1
|
Mu C, Shao K, Su M, Guo Y, Qiu Y, Sun R, Sun S, Sun Y, Liu C, Wang W, Qin X, Tang C. Lysophosphatidylcholine promoting α-Synuclein aggregation in Parkinson's disease: disrupting GCase glycosylation and lysosomal α-Synuclein degradation. NPJ Parkinsons Dis 2025; 11:47. [PMID: 40089519 PMCID: PMC11910603 DOI: 10.1038/s41531-025-00902-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/06/2025] [Indexed: 03/17/2025] Open
Abstract
In Parkinson's Disease (PD), elevated serum lysophosphatidylcholine (LPC) levels correlate with disease progression. However, the mechanisms by which abnormal LPC elevation contributes to PD-related neurotoxicity remain poorly understood. This study aims to investigate the pathogenic role of LPC in dopaminergic neuronal damage and elucidates its underlying mechanisms. Our results showed LPC induces α-synuclein aggregation, exacerbating cognitive dysfunction. LPC activates Cleaved-Caspase3 via the orphan receptor GPR35-ERK signaling pathway, inhibits GRASP65 expression, and disrupts the polarized structure of the Golgi apparatus. This disruption impairs glycosylation and function of glucocerebrosidase (GCase), preventing its transport to lysosomes and leading to glucosylceramide (GlcCer) accumulation, a scaffold for α-synuclein aggregation. LPC also disrupts the autophagolysosomal pathway and lysosomal acidification, exacerbating toxic α-synuclein accumulation. Restoring GCase glycosylation, limiting GlcCer synthesis, or blocking ERK signaling mitigates these effects. This study highlights LPC's role in promoting α-synuclein aggregation and autophagolysosomal dysfunction, advancing our understanding of PD pathology.
Collapse
Affiliation(s)
- Chunyan Mu
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Kaiquan Shao
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Mingyu Su
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yurong Guo
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yuxiang Qiu
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Ruiao Sun
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Sihan Sun
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yaoyu Sun
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Chenkai Liu
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Wei Wang
- The Second School of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Xiaoling Qin
- Department of Neurology, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, China.
| | - Chuanxi Tang
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- The Research and Engineering Center of Xuzhou neurodegenerative disease diagnosis and treatment biologics, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
2
|
Liu M, Duan Y, Dong J, Zhang K, Jin X, Gao M, Jia H, Chen J, Liu M, Wei M, Zhong X. Early signs of neurodegenerative diseases: Possible mechanisms and targets for Golgi stress. Biomed Pharmacother 2024; 175:116646. [PMID: 38692058 DOI: 10.1016/j.biopha.2024.116646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
The Golgi apparatus plays a crucial role in mediating the modification, transport, and sorting of intracellular proteins and lipids. The morphological changes occurring in the Golgi apparatus are exceptionally important for maintaining its function. When exposed to external pressure or environmental stimulation, the Golgi apparatus undergoes adaptive changes in both structure and function, which are known as Golgi stress. Although certain signal pathway responses or post-translational modifications have been observed following Golgi stress, further research is needed to comprehensively summarize and understand the related mechanisms. Currently, there is evidence linking Golgi stress to neurodegenerative diseases; however, the role of Golgi stress in the progression of neurodegenerative diseases such as Alzheimer's disease remains largely unexplored. This review focuses on the structural and functional alterations of the Golgi apparatus during stress, elucidating potential mechanisms underlying the involvement of Golgi stress in regulating immunity, autophagy, and metabolic processes. Additionally, it highlights the pivotal role of Golgi stress as an early signaling event implicated in the pathogenesis and progression of neurodegenerative diseases. Furthermore, this study summarizes prospective targets that can be therapeutically exploited to mitigate neurodegenerative diseases by targeting Golgi stress. These findings provide a theoretical foundation for identifying novel breakthroughs in preventing and treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Mengyu Liu
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Ying Duan
- Liaoning Maternal and Child Health Hospital, Shayang, Liaoning 110005, China
| | - Jianru Dong
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Kaisong Zhang
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Xin Jin
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Menglin Gao
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Huachao Jia
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Ju Chen
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Mingyan Liu
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China.
