1
|
Martínez-Corona R, Canizal-García R, Madrigal-Perez LA, Cortés-Penagos C, de la Riva de la Riva GA, González-Hernández JC. Lipase activity of recombinant KmYJR107Wp and KmLIP3p enzymes expressed in Saccharomyces cerevisiae BY4742 from Kluyveromyces marxianus L2029. J Genet Eng Biotechnol 2024; 22:100396. [PMID: 39179325 PMCID: PMC11253516 DOI: 10.1016/j.jgeb.2024.100396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/19/2024] [Accepted: 06/12/2024] [Indexed: 08/26/2024]
Abstract
Lipases are used in many food, energy, and pharmaceutical processes. Thus, new systems have been sought to synthesize alternative lipases with potential biotechnological applications. Kluyveromyces marxianus is a yeast with recognized lipase activity; at least ten putative lipases/esterases in its genome have been detected, and two of them possess a signal peptide for extracellular secretion. The study of extracellular lipases becomes more relevant since they usually have higher activity rates than intracellular lipases and simpler purification mechanisms. For these reasons, this study aimed to characterize the production and lipase activity of the putative extracellular lipases of the K. marxianus L-2029 strain, encoded in the genes LIP3 and YJR107W. Both genes were heterologously expressed in Saccharomyces cerevisiae BY4742 (yeast strain without extracellular lipase activity) using a pYES2.1/V5-His-TOPO® plasmid. Herein, we show evidence that the strain transformed with the LIP3 gene did not show lipase activity during flask galactose induction. On the other hand, the strain transformed with the YJR107W gene showed a specific activity of 0.397 U/mg, with an optimum temperature of 37 °C and pH 6. For maximum cell production, glucose and yeast extract concentrations were evaluated by a 22 factorial design, followed by the validation of the best concentrations predicted by a statistical model; a 22 factorial design was also carried out to evaluate the concentration of the inducer galactose on the transformed strains, and the intracellular and extracellular lipase specific activities were quantified. Finally, the biomass and lipase production were determined for each strain, which was grown in a stirred tank bioreactor with a working volume of 1.5 L. The specific activities of the transformed strains obtained in the bioreactor were 1.36 U/mg for the LIP3 transformant and 1.25 U/mg for the YJR107W transformant, respectively.
Collapse
Affiliation(s)
- Ricardo Martínez-Corona
- Tecnológico Nacional de México / Instituto Tecnológico de Morelia, Av. Tecnológico No. 1500, Morelia, Michoacán 58120, Mexico
| | - Renato Canizal-García
- Tecnológico Nacional de México / Instituto Tecnológico Superior de Ciudad Hidalgo, Av. Ing. Carlos Rojas Gutiérrez 2120, Ciudad Hidalgo, Michoacán 61100, Mexico
| | - Luis Alberto Madrigal-Perez
- Tecnológico Nacional de México / Instituto Tecnológico Superior de Ciudad Hidalgo, Av. Ing. Carlos Rojas Gutiérrez 2120, Ciudad Hidalgo, Michoacán 61100, Mexico
| | - Carlos Cortés-Penagos
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Tzintzuntzan 173, Colonia Matamoros, Morelia, Michoacán 58240, Mexico
| | - Gustavo Alberto de la Riva de la Riva
- SynergiaBio México, Copala, Jalisco, México 49760; Tecnológico Nacional de México / Instituto Tecnológico de La Piedad, Av. Ricardo Guzmán Romero, 59370 La Piedad, Michoacán, Mexico
| | - Juan Carlos González-Hernández
- Tecnológico Nacional de México / Instituto Tecnológico de Morelia, Av. Tecnológico No. 1500, Morelia, Michoacán 58120, Mexico.
| |
Collapse
|
2
|
Leclerc NR, Dunne TM, Shrestha S, Johnson CP, Kelley JB. TOR signaling regulates GPCR levels on the plasma membrane and suppresses the Saccharomyces cerevisiae mating pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593412. [PMID: 38798445 PMCID: PMC11118302 DOI: 10.1101/2024.05.09.593412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Saccharomyces cerevisiae respond to mating pheromone through the GPCRs Ste2 and Ste3, which promote growth of a mating projection in response to ligand binding. This commitment to mating is nutritionally and energetically taxing, and so we hypothesized that the cell may suppress mating signaling during starvation. We set out to investigate negative regulators of the mating pathway in nutritionally depleted environments. Here, we report that nutrient deprivation led to loss of Ste2 from the plasma membrane. Recapitulating this effect with nitrogen starvation led us to hypothesize that it was due to TORC1 signaling. Rapamycin inhibition of TORC1 impacted membrane levels of all yeast GPCRs. Inhibition of TORC1 also dampened mating pathway output. Deletion analysis revealed that TORC1 repression leads to α-arrestin-directed CME through TORC2-Ypk1 signaling. We then set out to determine whether major downstream effectors of the TOR complexes also downregulate pathway output during mating. We found that autophagy contributes to pathway downregulation through analysis of strains lacking ATG8 . We also show that Ypk1 significantly reduced pathway output. Thus, both autophagy machinery and TORC2-Ypk1 signaling serve as attenuators of pheromone signaling during mating. Altogether, we demonstrate that the stress-responsive TOR complexes coordinate GPCR endocytosis and reduce the magnitude of pheromone signaling, in ligand-independent and ligand-dependent contexts. One Sentence Summary TOR signaling regulates the localization of all Saccharomyces cerevisiae GPCRs during starvation and suppress the mating pathway in the presence and absence of ligand.
Collapse
|
3
|
Rawat SS, Laxmi A. Sugar signals pedal the cell cycle! FRONTIERS IN PLANT SCIENCE 2024; 15:1354561. [PMID: 38562561 PMCID: PMC10982403 DOI: 10.3389/fpls.2024.1354561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024]
Abstract
Cell cycle involves the sequential and reiterative progression of important events leading to cell division. Progression through a specific phase of the cell cycle is under the control of various factors. Since the cell cycle in multicellular eukaryotes responds to multiple extracellular mitogenic cues, its study in higher forms of life becomes all the more important. One such factor regulating cell cycle progression in plants is sugar signalling. Because the growth of organs depends on both cell growth and proliferation, sugars sensing and signalling are key control points linking sugar perception to regulation of downstream factors which facilitate these key developmental transitions. However, the basis of cell cycle control via sugars is intricate and demands exploration. This review deals with the information on sugar and TOR-SnRK1 signalling and how they manoeuvre various events of the cell cycle to ensure proper growth and development.
Collapse
Affiliation(s)
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
4
|
Gutiérrez-Santiago F, Navarro F. Transcription by the Three RNA Polymerases under the Control of the TOR Signaling Pathway in Saccharomyces cerevisiae. Biomolecules 2023; 13:biom13040642. [PMID: 37189389 DOI: 10.3390/biom13040642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023] Open
Abstract
Ribosomes are the basis for protein production, whose biogenesis is essential for cells to drive growth and proliferation. Ribosome biogenesis is highly regulated in accordance with cellular energy status and stress signals. In eukaryotic cells, response to stress signals and the production of newly-synthesized ribosomes require elements to be transcribed by the three RNA polymerases (RNA pols). Thus, cells need the tight coordination of RNA pols to adjust adequate components production for ribosome biogenesis which depends on environmental cues. This complex coordination probably occurs through a signaling pathway that links nutrient availability with transcription. Several pieces of evidence strongly support that the Target of Rapamycin (TOR) pathway, conserved among eukaryotes, influences the transcription of RNA pols through different mechanisms to ensure proper ribosome components production. This review summarizes the connection between TOR and regulatory elements for the transcription of each RNA pol in the budding yeast Saccharomyces cerevisiae. It also focuses on how TOR regulates transcription depending on external cues. Finally, it discusses the simultaneous coordination of the three RNA pols through common factors regulated by TOR and summarizes the most important similarities and differences between S. cerevisiae and mammals.
Collapse
Affiliation(s)
- Francisco Gutiérrez-Santiago
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
| | - Francisco Navarro
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
- Centro de Estudios Avanzados en Aceite de Oliva y Olivar, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
| |
Collapse
|
5
|
Burek M, Kaupp V, Blecharz-Lang K, Dilling C, Meybohm P. Protocadherin gamma C3: a new player in regulating vascular barrier function. Neural Regen Res 2023. [PMID: 35799511 PMCID: PMC9241426 DOI: 10.4103/1673-5374.343896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Defects in the endothelial cell barrier accompany diverse malfunctions of the central nervous system such as neurodegenerative diseases, stroke, traumatic brain injury, and systemic diseases such as sepsis, viral and bacterial infections, and cancer. Compromised endothelial sealing leads to leaking blood vessels, followed by vasogenic edema. Brain edema as the most common complication caused by stroke and traumatic brain injury is the leading cause of death. Brain microvascular endothelial cells, together with astrocytes, pericytes, microglia, and neurons form a selective barrier, the so-called blood-brain barrier, which regulates the movement of molecules inside and outside of the brain. Mechanisms that regulate blood-brain barrier permeability in health and disease are complex and not fully understood. Several newly discovered molecules that are involved in the regulation of cellular processes in brain microvascular endothelial cells have been described in the literature in recent years. One of these molecules that are highly expressed in brain microvascular endothelial cells is protocadherin gamma C3. In this review, we discuss recent evidence that protocadherin gamma C3 is a newly identified key player involved in the regulation of vascular barrier function.
Collapse
|
6
|
Schoonover MG, Chilson EC, Strome ED. Heterozygous Mutations in Aromatic Amino Acid Synthesis Genes Trigger TOR Pathway Activation in Saccharomyces cerevisiae.. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000685. [PMID: 36468155 PMCID: PMC9713580 DOI: 10.17912/micropub.biology.000685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 01/25/2023]
Abstract
The highly conserved complexes of Target of Rapamycin (TORC1 and TORC2) are central regulators to many vital cellular processes including growth and autophagy in response to nutrient availability. Previous research has extensively elucidated exogenous nutrient control on TORC1/TORC2; however, little is known about the potential alteration of nutrient pools from mutations in biosynthesis pathways and their impact on Tor pathway activity. Here, we analyze the impacts of heterozygous mutations in aromatic amino acid biosynthesis genes on TOR signaling via differential expression of genes downstream of TORC1 and autophagy induction for TORC1 and TORC2 activity.
Collapse
|
7
|
Thorner J. TOR complex 2 is a master regulator of plasma membrane homeostasis. Biochem J 2022; 479:1917-1940. [PMID: 36149412 PMCID: PMC9555796 DOI: 10.1042/bcj20220388] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
As first demonstrated in budding yeast (Saccharomyces cerevisiae), all eukaryotic cells contain two, distinct multi-component protein kinase complexes that each harbor the TOR (Target Of Rapamycin) polypeptide as the catalytic subunit. These ensembles, dubbed TORC1 and TORC2, function as universal, centrally important sensors, integrators, and controllers of eukaryotic cell growth and homeostasis. TORC1, activated on the cytosolic surface of the lysosome (or, in yeast, on the cytosolic surface of the vacuole), has emerged as a primary nutrient sensor that promotes cellular biosynthesis and suppresses autophagy. TORC2, located primarily at the plasma membrane, plays a major role in maintaining the proper levels and bilayer distribution of all plasma membrane components (sphingolipids, glycerophospholipids, sterols, and integral membrane proteins). This article surveys what we have learned about signaling via the TORC2 complex, largely through studies conducted in S. cerevisiae. In this yeast, conditions that challenge plasma membrane integrity can, depending on the nature of the stress, stimulate or inhibit TORC2, resulting in, respectively, up-regulation or down-regulation of the phosphorylation and thus the activity of its essential downstream effector the AGC family protein kinase Ypk1. Through the ensuing effect on the efficiency with which Ypk1 phosphorylates multiple substrates that control diverse processes, membrane homeostasis is maintained. Thus, the major focus here is on TORC2, Ypk1, and the multifarious targets of Ypk1 and how the functions of these substrates are regulated by their Ypk1-mediated phosphorylation, with emphasis on recent advances in our understanding of these processes.
