1
|
Weijman JF, Vuolo L, Shak C, Pugnetti A, Mukhopadhyay AG, Hodgson LR, Heesom KJ, Roberts AJ, Stephens DJ. Roles for CEP170 in cilia function and dynein-2 assembly. J Cell Sci 2024; 137:jcs261816. [PMID: 38533689 PMCID: PMC11112123 DOI: 10.1242/jcs.261816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Primary cilia are essential eukaryotic organelles required for signalling and secretion. Dynein-2 is a microtubule-motor protein complex and is required for ciliogenesis via its role in facilitating retrograde intraflagellar transport (IFT) from the cilia tip to the cell body. Dynein-2 must be assembled and loaded onto IFT trains for entry into cilia for this process to occur, but how dynein-2 is assembled and how it is recycled back into a cilium remain poorly understood. Here, we identify centrosomal protein of 170 kDa (CEP170) as a dynein-2-interacting protein in mammalian cells. We show that loss of CEP170 perturbs intraflagellar transport and hedgehog signalling, and alters the stability of dynein-2 holoenzyme complex. Together, our data indicate a role for CEP170 in supporting cilia function and dynein-2 assembly.
Collapse
Affiliation(s)
- Johannes F. Weijman
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Laura Vuolo
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Caroline Shak
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Anna Pugnetti
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | | - Lorna R. Hodgson
- Wolfson Bioimaging Facility, Faculty of Life Sciences, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Kate J. Heesom
- Proteomics Facility, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Anthony J. Roberts
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - David J. Stephens
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
2
|
Leung M, Steinman J, Li D, Lor A, Gruesen A, Sadah A, van Kuijk FJ, Montezuma SR, Kondkar AA, Radhakrishnan R, Lobo GP. The Logistical Backbone of Photoreceptor Cell Function: Complementary Mechanisms of Dietary Vitamin A Receptors and Rhodopsin Transporters. Int J Mol Sci 2024; 25:4278. [PMID: 38673863 PMCID: PMC11050646 DOI: 10.3390/ijms25084278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
In this review, we outline our current understanding of the mechanisms involved in the absorption, storage, and transport of dietary vitamin A to the eye, and the trafficking of rhodopsin protein to the photoreceptor outer segments, which encompasses the logistical backbone required for photoreceptor cell function. Two key mechanisms of this process are emphasized in this manuscript: ocular and systemic vitamin A membrane transporters, and rhodopsin transporters. Understanding the complementary mechanisms responsible for the generation and proper transport of the retinylidene protein to the photoreceptor outer segment will eventually shed light on the importance of genes encoded by these proteins, and their relationship on normal visual function and in the pathophysiology of retinal degenerative diseases.
Collapse
Affiliation(s)
- Matthias Leung
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA; (M.L.); (J.S.); (D.L.); (A.L.); (A.G.); (A.S.); (F.J.v.K.); (S.R.M.)
| | - Jeremy Steinman
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA; (M.L.); (J.S.); (D.L.); (A.L.); (A.G.); (A.S.); (F.J.v.K.); (S.R.M.)
| | - Dorothy Li
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA; (M.L.); (J.S.); (D.L.); (A.L.); (A.G.); (A.S.); (F.J.v.K.); (S.R.M.)
| | - Anjelynt Lor
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA; (M.L.); (J.S.); (D.L.); (A.L.); (A.G.); (A.S.); (F.J.v.K.); (S.R.M.)
| | - Andrew Gruesen
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA; (M.L.); (J.S.); (D.L.); (A.L.); (A.G.); (A.S.); (F.J.v.K.); (S.R.M.)
| | - Ahmed Sadah
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA; (M.L.); (J.S.); (D.L.); (A.L.); (A.G.); (A.S.); (F.J.v.K.); (S.R.M.)
| | - Frederik J. van Kuijk
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA; (M.L.); (J.S.); (D.L.); (A.L.); (A.G.); (A.S.); (F.J.v.K.); (S.R.M.)
| | - Sandra R. Montezuma
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA; (M.L.); (J.S.); (D.L.); (A.L.); (A.G.); (A.S.); (F.J.v.K.); (S.R.M.)
| | - Altaf A. Kondkar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 12271, Saudi Arabia;
| | - Rakesh Radhakrishnan
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA; (M.L.); (J.S.); (D.L.); (A.L.); (A.G.); (A.S.); (F.J.v.K.); (S.R.M.)
| | - Glenn P. Lobo
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA; (M.L.); (J.S.); (D.L.); (A.L.); (A.G.); (A.S.); (F.J.v.K.); (S.R.M.)
| |
Collapse
|
3
|
Arora S, Rana M, Sachdev A, D’Souza JS. Appearing and disappearing acts of cilia. J Biosci 2023. [DOI: 10.1007/s12038-023-00326-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
4
|
Arora S, Rana M, Sachdev A, D'Souza JS. Appearing and disappearing acts of cilia. J Biosci 2023; 48:8. [PMID: 36924208 PMCID: PMC10005925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The past few decades have seen a rise in research on vertebrate cilia and ciliopathy, with interesting collaborations between basic and clinical scientists. This work includes studies on ciliary architecture, composition, evolution, and organelle generation and its biological role. The human body has cells that harbour any of the following four types of cilia: 9+0 motile, 9+0 immotile, 9+2 motile, and 9+2 immotile. Depending on the type, cilia play an important role in cell/fluid movement, mating, sensory perception, and development. Defects in cilia are associated with a wide range of human diseases afflicting the brain, heart, kidneys, respiratory tract, and reproductive system. These are commonly known as ciliopathies and affect millions of people worldwide. Due to their complex genetic etiology, diagnosis and therapy have remained elusive. Although model organisms like Chlamydomonas reinhardtii have been a useful source for ciliary research, reports of a fascinating and rewarding translation of this research into mammalian systems, especially humans, are seen. The current review peeks into one of the complex features of this organelle, namely its birth, the common denominators across the formation of both 9+0 and 9+2 ciliary types, the molecules involved in ciliogenesis, and the steps that go towards regulating their assembly and disassembly.
Collapse
Affiliation(s)
- Shashank Arora
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, Kalina Campus, Santacruz (E), Mumbai 400098, India
| | | | | | | |
Collapse
|
5
|
Scarinci N, Perez PL, Cantiello HF, Cantero MDR. Polycystin-2 (TRPP2) regulates primary cilium length in LLC-PK1 renal epithelial cells. Front Physiol 2022; 13:995473. [PMID: 36267587 PMCID: PMC9577394 DOI: 10.3389/fphys.2022.995473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/14/2022] [Indexed: 11/21/2022] Open
Abstract
Polycystin-2 (PC2, TRPP2) is a Ca2+ permeable nonselective cation channel whose dysfunction generates autosomal dominant polycystic kidney disease (ADPKD). PC2 is present in different cell locations, including the primary cilium of renal epithelial cells. However, little is known as to whether PC2 contributes to the primary cilium structure. Here, we explored the effect(s) of external Ca2+, PC2 channel blockers, and PKD2 gene silencing on the length of primary cilia in wild-type LLC-PK1 renal epithelial cells. Confluent cell monolayers were fixed and immuno-labeled with an anti-acetylated α-tubulin antibody to identify primary cilia and measure their length. Although primary cilia length measurements did not follow a Normal distribution, the data were normalized by Box-Cox transformation rendering statistical differences under all experimental conditions. Cells exposed to high external Ca2+ (6.2 mM) decreased a 13.5% (p < 0.001) primary cilia length as compared to controls (1.2 mM Ca2+). In contrast, the PC2 inhibitors amiloride (200 μM) and LiCl (10 mM), both increased primary ciliary length by 33.2% (p < 0.001), and 17.4% (p < 0.001), respectively. PKD2 gene silencing by siRNA elicited a statistically significant, 10.3% (p < 0.001) increase in primary cilia length compared to their respective scrambled RNA transfected cells. The data indicate that conditions that regulate PC2 function or gene expression modify the length of primary cilia in renal epithelial cells. Blocking of PC2 mitigates the effects of elevated external Ca2+ concentration on primary cilia length. Proper regulation of PC2 function in the primary cilium may be essential in the onset of mechanisms that trigger cyst formation in ADPKD.
Collapse
Affiliation(s)
| | | | | | - María del Rocío Cantero
- Laboratorio de Canales Iónicos, IMSaTeD, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (CONICET-UNSE), Santiago del Estero, Argentina
| |
Collapse
|
6
|
Rahman F, Johnson JL, Zhang J, He J, Pestonjamasp K, Cherqui S, Catz SD. DYNC1LI2 regulates localization of the chaperone-mediated autophagy receptor LAMP2A and improves cellular homeostasis in cystinosis. Autophagy 2021; 18:1108-1126. [PMID: 34643468 PMCID: PMC9196850 DOI: 10.1080/15548627.2021.1971937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The dynein motor protein complex is required for retrograde transport but the functions of the intermediate-light chains that form the cargo-binding complex are not elucidated and the importance of individual subunits in maintaining cellular homeostasis is unknown. Here, using mRNA arrays and protein analysis, we show that the dynein subunit, DYNC1LI2 (dynein, cytoplasmic 1 light intermediate chain 2) is downregulated in cystinosis, a lysosomal storage disorder caused by genetic defects in CTNS (cystinosin, lysosomal cystine transporter). Reconstitution of DYNC1LI2 expression in ctns-/- cells reestablished endolysosomal dynamics. Defective vesicular trafficking in cystinotic cells was rescued by DYNC1LI2 expression which correlated with decreased endoplasmic reticulum stress manifested as decreased expression levels of the chaperone HSPA5/GRP78, and the transcription factors ATF4 and DDIT3/CHOP. Mitochondrial fragmentation, membrane potential and endolysosomal-mitochondrial association in cystinotic cells were rescued by DYNC1LI2. Survival of cystinotic cells to oxidative stress was increased by DYNC1LI2 reconstitution but not by its paralog DYNC1LI1, which also failed to decrease ER stress and mitochondrial fragmentation. DYNC1LI2 expression rescued the localization of the chaperone-mediated autophagy (CMA) receptor LAMP2A, CMA activity, cellular homeostasis and LRP2/megalin expression in cystinotic proximal tubule cells, the primary cell type affected in cystinosis. DYNC1LI2 failed to rescue phenotypes in cystinotic cells when LAMP2A was downregulated or when co-expressed with dominant negative (DN) RAB7 or DN-RAB11, which impaired LAMP2A trafficking. DYNC1LI2 emerges as a regulator of cellular homeostasis and potential target to repair underlying trafficking and CMA in cystinosis, a mechanism that is not restored by lysosomal cystine depletion therapies. Abbreviations: ACTB: actin, beta; ATF4: activating transcription factor 4; CMA: chaperone-mediated autophagy; DYNC1LI1: dynein cytoplasmic 1 light intermediate chain 1; DYNC1LI2: dynein cytoplasmic 1 light intermediate chain 2; ER: endoplasmic reticulum; LAMP1: lysosomal associated membrane protein 1; LAMP2A: lysosomal associated membrane protein 2A; LIC: light-intermediate chains; LRP2/Megalin: LDL receptor related protein 2; PTCs: proximal tubule cells; RAB: RAB, member RAS oncogene family; RAB11FIP3: RAB11 family interacting protein 3; RILP: Rab interacting lysosomal protein
Collapse
Affiliation(s)
- Farhana Rahman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Jennifer L Johnson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Jinzhong Zhang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Jing He
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Kersi Pestonjamasp
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Stephanie Cherqui
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Sergio D Catz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
7
|
Wingfield JL, Mekonnen B, Mengoni I, Liu P, Jordan M, Diener D, Pigino G, Lechtreck K. In vivo imaging shows continued association of several IFT-A, IFT-B and dynein complexes while IFT trains U-turn at the tip. J Cell Sci 2021; 134:271904. [PMID: 34415027 DOI: 10.1242/jcs.259010] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/12/2021] [Indexed: 01/05/2023] Open
Abstract
Flagellar assembly depends on intraflagellar transport (IFT), a bidirectional motility of protein carriers, the IFT trains. The trains are periodic assemblies of IFT-A and IFT-B subcomplexes and the motors kinesin-2 and IFT dynein. At the tip, anterograde trains are remodeled for retrograde IFT, a process that in Chlamydomonas involves kinesin-2 release and train fragmentation. However, the degree of train disassembly at the tip remains unknown. Here, we performed two-color imaging of fluorescent protein-tagged IFT components, which indicates that IFT-A and IFT-B proteins from a given anterograde train usually return in the same set of retrograde trains. Similarly, concurrent turnaround was typical for IFT-B proteins and the IFT dynein subunit D1bLIC-GFP but severance was observed as well. Our data support a simple model of IFT turnaround, in which IFT-A, IFT-B and IFT dynein typically remain associated at the tip and segments of the anterograde trains convert directly into retrograde trains. Continuous association of IFT-A, IFT-B and IFT dynein during tip remodeling could balance protein entry and exit, preventing the build-up of IFT material in flagella.