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China; Liaoning Medical Diagnosis and Treatment Center, Shenyang, Liaoning 110167, China.
| | - Xin Zhong
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
3
|
Li T, Xiao X, Liu Q, Li W, Li L, Zhang W, Munnik T, Wang X, Zhang Q. Dynamic responses of PA to environmental stimuli imaged by a genetically encoded mobilizable fluorescent sensor. PLANT COMMUNICATIONS 2023; 4:100500. [PMID: 36447433 DOI: 10.1016/j.xplc.2022.100500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 05/11/2023]
Abstract
Membrane fluidity, permeability, and surface charges are controlled by phospholipid metabolism and transport. Despite the importance of phosphatidic acid (PA) as a bioactive molecule, the mechanical properties of PA translocation and subcellular accumulation are unknown. Here, we used a mobilizable, highly responsive genetically encoded fluorescent indicator, green fluorescent protein (GFP)-N160RbohD, to monitor PA dynamics in living cells. The majority of GFP-N160RbohD accumulated at the plasma membrane and sensitively responded to changes in PA levels. Cellular, pharmacological, and genetic analyses illustrated that both salinity and abscisic acid rapidly enhanced GFP-N160RbohD fluorescence at the plasma membrane, which mainly depended on hydrolysis of phospholipase D. By contrast, heat stress induced nuclear translocation of PA indicated by GFP-N160RbohD through a process that required diacylglycerol kinase activity, as well as secretory and endocytic trafficking. Strikingly, we showed that gravity triggers asymmetric PA distribution at the root apex, a response that is suppressed by PLDζ2 knockout. The broad utility of the PA sensor will expand our mechanistic understanding of numerous lipid-associated physiological and cell biological processes and facilitate screening for protein candidates that affect the synthesis, transport, and metabolism of PA.
Collapse
Affiliation(s)
- Teng Li
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xingkai Xiao
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingyun Liu
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenyan Li
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Li Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Wenhua Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Teun Munnik
- Cluster Green Life Sciences, Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Qun Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Rodriguez Sawicki L, Garcia KA, Corsico B, Scaglia N. De novo lipogenesis at the mitotic exit is used for nuclear envelope reassembly/expansion. Implications for combined chemotherapy. Cell Cycle 2019; 18:1646-1659. [PMID: 31203714 DOI: 10.1080/15384101.2019.1629792] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Mitosis has been traditionally considered a metabolically inactive phase. We have previously shown, however, that extensive alterations in lipids occur as the cells traverse mitosis, including increased de novo fatty acid (FA) and phosphatidylcholine (PtdCho) synthesis and decreased lysophospholipid content. Given the diverse structural and functional properties of these lipids, we sought to study their metabolic fate and their importance for cell cycle completion. Here we show that FA and PtdCho synthesized at the mitotic exit are destined to the nuclear envelope. Importantly, FA and PtdCho synthesis, but not the decrease in lysophospholipid content, are necessary for cell cycle completion beyond G2/M. Moreover, the presence of alternative pathways for PtdCho synthesis renders the cells less sensitive to its inhibition than to the impairment of FA synthesis. FA synthesis, thus, represents a cell cycle-related metabolic vulnerability that could be exploited for combined chemotherapy. We explored the combination of fatty acid synthase (FASN) inhibition with agents that act at different phases of the cell cycle. Our results show that the effect of FASN inhibition may be enhanced under some drug combinations.