Collapse
Affiliation(s)
- Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, U.S.A
| |
Collapse
|
8
|
Troutman KK, Varlakhanova NV, Tornabene BA, Ramachandran R, Ford MGJ. Conserved Pib2 regions have distinct roles in TORC1 regulation at the vacuole. J Cell Sci 2022; 135:jcs259994. [PMID: 36000409 PMCID: PMC9584352 DOI: 10.1242/jcs.259994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/15/2022] [Indexed: 12/27/2022] Open
Abstract
TORC1 is a critical controller of cell growth in eukaryotes. In yeast (Saccharomyces cerevisiae), the presence of nutrients is signaled to TORC1 by several upstream regulatory sensors that together coordinate TORC1 activity. TORC1 localizes to both vacuolar and endosomal membranes, where differential signaling occurs. This localization is mimicked by Pib2, a key upstream TORC1 regulator that is essential for TORC1 reactivation after nutrient starvation or pharmacological inhibition. Pib2 has both positive and negative effects on TORC1 activity, but the mechanisms remain poorly understood. Here, we pinpoint the Pib2 inhibitory function on TORC1 to residues within short, conserved N-terminal regions. We also show that the Pib2 C-terminal regions, helical region E and tail, are essential for TORC1 reactivation. Furthermore, the Pib2 FYVE domain plays a role in vacuolar localization, but it is surprisingly unnecessary for recovery from rapamycin exposure. Using chimeric Pib2 targeting constructs, we show that endosomal localization is not necessary for TORC1 reactivation and cell growth after rapamycin treatment. Thus, a comprehensive molecular dissection of Pib2 demonstrates that each of its conserved regions differentially contribute to Pib2-mediated regulation of TORC1 activity.
Collapse
Affiliation(s)
- Kayla K. Troutman
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Natalia V. Varlakhanova
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Bryan A. Tornabene
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Rajesh Ramachandran
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Marijn G. J. Ford
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
9
|
Nicastro R, Gaillard H, Zarzuela L, Péli-Gulli MP, Fernández-García E, Tomé M, García-Rodríguez N, Durán RV, De Virgilio C, Wellinger RE. Manganese is a physiologically relevant TORC1 activator in yeast and mammals. eLife 2022; 11:80497. [PMID: 35904415 PMCID: PMC9337852 DOI: 10.7554/elife.80497] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/18/2022] [Indexed: 12/09/2022] Open
Abstract
The essential biometal manganese (Mn) serves as a cofactor for several enzymes that are crucial for the prevention of human diseases. Whether intracellular Mn levels may be sensed and modulate intracellular signaling events has so far remained largely unexplored. The highly conserved target of rapamycin complex 1 (TORC1, mTORC1 in mammals) protein kinase requires divalent metal cofactors such as magnesium (Mg2+) to phosphorylate effectors as part of a homeostatic process that coordinates cell growth and metabolism with nutrient and/or growth factor availability. Here, our genetic approaches reveal that TORC1 activity is stimulated in vivo by elevated cytoplasmic Mn levels, which can be induced by loss of the Golgi-resident Mn2+ transporter Pmr1 and which depend on the natural resistance-associated macrophage protein (NRAMP) metal ion transporters Smf1 and Smf2. Accordingly, genetic interventions that increase cytoplasmic Mn2+ levels antagonize the effects of rapamycin in triggering autophagy, mitophagy, and Rtg1-Rtg3-dependent mitochondrion-to-nucleus retrograde signaling. Surprisingly, our in vitro protein kinase assays uncovered that Mn2+ activates TORC1 substantially better than Mg2+, which is primarily due to its ability to lower the Km for ATP, thereby allowing more efficient ATP coordination in the catalytic cleft of TORC1. These findings, therefore, provide both a mechanism to explain our genetic observations in yeast and a rationale for how fluctuations in trace amounts of Mn can become physiologically relevant. Supporting this notion, TORC1 is also wired to feedback control mechanisms that impinge on Smf1 and Smf2. Finally, we also show that Mn2+-mediated control of TORC1 is evolutionarily conserved in mammals, which may prove relevant for our understanding of the role of Mn in human diseases.
Collapse
Affiliation(s)
- Raffaele Nicastro
- University of Fribourg, Department of Biology, Fribourg, Switzerland
| | - Hélène Gaillard
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Laura Zarzuela
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain
| | | | - Elisabet Fernández-García
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Mercedes Tomé
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain
| | - Néstor García-Rodríguez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Raúl V Durán
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain
| | | | - Ralf Erik Wellinger
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
10
|
Tsverov J, Yegorov K, Powers T. Identification of defined structural elements within TOR2 kinase required for TOR Complex 2 assembly and function in S. cerevisiae. Mol Biol Cell 2022; 33:ar44. [PMID: 35293776 PMCID: PMC9282017 DOI: 10.1091/mbc.e21-12-0611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
mTOR is a large protein kinase that assembles into two multi-subunit protein complexes, mTORC1 and mTORC2, to regulate cell growth in eukaryotic cells. While significant progress has been made in our understanding of the composition and structure of these complexes, important questions remain regarding the role of specific sequences within mTOR important for complex formation and activity. To address these issues, we have used a molecular genetic approach to explore TOR Complex assembly in budding yeast, where two closely related TOR paralogs, TOR1 and TOR2, partition preferentially into TORC1 versus TORC2, respectively. We previously identified a ∼500 amino acid segment within the N-terminal half of each protein, termed the Major Assembly Specificity (MAS) Domain, which can govern specificity in formation of each complex. In this study, we have extended the use of chimeric TOR1-TOR2 genes as a "sensitized" genetic system to identify specific subdomains rendered essential for TORC2 function, using synthetic lethal interaction analyses. Our findings reveal important design principles underlying the dimeric assembly of TORC2, as well as identify specific segments within the MAS domain critical for TORC2 function, to a level approaching single amino acid resolution. Together these findings highlight the complex and cooperative nature of TOR Complex assembly and function.
Collapse
Affiliation(s)
- Jennifer Tsverov
- Department of Molecular and Cellular Biology, College of Biological Sciences, UC Davis
| | - Kristina Yegorov
- Department of Molecular and Cellular Biology, College of Biological Sciences, UC Davis
| | - Ted Powers
- Department of Molecular and Cellular Biology, College of Biological Sciences, UC Davis
| |
Collapse
|
11
|
Unmasking of CgYor1-Dependent Azole Resistance Mediated by Target of Rapamycin (TOR) and Calcineurin Signaling in Candida glabrata. mBio 2022; 13:e0354521. [PMID: 35038899 PMCID: PMC8764518 DOI: 10.1128/mbio.03545-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this study, 18 predicted membrane-localized ABC transporters of Candida glabrata were deleted individually to create a minilibrary of knockouts (KO). The transporter KOs were analyzed for their susceptibility toward antimycotic drugs. Although CgYOR1 has previously been reported to be upregulated in various azole-resistant clinical isolates of C. glabrata, deletion of this gene did not change the susceptibility to any of the tested azoles. Additionally, Cgyor1Δ showed no change in susceptibility toward oligomycin, which is otherwise a well-known substrate of Yor1 in other yeasts. The role of CgYor1 in azole susceptibility only became evident when the major transporter CgCDR1 gene was deleted. However, under nitrogen-depleted conditions, Cgyor1Δ demonstrated an azole-susceptible phenotype, independent of CgCdr1. Notably, Cgyor1Δ cells also showed increased susceptibility to target of rapamycin (TOR) and calcineurin inhibitors. Moreover, increased phytoceramide levels in Cgyor1Δ and the deletions of regulators downstream of TOR and the calcineurin signaling cascade (Cgypk1Δ, Cgypk2Δ, Cgckb1Δ, and Cgckb2Δ) in the Cgyor1Δ background and their associated fluconazole (FLC) susceptibility phenotypes confirmed their involvement. Collectively, our findings show that TOR and calcineurin signaling govern CgYor1-mediated azole susceptibility in C. glabrata. IMPORTANCE The increasing incidence of Candida glabrata infections in the last 40 years is a serious concern worldwide. These infections are usually associated with intrinsic azole resistance and increasing echinocandin resistance. Efflux pumps, especially ABC transporter upregulation, are one of the prominent mechanisms of azole resistance; however, only a few of them are characterized. In this study, we analyzed the mechanisms of azole resistance due to a multidrug resistance-associated protein (MRP) subfamily ABC transporter, CgYor1. We demonstrate for the first time that CgYor1 does not transport oligomycin but is involved in azole resistance. Under normal growing conditions its function is masked by major transporter CgCdr1; however, under nitrogen-depleted conditions, it displays its azole resistance function independently. Moreover, we propose that the azole susceptibility due to removal of CgYor1 is not due to its transport function but involves modulation of TOR and calcineurin cascades.
Collapse
|
12
|
Muñoz-Muñoz PLA, Mares-Alejandre RE, Meléndez-López SG, Ramos-Ibarra MA. Bioinformatic Analysis of Two TOR (Target of Rapamycin)-Like Proteins Encoded by Entamoeba histolytica Revealed Structural Similarities with Functional Homologs. Genes (Basel) 2021; 12:genes12081139. [PMID: 34440318 PMCID: PMC8391992 DOI: 10.3390/genes12081139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 01/04/2023] Open
Abstract
The target of rapamycin (TOR), also known as FKBP-rapamycin associated protein (FRAP), is a protein kinase belonging to the PIKK (phosphatidylinositol 3-kinase (PI3K)-related kinases) family. TOR kinases are involved in several signaling pathways that control cell growth and proliferation. Entamoeba histolytica, the protozoan parasite that causes human amoebiasis, contains two genes encoding TOR-like proteins: EhFRAP and EhTOR2. To assess their potential as drug targets to control the cell proliferation of E. histolytica, we studied the structural features of EhFRAP and EhTOR2 using a biocomputational approach. The overall results confirmed that both TOR amoebic homologs share structural similarities with functional TOR kinases, and show inherent abilities to form TORC complexes and participate in protein-protein interaction networks. To our knowledge, this study represents the first in silico characterization of the structure-function relationships of EhFRAP and EhTOR2.
Collapse
|
13
|
Chang Y, Lim G, Huh WK. Analysis of the TORC1 interactome reveals a spatially distinct function of TORC1 in mRNP complexes. J Cell Biol 2021; 220:211781. [PMID: 33566094 PMCID: PMC7879482 DOI: 10.1083/jcb.201912060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 11/15/2020] [Accepted: 01/06/2021] [Indexed: 11/22/2022] Open
Abstract
The target of rapamycin complex 1 (TORC1) is mainly localized to the vacuolar membrane and regulates eukaryotic cell growth in response to nutrient availability. To obtain deeper insights into the functional roles of TORC1, we performed a genome-wide analysis of the TORC1 interactome in yeast using the bimolecular fluorescence complementation (BiFC) assay. We found that while most of the BiFC signals are observed at the vacuolar membrane, a fraction of them are detected at cytoplasmic messenger ribonucleoprotein (mRNP) granules. Moreover, mRNA-binding proteins are enriched in the TORC1 interactome, suggesting a functional relationship between TORC1 and mRNA metabolism. We show that a portion of TORC1 is consistently associated with mRNP complexes and interacts with a specific subset of mRNAs. We also demonstrate that TORC1 directly targets a translational repressor Scd6 and that the activity of Scd6 is inhibited by TORC1-dependent phosphorylation. Collectively, our data suggest that TORC1 plays a novel role in posttranscriptional regulation by controlling the activity of Scd6.