Collapse
Affiliation(s)
- Jenna L Wingfield
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Betlehem Mekonnen
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Ilaria Mengoni
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Peiwei Liu
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Mareike Jordan
- Max Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany
| | - Dennis Diener
- Max Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany
| | - Gaia Pigino
- Max Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany.,Human Technopole, Via Cristina Belgioioso 171, 20157 Milan, Italy
| | - Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
8
|
Antony D, Brunner HG, Schmidts M. Ciliary Dyneins and Dynein Related Ciliopathies. Cells 2021; 10:cells10081885. [PMID: 34440654 PMCID: PMC8391580 DOI: 10.3390/cells10081885] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
Although ubiquitously present, the relevance of cilia for vertebrate development and health has long been underrated. However, the aberration or dysfunction of ciliary structures or components results in a large heterogeneous group of disorders in mammals, termed ciliopathies. The majority of human ciliopathy cases are caused by malfunction of the ciliary dynein motor activity, powering retrograde intraflagellar transport (enabled by the cytoplasmic dynein-2 complex) or axonemal movement (axonemal dynein complexes). Despite a partially shared evolutionary developmental path and shared ciliary localization, the cytoplasmic dynein-2 and axonemal dynein functions are markedly different: while cytoplasmic dynein-2 complex dysfunction results in an ultra-rare syndromal skeleto-renal phenotype with a high lethality, axonemal dynein dysfunction is associated with a motile cilia dysfunction disorder, primary ciliary dyskinesia (PCD) or Kartagener syndrome, causing recurrent airway infection, degenerative lung disease, laterality defects, and infertility. In this review, we provide an overview of ciliary dynein complex compositions, their functions, clinical disease hallmarks of ciliary dynein disorders, presumed underlying pathomechanisms, and novel developments in the field.
Collapse
Affiliation(s)
- Dinu Antony
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Mathildenstrasse 1, 79106 Freiburg, Germany;
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands;
- Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands
| | - Han G. Brunner
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands;
- Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands
| | - Miriam Schmidts
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Mathildenstrasse 1, 79106 Freiburg, Germany;
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands;
- Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands
- Correspondence: ; Tel.: +49-761-44391; Fax: +49-761-44710
| |
Collapse
|
9
|
Stiegler AL, Boggon TJ. The pseudoGTPase group of pseudoenzymes. FEBS J 2020; 287:4232-4245. [PMID: 32893973 PMCID: PMC7544640 DOI: 10.1111/febs.15554] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/21/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022]
Abstract
Pseudoenzymes are emerging as significant mediators and regulators of signal transduction. These proteins maintain enzyme folds and topologies, but are disrupted in the conserved motifs required for enzymatic activity. Among the pseudoenzymes, the pseudoGTPase group of atypical GTPases has recently expanded and includes the Rnd and RGK groups, RhoH and the RhoBTB proteins, mitochondrial RhoGTPase and centaurin-γ groups, CENP-M, dynein LIC, Entamoeba histolytica RabX3, leucine-rich repeat kinase 2, and the p190RhoGAP proteins. The wide range of cellular functions associated with pseudoGTPases includes cell migration and adhesion, membrane trafficking and cargo transport, mitosis, mitochondrial activity, transcriptional control, and autophagy, placing the group in an expanding portfolio of signaling pathways. In this review, we examine how the pseudoGTPases differ from canonical GTPases and consider their mechanistic and functional roles in signal transduction. We review the amino acid differences between the pseudoGTPases and discuss how these proteins can be classified based on their ability to bind nucleotide and their enzymatic activity. We discuss the molecular and structural consequences of amino acid divergence from canonical GTPases and use comparison with the well-studied pseudokinases to illustrate the classifications. PseudoGTPases are fast becoming recognized as important mechanistic components in a range of cellular roles, and we provide a concise discussion of the currently identified members of this group. ENZYMES: small GTPases; EC number: EC 3.6.5.2.
Collapse
Affiliation(s)
- Amy L. Stiegler
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Titus J. Boggon
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Departments of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Yale Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| |
Collapse
|
10
|
Vitre B, Guesdon A, Delaval B. Non-ciliary Roles of IFT Proteins in Cell Division and Polycystic Kidney Diseases. Front Cell Dev Biol 2020; 8:578239. [PMID: 33072760 PMCID: PMC7536321 DOI: 10.3389/fcell.2020.578239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/26/2020] [Indexed: 12/30/2022] Open
Abstract
Cilia are small organelles present at the surface of most differentiated cells where they act as sensors for mechanical or biochemical stimuli. Cilia assembly and function require the Intraflagellar Transport (IFT) machinery, an intracellular transport system that functions in association with microtubules and motors. If IFT proteins have long been studied for their ciliary roles, recent evidences indicate that their functions are not restricted to the cilium. Indeed, IFT proteins are found outside the ciliary compartment where they are involved in a variety of cellular processes in association with non-ciliary motors. Recent works also provide evidence that non-ciliary roles of IFT proteins could be responsible for the development of ciliopathies related phenotypes including polycystic kidney diseases. In this review, we will discuss the interactions of IFT proteins with microtubules and motors as well as newly identified non-ciliary functions of IFT proteins, focusing on their roles in cell division. We will also discuss the potential contribution of non-ciliary IFT proteins functions to the etiology of kidney diseases.
Collapse
|
11
|
Nakayama K, Katoh Y. Architecture of the IFT ciliary trafficking machinery and interplay between its components. Crit Rev Biochem Mol Biol 2020; 55:179-196. [PMID: 32456460 DOI: 10.1080/10409238.2020.1768206] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cilia and flagella serve as cellular antennae and propellers in various eukaryotic cells, and contain specific receptors and ion channels as well as components of axonemal microtubules and molecular motors to achieve their sensory and motile functions. Not only the bidirectional trafficking of specific proteins within cilia but also their selective entry and exit across the ciliary gate is mediated by the intraflagellar transport (IFT) machinery with the aid of motor proteins. The IFT-B complex, which is powered by the kinesin-2 motor, mediates anterograde protein trafficking from the base to the tip of cilia, whereas the IFT-A complex together with the dynein-2 complex mediates retrograde protein trafficking. The BBSome complex connects ciliary membrane proteins to the IFT machinery. Defects in any component of this trafficking machinery lead to abnormal ciliogenesis and ciliary functions, and results in a broad spectrum of disorders, collectively called the ciliopathies. In this review article, we provide an overview of the architectures of the components of the IFT machinery and their functional interplay in ciliary protein trafficking.
Collapse
Affiliation(s)
- Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yohei Katoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
12
|
Lis1 activates dynein motility by modulating its pairing with dynactin. Nat Cell Biol 2020; 22:570-578. [PMID: 32341547 PMCID: PMC7212015 DOI: 10.1038/s41556-020-0501-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 03/03/2020] [Indexed: 12/18/2022]
Abstract
Lissencephaly-1 (Lis1) is a key cofactor for dynein-mediated intracellular transport towards the minus-ends of microtubules. It remains unclear whether Lis1 serves as an inhibitor or an activator of mammalian dynein motility. Here we use single-molecule imaging and optical trapping to show that Lis1 does not directly alter the stepping and force production of individual dynein motors assembled with dynactin and a cargo adaptor. Instead, Lis1 promotes the formation of an active complex with dynactin. Lis1 also favours the recruitment of two dyneins to dynactin, resulting in increased velocity, higher force production and more effective competition against kinesin in a tug-of-war. Lis1 dissociates from motile complexes, indicating that its primary role is to orchestrate the assembly of the transport machinery. We propose that Lis1 binding releases dynein from its autoinhibited state, which provides a mechanistic explanation for why Lis1 is required for efficient transport of many dynein-associated cargos in cells.
Collapse
|
13
|
Mijalkovic J, van Krugten J, Oswald F, Acar S, Peterman EJG. Single-Molecule Turnarounds of Intraflagellar Transport at the C. elegans Ciliary Tip. Cell Rep 2019; 25:1701-1707.e2. [PMID: 30428341 DOI: 10.1016/j.celrep.2018.10.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/13/2018] [Accepted: 10/12/2018] [Indexed: 11/17/2022] Open
Abstract
Cilia are microtubule-based sensing hubs that rely on intraflagellar transport (IFT) for their development, maintenance, and function. Kinesin-2 motors transport IFT trains, consisting of IFT proteins and cargo, from ciliary base to tip. There, trains turn around and are transported back by IFT dynein. The mechanism of tip turnaround has remained elusive. Here, we employ single-molecule fluorescence microscopy of IFT components in the tips of phasmid cilia of living C. elegans. Analysis of the trajectories reveals that while motor proteins and IFT-A particle component CHE-11 mostly turn around immediately, the IFT-B particle component OSM-6 pauses for several seconds. Our data indicate that IFT trains disassemble into at least IFT-A, IFT-B, IFT-dynein, and OSM-3 complexes at the tip, where OSM-6 is temporarily retained or undergoes modification, prior to train reassembly and retrograde transport. The single-molecule approach used here is a valuable tool to study how directional switches occur in microtubule-based transport processes.