Collapse
Affiliation(s)
- Luciana Rodriguez Sawicki
- a Instituto de Investigaciones Bioquímicas de La Plata (INIBOLP), UNLP/CONICET, Facultad de Ciencias Médicas , Universidad Nacional de La Plata , La Plata , Argentina
| | - Karina A Garcia
- a Instituto de Investigaciones Bioquímicas de La Plata (INIBOLP), UNLP/CONICET, Facultad de Ciencias Médicas , Universidad Nacional de La Plata , La Plata , Argentina
| | - Betina Corsico
- a Instituto de Investigaciones Bioquímicas de La Plata (INIBOLP), UNLP/CONICET, Facultad de Ciencias Médicas , Universidad Nacional de La Plata , La Plata , Argentina
| | - Natalia Scaglia
- a Instituto de Investigaciones Bioquímicas de La Plata (INIBOLP), UNLP/CONICET, Facultad de Ciencias Médicas , Universidad Nacional de La Plata , La Plata , Argentina
| |
Collapse
|
5
|
Lin J, Wang C, Liang W, Zhang J, Zhang L, Lv H, Dong W, Zhang Y. Rab1A is required for assembly of classical swine fever virus particle. Virology 2017; 514:18-29. [PMID: 29128753 DOI: 10.1016/j.virol.2017.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/28/2017] [Accepted: 11/02/2017] [Indexed: 12/20/2022]
Abstract
Rab1A belongs to the small Rab GTPase family and is involved in the lifecycle of numerous viruses. Here, knockdown of Rab1A inhibited CSFV growth. Further study revealed that Rab1A depletion decreased intracellular and extracellular CSFV titers, but did not affect intracellular virus genome copies and E2 protein expression within a virus lifecycle, which suggested that Rab1A is required for CSFV particle assembly rather than for genome replication or virion release. This was proofed by blocking the spread of virus using neutralizing antibodies, through which the negative effects of Rab1A knockdown on multi-cycle replication of CSFV were eliminated. Moreover, co-immunoprecipitation and confocal microscopy assays showed that Rab1A bound to CSFV NS5A protein, indicating that Rab1A and viral NS5A proteins may work cooperatively during CSFV particle assembly. In conclusion, this study demonstrated for the first time that Rab1A is required for CSFV particle assembly and binds to viral particle assembly-related NS5A protein.
Collapse
Affiliation(s)
- Jihui Lin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chengbao Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wulong Liang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Jing Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Longxiang Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huifang Lv
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wang Dong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
6
|
The Role of Lysophospholipid Acyltransferases in the Golgi Complex. Methods Mol Biol 2016. [PMID: 27632011 DOI: 10.1007/978-1-4939-6463-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Determining the abundance of phospholipids and neutral lipids in cellular membranes is paramount to understanding their biological functions. Many lipid-modifying enzymes have yet to be characterized due to limitations in substrate-product measurements and purification of membrane-bound enzymes. The method described here uses radiolabeled phospholipid substrates and cell-purified organelles to quantify phospholipid metabolism using thin-layer chromatography. This assay has the benefits of being specific and adaptable for numerous applications and systems.
Collapse
|
7
|
Pagliuso A, Valente C, Giordano LL, Filograna A, Li G, Circolo D, Turacchio G, Marzullo VM, Mandrich L, Zhukovsky MA, Formiggini F, Polishchuk RS, Corda D, Luini A. Golgi membrane fission requires the CtBP1-S/BARS-induced activation of lysophosphatidic acid acyltransferase δ. Nat Commun 2016; 7:12148. [PMID: 27401954 PMCID: PMC4945875 DOI: 10.1038/ncomms12148] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 06/03/2016] [Indexed: 11/25/2022] Open
Abstract
Membrane fission is an essential cellular process by which continuous membranes split into separate parts. We have previously identified CtBP1-S/BARS (BARS) as a key component of a protein complex that is required for fission of several endomembranes, including basolateral post-Golgi transport carriers. Assembly of this complex occurs at the Golgi apparatus, where BARS binds to the phosphoinositide kinase PI4KIIIβ through a 14-3-3γ dimer, as well as to ARF and the PKD and PAK kinases. We now report that, when incorporated into this complex, BARS binds to and activates a trans-Golgi lysophosphatidic acid (LPA) acyltransferase type δ (LPAATδ) that converts LPA into phosphatidic acid (PA); and that this reaction is essential for fission of the carriers. LPA and PA have unique biophysical properties, and their interconversion might facilitate the fission process either directly or indirectly (via recruitment of proteins that bind to PA, including BARS itself).