Collapse
Affiliation(s)
- Yeonji Chang
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.,Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Gyubum Lim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Won-Ki Huh
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.,Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Morozumi Y, Shiozaki K. Conserved and Divergent Mechanisms That Control TORC1 in Yeasts and Mammals. Genes (Basel) 2021; 12:genes12010088. [PMID: 33445779 PMCID: PMC7828246 DOI: 10.3390/genes12010088] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/23/2022] Open
Abstract
Target of rapamycin complex 1 (TORC1), a serine/threonine-protein kinase complex highly conserved among eukaryotes, coordinates cellular growth and metabolism with environmental cues, including nutrients and growth factors. Aberrant TORC1 signaling is associated with cancers and various human diseases, and TORC1 also plays a key role in ageing and lifespan, urging current active research on the mechanisms of TORC1 regulation in a variety of model organisms. Identification and characterization of the RAG small GTPases as well as their regulators, many of which are highly conserved from yeast to humans, led to a series of breakthroughs in understanding the molecular bases of TORC1 regulation. Recruitment of mammalian TORC1 (mTORC1) by RAGs to lysosomal membranes is a key step for mTORC1 activation. Interestingly, the RAG GTPases in fission yeast are primarily responsible for attenuation of TORC1 activity on vacuoles, the yeast equivalent of lysosomes. In this review, we summarize our current knowledge about the functions of TORC1 regulators on yeast vacuoles, and illustrate the conserved and divergent mechanisms of TORC1 regulation between yeasts and mammals.
Collapse
Affiliation(s)
- Yuichi Morozumi
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan;
- Correspondence: ; Tel.: +81-743-72-5543
| | - Kazuhiro Shiozaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan;
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| |
Collapse
|
15
|
Abstract
The Ras oncogene is notoriously difficult to target with specific therapeutics. Consequently, there is interest to better understand the Ras signaling pathways to identify potential targetable effectors. Recently, the mechanistic target of rapamycin complex 2 (mTORC2) was identified as an evolutionarily conserved Ras effector. mTORC2 regulates essential cellular processes, including metabolism, survival, growth, proliferation and migration. Moreover, increasing evidence implicate mTORC2 in oncogenesis. Little is known about the regulation of mTORC2 activity, but proposed mechanisms include a role for phosphatidylinositol (3,4,5)-trisphosphate - which is produced by class I phosphatidylinositol 3-kinases (PI3Ks), well-characterized Ras effectors. Therefore, the relationship between Ras, PI3K and mTORC2, in both normal physiology and cancer is unclear; moreover, seemingly conflicting observations have been reported. Here, we review the evidence on potential links between Ras, PI3K and mTORC2. Interestingly, data suggest that Ras and PI3K are both direct regulators of mTORC2 but that they act on distinct pools of mTORC2: Ras activates mTORC2 at the plasma membrane, whereas PI3K activates mTORC2 at intracellular compartments. Consequently, we propose a model to explain how Ras and PI3K can differentially regulate mTORC2, and highlight the diversity in the mechanisms of mTORC2 regulation, which appear to be determined by the stimulus, cell type, and the molecularly and spatially distinct mTORC2 pools.
Collapse
|
16
|
Fu W, Hall MN. Regulation of mTORC2 Signaling. Genes (Basel) 2020; 11:E1045. [PMID: 32899613 PMCID: PMC7564249 DOI: 10.3390/genes11091045] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
Mammalian target of rapamycin (mTOR), a serine/threonine protein kinase and a master regulator of cell growth and metabolism, forms two structurally and functionally distinct complexes, mTOR complex 1 (mTORC1) and mTORC2. While mTORC1 signaling is well characterized, mTORC2 is relatively poorly understood. mTORC2 appears to exist in functionally distinct pools, but few mTORC2 effectors/substrates have been identified. Here, we review recent advances in our understanding of mTORC2 signaling, with particular emphasis on factors that control mTORC2 activity.
Collapse
Affiliation(s)
- Wenxiang Fu
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
- Biozentrum, University of Basel, CH4056 Basel, Switzerland;
| | | |
Collapse
|
17
|
Alcaide-Gavilán M, Lucena R, Banuelos S, Kellogg DR. Conserved Ark1-related kinases function in a TORC2 signaling network. Mol Biol Cell 2020; 31:2057-2069. [PMID: 32614710 PMCID: PMC7543068 DOI: 10.1091/mbc.e19-12-0685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In all orders of life, cell cycle progression in proliferating cells is dependent on cell growth, and the extent of growth required for cell cycle progression is proportional to growth rate. Thus, cells growing rapidly in rich nutrients are substantially larger than slow-growing cells. In budding yeast, a conserved signaling network surrounding Tor complex 2 (target of rapamycin complex 2; TORC2) controls growth rate and cell size in response to nutrient availability. Here, a search for new components of the TORC2 network identified a pair of redundant kinase paralogues called Ark1 and Prk1. Previous studies found that Ark/Prk play roles in endocytosis. Here, we show that Ark/Prk are embedded in the TORC2 network, where they appear to influence TORC2 signaling independently of their roles in endocytosis. We also show that reduced endocytosis leads to increased cell size, which suggests that cell size homeostasis requires coordinated control of plasma membrane growth and endocytosis. The discovery that Ark/Prk are embedded in the TORC2 network suggests a model in which TORC2-dependent signals control both plasma membrane growth and endocytosis, which would ensure that the rates of each process are matched to each other and to the availability of nutrients so that cells achieve and maintain an appropriate size.
Collapse
Affiliation(s)
- Maria Alcaide-Gavilán
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Rafael Lucena
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Selene Banuelos
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Douglas R Kellogg
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| |
Collapse
|
18
|
Athanasopoulos A, André B, Sophianopoulou V, Gournas C. Fungal plasma membrane domains. FEMS Microbiol Rev 2020; 43:642-673. [PMID: 31504467 DOI: 10.1093/femsre/fuz022] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/25/2019] [Indexed: 12/11/2022] Open
Abstract
The plasma membrane (PM) performs a plethora of physiological processes, the coordination of which requires spatial and temporal organization into specialized domains of different sizes, stability, protein/lipid composition and overall architecture. Compartmentalization of the PM has been particularly well studied in the yeast Saccharomyces cerevisiae, where five non-overlapping domains have been described: The Membrane Compartments containing the arginine permease Can1 (MCC), the H+-ATPase Pma1 (MCP), the TORC2 kinase (MCT), the sterol transporters Ltc3/4 (MCL), and the cell wall stress mechanosensor Wsc1 (MCW). Additional cortical foci at the fungal PM are the sites where clathrin-dependent endocytosis occurs, the sites where the external pH sensing complex PAL/Rim localizes, and sterol-rich domains found in apically grown regions of fungal membranes. In this review, we summarize knowledge from several fungal species regarding the organization of the lateral PM segregation. We discuss the mechanisms of formation of these domains, and the mechanisms of partitioning of proteins there. Finally, we discuss the physiological roles of the best-known membrane compartments, including the regulation of membrane and cell wall homeostasis, apical growth of fungal cells and the newly emerging role of MCCs as starvation-protective membrane domains.
Collapse
Affiliation(s)
- Alexandros Athanasopoulos
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| | - Bruno André
- Molecular Physiology of the Cell laboratory, Université Libre de Bruxelles (ULB), Institut de Biologie et de Médecine Moléculaires, rue des Pr Jeener et Brachet 12, 6041, Gosselies, Belgium
| | - Vicky Sophianopoulou
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| | - Christos Gournas
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| |
Collapse
|
19
|
Morigasaki S, Chin LC, Hatano T, Emori M, Iwamoto M, Tatebe H, Shiozaki K. Modulation of TOR complex 2 signaling by the stress-activated MAPK pathway in fission yeast. J Cell Sci 2019; 132:jcs.236133. [PMID: 31477575 DOI: 10.1242/jcs.236133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/28/2019] [Indexed: 01/27/2023] Open
Abstract
Sin1 is a substrate-binding subunit of target of rapamycin complex 2 (TORC2), an evolutionarily conserved protein kinase complex. In fission yeast, Sin1 has also been identified as a protein that interacts with Spc1 (also known as Sty1) in the stress-activated protein kinase (SAPK) pathway. Therefore, this study examined the relationship between TORC2 and Spc1 signaling. We found that the common docking (CD) domain of Spc1 interacts with a cluster of basic amino acid residues in Sin1. Although diminished TORC2 activity in the absence of the functional Spc1 cascade suggests positive regulation of TORC2 by Spc1, such regulation appears to be independent of the Sin1-Spc1 interaction. Hyperosmotic stress transiently inhibits TORC2, and its swift recovery is dependent on Spc1, the transcription factor Atf1, and the glycelrol-3-phosphate dehydrogenase Gpd1, whose expression is induced upon osmostress by the Spc1-Atf1 pathway. Thus, cellular adaptation to osmostress seems important for TORC2 reactivation, though Spc1 and Atf1 contribute to TORC2 activation also in the absence of osmostress. These results indicate coordinated actions of the SAPK and TORC2 pathways, both of which are essential for fission yeast cells to survive environmental stress.
Collapse
Affiliation(s)
- Susumu Morigasaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.,Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Lit Chein Chin
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Tomoyuki Hatano
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Midori Emori
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Mika Iwamoto
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Hisashi Tatebe
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kazuhiro Shiozaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan .,Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| |
Collapse
|
20
|
Ford MM, Smythers AL, McConnell EW, Lowery SC, Kolling DRJ, Hicks LM. Inhibition of TOR in Chlamydomonas reinhardtii Leads to Rapid Cysteine Oxidation Reflecting Sustained Physiological Changes. Cells 2019; 8:cells8101171. [PMID: 31569396 PMCID: PMC6829209 DOI: 10.3390/cells8101171] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/16/2019] [Accepted: 09/26/2019] [Indexed: 12/16/2022] Open
Abstract
The target of rapamycin (TOR) kinase is a master metabolic regulator with roles in nutritional sensing, protein translation, and autophagy. In Chlamydomonas reinhardtii, a unicellular green alga, TOR has been linked to the regulation of increased triacylglycerol (TAG) accumulation, suggesting that TOR or a downstream target(s) is responsible for the elusive “lipid switch” in control of increasing TAG accumulation under nutrient limitation. However, while TOR has been well characterized in mammalian systems, it is still poorly understood in photosynthetic systems, and little work has been done to show the role of oxidative signaling in TOR regulation. In this study, the TOR inhibitor AZD8055 was used to relate reversible thiol oxidation to the physiological changes seen under TOR inhibition, including increased TAG content. Using oxidized cysteine resin-assisted capture enrichment coupled with label-free quantitative proteomics, 401 proteins were determined to have significant changes in oxidation following TOR inhibition. These oxidative changes mirrored characterized physiological modifications, supporting the role of reversible thiol oxidation in TOR regulation of TAG production, protein translation, carbohydrate catabolism, and photosynthesis through the use of reversible thiol oxidation. The delineation of redox-controlled proteins under TOR inhibition provides a framework for further characterization of the TOR pathway in photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Megan M Ford
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Amanda L Smythers
- Department of Chemistry, Marshall University, Huntington, WV 25755, USA.
| | - Evan W McConnell
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Sarah C Lowery
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | - Leslie M Hicks
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
21
|
Chen Y, Kistler HC, Ma Z. Fusarium graminearum Trichothecene Mycotoxins: Biosynthesis, Regulation, and Management. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:15-39. [PMID: 30893009 DOI: 10.1146/annurev-phyto-082718-100318] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Fusarium head blight (FHB) of small grain cereals caused by Fusarium graminearum and other Fusarium species is an economically important plant disease worldwide. Fusarium infections not only result in severe yield losses but also contaminate grain with various mycotoxins, especially deoxynivalenol (DON). With the complete genome sequencing of F. graminearum, tremendous progress has been made during the past two decades toward understanding the basis for DON biosynthesis and its regulation. Here, we summarize the current understanding of DON biosynthesis and the effect of regulators, signal transduction pathways, and epigenetic modifications on DON production and the expression of biosynthetic TRI genes. In addition, strategies for controlling FHB and DON contamination are reviewed. Further studies on these biosynthetic and regulatory systems will provide useful knowledge for developing novel management strategies to prevent FHB incidence and mycotoxin accumulation in cereals.