Collapse
Affiliation(s)
- Jona Mijalkovic
- LaserLaB and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands
| | - Jaap van Krugten
- LaserLaB and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands
| | - Felix Oswald
- LaserLaB and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands
| | - Seyda Acar
- LaserLaB and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands
| | - Erwin J G Peterman
- LaserLaB and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands.
| |
Collapse
|
14
|
Lin J, Le TV, Augspurger K, Tritschler D, Bower R, Fu G, Perrone C, O’Toole ET, Mills KV, Dymek E, Smith E, Nicastro D, Porter ME. FAP57/WDR65 targets assembly of a subset of inner arm dyneins and connects to regulatory hubs in cilia. Mol Biol Cell 2019; 30:2659-2680. [PMID: 31483737 PMCID: PMC6761771 DOI: 10.1091/mbc.e19-07-0367] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/22/2019] [Accepted: 08/29/2019] [Indexed: 01/19/2023] Open
Abstract
Ciliary motility depends on both the precise spatial organization of multiple dynein motors within the 96 nm axonemal repeat and the highly coordinated interactions between different dyneins and regulatory complexes located at the base of the radial spokes. Mutations in genes encoding cytoplasmic assembly factors, intraflagellar transport factors, docking proteins, dynein subunits, and associated regulatory proteins can all lead to defects in dynein assembly and ciliary motility. Significant progress has been made in the identification of dynein subunits and extrinsic factors required for preassembly of dynein complexes in the cytoplasm, but less is known about the docking factors that specify the unique binding sites for the different dynein isoforms on the surface of the doublet microtubules. We have used insertional mutagenesis to identify a new locus, IDA8/BOP2, required for targeting the assembly of a subset of inner dynein arms (IDAs) to a specific location in the 96 nm repeat. IDA8 encodes flagellar-associated polypeptide (FAP)57/WDR65, a highly conserved WD repeat, coiled coil domain protein. Using high resolution proteomic and structural approaches, we find that FAP57 forms a discrete complex. Cryo-electron tomography coupled with epitope tagging and gold labeling reveal that FAP57 forms an extended structure that interconnects multiple IDAs and regulatory complexes.
Collapse
Affiliation(s)
- Jianfeng Lin
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Thuc Vy Le
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| | - Katherine Augspurger
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| | - Douglas Tritschler
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| | - Raqual Bower
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| | - Gang Fu
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Catherine Perrone
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| | - Eileen T. O’Toole
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Kristyn VanderWaal Mills
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| | - Erin Dymek
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - Elizabeth Smith
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - Daniela Nicastro
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Mary E. Porter
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
15
|
Structure of the dynein-2 complex and its assembly with intraflagellar transport trains. Nat Struct Mol Biol 2019; 26:823-829. [PMID: 31451806 PMCID: PMC6774794 DOI: 10.1038/s41594-019-0286-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Abstract
Dynein-2 assembles with polymeric intraflagellar transport (IFT) trains to form a transport machinery that is crucial for cilia biogenesis and signaling. Here we recombinantly expressed the ~1.4-MDa human dynein-2 complex and solved its cryo-EM structure to near-atomic resolution. The two identical copies of the dynein-2 heavy chain are contorted into different conformations by a WDR60-WDR34 heterodimer and a block of two RB and six LC8 light chains. One heavy chain is steered into a zig-zag conformation, which matches the periodicity of the anterograde IFT-B train. Contacts between adjacent dyneins along the train indicate a cooperative mode of assembly. Removal of the WDR60-WDR34-light chain subcomplex renders dynein-2 monomeric and relieves autoinhibition of its motility. Our results converge on a model in which an unusual stoichiometry of non-motor subunits controls dynein-2 assembly, asymmetry, and activity, giving mechanistic insight into the interaction of dynein-2 with IFT trains and the origin of diverse functions in the dynein family.
Collapse
|
16
|
Stawicki TM, Linbo T, Hernandez L, Parkinson L, Bellefeuille D, Rubel EW, Raible DW. The role of retrograde intraflagellar transport genes in aminoglycoside-induced hair cell death. Biol Open 2019; 8:bio.038745. [PMID: 30578252 PMCID: PMC6361216 DOI: 10.1242/bio.038745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Sensory hair cells are susceptible to numerous insults, including certain therapeutic medications like aminoglycoside antibiotics, and hearing and balance disorders are often a dose-limiting side effect of these medications. We show that mutations in multiple genes in both the retrograde intraflagellar transport (IFT) motor and adaptor complexes lead to resistance to aminoglycoside-induced hair cell death. These mutations also lead to defects in the entry of both aminoglycosides and the vital dye FM1-43 into hair cells, both processes that depend on hair cell mechanotransduction activity. However, the trafficking of proteins important for mechanotransduction activity is not altered by these mutations. Our data suggest that both retrograde IFT motor and adaptor complex genes are playing a role in aminoglycoside toxicity through affecting aminoglycoside uptake into hair cells. Summary: Here we show that both retrograde intraflagellar transport motor proteins and IFT-A adaptor molecules play a role in aminoglycoside-induced hair cell death, seemingly through regulating aminoglycoside uptake.
Collapse
Affiliation(s)
- Tamara M Stawicki
- Program in Neuroscience, Lafayette College, Easton, PA 18042, USA .,Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Tor Linbo
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Liana Hernandez
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Lauren Parkinson
- Program in Neuroscience, Lafayette College, Easton, PA 18042, USA
| | | | - Edwin W Rubel
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, USA
| | - David W Raible
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA.,Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
17
|
Chen B, Niu J, Kreuzer J, Zheng B, Jarugumilli GK, Haas W, Wu X. Auto-fatty acylation of transcription factor RFX3 regulates ciliogenesis. Proc Natl Acad Sci U S A 2018; 115:E8403-E8412. [PMID: 30127002 PMCID: PMC6130365 DOI: 10.1073/pnas.1800949115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Defects in cilia have been associated with an expanding human disease spectrum known as ciliopathies. Regulatory Factor X 3 (RFX3) is one of the major transcription factors required for ciliogenesis and cilia functions. In addition, RFX3 regulates pancreatic islet cell differentiation and mature β-cell functions. However, how RFX3 protein is regulated at the posttranslational level remains poorly understood. Using chemical reporters of protein fatty acylation and mass spectrometry analysis, here we show that RFX3 transcriptional activity is regulated by S-fatty acylation at a highly conserved cysteine residue in the dimerization domain. Surprisingly, RFX3 undergoes enzyme-independent, "self-catalyzed" auto-fatty acylation and displays preferences for 18-carbon stearic acid and oleic acid. The fatty acylation-deficient mutant of RFX3 shows decreased homodimerization; fails to promote ciliary gene expression, ciliogenesis, and elongation; and impairs Hedgehog signaling. Our findings reveal a regulation of RFX3 transcription factor and link fatty acid metabolism and protein lipidation to the regulation of ciliogenesis.
Collapse
Affiliation(s)
- Baoen Chen
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| | - Jixiao Niu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| | - Johannes Kreuzer
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129
- Department of Medicine, Harvard Medical School, Charlestown, MA 02129
| | - Baohui Zheng
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| | - Gopala K Jarugumilli
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129
- Department of Medicine, Harvard Medical School, Charlestown, MA 02129
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129;
| |
Collapse
|
18
|
Roberts AJ. Emerging mechanisms of dynein transport in the cytoplasm versus the cilium. Biochem Soc Trans 2018; 46:967-982. [PMID: 30065109 PMCID: PMC6103457 DOI: 10.1042/bst20170568] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/13/2018] [Accepted: 06/18/2018] [Indexed: 02/08/2023]
Abstract
Two classes of dynein power long-distance cargo transport in different cellular contexts. Cytoplasmic dynein-1 is responsible for the majority of transport toward microtubule minus ends in the cell interior. Dynein-2, also known as intraflagellar transport dynein, moves cargoes along the axoneme of eukaryotic cilia and flagella. Both dyneins operate as large ATP-driven motor complexes, whose dysfunction is associated with a group of human disorders. But how similar are their mechanisms of action and regulation? To examine this question, this review focuses on recent advances in dynein-1 and -2 research, and probes to what extent the emerging principles of dynein-1 transport could apply to or differ from those of the less well-understood dynein-2 mechanoenzyme.
Collapse
Affiliation(s)
- Anthony J Roberts
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London, U.K.
| |
Collapse
|
19
|
Koikawa K, Ohuchida K, Takesue S, Ando Y, Kibe S, Nakayama H, Endo S, Abe T, Okumura T, Horioka K, Sada M, Iwamoto C, Moriyama T, Nakata K, Miyasaka Y, Ohuchida R, Manabe T, Ohtsuka T, Nagai E, Mizumoto K, Hashizume M, Nakamura M. Pancreatic stellate cells reorganize matrix components and lead pancreatic cancer invasion via the function of Endo180. Cancer Lett 2017; 412:143-154. [PMID: 29061505 DOI: 10.1016/j.canlet.2017.10.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/30/2017] [Accepted: 10/09/2017] [Indexed: 01/06/2023]
Abstract
Specific cell populations leading the local invasion of cancer are called "leading cells". However, the underlying mechanisms are unclear. Here, we identified leading cells in pancreatic cancer and determined how these cells lead and promote cancer cell invasion in the extracellular matrix (ECM). Using three-dimensional matrix remodeling assay, we found that pancreatic stellate cells (PSCs) frequently invaded the collagen matrix with pancreatic cancer cells (PCCs), which invaded behind the invading PSCs. In addition, invading PSCs changed the alignment of collagen fibers, resulting in ECM remodeling and an increase in the parallel fibers along the direction of invading PSCs. Endo180 expression was higher in PSCs than in PCCs, Endo180 knockdown in PSCs attenuated the invasive abilities of PSCs and co-cultured PCCs, and decreased the expression level of phosphorylated myosin light chain 2 (MLC2). In mouse models, Endo180-knockdown PSCs suppressed tumor growth and changes in collagen fiber orientation in co-transplantation with PCCs. Our findings suggest that PSCs lead the local invasion of PCCs by physically remodeling the ECM, possibly via the function of Endo180, which reconstructs the actin cell skeleton by phosphorylation of MLC2.
Collapse
Affiliation(s)
- Kazuhiro Koikawa
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Shin Takesue
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yohei Ando
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shin Kibe
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiromichi Nakayama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sho Endo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiya Abe
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Okumura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohei Horioka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Sada
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chika Iwamoto
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taiki Moriyama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohei Nakata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Miyasaka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Riichi Ohuchida
- Section of Fixed Prosthodontics, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Tatsuya Manabe
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takao Ohtsuka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eishi Nagai
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhiro Mizumoto
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Makoto Hashizume
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
20
|
Chien A, Shih SM, Bower R, Tritschler D, Porter ME, Yildiz A. Dynamics of the IFT machinery at the ciliary tip. eLife 2017; 6:28606. [PMID: 28930071 PMCID: PMC5662288 DOI: 10.7554/elife.28606] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/12/2017] [Indexed: 12/15/2022] Open
Abstract
Intraflagellar transport (IFT) is essential for the elongation and maintenance of eukaryotic cilia and flagella. Due to the traffic jam of multiple trains at the ciliary tip, how IFT trains are remodeled in these turnaround zones cannot be determined by conventional imaging. Using PhotoGate, we visualized the full range of movement of single IFT trains and motors in Chlamydomonas flagella. Anterograde trains split apart and IFT complexes mix with each other at the tip to assemble retrograde trains. Dynein-1b is carried to the tip by kinesin-II as inactive cargo on anterograde trains. Unlike dynein-1b, kinesin-II detaches from IFT trains at the tip and diffuses in flagella. As the flagellum grows longer, diffusion delays return of kinesin-II to the basal body, depleting kinesin-II available for anterograde transport. Our results suggest that dissociation of kinesin-II from IFT trains serves as a negative feedback mechanism that facilitates flagellar length control in Chlamydomonas.
