic cholangiocarcinogenesis associated with constitutive ErbB2 overexpression are reviewed. Select interactive relationships between ErbB2 or ErbB1 with other relevant molecular signaling pathways associated with intrahepatic cholangiocarcinoma development and progression are also detailed, including those linking ErbB receptors to bile acid, cyclooxygenase-2, interleukin-6/gp130, transmembrane mucins, hepatocyte growth factor/Met, and vascular endothelial growth factor signaling. Lastly, various factors that can limit therapeutic efficacy of ErbB-targeted agents against cholangiocarcinoma are considered.
Collapse
|
50
|
Behmoaram E, Bijian K, Jie S, Xu Y, Darnel A, Bismar TA, Alaoui-Jamali MA. Focal adhesion kinase-related proline-rich tyrosine kinase 2 and focal adhesion kinase are co-overexpressed in early-stage and invasive ErbB-2-positive breast cancer and cooperate for breast cancer cell tumorigenesis and invasiveness. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1540-50. [PMID: 18832579 DOI: 10.2353/ajpath.2008.080292] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Early cancer cell migration and invasion of neighboring tissues are mediated by multiple events, including activation of focal adhesion signaling. Key regulators include the focal adhesion kinase (FAK) and FAK-related proline-rich tyrosine kinase 2 (Pyk2), whose distinct functions in cancer progression remain unclear. Here, we compared Pyk2 and FAK expression in breast cancer and their effects on ErbB-2-induced tumorigenesis and the potential therapeutic utility of targeting Pyk2 compared with FAK in preclinical models of breast cancer. Pyk2 is overexpressed in tissues from early and advanced breast cancers and overexpressed with both FAK and epidermal growth factor receptor-2 (ErbB-2) in a subset of breast cancer cases. Down-regulation of Pyk2 in ErbB-2-positive, FAK-proficient, and FAK-deficient cells reduced cell proliferation, which correlated with reduced mitogen-activated protein kinase (MAPK) activity. In contrast, Pyk2 silencing had little impact on cell migration and invasion. In vivo, Pyk2 down-regulation reduced primary tumor growth induced by a metastatic variant of ErbB-2-positive MDA 231 breast cancer cells but had little effect on lung metastases in contrast to FAK down-regulation. Dual reduction of Pyk2 and FAK expression resulted in strong inhibition of both primary tumor growth and lung metastases. Together, these data support the cooperative function of Pyk2 and FAK in breast cancer progression and suggest that dual inhibition of FAK and Pyk2 is an efficient therapeutic approach for targeting invasive breast cancer.
Collapse
Affiliation(s)
- Emy Behmoaram
- Department of Pathology, Lady Davis Institute of the Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|