Collapse
Affiliation(s)
- Yun Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - H Corby Kistler
- Cereal Disease Laboratory, Agricultural Research Service, United States Department of Agriculture, Saint Paul, Minnesota 55108, USA
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
22
|
Murugan AK. mTOR: Role in cancer, metastasis and drug resistance. Semin Cancer Biol 2019; 59:92-111. [PMID: 31408724 DOI: 10.1016/j.semcancer.2019.07.003] [Citation(s) in RCA: 322] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/14/2019] [Accepted: 07/03/2019] [Indexed: 02/09/2023]
Abstract
Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that gets inputs from the amino acids, nutrients, growth factor, and environmental cues to regulate varieties of fundamental cellular processes which include protein synthesis, growth, metabolism, aging, regeneration, autophagy, etc. The mTOR is frequently deregulated in human cancer and activating somatic mutations of mTOR were recently identified in several types of human cancer and hence mTOR is therapeutically targeted. mTOR inhibitors were commonly used as immunosuppressors and currently, it is approved for the treatment of human malignancies. This review briefly focuses on the structure and biological functions of mTOR. It extensively discusses the genetic deregulation of mTOR including amplifications and somatic mutations, mTOR-mediated cell growth promoting signaling, therapeutic targeting of mTOR and the mechanisms of resistance, the role of mTOR in precision medicine and other recent advances in further understanding the role of mTOR in cancer.
Collapse
Affiliation(s)
- Avaniyapuram Kannan Murugan
- Department of Molecular Oncology, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Research Center (MBC 03), Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
23
|
So YS, Lee DG, Idnurm A, Ianiri G, Bahn YS. The TOR Pathway Plays Pleiotropic Roles in Growth and Stress Responses of the Fungal Pathogen Cryptococcus neoformans. Genetics 2019; 212:1241-1258. [PMID: 31175227 PMCID: PMC6707454 DOI: 10.1534/genetics.119.302191] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/02/2019] [Indexed: 11/18/2022] Open
Abstract
The target of rapamycin (TOR) pathway is an evolutionarily conserved signal transduction system that governs a plethora of eukaryotic biological processes, but its role in Cryptococcus neoformans remains elusive. In this study, we investigated the TOR pathway by functionally characterizing two Tor-like kinases, Tor1 and Tlk1, in C. neoformans We successfully deleted TLK1, but not TOR1TLK1 deletion did not result in any evident in vitro phenotypes, suggesting that Tlk1 is dispensable for the growth of C. neoformans We demonstrated that Tor1, but not Tlk1, is essential and the target of rapamycin by constructing and analyzing conditionally regulated strains and sporulation analysis of heterozygous mutants in the diploid strain background. To further analyze the Tor1 function, we constructed constitutive TOR1 overexpression strains. Tor1 negatively regulated thermotolerance and the DNA damage response, which are two important virulence factors of C. neoformansTOR1 overexpression reduced Mpk1 phosphorylation, which is required for cell wall integrity and thermoresistance, and Rad53 phosphorylation, which governs the DNA damage response pathway. Tor1 is localized to the cytoplasm, but enriched in the vacuole membrane. Phosphoproteomics and transcriptomics revealed that Tor1 regulates a variety of biological processes, including metabolic processes, cytoskeleton organization, ribosome biogenesis, and stress response. TOR inhibition by rapamycin caused actin depolarization in a Tor1-dependent manner. Finally, screening rapamycin-sensitive and -resistant kinase and transcription factor mutants revealed that the TOR pathway may crosstalk with a number of stress signaling pathways. In conclusion, our study demonstrates that a single Tor1 kinase plays pleiotropic roles in C. neoformans.
Collapse
Affiliation(s)
- Yee-Seul So
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Dong-Gi Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Alexander Idnurm
- School of BioSciences, The University of Melbourne, Victoria 3010, Australia
| | - Giuseppe Ianiri
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
24
|
Liu N, Yun Y, Yin Y, Hahn M, Ma Z, Chen Y. Lipid droplet biogenesis regulated by the FgNem1/Spo7-FgPah1 phosphatase cascade plays critical roles in fungal development and virulence in Fusarium graminearum. THE NEW PHYTOLOGIST 2019; 223:412-429. [PMID: 30767239 DOI: 10.1111/nph.15748] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
Lipid droplets (LDs) control lipid metabolism in eukaryotic cells in general. However, the biogenesis regulation and biological functions of LDs are largely unknown in pathogenic fungi. Rapamycin treatment results in a significant increase of LD biogenesis in Fusarium graminearum. Molecular mechanisms of the target of rapamycin (TOR) pathway in regulating LD biogenesis and the functions of LD in virulence of F. graminearum were investigated in depth by combining genetic, cytological and phenotypic strategies. TOR in Fusarium graminearum (FgTOR) inhibition by rapamycin induces LD biogenesis through the FgPpg1/Sit4 signaling branch. FgPpg1 promotes phosphorylation of protein phosphatase FgNem1 by the protein kinase FgCak1. The phosphorylated FgNem1 dephosphorylates the phosphatidate phosphatase FgPah1. Dephosphorylated FgPah1 is active and stimulates LD biogenesis. Moreover, deletion of FgNem1/Spo7 or FgPah1 leads to serious defects in vegetative growth, sexual development and virulence. The results of this study provide novel insights into the regulatory mechanism and biological functions of the LDs in the devastating pathogenic fungus F. graminearum.
Collapse
Affiliation(s)
- Na Liu
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yingzi Yun
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yanni Yin
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Matthias Hahn
- Department of Biology, Kaiserslautern University, 67663, Kaiserslautern, Germany
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yun Chen
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
25
|
张 杰, 韩 增, 董 立, 李 甄, 栗 坤, 石 明, 刘 志, 李 健. [MicroRNA-152 and microRNA-448 inhibit proliferation of colorectal cancer cells in vitro by targeting Rictor]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:533-539. [PMID: 31140416 PMCID: PMC6743937 DOI: 10.12122/j.issn.1673-4254.2019.05.06] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To screen the microRNAs (miRNAs) targeting Rictor and investigate their effects in regulating the biological behaviors of colorectal cancer (CRC). METHODS Human colorectal cancer cell line KM12SM was transfected with the miRNAs targeting Rictor identified by prediction software to test inhibitory effects of these miRNAs on Rictor expression using qRT-PCR and Western blotting. Dual luciferase reporter assay was used to further confirm the binding of these miRNAs to the 3'UTR of Rictor mRNA. Cell survival and colony formation assays were used to investigate the effects of these miRNAs on survival and colony formation in KM12SM cells. RESULTS miR-152 and miR-448 were identified as the Rictor-targeting miRNAs, which significantly inhibited the expression of Rictor in KM12SM cells (P < 0.05). The two miRNAs were confirmed to bind to the 3'UTR of Rictor mRNA and significantly inhibited luciferase activity in KM12SM cells (P < 0.01, P < 0.05); they also showed activities of posttranscriptional modulation of Rictor. Overexpression of miR-152 and miR-448 both significantly inhibited the growth and colony formation of KM12SM cells. CONCLUSIONS miR-152 and miR-448 can down-regulate the protein expression of Rictor by targeting Rictor mRNA to negatively regulate the growth and colony formation of colorectal cancer cells.
Collapse
Affiliation(s)
- 杰 张
- 燕山大学环境与化学工程学院,河北 秦皇岛 066004College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- 燕山大学河北省应用化学重点实验室,河北 秦皇岛 066004Key Laboratory of Applied Chemistry of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - 增胜 韩
- 燕山大学环境与化学工程学院,河北 秦皇岛 066004College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- 燕山大学河北省应用化学重点实验室,河北 秦皇岛 066004Key Laboratory of Applied Chemistry of Hebei Province, Yanshan University, Qinhuangdao 066004, China
- 秦皇岛市功能核酸工程技术研究中心,河北 秦皇岛 066000Research Center of Functional Nucleic Acids Engineering in Qinhuangdao, Qinhuangdao 066004, China
| | - 立新 董
- 河北省秦皇岛市第一医院肿瘤科,河北 秦皇岛 066000Department of Oncology, First Hospital of Qinhuangdao City, Qinhuangdao 066000, China
| | - 甄 李
- 燕山大学环境与化学工程学院,河北 秦皇岛 066004College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- 燕山大学河北省应用化学重点实验室,河北 秦皇岛 066004Key Laboratory of Applied Chemistry of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - 坤 栗
- 燕山大学环境与化学工程学院,河北 秦皇岛 066004College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- 燕山大学河北省应用化学重点实验室,河北 秦皇岛 066004Key Laboratory of Applied Chemistry of Hebei Province, Yanshan University, Qinhuangdao 066004, China
- 秦皇岛市功能核酸工程技术研究中心,河北 秦皇岛 066000Research Center of Functional Nucleic Acids Engineering in Qinhuangdao, Qinhuangdao 066004, China
| | - 明 石
- 燕山大学环境与化学工程学院,河北 秦皇岛 066004College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- 燕山大学河北省应用化学重点实验室,河北 秦皇岛 066004Key Laboratory of Applied Chemistry of Hebei Province, Yanshan University, Qinhuangdao 066004, China
- 秦皇岛市功能核酸工程技术研究中心,河北 秦皇岛 066000Research Center of Functional Nucleic Acids Engineering in Qinhuangdao, Qinhuangdao 066004, China
- 秦皇岛拜恩发生物技术有限公司,河北 秦皇岛 066000Qinhuangdao Biopha Biotechnology co. LTD., Qinhuangdao 066000, China
| | - 志伟 刘
- 燕山大学环境与化学工程学院,河北 秦皇岛 066004College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- 燕山大学河北省应用化学重点实验室,河北 秦皇岛 066004Key Laboratory of Applied Chemistry of Hebei Province, Yanshan University, Qinhuangdao 066004, China
- 秦皇岛市功能核酸工程技术研究中心,河北 秦皇岛 066000Research Center of Functional Nucleic Acids Engineering in Qinhuangdao, Qinhuangdao 066004, China
- 秦皇岛拜恩发生物技术有限公司,河北 秦皇岛 066000Qinhuangdao Biopha Biotechnology co. LTD., Qinhuangdao 066000, China
| | - 健 李
- 燕山大学环境与化学工程学院,河北 秦皇岛 066004College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- 秦皇岛市功能核酸工程技术研究中心,河北 秦皇岛 066000Research Center of Functional Nucleic Acids Engineering in Qinhuangdao, Qinhuangdao 066004, China
| |
Collapse
|
26
|
Locke MN, Thorner J. Regulation of TORC2 function and localization by Rab5 GTPases in Saccharomyces cerevisiae. Cell Cycle 2019; 18:1084-1094. [PMID: 31068077 DOI: 10.1080/15384101.2019.1616999] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The evolutionarily conserved Target of Rapamycin (TOR) complex-2 (TORC2) is an essential regulator of plasma membrane homeostasis in budding yeast (Saccharomyces cerevisiae). In this yeast, TORC2 phosphorylates and activates the effector protein kinase Ypk1 and its paralog Ypk2. These protein kinases, in turn, carry out all the crucial functions of TORC2 by phosphorylating and thereby controlling the activity of at least a dozen downstream substrates. A previously uncharacterized interplay between the Rab5 GTPases and TORC2 signaling was uncovered through analysis of a newly suspected Ypk1 target. Muk1, one of two guanine nucleotide exchange factors for the Rab5 GTPases, was found to be a physiologically relevant Ypk1 substrate; and, genetic analysis indicates that Ypk1-mediated phosphorylation activates the guanine nucleotide exchange activity of Muk1. Second, it was demonstrated both in vivo and in vitro that the GTP-bound state of the Rab5 GTPase Vps21/Ypt51 physically associates with TORC2 and acts as a direct positive effector required for full TORC2 activity. These interrelationships provide a self-reinforcing control circuit for sustained up-regulation of TORC2-Ypk1 signaling. In this overview, we summarize the experimental basis of these findings, their implications, and speculate as to the molecular basis for Rab5-mediated TORC2 activation.