Collapse
Affiliation(s)
- Alexander Chien
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States
| | - Sheng Min Shih
- Physics Department, University of California, Berkeley, Berkeley, United States
| | - Raqual Bower
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, United States
| | - Douglas Tritschler
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, United States
| | - Mary E Porter
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, United States
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States.,Physics Department, University of California, Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
21
|
Prevo B, Scholey JM, Peterman EJG. Intraflagellar transport: mechanisms of motor action, cooperation, and cargo delivery. FEBS J 2017; 284:2905-2931. [PMID: 28342295 PMCID: PMC5603355 DOI: 10.1111/febs.14068] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/20/2017] [Accepted: 03/23/2017] [Indexed: 02/06/2023]
Abstract
Intraflagellar transport (IFT) is a form of motor-dependent cargo transport that is essential for the assembly, maintenance, and length control of cilia, which play critical roles in motility, sensory reception, and signal transduction in virtually all eukaryotic cells. During IFT, anterograde kinesin-2 and retrograde IFT dynein motors drive the bidirectional transport of IFT trains that deliver cargo, for example, axoneme precursors such as tubulins as well as molecules of the signal transduction machinery, to their site of assembly within the cilium. Following its discovery in Chlamydomonas, IFT has emerged as a powerful model system for studying general principles of motor-dependent cargo transport and we now appreciate the diversity that exists in the mechanism of IFT within cilia of different cell types. The absence of heterotrimeric kinesin-2 function, for example, causes a complete loss of both IFT and cilia in Chlamydomonas, but following its loss in Caenorhabditis elegans, where its primary function is loading the IFT machinery into cilia, homodimeric kinesin-2-driven IFT persists and assembles a full-length cilium. Generally, heterotrimeric kinesin-2 and IFT dynein motors are thought to play widespread roles as core IFT motors, whereas homodimeric kinesin-2 motors are accessory motors that mediate different functions in a broad range of cilia, in some cases contributing to axoneme assembly or the delivery of signaling molecules but in many other cases their ciliary functions, if any, remain unknown. In this review, we focus on mechanisms of motor action, motor cooperation, and motor-dependent cargo delivery during IFT.
Collapse
Affiliation(s)
- Bram Prevo
- Department of Cellular & Molecular Medicine, University of California San Diego, CA, USA
- Ludwig Institute for Cancer Research, San Diego, CA, USA
| | - Jonathan M Scholey
- Department of Molecular & Cell Biology, University of California Davis, CA, USA
| | - Erwin J G Peterman
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Yi P, Li WJ, Dong MQ, Ou G. Dynein-Driven Retrograde Intraflagellar Transport Is Triphasic in C. elegans Sensory Cilia. Curr Biol 2017; 27:1448-1461.e7. [PMID: 28479320 DOI: 10.1016/j.cub.2017.04.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/24/2017] [Accepted: 04/10/2017] [Indexed: 11/25/2022]
Abstract
Cytoplasmic dynein-2 powers retrograde intraflagellar transport that is essential for cilium formation and maintenance. Inactivation of dynein-2 by mutations in DYNC2H1 causes skeletal dysplasias, and it remains unclear how the dynein-2 heavy chain moves in cilia. Here, using the genome-editing technique to produce fluorescent dynein-2 heavy chain in Caenorhabditis elegans, we show by high-resolution live microscopy that dynein-2 moves in a surprising way along distinct ciliary domains. Dynein-2 shows triphasic movement in the retrograde direction: dynein-2 accelerates in the ciliary distal region and then moves at maximum velocity and finally decelerates adjacent to the base, which may represent a physical obstacle due to transition zone barriers. By knocking the conserved ciliopathy-related mutations into the C. elegans dynein-2 heavy chain, we find that these mutations reduce its transport speed and frequency. Disruption of the dynein-2 tail domain, light intermediate chain, or intraflagellar transport (IFT)-B complex abolishes dynein-2's ciliary localization, revealing their important roles in ciliary entry of dynein-2. Furthermore, our affinity purification and genetic analyses show that IFT-A subunits IFT-139 and IFT-43 function redundantly to promote dynein-2 motility. These results reveal the molecular regulation of dynein-2 movement in sensory cilia.
Collapse
Affiliation(s)
- Peishan Yi
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Wen-Jun Li
- National Institute of Biological Science, 7 Science Park Road, ZGC Life Science Park, Beijing 102206, China
| | - Meng-Qiu Dong
- National Institute of Biological Science, 7 Science Park Road, ZGC Life Science Park, Beijing 102206, China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
23
|
Ishikawa H, Marshall WF. Intraflagellar Transport and Ciliary Dynamics. Cold Spring Harb Perspect Biol 2017; 9:9/3/a021998. [PMID: 28249960 DOI: 10.1101/cshperspect.a021998] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cilia and flagella are microtubule-based organelles whose assembly requires a motile process, known as intraflagellar transport (IFT), to bring tubulin and other components to the distal tip of the growing structure. The IFT system uses a multiprotein complex with components that appear to be specialized for the transport of different sets of cargo proteins. The mechanisms by which cargo is selected for ciliary import and transport by IFT remain an area of active research. The complex dynamics of cilia and flagella are under constant regulation to ensure proper length control, and this regulation appears to involve regulation at the stage of IFT injection into the flagellum, as well as regulation of flagellar disassembly and, possibly, of cargo binding. Cilia and flagella thus represent a convenient model system to study how multiple motile and signaling pathways cooperate to control the assembly and dynamics of a complex cellular structure.
Collapse
Affiliation(s)
- Hiroaki Ishikawa
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158
| | - Wallace F Marshall
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|
24
|
Mijalkovic J, Prevo B, Oswald F, Mangeol P, Peterman EJG. Ensemble and single-molecule dynamics of IFT dynein in Caenorhabditis elegans cilia. Nat Commun 2017; 8:14591. [PMID: 28230057 PMCID: PMC5331336 DOI: 10.1038/ncomms14591] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 01/13/2017] [Indexed: 12/14/2022] Open
Abstract
Cytoplasmic dyneins drive microtubule-based, minus-end directed transport in eukaryotic cells. Whereas cytoplasmic dynein 1 has been widely studied, IFT dynein has received far less attention. Here, we use fluorescence microscopy of labelled motors in living Caenorhabditis elegans to investigate IFT-dynein motility at the ensemble and single-molecule level. We find that while the kinesin composition of motor ensembles varies along the track, the amount of dynein remains relatively constant. Remarkably, this does not result in directionality changes of cargo along the track, as has been reported for other opposite-polarity, tug-of-war motility systems. At the single-molecule level, IFT-dynein trajectories reveal unexpected dynamics, including diffusion at the base, and pausing and directional switches along the cilium. Stochastic simulations show that the ensemble IFT-dynein distribution depends upon the probability of single-motor directional switches. Our results provide quantitative insight into IFT-dynein dynamics in vivo, shedding light on the complex functioning of dynein motors in general.
Collapse
Affiliation(s)
- Jona Mijalkovic
- Department of Physics and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands
| | - Bram Prevo
- Department of Physics and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands
| | - Felix Oswald
- Department of Physics and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands
| | - Pierre Mangeol
- Department of Physics and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands
| | - Erwin J. G. Peterman
- Department of Physics and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
25
|
Taschner M, Lorentzen E. The Intraflagellar Transport Machinery. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a028092. [PMID: 27352625 DOI: 10.1101/cshperspect.a028092] [Citation(s) in RCA: 252] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Eukaryotic cilia and flagella are evolutionarily conserved organelles that protrude from the cell surface. The unique location and properties of cilia allow them to function in vital processes such as motility and signaling. Ciliary assembly and maintenance rely on intraflagellar transport (IFT), the bidirectional movement of a multicomponent transport system between the ciliary base and tip. Since its initial discovery more than two decades ago, considerable effort has been invested in dissecting the molecular mechanisms of IFT in a variety of model organisms. Importantly, IFT was shown to be essential for mammalian development, and defects in this process cause a number of human pathologies known as ciliopathies. Here, we review current knowledge of IFT with a particular emphasis on the IFT machinery and specific mechanisms of ciliary cargo recognition and transport.
Collapse
Affiliation(s)
- Michael Taschner
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Esben Lorentzen
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| |
Collapse
|
26
|
The trafficking of bacterial type rhodopsins into the Chlamydomonas eyespot and flagella is IFT mediated. Sci Rep 2016; 6:34646. [PMID: 27694882 PMCID: PMC5046144 DOI: 10.1038/srep34646] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/14/2016] [Indexed: 11/08/2022] Open
Abstract
The bacterial type rhodopsins are present in all the three domains of life. In contrast to the animal type rhodopsin that performs mainly sensory functions in higher eukaryotes, the bacterial type rhodopsin could function as ion channel, pumps and as sensory proteins. The functioning of rhodopsin in higher eukaryotes requires the transport of rhodopsin from its site of synthesis to the ciliated outer segment of the photoreceptive cells. However, the trafficking of bacterial type rhodopsin from its site of synthesis to the position of action is not characterized. Here we present the first report for the existence of an IFT-interactome mediated trafficking of the bacterial type rhodopsins into eyespot and flagella of the Chlamydomonas. We show that there is a light-dependent, dynamic localization of rhodopsins between flagella and eyespot of Chlamydomonas. The involvement of IFT components in the rhodopsin trafficking was elucidated by the use of conditional IFT mutants. We found that rhodopsin can be co-immunoprecipitated with the components of IFT machinery and with other protein components required for the IFT-cargo complex formation. These findings show that light-regulated localization of rhodopsin is not restricted to animals thereby suggesting that rhodopsin trafficking is an IFT dependent ancient process.
Collapse
|
27
|
Reck J, Schauer AM, VanderWaal Mills K, Bower R, Tritschler D, Perrone CA, Porter ME. The role of the dynein light intermediate chain in retrograde IFT and flagellar function in Chlamydomonas. Mol Biol Cell 2016; 27:2404-22. [PMID: 27251063 PMCID: PMC4966982 DOI: 10.1091/mbc.e16-03-0191] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/26/2016] [Indexed: 12/28/2022] Open
Abstract
The assembly of cilia and flagella depends on the activity of two microtubule motor complexes, kinesin-2 and dynein-2/1b, but the specific functions of the different subunits are poorly defined. Here we analyze Chlamydomonas strains expressing different amounts of the dynein 1b light intermediate chain (D1bLIC). Disruption of D1bLIC alters the stability of the dynein 1b complex and reduces both the frequency and velocity of retrograde intraflagellar transport (IFT), but it does not eliminate retrograde IFT. Flagellar assembly, motility, gliding, and mating are altered in a dose-dependent manner. iTRAQ-based proteomics identifies a small subset of proteins that are significantly reduced or elevated in d1blic flagella. Transformation with D1bLIC-GFP rescues the mutant phenotypes, and D1bLIC-GFP assembles into the dynein 1b complex at wild-type levels. D1bLIC-GFP is transported with anterograde IFT particles to the flagellar tip, dissociates into smaller particles, and begins processive retrograde IFT in <2 s. These studies demonstrate the role of D1bLIC in facilitating the recycling of IFT subunits and other proteins, identify new components potentially involved in the regulation of IFT, flagellar assembly, and flagellar signaling, and provide insight into the role of D1bLIC and retrograde IFT in other organisms.
Collapse
Affiliation(s)
- Jaimee Reck
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 R&D Systems, Minneapolis, MN 55413
| | - Alexandria M Schauer
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108
| | - Kristyn VanderWaal Mills
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 Anoka Technical College, Anoka, MN 55303
| | - Raqual Bower
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Douglas Tritschler
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Catherine A Perrone
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 Medtronic, Minneapolis, MN 55432
| | - Mary E Porter
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
28
|
Qiao Y, Wen J, Tang F, Martell S, Shomer N, Leung PCK, Stephenson MD, Rajcan-Separovic E. Whole exome sequencing in recurrent early pregnancy loss. Mol Hum Reprod 2016; 22:364-72. [PMID: 26826164 DOI: 10.1093/molehr/gaw008] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/25/2016] [Indexed: 12/20/2022] Open
Abstract
STUDY HYPOTHESIS Exome sequencing can identify genetic causes of idiopathic recurrent pregnancy loss (RPL). STUDY FINDING We identified compound heterozygous deleterious mutations affecting DYNC2H1 and ALOX15 in two out of four families with RPL. Both genes have a role in early development. Bioinformatics analysis of all genes with rare and putatively pathogenic mutations in miscarriages and couples showed enrichment in pathways relevant to pregnancy loss, including the complement and coagulation cascades pathways. WHAT IS KNOWN ALREADY Next generation sequencing (NGS) is increasingly being used to identify known and novel gene mutations in children with developmental delay and in fetuses with ultrasound-detected anomalies. In contrast, NGS is rarely used to study pregnancy loss. Chromosome microarray analysis detects putatively causative DNA copy number variants (CNVs) in ∼2% of miscarriages and CNVs of unknown significance (predominantly parental in origin) in up to 40% of miscarriages. Therefore, a large number of miscarriages still have an unknown cause. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Whole exome sequencing (WES) was performed using Illumina HiSeq 2000 platform on seven euploid miscarriages from four families with RPL. Golden Helix SVS v8.1.5 was used for data assessment and inheritance analysis for deleterious DNA variants predicted to severely disrupt protein-coding genes by introducing a frameshift, loss of the stop codon, gain of the stop codon, changes in splicing or the initial codon. Webgestalt (http://bioinfo.vanderbilt.edu/webgestalt/) was used for pathway and disease association enrichment analysis of a gene pool containing putatively pathogenic variants in miscarriages and couples in comparison to control gene pools. MAIN RESULTS AND THE ROLE OF CHANCE Compound heterozygous mutations in DYNC2H1 and ALOX15 were identified in miscarriages from two families with RPL. DYNC2H1 is involved in cilia biogenesis and has been associated with fetal lethality in humans. ALOX15 is expressed in placenta and its dysregulation has been associated with inflammation, placental, dysfunction, abnormal oxidative stress response and angiogenesis. The pool of putatively pathogenic single nucleotide variants (SNVs) and small insertions and deletions (indels) detected in the miscarriages showed enrichment in 'complement and coagulation cascades pathway', and 'ciliary motility disorders'. We conclude that CNVs, individual SNVs and pool of deleterious gene mutations identified by exome sequencing could contribute to RPL. LIMITATIONS, REASONS FOR CAUTION The size of our sample cohort is small. The functional effect of candidate mutations should be evaluated to determine whether the mutations are causative. WIDER IMPLICATIONS OF THE FINDINGS This is the first study to assess whether SNVs may contribute to the pathogenesis of miscarriage. Furthermore, our findings suggest that collective effect of mutations in relevant biological pathways could be implicated in RPL. STUDY FUNDING AND COMPETING INTERESTS The study was funded by Canadian Institutes of Health Research (grant MOP 106467) and Michael Smith Foundation of Health Research Career Scholar salary award to ERS.
Collapse
Affiliation(s)
- Ying Qiao
- Department of Pathology, BC Child and Family Research Institute (CFRI), University of British Columbia (UBC), Vancouver, BC, Canada
| | - Jiadi Wen
- University of Texas, Dallas, TX, USA
| | - Flamingo Tang
- Department of Pathology, BC Child and Family Research Institute (CFRI), University of British Columbia (UBC), Vancouver, BC, Canada
| | - Sally Martell
- Department of Pathology, BC Child and Family Research Institute (CFRI), University of British Columbia (UBC), Vancouver, BC, Canada
| | - Naomi Shomer
- Department of Pathology, BC Child and Family Research Institute (CFRI), University of British Columbia (UBC), Vancouver, BC, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, Canada V6Z 2 K5
| | - Mary D Stephenson
- University of Chicago and University of Illinois at Chicago, Chicago, IL, USA
| | - Evica Rajcan-Separovic
- Department of Pathology, BC Child and Family Research Institute (CFRI), University of British Columbia (UBC), Vancouver, BC, Canada
| |
Collapse
|
29
|
Recombinant Reconstitution and Purification of the IFT-B Core Complex from Chlamydomonas reinhardtii. Methods Mol Biol 2016; 1454:69-82. [PMID: 27514916 DOI: 10.1007/978-1-4939-3789-9_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Eukaryotic cilia and flagella are assembled and maintained by intraflagellar transport (IFT), the bidirectional transport of proteins between the ciliary base and tip. IFT is mediated by the multi-subunit IFT complex, which simultaneously binds cargo proteins and the ciliary motors. So far 22 subunits of the IFT complex have been identified, but insights into the biochemical architecture and especially the three-dimensional structure of this machinery are only starting to emerge because of difficulties in obtaining homogeneous material suitable for structural analysis. Here, we describe a protocol for the purification and reconstitution of a complex containing nine Chlamydomonas reinhardtii IFT proteins, commonly known as the IFT-B core complex. In our hands, this protocol routinely yields several milligrams of pure complex suitable for structural analysis by X-ray crystallography and single-particle cryo-electron microscopy.
Collapse
|
30
|
Kessler K, Wunderlich I, Uebe S, Falk NS, Gießl A, Brandstätter JH, Popp B, Klinger P, Ekici AB, Sticht H, Dörr HG, Reis A, Roepman R, Seemanová E, Thiel CT. DYNC2LI1 mutations broaden the clinical spectrum of dynein-2 defects. Sci Rep 2015; 5:11649. [PMID: 26130459 PMCID: PMC4486972 DOI: 10.1038/srep11649] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/27/2015] [Indexed: 12/30/2022] Open
Abstract
Skeletal ciliopathies are a heterogeneous group of autosomal recessive osteochondrodysplasias caused by defects in formation, maintenance and function of the primary cilium. Mutations in the underlying genes affect the molecular motors, intraflagellar transport complexes (IFT), or the basal body. The more severe phenotypes are caused by defects of genes of the dynein-2 complex, where mutations in DYNC2H1, WDR34 and WDR60 have been identified. In a patient with a Jeune-like phenotype we performed exome sequencing and identified compound heterozygous missense and nonsense mutations in DYNC2LI1 segregating with the phenotype. DYNC2LI1 is ubiquitously expressed and interacts with DYNC2H1 to form the dynein-2 complex important for retrograde IFT. Using DYNC2LI1 siRNA knockdown in fibroblasts we identified a significantly reduced cilia length proposed to affect cilia function. In addition, depletion of DYNC2LI1 induced altered cilia morphology with broadened ciliary tips and accumulation of IFT-B complex proteins in accordance with retrograde IFT defects. Our results expand the clinical spectrum of ciliopathies caused by defects of the dynein-2 complex.
Collapse
Affiliation(s)
- Kristin Kessler
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ina Wunderlich
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Steffen Uebe
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nathalie S Falk
- Animal Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Gießl
- Animal Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Bernt Popp
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Patricia Klinger
- Department of Orthopaedic Rheumatology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Heinrich Sticht
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Helmuth-Günther Dörr
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ronald Roepman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Eva Seemanová
- Department of Clinical Genetics, Institute of Biology and Medical Genetics, 2nd Medical School, Charles University, Prague, Czech Republic
| | - Christian T Thiel
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
31
|
Inaba M, Buszczak M, Yamashita YM. Nanotubes mediate niche-stem-cell signalling in the Drosophila testis. Nature 2015; 523:329-32. [PMID: 26131929 PMCID: PMC4586072 DOI: 10.1038/nature14602] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 06/01/2015] [Indexed: 12/15/2022]
Abstract
Stem cell niches provide resident stem cells with signals that specify their identity. Niche signals act over a short range such that only stem cells but not their differentiating progeny receive the self-renewing signals. However, the cellular mechanisms that limit niche signalling to stem cells remain poorly understood. Here we show that the Drosophila male germline stem cells form previously unrecognized structures, microtubule-based nanotubes, which extend into the hub, a major niche component. Microtubule-based nanotubes are observed specifically within germline stem cell populations, and require intraflagellar transport proteins for their formation. The bone morphogenetic protein (BMP) receptor Tkv localizes to microtubule-based nanotubes. Perturbation of microtubule-based nanotubes compromises activation of Dpp signalling within germline stem cells, leading to germline stem cell loss. Moreover, Dpp ligand and Tkv receptor interaction is necessary and sufficient for microtubule-based nanotube formation. We propose that microtubule-based nanotubes provide a novel mechanism for selective receptor-ligand interaction, contributing to the short-range nature of niche-stem-cell signalling.