Collapse
Affiliation(s)
- Melissa N Locke
- a Division of Biochemistry, Biophysics & Structural Biology, and Division of Cell & Developmental Biology, Department of Molecular and Cell Biology , University of California at Berkeley , Berkeley , CA , USA
| | - Jeremy Thorner
- a Division of Biochemistry, Biophysics & Structural Biology, and Division of Cell & Developmental Biology, Department of Molecular and Cell Biology , University of California at Berkeley , Berkeley , CA , USA
| |
Collapse
|
27
|
Martinez Marshall MN, Emmerstorfer-Augustin A, Leskoske KL, Zhang LH, Li B, Thorner J. Analysis of the roles of phosphatidylinositol-4,5- bisphosphate and individual subunits in assembly, localization, and function of Saccharomyces cerevisiae target of rapamycin complex 2. Mol Biol Cell 2019; 30:1555-1574. [PMID: 30969890 PMCID: PMC6724684 DOI: 10.1091/mbc.e18-10-0682] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Eukaryotic cell survival requires maintenance of plasma membrane (PM) homeostasis in response to environmental insults and changes in lipid metabolism. In yeast, a key regulator of PM homeostasis is target of rapamycin (TOR) complex 2 (TORC2), a multiprotein complex containing the evolutionarily conserved TOR protein kinase isoform Tor2. PM localization is essential for TORC2 function. One core TORC2 subunit (Avo1) and two TORC2-associated regulators (Slm1 and Slm2) contain pleckstrin homology (PH) domains that exhibit specificity for binding phosphatidylinositol-4,5-bisphosphate (PtdIns4,5P2). To investigate the roles of PtdIns4,5P2 and constituent subunits of TORC2, we used auxin-inducible degradation to systematically eliminate these factors and then examined localization, association, and function of the remaining TORC2 components. We found that PtdIns4,5P2 depletion significantly reduced TORC2 activity, yet did not prevent PM localization or disassembly of TORC2. Moreover, truncated Avo1 (lacking its C-terminal PH domain) was still recruited to the PM and supported growth. Even when all three PH-containing proteins were absent, the remaining TORC2 subunits were PM-bound. Revealingly, Avo3 localized to the PM independent of both Avo1 and Tor2, whereas both Tor2 and Avo1 required Avo3 for their PM anchoring. Our findings provide new mechanistic information about TORC2 and pinpoint Avo3 as pivotal for TORC2 PM localization and assembly in vivo.
Collapse
Affiliation(s)
- Maria Nieves Martinez Marshall
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Anita Emmerstorfer-Augustin
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Kristin L Leskoske
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Lydia H Zhang
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Biyun Li
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
28
|
Rutherford JC, Bahn YS, van den Berg B, Heitman J, Xue C. Nutrient and Stress Sensing in Pathogenic Yeasts. Front Microbiol 2019; 10:442. [PMID: 30930866 PMCID: PMC6423903 DOI: 10.3389/fmicb.2019.00442] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/20/2019] [Indexed: 12/23/2022] Open
Abstract
More than 1.5 million fungal species are estimated to live in vastly different environmental niches. Despite each unique host environment, fungal cells sense certain fundamentally conserved elements, such as nutrients, pheromones and stress, for adaptation to their niches. Sensing these extracellular signals is critical for pathogens to adapt to the hostile host environment and cause disease. Hence, dissecting the complex extracellular signal-sensing mechanisms that aid in this is pivotal and may facilitate the development of new therapeutic approaches to control fungal infections. In this review, we summarize the current knowledge on how two important pathogenic yeasts, Candida albicans and Cryptococcus neoformans, sense nutrient availability, such as carbon sources, amino acids, and ammonium, and different stress signals to regulate their morphogenesis and pathogenicity in comparison with the non-pathogenic model yeast Saccharomyces cerevisiae. The molecular interactions between extracellular signals and their respective sensory systems are described in detail. The potential implication of analyzing nutrient and stress-sensing systems in antifungal drug development is also discussed.
Collapse
Affiliation(s)
- Julian C Rutherford
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Yong-Sun Bahn
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Bert van den Berg
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Chaoyang Xue
- Public Health Research Institute, Rutgers University, Newark, NJ, United States.,Department of Molecular Genetics, Biochemistry and Microbiology, Rutgers University, Newark, NJ, United States
| |
Collapse
|
29
|
Locke MN, Thorner J. Rab5 GTPases are required for optimal TORC2 function. J Cell Biol 2019; 218:961-976. [PMID: 30578283 PMCID: PMC6400565 DOI: 10.1083/jcb.201807154] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 11/16/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022] Open
Abstract
Target of rapamycin complex-2 (TORC2), a conserved protein kinase complex, is an indispensable regulator of plasma membrane homeostasis. In budding yeast (Saccharomyces cerevisiae), the essential downstream effector of TORC2 is protein kinase Ypk1 and its paralog Ypk2. Muk1, a Rab5-specific guanine nucleotide exchange factor (GEF), was identified in our prior global screen for candidate Ypk1 targets. We confirm here that Muk1 is a substrate of Ypk1 and demonstrate that Ypk1-mediated phosphorylation stimulates Muk1 function in vivo. Strikingly, yeast lacking its two Rab5 GEFs (Muk1 and Vps9) or its three Rab5 paralogs (Vps21/Ypt51, Ypt52, and Ypt53) or overexpressing Msb3, a Rab5-directed GTPase-activating protein, all exhibit pronounced reduction in TORC2-mediated phosphorylation and activation of Ypk1. Vps21 coimmunoprecipitates with TORC2, and immuno-enriched TORC2 is less active in vitro in the absence of Rab5 GTPases. Thus, TORC2-dependent and Ypk1-mediated activation of Muk1 provides a control circuit for positive (self-reinforcing) up-regulation to sustain TORC2-Ypk1 signaling.
Collapse
Affiliation(s)
- Melissa N Locke
- Division of Biochemistry, Biophysics, and Structural Biology and Division of Cell and Developmental Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics, and Structural Biology and Division of Cell and Developmental Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
30
|
Takeuchi T, Benning C. Nitrogen-dependent coordination of cell cycle, quiescence and TAG accumulation in Chlamydomonas. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:292. [PMID: 31890020 PMCID: PMC6927116 DOI: 10.1186/s13068-019-1635-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/12/2019] [Indexed: 05/07/2023]
Abstract
Microalgae hold great promises as sustainable cellular factories for the production of alternative fuels, feeds, and biopharmaceuticals for human health. While the biorefinery approach for fuels along with the coproduction of high-value compounds with industrial, therapeutic, or nutraceutical applications have the potential to make algal biofuels more economically viable, a number of challenges continue to hamper algal production systems at all levels. One such hurdle includes the metabolic trade-off often observed between the increased yields of desired products, such as triacylglycerols (TAG), and the growth of an organism. Initial genetic engineering strategies to improve lipid productivity in microalgae, which focused on overproducing the enzymes involved in fatty acid and TAG biosynthesis or inactivating competing carbon (C) metabolism, have seen some successes albeit at the cost of often greatly reduced biomass. Emergent approaches that aim at modifying the dynamics of entire metabolic pathways by engineering of pertinent transcription factors or signaling networks appear to have successfully achieved a balance between growth and neutral lipid accumulation. However, the biological knowledge of key signaling networks and molecular components linking these two processes is still incomplete in photosynthetic eukaryotes, making it difficult to optimize metabolic engineering strategies for microalgae. Here, we focus on nitrogen (N) starvation of the model green microalga, Chlamydomonas reinhardtii, to present the current understanding of the nutrient-dependent switch between proliferation and quiescence, and the drastic reprogramming of metabolism that results in the storage of C compounds following N starvation. We discuss the potential components mediating the transcriptional repression of cell cycle genes and the establishment of quiescence in Chlamydomonas, and highlight the importance of signaling pathways such as those governed by the target of rapamycin (TOR) and sucrose nonfermenting-related (SnRK) kinases in the coordination of metabolic status with cellular growth. A better understanding of how the cell division cycle is regulated in response to nutrient scarcity and of the signaling pathways linking cellular growth to energy and lipid homeostasis, is essential to improve the prospects of biofuels and biomass production in microalgae.
Collapse
Affiliation(s)
- Tomomi Takeuchi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
31
|
Coccetti P, Nicastro R, Tripodi F. Conventional and emerging roles of the energy sensor Snf1/AMPK in Saccharomyces cerevisiae. MICROBIAL CELL 2018; 5:482-494. [PMID: 30483520 PMCID: PMC6244292 DOI: 10.15698/mic2018.11.655] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
All proliferating cells need to match metabolism, growth and cell cycle progression with nutrient availability to guarantee cell viability in spite of a changing environment. In yeast, a signaling pathway centered on the effector kinase Snf1 is required to adapt to nutrient limitation and to utilize alternative carbon sources, such as sucrose and ethanol. Snf1 shares evolutionary conserved functions with the AMP-activated Kinase (AMPK) in higher eukaryotes which, activated by energy depletion, stimulates catabolic processes and, at the same time, inhibits anabolism. Although the yeast Snf1 is best known for its role in responding to a number of stress factors, in addition to glucose limitation, new unconventional roles of Snf1 have recently emerged, even in glucose repressing and unstressed conditions. Here, we review and integrate available data on conventional and non-conventional functions of Snf1 to better understand the complexity of cellular physiology which controls energy homeostasis.