Collapse
Affiliation(s)
- Mayu Inaba
- 1] Life Sciences Institute, Department of Cell and Developmental Biology Medical School, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Howard Hughes Medical Institute, University of Michigan Ann Arbor, Michigan 48109, USA [3] Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Yukiko M Yamashita
- 1] Life Sciences Institute, Department of Cell and Developmental Biology Medical School, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Howard Hughes Medical Institute, University of Michigan Ann Arbor, Michigan 48109, USA
| |
Collapse
|
32
|
Taylor SP, Dantas TJ, Duran I, Wu S, Lachman RS, Nelson SF, Cohn DH, Vallee RB, Krakow D. Mutations in DYNC2LI1 disrupt cilia function and cause short rib polydactyly syndrome. Nat Commun 2015; 6:7092. [PMID: 26077881 PMCID: PMC4470332 DOI: 10.1038/ncomms8092] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 04/02/2015] [Indexed: 12/16/2022] Open
Abstract
The short rib polydactyly syndromes (SRPSs) are a heterogeneous group of autosomal recessive, perinatal lethal skeletal disorders characterized primarily by short, horizontal ribs, short limbs and polydactyly. Mutations in several genes affecting intraflagellar transport (IFT) cause SRPS but they do not account for all cases. Here we identify an additional SRPS gene and further unravel the functional basis for IFT. We perform whole-exome sequencing and identify mutations in a new disease-producing gene, cytoplasmic dynein-2 light intermediate chain 1, DYNC2LI1, segregating with disease in three families. Using primary fibroblasts, we show that DYNC2LI1 is essential for dynein-2 complex stability and that mutations in DYNC2LI1 result in variable length, including hyperelongated, cilia, Hedgehog pathway impairment and ciliary IFT accumulations. The findings in this study expand our understanding of SRPS locus heterogeneity and demonstrate the importance of DYNC2LI1 in dynein-2 complex stability, cilium function, Hedgehog regulation and skeletogenesis.
Collapse
Affiliation(s)
- S Paige Taylor
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Tiago J Dantas
- Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
| | - Ivan Duran
- Department of Orthopaedic Surgery and Orthopaedic Institute for Children, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Sulin Wu
- Department of Orthopaedic Surgery and Orthopaedic Institute for Children, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Ralph S Lachman
- International Skeletal Dysplasia Registry, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | | - Stanley F Nelson
- 1] Department of Human Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA [2] Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Daniel H Cohn
- 1] Department of Orthopaedic Surgery and Orthopaedic Institute for Children, University of California, Los Angeles, Los Angeles, California 90095, USA [2] International Skeletal Dysplasia Registry, University of California, Los Angeles, Los Angeles, California 90095, USA [3] Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Richard B Vallee
- Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
| | - Deborah Krakow
- 1] Department of Human Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA [2] Department of Orthopaedic Surgery and Orthopaedic Institute for Children, University of California, Los Angeles, Los Angeles, California 90095, USA [3] International Skeletal Dysplasia Registry, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
33
|
Affiliation(s)
- Yuqing Hou
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, United States
| | - George B Witman
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, United States.
| |
Collapse
|
34
|
Lin H, Dutcher SK. Genetic and genomic approaches to identify genes involved in flagellar assembly in Chlamydomonas reinhardtii. Methods Cell Biol 2015; 127:349-86. [PMID: 25837400 DOI: 10.1016/bs.mcb.2014.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Flagellar assembly requires intraflagellar transport of components from the cell body to the flagellar tip for assembly. The understanding of flagellar assembly has been aided by the ease of biochemistry and the availability of mutants in the unicellular green alga, Chlamydomonas reinhardtii. In this chapter, we discuss means to identify genes involved in these processes using forward and reverse genetics. In particular, the ease and low cost of whole genome sequencing (WGS) will help to make gene identification easier and promote the understanding of this important process.
Collapse
Affiliation(s)
- Huawen Lin
- Department of Genetics, Washington University, St. Louis, MO, USA
| | - Susan K Dutcher
- Department of Genetics, Washington University, St. Louis, MO, USA.
| |
Collapse
|
35
|
Taschner M, Kotsis F, Braeuer P, Kuehn EW, Lorentzen E. Crystal structures of IFT70/52 and IFT52/46 provide insight into intraflagellar transport B core complex assembly. ACTA ACUST UNITED AC 2015; 207:269-82. [PMID: 25349261 PMCID: PMC4210449 DOI: 10.1083/jcb.201408002] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cilia are microtubule-based organelles that assemble via intraflagellar transport (IFT) and function as signaling hubs on eukaryotic cells. IFT relies on molecular motors and IFT complexes that mediate the contacts with ciliary cargo. To elucidate the architecture of the IFT-B complex, we reconstituted and purified the nonameric IFT-B core from Chlamydomonas reinhardtii and determined the crystal structures of C. reinhardtii IFT70/52 and Tetrahymena IFT52/46 subcomplexes. The 2.5-Å resolution IFT70/52 structure shows that IFT52330-370 is buried deeply within the IFT70 tetratricopeptide repeat superhelix. Furthermore, the polycystic kidney disease protein IFT88 binds IFT52281-329 in a complex that interacts directly with IFT70/IFT52330-381 in trans. The structure of IFT52C/IFT46C was solved at 2.3 Å resolution, and we show that it is essential for IFT-B core integrity by mediating interaction between IFT88/70/52/46 and IFT81/74/27/25/22 subcomplexes. Consistent with this, overexpression of mammalian IFT52C in MDCK cells is dominant-negative and causes IFT protein mislocalization and disrupted ciliogenesis. These data further rationalize several ciliogenesis phenotypes of IFT mutant strains.
Collapse
Affiliation(s)
- Michael Taschner
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Fruzsina Kotsis
- Renal Division, University Hospital Freiburg, D-79106 Freiburg, Germany
| | - Philipp Braeuer
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| | - E Wolfgang Kuehn
- Renal Division, University Hospital Freiburg, D-79106 Freiburg, Germany BIOSS Center for Biological Signaling Studies, Albert-Ludwig-University, 79104 Freiburg, Germany
| | - Esben Lorentzen
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| |
Collapse
|
36
|
Abstract
Primary cilia are essential cellular organelles projecting from the cell surface to sense and transduce developmental signaling. They are tiny but have complicated structures containing microtubule (MT)-based internal structures (the axoneme) and mother centriole formed basal body. Intraflagellar transport (Ift) operated by Ift proteins and motors are indispensable for cilia formation and function. Mutations in Ift proteins or Ift motors cause various human diseases, some of which have severe bone defects. Over the last few decades, major advances have occurred in understanding the roles of these proteins and cilia in bone development and remodeling by examining cilia/Ift protein-related human diseases and establishing mouse transgenic models. In this review, we describe current advances in the understanding of the cilia/Ift structure and function. We further summarize cilia/Ift-related human diseases and current mouse models with an emphasis on bone-related phenotypes, cilia morphology, and signaling pathways.
Collapse
Affiliation(s)
- Xue Yuan
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Shuying Yang
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, 3435 Main Street, Buffalo, NY, 14214, USA
- Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, 701 Ellicott St, Buffalo, NY, 14203, USA
| |
Collapse
|
37
|
Schroeder CM, Ostrem JML, Hertz NT, Vale RD. A Ras-like domain in the light intermediate chain bridges the dynein motor to a cargo-binding region. eLife 2014; 3:e03351. [PMID: 25272277 PMCID: PMC4359372 DOI: 10.7554/elife.03351] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/27/2014] [Indexed: 11/18/2022] Open
Abstract
Cytoplasmic dynein, a microtubule-based motor protein, transports many intracellular cargos by means of its light intermediate chain (LIC). In this study, we have determined the crystal structure of the conserved LIC domain, which binds the motor heavy chain, from a thermophilic fungus. We show that the LIC has a Ras-like fold with insertions that distinguish it from Ras and other previously described G proteins. Despite having a G protein fold, the fungal LIC has lost its ability to bind nucleotide, while the human LIC1 binds GDP preferentially over GTP. We show that the LIC G domain binds the dynein heavy chain using a conserved patch of aromatic residues, whereas the less conserved C-terminal domain binds several Rab effectors involved in membrane transport. These studies provide the first structural information and insight into the evolutionary origin of the LIC as well as revealing how this critical subunit connects the dynein motor to cargo. DOI:http://dx.doi.org/10.7554/eLife.03351.001 Living cells are constantly bustling with activity. They take in nutrients, carefully split their genetic information between new cells when they divide, and move their internal components into the right positions. To move these cargos around, the cell uses proteins—such as dynein—that essentially walks along the cell's internal scaffolding by making step-like movements. However, how a dynein motor protein is tethered to its cargo is not known in detail. One part of the dynein structure thought to play an important role in binding the motor to its cargo is called the light intermediate chain (LIC). Schroeder et al. used X-ray crystallography to solve the structure of the light intermediate chain of dynein motors from a fungus. This information with other experimental techniques reveals that the LIC subunit has two distinct regions: one that binds to three different proteins that serve as adapters for cargo attachment, and one that binds to the rest of the dynein motor. The structure of the LIC includes a fold that is also found in many proteins belonging to a family of enzymes called GTPases, suggesting that the LIC evolved from this family. GTPases use a molecule called GTP to release energy and often act as on–off switches for various processes inside cells. However, the fungal LIC subunit cannot bind to molecules called nucleotides—which can act as energy sources—the way GTPases do. This prevents the LIC subunit from acting as a molecular switch. In contrast, the human version of the LIC is able to bind to some nucleotides, in particular one called GDP. However, since the LIC cannot bind to the high-energy nucleotide GTP, the human LICs most likely also do not act as on–off switches: Schroeder et al. instead propose that the LIC may use GDP only to stabilize the protein. It remains to be seen how cargo attachment to the LIC is regulated. Further structural work and biochemistry with the LIC bound to the dynein motor and cargo will provide more insight into the mechanism of intracellular cargo transport. DOI:http://dx.doi.org/10.7554/eLife.03351.002
Collapse
Affiliation(s)
- Courtney M Schroeder
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Jonathan M L Ostrem
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Nicholas T Hertz
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Ronald D Vale
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
38
|
Krock BL, Perkins BD. The Par-PrkC polarity complex is required for cilia growth in zebrafish photoreceptors. PLoS One 2014; 9:e104661. [PMID: 25144710 PMCID: PMC4140697 DOI: 10.1371/journal.pone.0104661] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/13/2014] [Indexed: 01/09/2023] Open
Abstract
Specification and development of the apical membrane in epithelial cells requires the function of polarity proteins, including Pard3 and an atypical protein kinase C (PrkC). Many epithelial cells possess microtubule-based organelles, known as cilia, that project from their apical surface and the membrane surrounding the cilium is contiguous with the apical cell membrane. Although cilia formation in cultured cells required Pard3, the in vivo requirement for Pard3 in cilia development remains unknown. The vertebrate photoreceptor outer segment represents a highly specialized cilia structure in which to identify factors necessary for apical and ciliary membrane formation. Pard3 and PrkC localized to distinct domains within vertebrate photoreceptors. Using partial morpholino knockdown, photo-morpholinos, and pharmacological approaches, the function of Pard3 and PrkC were found to be required for the formation of both the apical and ciliary membrane of vertebrate photoreceptors. Inhibition of Pard3 or PrkC activity significantly reduced the size of photoreceptor outer segments and resulted in mislocalization of rhodopsin. Suppression of Pard3 or PrkC also led to a reduction in cilia size and cilia number in Kupffer's Vesicle, which resulted in left-right asymmetry defects. Thus, the Par-PrkC complex functions in cilia formation in vivo and this likely reflects a general role in specifying non-ciliary and ciliary compartments of the apical domain.
Collapse
Affiliation(s)
- Bryan L. Krock
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Brian D. Perkins
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| |
Collapse
|
39
|
Bhogaraju S, Weber K, Engel BD, Lechtreck KF, Lorentzen E. Getting tubulin to the tip of the cilium: One IFT train, many different tubulin cargo-binding sites? Bioessays 2014; 36:463-7. [DOI: 10.1002/bies.201400007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sagar Bhogaraju
- Department of Structural Cell Biology; Max-Planck-Institute of Biochemistry; Martinsried Germany
| | - Kristina Weber
- Department of Structural Cell Biology; Max-Planck-Institute of Biochemistry; Martinsried Germany
| | - Benjamin D. Engel
- Department of Molecular Structural Biology; Max-Planck-Institute of Biochemistry; Martinsried Germany
| | | | - Esben Lorentzen
- Department of Structural Cell Biology; Max-Planck-Institute of Biochemistry; Martinsried Germany
| |
Collapse
|
40
|
Roberts AJ, Kon T, Knight PJ, Sutoh K, Burgess SA. Functions and mechanics of dynein motor proteins. Nat Rev Mol Cell Biol 2013; 14:713-26. [PMID: 24064538 DOI: 10.1038/nrm3667] [Citation(s) in RCA: 367] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fuelled by ATP hydrolysis, dyneins generate force and movement on microtubules in a wealth of biological processes, including ciliary beating, cell division and intracellular transport. The large mass and complexity of dynein motors have made elucidating their mechanisms a sizable task. Yet, through a combination of approaches, including X-ray crystallography, cryo-electron microscopy, single-molecule assays and biochemical experiments, important progress has been made towards understanding how these giant motor proteins work. From these studies, a model for the mechanochemical cycle of dynein is emerging, in which nucleotide-driven flexing motions within the AAA+ ring of dynein alter the affinity of its microtubule-binding stalk and reshape its mechanical element to generate movement.
Collapse
Affiliation(s)
- Anthony J Roberts
- 1] Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK. [2] Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
41
|
Asante D, Maccarthy-Morrogh L, Townley AK, Weiss MA, Katayama K, Palmer KJ, Suzuki H, Westlake CJ, Stephens DJ. A role for the Golgi matrix protein giantin in ciliogenesis through control of the localization of dynein-2. J Cell Sci 2013; 126:5189-97. [PMID: 24046448 DOI: 10.1242/jcs.131664] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The correct formation of primary cilia is central to the development and function of nearly all cells and tissues. Cilia grow from the mother centriole by extension of a microtubule core, the axoneme, which is then surrounded with a specialized ciliary membrane that is continuous with the plasma membrane. Intraflagellar transport moves particles along the length of the axoneme to direct assembly of the cilium and is also required for proper cilia function. The microtubule motor, cytoplasmic dynein-2 mediates retrograde transport along the axoneme from the tip to the base; dynein-2 is also required for some aspects of cilia formation. In most cells, the Golgi lies adjacent to the centrioles and key components of the cilia machinery localize to this organelle. Golgi-localized proteins have also been implicated in ciliogenesis and in intraflagellar transport. Here, we show that the transmembrane Golgi matrix protein giantin (GOLGB1) is required for ciliogenesis. We show that giantin is not required for the Rab11-Rabin8-Rab8 pathway that has been implicated in the early stages of ciliary membrane formation. Instead we find that suppression of giantin results in mis-localization of WDR34, the intermediate chain of dynein-2. Highly effective depletion of giantin or WDR34 leads to an inability of cells to form primary cilia. Partial depletion of giantin or of WDR34 leads to an increase in cilia length consistent with the concept that giantin acts through dynein-2. Our data implicate giantin in ciliogenesis through control of dynein-2 localization.
Collapse
Affiliation(s)
- David Asante
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Patel-King RS, Gilberti RM, Hom EFY, King SM. WD60/FAP163 is a dynein intermediate chain required for retrograde intraflagellar transport in cilia. Mol Biol Cell 2013; 24:2668-77. [PMID: 23864713 PMCID: PMC3756919 DOI: 10.1091/mbc.e13-05-0266] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Retrograde intraflagellar transport (IFT) is required for assembly of cilia. We identify a Chlamydomonas flagellar protein (flagellar-associated protein 163 [FAP163]) as being closely related to the D1bIC(FAP133) intermediate chain (IC) of the dynein that powers this movement. Biochemical analysis revealed that FAP163 is present in the flagellar matrix and is actively trafficked by IFT. Furthermore, FAP163 copurified with D1bIC(FAP133) and the LC8 dynein light chain, indicating that it is an integral component of the retrograde IFT dynein. To assess the functional role of FAP163, we generated an RNA interference knockdown of the orthologous protein (WD60) in planaria. The Smed-wd60(RNAi) animals had a severe ciliary assembly defect that dramatically compromised whole-organism motility. Most cilia were present as short stubs that had accumulated large quantities of IFT particle-like material between the doublet microtubules and the membrane. The few remaining approximately full-length cilia had a chaotic beat with a frequency reduced from 24 to ∼10 Hz. Thus WD60/FAP163 is a dynein IC that is absolutely required for retrograde IFT and ciliary assembly.
Collapse
Affiliation(s)
- Ramila S Patel-King
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | |
Collapse
|
43
|
Schmidts M, Arts HH, Bongers EMHF, Yap Z, Oud MM, Antony D, Duijkers L, Emes RD, Stalker J, Yntema JBL, Plagnol V, Hoischen A, Gilissen C, Forsythe E, Lausch E, Veltman JA, Roeleveld N, Superti-Furga A, Kutkowska-Kazmierczak A, Kamsteeg EJ, Elçioğlu N, van Maarle MC, Graul-Neumann LM, Devriendt K, Smithson SF, Wellesley D, Verbeek NE, Hennekam RCM, Kayserili H, Scambler PJ, Beales PL, Knoers NVAM, Roepman R, Mitchison HM. Exome sequencing identifies DYNC2H1 mutations as a common cause of asphyxiating thoracic dystrophy (Jeune syndrome) without major polydactyly, renal or retinal involvement. J Med Genet 2013; 50:309-23. [PMID: 23456818 PMCID: PMC3627132 DOI: 10.1136/jmedgenet-2012-101284] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 01/21/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Jeune asphyxiating thoracic dystrophy (JATD) is a rare, often lethal, recessively inherited chondrodysplasia characterised by shortened ribs and long bones, sometimes accompanied by polydactyly, and renal, liver and retinal disease. Mutations in intraflagellar transport (IFT) genes cause JATD, including the IFT dynein-2 motor subunit gene DYNC2H1. Genetic heterogeneity and the large DYNC2H1 gene size have hindered JATD genetic diagnosis. AIMS AND METHODS To determine the contribution to JATD we screened DYNC2H1 in 71 JATD patients JATD patients combining SNP mapping, Sanger sequencing and exome sequencing. RESULTS AND CONCLUSIONS We detected 34 DYNC2H1 mutations in 29/71 (41%) patients from 19/57 families (33%), showing it as a major cause of JATD especially in Northern European patients. This included 13 early protein termination mutations (nonsense/frameshift, deletion, splice site) but no patients carried these in combination, suggesting the human phenotype is at least partly hypomorphic. In addition, 21 missense mutations were distributed across DYNC2H1 and these showed some clustering to functional domains, especially the ATP motor domain. DYNC2H1 patients largely lacked significant extra-skeletal involvement, demonstrating an important genotype-phenotype correlation in JATD. Significant variability exists in the course and severity of the thoracic phenotype, both between affected siblings with identical DYNC2H1 alleles and among individuals with different alleles, which suggests the DYNC2H1 phenotype might be subject to modifier alleles, non-genetic or epigenetic factors. Assessment of fibroblasts from patients showed accumulation of anterograde IFT proteins in the ciliary tips, confirming defects similar to patients with other retrograde IFT machinery mutations, which may be of undervalued potential for diagnostic purposes.
Collapse
Affiliation(s)
- Miriam Schmidts
- Molecular Medicine Unit, Birth Defects Research Centre, University College London (UCL) Institute of Child Health, London, UK
| | - Heleen H Arts
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
- Institute for Genetic and Metabolic Disease, Radboud University, Nijmegen, The Netherlands
| | - Ernie M H F Bongers
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
- Institute for Genetic and Metabolic Disease, Radboud University, Nijmegen, The Netherlands
| | - Zhimin Yap
- Molecular Medicine Unit, Birth Defects Research Centre, University College London (UCL) Institute of Child Health, London, UK
| | - Machteld M Oud
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
- Institute for Genetic and Metabolic Disease, Radboud University, Nijmegen, The Netherlands
| | - Dinu Antony
- Molecular Medicine Unit, Birth Defects Research Centre, University College London (UCL) Institute of Child Health, London, UK
| | - Lonneke Duijkers
- Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
- Department of Physiology, Radboud University Medical Centre Nijmegen, Nijmegen, The Netherlands
| | - Richard D Emes
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, Leicestershire, UK
| | - Jim Stalker
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Jan-Bart L Yntema
- Department of Paediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Vincent Plagnol
- Department of Genetics, Environment and Evolution, UCL Genetics Institute (UGI), University College London, London, UK
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
- Institute for Genetic and Metabolic Disease, Radboud University, Nijmegen, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
- Institute for Genetic and Metabolic Disease, Radboud University, Nijmegen, The Netherlands
| | - Elisabeth Forsythe
- Molecular Medicine Unit, Birth Defects Research Centre, University College London (UCL) Institute of Child Health, London, UK
| | - Ekkehart Lausch
- Division of Pediatric Genetics, Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Joris A Veltman
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
- Institute for Genetic and Metabolic Disease, Radboud University, Nijmegen, The Netherlands
| | - Nel Roeleveld
- Institute for Genetic and Metabolic Disease, Radboud University, Nijmegen, The Netherlands
- Department of Epidemiology, Biostatistics and HTA, Radboud University Medical Centre, Nijmegen, The Netherlands
- Nijmegen Centre for Evidence Based Practice, Radboud University, Nijmegen, The Netherlands
| | - Andrea Superti-Furga
- Department of Pediatrics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
- Institute for Genetic and Metabolic Disease, Radboud University, Nijmegen, The Netherlands
| | - Nursel Elçioğlu
- Department of Pediatric Genetics, Marmara University Hospital, Istanbul, Turkey
| | - Merel C van Maarle
- Department of Clinical Genetics, Center for Human and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Koenraad Devriendt
- Laboratory for Genetics of Human Development, Department of Human Genetics, KU Leuven University, Leuven, Belgium
| | - Sarah F Smithson
- Department of Clinical Genetics, St. Michael's Hospital, Bristol, UK
| | - Diana Wellesley
- Faculty of Medicine, University of Southampton and Essex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Nienke E Verbeek
- Department of Medical Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Raoul C M Hennekam
- Department of Pediatrics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hulya Kayserili
- Istanbul Medical Faculty, Medical Genetics Department, Istanbul University, Istanbul, Turkey
| | - Peter J Scambler
- Molecular Medicine Unit, Birth Defects Research Centre, University College London (UCL) Institute of Child Health, London, UK
| | - Philip L Beales
- Molecular Medicine Unit, Birth Defects Research Centre, University College London (UCL) Institute of Child Health, London, UK
| | - Nine VAM Knoers
- Department of Medical Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ronald Roepman
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
- Institute for Genetic and Metabolic Disease, Radboud University, Nijmegen, The Netherlands
| | - Hannah M Mitchison
- Molecular Medicine Unit, Birth Defects Research Centre, University College London (UCL) Institute of Child Health, London, UK
| |
Collapse
|
44
|
Bower R, Tritschler D, Vanderwaal K, Perrone CA, Mueller J, Fox L, Sale WS, Porter ME. The N-DRC forms a conserved biochemical complex that maintains outer doublet alignment and limits microtubule sliding in motile axonemes. Mol Biol Cell 2013; 24:1134-52. [PMID: 23427265 PMCID: PMC3623635 DOI: 10.1091/mbc.e12-11-0801] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The nexin–dynein regulatory complex (N-DRC) is implicated in the control of dynein activity as a structural component of the nexin link. This study identifies several new subunits of the N-DRC and demonstrates for the first time that it forms a discrete biochemical complex that maintains outer doublet integrity and regulates microtubule sliding. The nexin–dynein regulatory complex (N-DRC) is proposed to coordinate dynein arm activity and interconnect doublet microtubules. Here we identify a conserved region in DRC4 critical for assembly of the N-DRC into the axoneme. At least 10 subunits associate with DRC4 to form a discrete complex distinct from other axonemal substructures. Transformation of drc4 mutants with epitope-tagged DRC4 rescues the motility defects and restores assembly of missing DRC subunits and associated inner-arm dyneins. Four new DRC subunits contain calcium-signaling motifs and/or AAA domains and are nearly ubiquitous in species with motile cilia. However, drc mutants are motile and maintain the 9 + 2 organization of the axoneme. To evaluate the function of the N-DRC, we analyzed ATP-induced reactivation of isolated axonemes. Rather than the reactivated bending observed with wild-type axonemes, ATP addition to drc-mutant axonemes resulted in splaying of doublets in the distal region, followed by oscillatory bending between pairs of doublets. Thus the N-DRC provides some but not all of the resistance to microtubule sliding and helps to maintain optimal alignment of doublets for productive flagellar motility. These findings provide new insights into the mechanisms that regulate motility and further highlight the importance of the proximal region of the axoneme in generating flagellar bending.