Collapse
Affiliation(s)
- Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,SYSBIO, Centre of Systems Biology, Milan, Italy
| | - Raffaele Nicastro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,Present address: Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,SYSBIO, Centre of Systems Biology, Milan, Italy
| |
Collapse
|
32
|
Davis D, Kannan M, Wattenberg B. Orm/ORMDL proteins: Gate guardians and master regulators. Adv Biol Regul 2018; 70:3-18. [PMID: 30193828 DOI: 10.1016/j.jbior.2018.08.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 08/26/2018] [Accepted: 08/28/2018] [Indexed: 12/22/2022]
Abstract
Sphingolipids comprise a diverse family of lipids that perform multiple functions in both structure of cellular membranes and intra- and inter-cellular signaling. The diversity of this family is generated by an array of enzymes that produce individual classes and molecular species of family members and enzymes which catabolize those lipids for recycling pathways. However, all of these lipids begin their lives with a single step, the condensation of an amino acid, almost always serine, and a fatty acyl-CoA, almost always the 16-carbon, saturated fatty acid, palmitate. The enzyme complex that accomplishes this condensation is serine palmitoyltransferase (SPT), a membrane-bound component of the endoplasmic reticulum. This places SPT in the unique position of regulating the production of the entire sphingolipid pool. Understanding how SPT activity is regulated is currently a central focus in the field of sphingolipid biology. In this review we examine the regulation of SPT activity by a set of small, membrane-bound proteins of the endoplasmic reticulum, the Orms (in yeast) and ORMDLs (in vertebrates). We discuss what is known about how these proteins act as homeostatic regulators by monitoring cellular levels of sphingolipid, but also how the Orms/ORMDLs regulate SPT in response to other stimuli. Finally, we discuss the intriguing connection between one of the mammalian ORMDL isoforms, ORMDL3, and the pervasive pulmonary disease, asthma, in humans.
Collapse
Affiliation(s)
- Deanna Davis
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Muthukumar Kannan
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Binks Wattenberg
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
33
|
Hill A, Niles B, Cuyegkeng A, Powers T. Redesigning TOR Kinase to Explore the Structural Basis for TORC1 and TORC2 Assembly. Biomolecules 2018; 8:biom8020036. [PMID: 29865216 PMCID: PMC6023025 DOI: 10.3390/biom8020036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 05/25/2018] [Accepted: 05/25/2018] [Indexed: 12/21/2022] Open
Abstract
TOR is a serine/threonine protein kinase that assembles into distinct TOR Complexes 1 and 2 (TORC1 or TORC2) to regulate cell growth. In mammalian cells, a single mTOR incorporates stably into mTORC1 and mTORC2. By contrast, in Saccharomyces cerevisiae, two highly similar Tor1 and Tor2 proteins exist, where Tor1 assembles exclusively into TORC1 and Tor2 assembles preferentially into TORC2. To gain insight into TOR complex assembly, we used this bifurcation in yeast to identify structural elements within Tor1 and Tor2 that govern their complex specificity. We have identified a concise region of ~500 amino acids within the N-terminus of Tor2, which we term the Major Assembly Specificity (MAS) domain, that is sufficient to confer significant TORC2 activity when placed into an otherwise Tor1 protein. Consistently, introduction of the corresponding MAS domain from Tor1 into an otherwise Tor2 is sufficient to confer stable association with TORC1-specific components. Remarkably, much like mTOR, this latter chimera also retains stable interactions with TORC2 components, indicating that determinants throughout Tor1/Tor2 contribute to complex specificity. Our findings are in excellent agreement with recent ultrastructural studies of TORC1 and TORC2, where the MAS domain is involved in quaternary interactions important for complex formation and/or stability.
Collapse
Affiliation(s)
- Andrew Hill
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA.
| | - Brad Niles
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA.
| | - Andrew Cuyegkeng
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA.
| | - Ted Powers
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
34
|
Conrad M, Kankipati HN, Kimpe M, Van Zeebroeck G, Zhang Z, Thevelein JM. The nutrient transceptor/PKA pathway functions independently of TOR and responds to leucine and Gcn2 in a TOR-independent manner. FEMS Yeast Res 2018; 17:3950251. [PMID: 28810702 PMCID: PMC5812495 DOI: 10.1093/femsyr/fox048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/06/2017] [Indexed: 12/25/2022] Open
Abstract
Two nutrient-controlled signalling pathways, the PKA and TOR pathway, play a major role in nutrient regulation of growth as well as growth-correlated properties in yeast. The relationship between the two pathways is not well understood. We have used Gap1 and Pho84 transceptor-mediated activation of trehalase and phosphorylation of fragmented Sch9 as a read-out for rapid nutrient activation of PKA or TORC1, respectively. We have identified conditions in which L-citrulline-induced activation of Sch9 phosphorylation is compromised, but not activation of trehalase: addition of the TORC1 inhibitor, rapamycin and low levels of L-citrulline. The same disconnection was observed for phosphate activation in phosphate-starved cells. The leu2 auxotrophic mutation reduces amino acid activation of trehalase, which is counteracted by deletion of GCN2. Both effects were also independent of TORC1. Our results show that rapid activation of the TOR pathway by amino acids is not involved in rapid activation of the PKA pathway and that effects of Gcn2 inactivation as well as leu2 auxotrophy all act independently of the TOR pathway. Hence, rapid nutrient signalling to PKA and TOR in cells arrested by nutrient starvation acts through parallel pathways.
Collapse
Affiliation(s)
- Michaela Conrad
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, B-3001 KU Leuven, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Harish Nag Kankipati
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, B-3001 KU Leuven, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Marlies Kimpe
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, B-3001 KU Leuven, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, B-3001 KU Leuven, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Zhiqiang Zhang
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, B-3001 KU Leuven, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, B-3001 KU Leuven, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| |
Collapse
|
35
|
Chen X, Liu M, Tian Y, Li J, Qi Y, Zhao D, Wu Z, Huang M, Wong CCL, Wang HW, Wang J, Yang H, Xu Y. Cryo-EM structure of human mTOR complex 2. Cell Res 2018; 28:518-528. [PMID: 29567957 DOI: 10.1038/s41422-018-0029-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/02/2018] [Accepted: 02/24/2018] [Indexed: 02/07/2023] Open
Abstract
Mechanistic target of rapamycin (mTOR) complex 2 (mTORC2) plays an essential role in regulating cell proliferation through phosphorylating AGC protein kinase family members, including AKT, PKC and SGK1. The functional core complex consists of mTOR, mLST8, and two mTORC2-specific components, Rictor and mSin1. Here we investigated the intermolecular interactions within mTORC2 complex and determined its cryo-electron microscopy structure at 4.9 Å resolution. The structure reveals a hollow rhombohedral fold with a 2-fold symmetry. The dimerized mTOR serves as a scaffold for the complex assembly. The N-terminal half of Rictor is composed of helical repeat clusters and binds to mTOR through multiple contacts. mSin1 is located close to the FRB domain and catalytic cavity of mTOR. Rictor and mSin1 together generate steric hindrance to inhibit binding of FKBP12-rapamycin to mTOR, revealing the mechanism for rapamycin insensitivity of mTORC2. The mTOR dimer in mTORC2 shows more compact conformation than that of mTORC1 (rapamycin sensitive), which might result from the interaction between mTOR and Rictor-mSin1. Structural comparison shows that binding of Rictor and Raptor (mTORC1-specific component) to mTOR is mutually exclusive. Our study provides a basis for understanding the assembly of mTORC2 and a framework to further characterize the regulatory mechanism of mTORC2 pathway.
Collapse
Affiliation(s)
- Xizi Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.,Key Laboratory of Molecular Medicine, Ministry of Education, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Mengjie Liu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.,Key Laboratory of Molecular Medicine, Ministry of Education, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Yuan Tian
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.,Key Laboratory of Molecular Medicine, Ministry of Education, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Jiabei Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.,Key Laboratory of Molecular Medicine, Ministry of Education, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Yilun Qi
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.,Key Laboratory of Molecular Medicine, Ministry of Education, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Dan Zhao
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.,Key Laboratory of Molecular Medicine, Ministry of Education, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Zihan Wu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.,Key Laboratory of Molecular Medicine, Ministry of Education, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Min Huang
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Catherine C L Wong
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 201210, China.,Center for Precision Medicine Multi-Omics Research (CPMMOR), Peking University Health Science Center, Beijing, 100871, China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Science, Peking University, Beijing, 100871, China
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jiawei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Huirong Yang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China. .,Key Laboratory of Molecular Medicine, Ministry of Education, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China. .,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China. .,Key Laboratory of Molecular Medicine, Ministry of Education, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China. .,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China. .,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
36
|
Regulation of Sensing, Transportation, and Catabolism of Nitrogen Sources in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 2018; 82:82/1/e00040-17. [PMID: 29436478 DOI: 10.1128/mmbr.00040-17] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nitrogen is one of the most important essential nutrient sources for biogenic activities. Regulation of nitrogen metabolism in microorganisms is complicated and elaborate. For this review, the yeast Saccharomyces cerevisiae was chosen to demonstrate the regulatory mechanism of nitrogen metabolism because of its relative clear genetic background. Current opinions on the regulation processes of nitrogen metabolism in S. cerevisiae, including nitrogen sensing, transport, and catabolism, are systematically reviewed. Two major upstream signaling pathways, the Ssy1-Ptr3-Ssy5 sensor system and the target of rapamycin pathway, which are responsible for sensing extracellular and intracellular nitrogen, respectively, are discussed. The ubiquitination of nitrogen transporters, which is the most general and efficient means for controlling nitrogen transport, is also summarized. The following metabolic step, nitrogen catabolism, is demonstrated at two levels: the transcriptional regulation process related to GATA transcriptional factors and the translational regulation process related to the general amino acid control pathway. The interplay between nitrogen regulation and carbon regulation is also discussed. As a model system, understanding the meticulous process by which nitrogen metabolism is regulated in S. cerevisiae not only could facilitate research on global regulation mechanisms and yeast metabolic engineering but also could provide important insights and inspiration for future studies of other common microorganisms and higher eukaryotic cells.
Collapse
|
37
|
Takeda E, Jin N, Itakura E, Kira S, Kamada Y, Weisman LS, Noda T, Matsuura A. Vacuole-mediated selective regulation of TORC1-Sch9 signaling following oxidative stress. Mol Biol Cell 2017; 29:510-522. [PMID: 29237820 PMCID: PMC6014174 DOI: 10.1091/mbc.e17-09-0553] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 12/22/2022] Open
Abstract
TORC1 modulates proteosynthesis, nitrogen metabolism, stress responses, and autophagy. Here it is shown that the Sch9 branch of TORC1 signaling depends specifically on vacuolar membranes and that this specificity allows the cells to regulate selectively the outputs of divergent downstream pathways in response to oxidative stress. Target of rapamycin complex 1 (TORC1) is a central cellular signaling coordinator that allows eukaryotic cells to adapt to the environment. In the budding yeast, Saccharomyces cerevisiae, TORC1 senses nitrogen and various stressors and modulates proteosynthesis, nitrogen uptake and metabolism, stress responses, and autophagy. There is some indication that TORC1 may regulate these downstream pathways individually. However, the potential mechanisms for such differential regulation are unknown. Here we show that the serine/threonine protein kinase Sch9 branch of TORC1 signaling depends specifically on the integrity of the vacuolar membrane, and this dependency originates in changes in Sch9 localization reflected by phosphatidylinositol 3,5-bisphosphate. Moreover, oxidative stress induces the delocalization of Sch9 from vacuoles, contributing to the persistent inhibition of the Sch9 branch after stress. Thus, our results establish that regulation of the vacuolar localization of Sch9 serves as a selective switch for the Sch9 branch in divergent TORC1 signaling. We propose that the Sch9 branch integrates the intrinsic activity of TORC1 kinase and vacuolar status, which is monitored by the phospholipids of the vacuolar membrane, into the regulation of macromolecular synthesis.