Collapse
Affiliation(s)
- Raqual Bower
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Rands CM, Darling A, Fujita M, Kong L, Webster MT, Clabaut C, Emes RD, Heger A, Meader S, Hawkins MB, Eisen MB, Teiling C, Affourtit J, Boese B, Grant PR, Grant BR, Eisen JA, Abzhanov A, Ponting CP. Insights into the evolution of Darwin's finches from comparative analysis of the Geospiza magnirostris genome sequence. BMC Genomics 2013; 14:95. [PMID: 23402223 PMCID: PMC3575239 DOI: 10.1186/1471-2164-14-95] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/23/2013] [Indexed: 01/01/2023] Open
Abstract
Background A classical example of repeated speciation coupled with ecological diversification is the evolution of 14 closely related species of Darwin’s (Galápagos) finches (Thraupidae, Passeriformes). Their adaptive radiation in the Galápagos archipelago took place in the last 2–3 million years and some of the molecular mechanisms that led to their diversification are now being elucidated. Here we report evolutionary analyses of genome of the large ground finch, Geospiza magnirostris. Results 13,291 protein-coding genes were predicted from a 991.0 Mb G. magnirostris genome assembly. We then defined gene orthology relationships and constructed whole genome alignments between the G. magnirostris and other vertebrate genomes. We estimate that 15% of genomic sequence is functionally constrained between G. magnirostris and zebra finch. Genic evolutionary rate comparisons indicate that similar selective pressures acted along the G. magnirostris and zebra finch lineages suggesting that historical effective population size values have been similar in both lineages. 21 otherwise highly conserved genes were identified that each show evidence for positive selection on amino acid changes in the Darwin's finch lineage. Two of these genes (Igf2r and Pou1f1) have been implicated in beak morphology changes in Darwin’s finches. Five of 47 genes showing evidence of positive selection in early passerine evolution have cilia related functions, and may be examples of adaptively evolving reproductive proteins. Conclusions These results provide insights into past evolutionary processes that have shaped G. magnirostris genes and its genome, and provide the necessary foundation upon which to build population genomics resources that will shed light on more contemporaneous adaptive and non-adaptive processes that have contributed to the evolution of the Darwin’s finches.
Collapse
Affiliation(s)
- Chris M Rands
- Department of Physiology, Anatomy, and Genetics, MRC Functional Genomics Unit, University of Oxford, Oxford, OX1 3PT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Engel BD, Ishikawa H, Wemmer KA, Geimer S, Wakabayashi KI, Hirono M, Craige B, Pazour GJ, Witman GB, Kamiya R, Marshall WF. The role of retrograde intraflagellar transport in flagellar assembly, maintenance, and function. ACTA ACUST UNITED AC 2013; 199:151-67. [PMID: 23027906 PMCID: PMC3461521 DOI: 10.1083/jcb.201206068] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
An inducible dynein heavy chain 1b mutant reveals that robust retrograde intraflagellar transport is required for flagellar assembly and function but not the maintenance of flagellar length. The maintenance of flagellar length is believed to require both anterograde and retrograde intraflagellar transport (IFT). However, it is difficult to uncouple the functions of retrograde transport from anterograde, as null mutants in dynein heavy chain 1b (DHC1b) have stumpy flagella, demonstrating solely that retrograde IFT is required for flagellar assembly. We isolated a Chlamydomonas reinhardtii mutant (dhc1b-3) with a temperature-sensitive defect in DHC1b, enabling inducible inhibition of retrograde IFT in full-length flagella. Although dhc1b-3 flagella at the nonpermissive temperature (34°C) showed a dramatic reduction of retrograde IFT, they remained nearly full-length for many hours. However, dhc1b-3 cells at 34°C had strong defects in flagellar assembly after cell division or pH shock. Furthermore, dhc1b-3 cells displayed altered phototaxis and flagellar beat. Thus, robust retrograde IFT is required for flagellar assembly and function but is dispensable for the maintenance of flagellar length. Proteomic analysis of dhc1b-3 flagella revealed distinct classes of proteins that change in abundance when retrograde IFT is inhibited.
Collapse
Affiliation(s)
- Benjamin D Engel
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Abstract
Intraflagellar transport (IFT) involves the movement of large proteinaceous particles or trains along the length of ciliary and flagellar axonemal microtubules. The particles contain multiple copies of two protein complexes. As isolated from the flagellated model organism, Chlamydomonas reinhardtii, IFT A contains 6 distinct gene products while IFT B contains at least 13 distinct gene products. To better understand the architecture of these two complexes, a multifaceted approach has been employed to identify subcomplexes and specific protein-protein interactions. The high biochemical yields afforded with Chlamydomonas preparations have allowed traditional biochemical approaches including chemical cross-linking and disruption of native complexes, which, in the case of IFT B, have revealed a core subcomplex retaining nine of the B subunits. Complementing these results are molecular approaches including two-hybrid screenings and heterologous expression that have identified specific protein-protein interactions. Lastly, genetic approaches utilizing Chlamydomonas IFT mutants have shown how the loss of specific subunits perturb the complexes and, in the case of IFT A, they have revealed a core subcomplex containing half of the A subunits.
Collapse
Affiliation(s)
- Robert H Behal
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | | |
Collapse
|
49
|
Mizuno N, Taschner M, Engel BD, Lorentzen E. Structural studies of ciliary components. J Mol Biol 2012; 422:163-80. [PMID: 22683354 PMCID: PMC3426769 DOI: 10.1016/j.jmb.2012.05.040] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/23/2012] [Accepted: 05/24/2012] [Indexed: 11/24/2022]
Abstract
Cilia are organelles found on most eukaryotic cells, where they serve important functions in motility, sensory reception, and signaling. Recent advances in electron tomography have facilitated a number of ultrastructural studies of ciliary components that have significantly improved our knowledge of cilium architecture. These studies have produced nanometer-resolution structures of axonemal dynein complexes, microtubule doublets and triplets, basal bodies, radial spokes, and nexin complexes. In addition to these electron tomography studies, several recently published crystal structures provide insights into the architecture and mechanism of dynein as well as the centriolar protein SAS-6, important for establishing the 9-fold symmetry of centrioles. Ciliary assembly requires intraflagellar transport (IFT), a process that moves macromolecules between the tip of the cilium and the cell body. IFT relies on a large 20-subunit protein complex that is thought to mediate the contacts between ciliary motor and cargo proteins. Structural investigations of IFT complexes are starting to emerge, including the first three-dimensional models of IFT material in situ, revealing how IFT particles organize into larger train-like arrays, and the high-resolution structure of the IFT25/27 subcomplex. In this review, we cover recent advances in the structural and mechanistic understanding of ciliary components and IFT complexes.
Collapse
Key Words
- 2d, two‐dimensional
- 3d, three‐dimensional
- dic, differential interference contrast
- drc, dynein regulatory complex
- em, electron microscopy
- et, electron tomography
- ida, inner dynein arm
- ift, intraflagellar transport
- mt, microtubule
- mtbd, microtubule binding domain
- oda, outer dynein arm
- rs, radial spoke
- rsp, radial spoke protein
- cilium
- intraflagellar transport
- electron tomography
- ift complex
- flagellum
Collapse
Affiliation(s)
- Naoko Mizuno
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Michael Taschner
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Benjamin D. Engel
- Department of Molecular Structural Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Esben Lorentzen
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| |
Collapse
|
50
|
Taschner M, Bhogaraju S, Lorentzen E. Architecture and function of IFT complex proteins in ciliogenesis. Differentiation 2011; 83:S12-22. [PMID: 22118932 DOI: 10.1016/j.diff.2011.11.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 10/31/2011] [Accepted: 11/03/2011] [Indexed: 01/25/2023]
Abstract
Cilia and flagella (interchangeable terms) are evolutionarily conserved organelles found on many different types of eukaryotic cells where they fulfill important functions in motility, sensory reception and signaling. The process of Intraflagellar Transport (IFT) is of central importance for both the assembly and maintenance of cilia, as it delivers building blocks from their site of synthesis in the cell body to the ciliary assembly site at the tip of the cilium. A key player in this process is the multi-subunit IFT-complex, which acts as an adapter between the motor proteins required for movement and the ciliary cargo proteins. Since the discovery of IFT more than 15 years ago, considerable effort has gone into the purification and characterization of the IFT complex proteins. Even though this has led to very interesting findings and has greatly improved our knowledge of the IFT process, we still know very little about the overall architecture of the IFT complex and the specific functions of the various subunits. In this review we will give an update on the knowledge of the structure and function of individual IFT proteins, and the way these proteins interact to form the complex that facilitates IFT.
Collapse
Affiliation(s)
- Michael Taschner
- Max-Planck-Institute of Biochemistry, Department of Structural Cell Biology, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | |
Collapse
|