Collapse
Affiliation(s)
- Eigo Takeda
- Department of Nanobiology, Graduate School of Advanced Integration Science
| | | | - Eisuke Itakura
- Department of Nanobiology, Graduate School of Advanced Integration Science.,Molecular Chirality Research Center, Chiba University, Inage-ku, Chiba, 263-8522, Japan
| | - Shintaro Kira
- Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba, 263-8522, Japan
| | - Yoshiaki Kamada
- Laboratory of Biological Diversity, National Institute for Basic Biology, Okazaki 444-8585, Japan.,Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Lois S Weisman
- Life Sciences Institute and.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Takeshi Noda
- Center for Frontier Oral Science, Graduate School of Dentistry, and.,Graduate School of Frontier BioSciences, Osaka University, Osaka 565-0871, Japan
| | - Akira Matsuura
- Department of Nanobiology, Graduate School of Advanced Integration Science .,Life Sciences Institute and.,Molecular Chirality Research Center, Chiba University, Inage-ku, Chiba, 263-8522, Japan
| |
Collapse
|
38
|
Karuppasamy M, Kusmider B, Oliveira TM, Gaubitz C, Prouteau M, Loewith R, Schaffitzel C. Cryo-EM structure of Saccharomyces cerevisiae target of rapamycin complex 2. Nat Commun 2017; 8:1729. [PMID: 29170376 PMCID: PMC5700991 DOI: 10.1038/s41467-017-01862-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/18/2017] [Indexed: 12/11/2022] Open
Abstract
The target of rapamycin (TOR) kinase assembles into two distinct multiprotein complexes, conserved across eukaryote evolution. In contrast to TOR complex 1 (TORC1), TORC2 kinase activity is not inhibited by the macrolide rapamycin. Here, we present the structure of Saccharomyces cerevisiae TORC2 determined by electron cryo-microscopy. TORC2 contains six subunits assembling into a 1.4 MDa rhombohedron. Tor2 and Lst8 form the common core of both TOR complexes. Avo3/Rictor is unique to TORC2, but interacts with the same HEAT repeats of Tor2 that are engaged by Kog1/Raptor in mammalian TORC1, explaining the mutual exclusivity of these two proteins. Density, which we conclude is Avo3, occludes the FKBP12-rapamycin-binding site of Tor2’s FRB domain rendering TORC2 rapamycin insensitive and recessing the kinase active site. Although mobile, Avo1/hSin1 further restricts access to the active site as its conserved-region-in-the-middle (CRIM) domain is positioned along an edge of the TORC2 active-site-cleft, consistent with a role for CRIM in substrate recruitment. Target of rapamycin (TOR) kinase operates within two distinct multiprotein complexes named TORC1 and TORC2. Here the authors report a cryo-EM structure of TORC2, establish its subunit organization, providing a rationale for TORC2’s rapamycin insensitivity and the mutually exclusive inclusion of Avo3/Rictor or Raptor within their respective TOR complex.
Collapse
Affiliation(s)
- Manikandan Karuppasamy
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Beata Kusmider
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211, Geneva, Switzerland
| | - Taiana M Oliveira
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Christl Gaubitz
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211, Geneva, Switzerland
| | - Manoel Prouteau
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211, Geneva, Switzerland
| | - Robbie Loewith
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211, Geneva, Switzerland. .,Swiss National Centre for Competence in Research (NCCR) in Chemical Biology, University of Geneva, 30 Quai Ernest-Ansermet, Bristol, CH1211 Geneva, Switzerland.
| | - Christiane Schaffitzel
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042, Grenoble, France. .,School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
39
|
Evolutionary Conservation of the Components in the TOR Signaling Pathways. Biomolecules 2017; 7:biom7040077. [PMID: 29104218 PMCID: PMC5745459 DOI: 10.3390/biom7040077] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 01/08/2023] Open
Abstract
Target of rapamycin (TOR) is an evolutionarily conserved protein kinase that controls multiple cellular processes upon various intracellular and extracellular stimuli. Since its first discovery, extensive studies have been conducted both in yeast and animal species including humans. Those studies have revealed that TOR forms two structurally and physiologically distinct protein complexes; TOR complex 1 (TORC1) is ubiquitous among eukaryotes including animals, yeast, protozoa, and plants, while TOR complex 2 (TORC2) is conserved in diverse eukaryotic species other than plants. The studies have also identified two crucial regulators of mammalian TORC1 (mTORC1), Ras homolog enriched in brain (RHEB) and RAG GTPases. Of these, RAG regulates TORC1 in yeast as well and is conserved among eukaryotes with the green algae and land plants as apparent exceptions. RHEB is present in various eukaryotes but sporadically missing in multiple taxa. RHEB, in the budding yeast Saccharomyces cerevisiae, appears to be extremely divergent with concomitant loss of its function as a TORC1 regulator. In this review, we summarize the evolutionarily conserved functions of the key regulatory subunits of TORC1 and TORC2, namely RAPTOR, RICTOR, and SIN1. We also delve into the evolutionary conservation of RHEB and RAG and discuss the conserved roles of these GTPases in regulating TORC1.
Collapse
|
40
|
De Cicco M, Milroy LG, Dames SA. Target of rapamycin FATC domain as a general membrane anchor: The FKBP-12 like domain of FKBP38 as a case study. Protein Sci 2017; 27:546-560. [PMID: 29024217 DOI: 10.1002/pro.3321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 01/11/2023]
Abstract
Increased efforts have been undertaken to better understand the formation of signaling complexes at cellular membranes. Since the preparation of proteins containing a transmembrane domain or a prenylation motif is generally challenging an alternative membrane anchoring unit that is easy to attach, water-soluble and binds to different membrane mimetics would find broad application. The 33-residue long FATC domain of yeast TOR1 (y1fatc) fulfills these criteria and binds to neutral and negatively charged micelles, bicelles, and liposomes. As a case study, we fused it to the FKBP506-binding region of the protein FKBP38 (FKBP38-BD) and used 1 H-15 N NMR spectroscopy to characterize localization of the chimeric protein to micelles, bicelles, and liposomes. Based on these and published data for y1fatc, its use as a C-terminally attachable membrane anchor for other proteins is compatible with a wide range of buffer conditions (pH circa 6-8.5, NaCl 0 to >150 mM, presence of reducing agents, different salts such as MgCl2 and CaCl2 ). The high water-solubility of y1fatc enables its use for titration experiments against a membrane-localized interaction partner of the fused target protein. Results from studies with peptides corresponding to the C-terminal 17-11 residues of the 33-residue long domain by 1D 1 H NMR and CD spectroscopy indicate that they still can interact with membrane mimetics. Thus, they may be used as membrane anchors if the full y1fatc sequence is disturbing or if a chemically synthesized y1fatc peptide shall be attached by native chemical ligation, for example, unlabeled peptide to 15 N-labeled target protein for NMR studies.
Collapse
Affiliation(s)
- Maristella De Cicco
- Department of Chemistry, Technische Universität München, Biomolecular NMR Spectroscopy, Garching, Germany
| | - Lech-G Milroy
- Department of Biomedical Technology, Laboratory of Chemical Biology, Technische Universiteit Eindhoven, Eindhoven, The Netherlands
| | - Sonja A Dames
- Department of Chemistry, Technische Universität München, Biomolecular NMR Spectroscopy, Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
41
|
Varlakhanova NV, Mihalevic MJ, Bernstein KA, Ford MGJ. Pib2 and the EGO complex are both required for activation of TORC1. J Cell Sci 2017; 130:3878-3890. [PMID: 28993463 DOI: 10.1242/jcs.207910] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/03/2017] [Indexed: 01/12/2023] Open
Abstract
The TORC1 complex is a key regulator of cell growth and metabolism in Saccharomyces cerevisiae The vacuole-associated EGO complex couples activation of TORC1 to the availability of amino acids, specifically glutamine and leucine. The EGO complex is also essential for reactivation of TORC1 following rapamycin-induced growth arrest and for its distribution on the vacuolar membrane. Pib2, a FYVE-containing phosphatidylinositol 3-phosphate (PI3P)-binding protein, is a newly discovered and poorly characterized activator of TORC1. Here, we show that Pib2 is required for reactivation of TORC1 following rapamycin-induced growth arrest. Pib2 is required for EGO complex-mediated activation of TORC1 by glutamine and leucine as well as for redistribution of Tor1 on the vacuolar membrane. Therefore, Pib2 and the EGO complex cooperate to activate TORC1 and connect phosphoinositide 3-kinase (PI3K) signaling and TORC1 activity.
Collapse
Affiliation(s)
- Natalia V Varlakhanova
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15261, USA
| | - Michael J Mihalevic
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA
| | - Kara A Bernstein
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA
| | - Marijn G J Ford
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15261, USA
| |
Collapse
|
42
|
The TORC2-Dependent Signaling Network in the Yeast Saccharomyces cerevisiae. Biomolecules 2017; 7:biom7030066. [PMID: 28872598 PMCID: PMC5618247 DOI: 10.3390/biom7030066] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022] Open
Abstract
To grow, eukaryotic cells must expand by inserting glycerolipids, sphingolipids, sterols, and proteins into their plasma membrane, and maintain the proper levels and bilayer distribution. A fungal cell must coordinate growth with enlargement of its cell wall. In Saccharomyces cerevisiae, a plasma membrane-localized protein kinase complex, Target of Rapamicin (TOR) complex-2 (TORC2) (mammalian ortholog is mTORC2), serves as a sensor and master regulator of these plasma membrane- and cell wall-associated events by directly phosphorylating and thereby stimulating the activity of two types of effector protein kinases: Ypk1 (mammalian ortholog is SGK1), along with a paralog (Ypk2); and, Pkc1 (mammalian ortholog is PKN2/PRK2). Ypk1 is a central regulator of pathways and processes required for plasma membrane lipid and protein homeostasis, and requires phosphorylation on its T-loop by eisosome-associated protein kinase Pkh1 (mammalian ortholog is PDK1) and a paralog (Pkh2). For cell survival under various stresses, Ypk1 function requires TORC2-mediated phosphorylation at multiple sites near its C terminus. Pkc1 controls diverse processes, especially cell wall synthesis and integrity. Pkc1 is also regulated by Pkh1- and TORC2-dependent phosphorylation, but, in addition, by interaction with Rho1-GTP and lipids phosphatidylserine (PtdSer) and diacylglycerol (DAG). We also describe here what is currently known about the downstream substrates modulated by Ypk1-mediated and Pkc1-mediated phosphorylation.
Collapse
|
43
|
The Stress-Sensing TORC2 Complex Activates Yeast AGC-Family Protein Kinase Ypk1 at Multiple Novel Sites. Genetics 2017; 207:179-195. [PMID: 28739659 PMCID: PMC5586371 DOI: 10.1534/genetics.117.1124] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/16/2017] [Indexed: 01/18/2023] Open
Abstract
Yeast (Saccharomyces cerevisiae) target of rapamycin (TOR) complex 2 (TORC2) is a multi-subunit plasma membrane-associated protein kinase and vital growth regulator. Its essential functions are exerted via phosphorylation and stimulation of downstream protein kinase Ypk1 (and its paralog Ypk2). Ypk1 phosphorylates multiple substrates to regulate plasma membrane lipid and protein composition. Ypk1 function requires phosphorylation of Thr504 in its activation loop by eisosome-associated Pkh1 (and its paralog Pkh2). For cell survival under certain stresses, however, Ypk1 activity requires further stimulation by TORC2-mediated phosphorylation at C-terminal sites, dubbed the “turn” (Ser644) and “hydrophobic” (Thr662) motifs. Here we show that four additional C-terminal sites are phosphorylated in a TORC2-dependent manner, collectively defining a minimal consensus. We found that the newly identified sites are as important for Ypk1 activity, stability, and biological function as Ser644 and Thr662. Ala substitutions at the four new sites abrogated the ability of Ypk1 to rescue the phenotypes of Ypk1 deficiency, whereas Glu substitutions had no ill effect. Combining the Ala substitutions with an N-terminal mutation (D242A), which has been demonstrated to bypass the need for TORC2-mediated phosphorylation, restored the ability to complement a Ypk1-deficient cell. These findings provide new insights about the molecular basis for TORC2-dependent activation of Ypk1.
Collapse
|
44
|
The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii. Biomolecules 2017; 7:biom7030054. [PMID: 28704927 PMCID: PMC5618235 DOI: 10.3390/biom7030054] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 12/18/2022] Open
Abstract
Cell growth is tightly coupled to nutrient availability. The target of rapamycin (TOR) kinase transmits nutritional and environmental cues to the cellular growth machinery. TOR functions in two distinct multiprotein complexes, termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2). While the structure and functions of TORC1 are highly conserved in all eukaryotes, including algae and plants, TORC2 core proteins seem to be missing in photosynthetic organisms. TORC1 controls cell growth by promoting anabolic processes, including protein synthesis and ribosome biogenesis, and inhibiting catabolic processes such as autophagy. Recent studies identified rapamycin-sensitive TORC1 signaling regulating cell growth, autophagy, lipid metabolism, and central metabolic pathways in the model unicellular green alga Chlamydomonas reinhardtii. The central role that microalgae play in global biomass production, together with the high biotechnological potential of these organisms in biofuel production, has drawn attention to the study of proteins that regulate cell growth such as the TOR kinase. In this review we discuss the recent progress on TOR signaling in algae.
Collapse
|
45
|
Panday A, Gupta A, Srinivasa K, Xiao L, Smith MD, Grove A. DNA damage regulates direct association of TOR kinase with the RNA polymerase II-transcribed HMO1 gene. Mol Biol Cell 2017; 28:2449-2459. [PMID: 28701348 PMCID: PMC5576907 DOI: 10.1091/mbc.e17-01-0024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/05/2017] [Accepted: 07/07/2017] [Indexed: 01/29/2023] Open
Abstract
In yeast, Hmo1p is important for communicating target of rapamycin (TOR) kinase activity to downstream targets. Results show that TOR kinase controls expression of the HMO1 gene and that an important component of this regulation is its direct association with the HMO1 gene. The implications are that TOR kinase may have more elaborate nuclear functions. The mechanistic target of rapamycin complex 1 (mTORC1) senses nutrient sufficiency and cellular stress. When mTORC1 is inhibited, protein synthesis is reduced in an intricate process that includes a concerted down-regulation of genes encoding rRNA and ribosomal proteins. The Saccharomyces cerevisiae high-mobility group protein Hmo1p has been implicated in coordinating this response to mTORC1 inhibition. We show here that Tor1p binds directly to the HMO1 gene (but not to genes that are not linked to ribosome biogenesis) and that the presence of Tor1p is associated with activation of gene activity. Persistent induction of DNA double-strand breaks or mTORC1 inhibition by rapamycin results in reduced levels of HMO1 mRNA, but only in the presence of Tor1p. This down-regulation is accompanied by eviction of Ifh1p and recruitment of Crf1p, followed by concerted dissociation of Hmo1p and Tor1p. These findings uncover a novel role for TOR kinase in control of gene activity by direct association with an RNA polymerase II–transcribed gene.
Collapse
Affiliation(s)
- Arvind Panday
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Ashish Gupta
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Kavitha Srinivasa
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Lijuan Xiao
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Mathew D Smith
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| |
Collapse
|
46
|
The Architecture of the Rag GTPase Signaling Network. Biomolecules 2017; 7:biom7030048. [PMID: 28788436 PMCID: PMC5618229 DOI: 10.3390/biom7030048] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022] Open
Abstract
The evolutionarily conserved target of rapamycin complex 1 (TORC1) couples an array of intra- and extracellular stimuli to cell growth, proliferation and metabolism, and its deregulation is associated with various human pathologies such as immunodeficiency, epilepsy, and cancer. Among the diverse stimuli impinging on TORC1, amino acids represent essential input signals, but how they control TORC1 has long remained a mystery. The recent discovery of the Rag GTPases, which assemble as heterodimeric complexes on vacuolar/lysosomal membranes, as central elements of an amino acid signaling network upstream of TORC1 in yeast, flies, and mammalian cells represented a breakthrough in this field. Here, we review the architecture of the Rag GTPase signaling network with a special focus on structural aspects of the Rag GTPases and their regulators in yeast and highlight both the evolutionary conservation and divergence of the mechanisms that control Rag GTPases.
Collapse
|
47
|
Abstract
Cell size is amenable by genetic and environmental factors. The highly conserved nutrient-responsive Target of Rapamycin (TOR) signaling pathway regulates cellular metabolic status and growth in response to numerous inputs. Timing and duration of TOR pathway activity is pivotal for both cell mass built up as well as cell cycle progression and is controlled and fine-tuned by the abundance and quality of nutrients, hormonal signals, growth factors, stress, and oxygen. TOR kinases function within two functionally and structurally discrete multiprotein complexes, TORC1 and TORC2, that are implicated in temporal and spatial control of cell size and growth respectively; however, recent data indicate that such functional distinctions are much more complex. Here, we briefly review roles of the two complexes in cellular growth and cytoarchitecture in various experimental model systems.
Collapse
Affiliation(s)
- Suam Gonzalez
- School of Health, Sport and Bioscience, University of East LondonLondon, United Kingdom
| | - Charalampos Rallis
- School of Health, Sport and Bioscience, University of East LondonLondon, United Kingdom
| |
Collapse
|
48
|
Tatebe H, Murayama S, Yonekura T, Hatano T, Richter D, Furuya T, Kataoka S, Furuita K, Kojima C, Shiozaki K. Substrate specificity of TOR complex 2 is determined by a ubiquitin-fold domain of the Sin1 subunit. eLife 2017; 6. [PMID: 28264193 PMCID: PMC5340527 DOI: 10.7554/elife.19594] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/27/2017] [Indexed: 01/20/2023] Open
Abstract
The target of rapamycin (TOR) protein kinase forms multi-subunit TOR complex 1 (TORC1) and TOR complex 2 (TORC2), which exhibit distinct substrate specificities. Sin1 is one of the TORC2-specific subunit essential for phosphorylation and activation of certain AGC-family kinases. Here, we show that Sin1 is dispensable for the catalytic activity of TORC2, but its conserved region in the middle (Sin1CRIM) forms a discrete domain that specifically binds the TORC2 substrate kinases. Sin1CRIM fused to a different TORC2 subunit can recruit the TORC2 substrate Gad8 for phosphorylation even in the sin1 null mutant of fission yeast. The solution structure of Sin1CRIM shows a ubiquitin-like fold with a characteristic acidic loop, which is essential for interaction with the TORC2 substrates. The specific substrate-recognition function is conserved in human Sin1CRIM, which may represent a potential target for novel anticancer drugs that prevent activation of the mTORC2 substrates such as AKT.
Collapse
Affiliation(s)
- Hisashi Tatebe
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Shinichi Murayama
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Toshiya Yonekura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Tomoyuki Hatano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - David Richter
- Department of Microbiology and Molecular Genetics, University of California, California, United States
| | - Tomomi Furuya
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Saori Kataoka
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Kyoko Furuita
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Chojiro Kojima
- Institute for Protein Research, Osaka University, Osaka, Japan.,Graduate School of Engineering, Yokohama National University, Yokohama, Japan
| | - Kazuhiro Shiozaki
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan.,Department of Microbiology and Molecular Genetics, University of California, California, United States
| |
Collapse
|
49
|
Gaubitz C, Prouteau M, Kusmider B, Loewith R. TORC2 Structure and Function. Trends Biochem Sci 2016; 41:532-545. [PMID: 27161823 DOI: 10.1016/j.tibs.2016.04.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/30/2016] [Accepted: 04/05/2016] [Indexed: 12/21/2022]
Abstract
The target of rapamycin (TOR) kinase functions in two multiprotein complexes, TORC1 and TORC2. Although both complexes are evolutionarily conserved, only TORC1 is acutely inhibited by rapamycin. Consequently, only TORC1 signaling is relatively well understood; and, at present, only mammalian TORC1 is a validated drug target, pursued in immunosuppression and oncology. However, the knowledge void surrounding TORC2 is dissipating. Acute inhibition of TORC2 with small molecules is now possible and structural studies of both TORC1 and TORC2 have recently been reported. Here we review these recent advances as well as observations made from tissue-specific mTORC2 knockout mice. Together these studies help define TORC2 structure-function relationships and suggest that mammalian TORC2 may one day also become a bona fide clinical target.
Collapse
Affiliation(s)
- Christl Gaubitz
- Department of Molecular Biology, and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 quai Ernest Ansermet, CH1211 Geneva, Switzerland
| | - Manoel Prouteau
- Department of Molecular Biology, and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 quai Ernest Ansermet, CH1211 Geneva, Switzerland
| | - Beata Kusmider
- Department of Molecular Biology, and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 quai Ernest Ansermet, CH1211 Geneva, Switzerland
| | - Robbie Loewith
- Department of Molecular Biology, and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 quai Ernest Ansermet, CH1211 Geneva, Switzerland; National Centre of Competence in Research "Chemical Biology", University of Geneva, Geneva CH-1211, Switzerland.
| |
Collapse
|
50
|
Baretić D, Berndt A, Ohashi Y, Johnson CM, Williams RL. Tor forms a dimer through an N-terminal helical solenoid with a complex topology. Nat Commun 2016; 7:11016. [PMID: 27072897 PMCID: PMC4833857 DOI: 10.1038/ncomms11016] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/11/2016] [Indexed: 01/18/2023] Open
Abstract
The target of rapamycin (Tor) is a Ser/Thr protein kinase that regulates a range of anabolic and catabolic processes. Tor is present in two complexes, TORC1 and TORC2, in which the Tor–Lst8 heterodimer forms a common sub-complex. We have determined the cryo-electron microscopy (EM) structure of Tor bound to Lst8. Two Tor–Lst8 heterodimers assemble further into a dyad-symmetry dimer mediated by Tor–Tor interactions. The first 1,300 residues of Tor form a HEAT repeat-containing α-solenoid with four distinct segments: a highly curved 800-residue N-terminal 'spiral', followed by a 400-residue low-curvature 'bridge' and an extended ‘railing' running along the bridge leading to the 'cap' that links to FAT region. This complex topology was verified by domain insertions and offers a new interpretation of the mTORC1 structure. The spiral of one TOR interacts with the bridge of another, which together form a joint platform for the Regulatory Associated Protein of TOR (RAPTOR) regulatory subunit. The target of rapamycin (Tor) is a Ser/Thr protein kinase that regulates a wide range of anabolic and catabolic processes. Here the authors describe a sub-nanometer cryo-EM structure of a yeast Tor–Lst8 complex and propose an overall topology that differs from that previously suggested for mTORC1.
Collapse
Affiliation(s)
| | - Alex Berndt
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Yohei Ohashi
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | |
Collapse
|