Collapse
Affiliation(s)
- Alessandro Pagliuso
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, Pozzuoli 80078, Italy
| | - Carmen Valente
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Lucia Laura Giordano
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Angela Filograna
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Guiling Li
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Diego Circolo
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Gabriele Turacchio
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Vincenzo Manuel Marzullo
- IRCCS SDN Istituto di Ricerca Diagnostica e Nucleare, Via Emanuele Gianturco 113, 80143 Naples, Italy
| | - Luigi Mandrich
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Mikhail A. Zhukovsky
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Fabio Formiggini
- Italian Institute of Technology, Centre for Advanced Biomaterials for Health Care at CRIB, Largo Barsanti e Matteucci 53, Naples 80125, Italy
| | - Roman S. Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, Pozzuoli 80078, Italy
| | - Daniela Corda
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
- IRCCS SDN Istituto di Ricerca Diagnostica e Nucleare, Via Emanuele Gianturco 113, 80143 Naples, Italy
| |
Collapse
|
8
|
Paoletti L, Domizi P, Marcucci H, Montaner A, Krapf D, Salvador G, Banchio C. Lysophosphatidylcholine Drives Neuroblast Cell Fate. Mol Neurobiol 2015; 53:6316-6331. [DOI: 10.1007/s12035-015-9528-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/05/2015] [Indexed: 12/31/2022]
|
9
|
Martínez-Martínez N, Martínez-Alonso E, Ballesta J, Martínez-Menárguez JA. Phospholipase D2 is involved in the formation of Golgi tubules and ArfGAP1 recruitment. PLoS One 2014; 9:e111685. [PMID: 25354038 PMCID: PMC4213061 DOI: 10.1371/journal.pone.0111685] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 10/03/2014] [Indexed: 11/19/2022] Open
Abstract
Lipids and lipid-modifying enzymes play a key role in the biogenesis, maintenance and fission of transport carriers in the secretory and endocytic pathways. In the present study we demonstrate that phosphatidic acid generated by phospholipase D2 (PLD2) is involved in the formation of Golgi tubules. The main evidence to support this is: 1) inhibitors of phosphatidic acid formation and PLD2 depletion inhibit the formation of tubules containing resident enzymes and regulators of intra-Golgi transport in a low temperature (15°C) model of Golgi tubulation but do not affect brefeldin A-induced tubules, 2) inhibition of PLD2 enzymatic activity and PLD2 depletion in cells cultured under physiological conditions (37°C) induce the formation of tubules specifically containing Golgi matrix proteins, and, 3) over-expression of PLD2 induces the formation of a tubular network. In addition, it was found that the generation of this lipid by the isoenzyme is necessary for ArfGAP1 recruitment to Golgi membranes. These results suggest that both proteins are involved in the molecular mechanisms which drive the formation of different types of Golgi tubules.
Collapse
Affiliation(s)
- Narcisa Martínez-Martínez
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | - Emma Martínez-Alonso
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | - José Ballesta
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | - José A. Martínez-Menárguez
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, University of Murcia, Murcia, Spain
- * E-mail:
| |
Collapse
|
10
|
Rocha S, De Keersmaecker H, Hutchison JA, Vanhoorelbeke K, Martens JA, Hofkens J, Uji-i H. Membrane remodeling processes induced by phospholipase action. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:4743-4751. [PMID: 24694028 DOI: 10.1021/la500121f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Important cellular events such as division require drastic changes in the shape of the membrane. These remodeling processes can be triggered by the binding of specific proteins or by changes in membrane composition and are linked to phospholipid metabolism for which dedicated enzymes, named phospholipases, are responsible. Here wide-field fluorescence microscopy is used to visualize shape changes induced by the action of phospholipase A1 on dye-labeled supported membranes of POPC (1-palmitoyl-2-oleoly-sn-glycero-3-phosphocholine). Time-lapse imaging demonstrates that layers either shrink and disappear or fold and collapse into vesicles. These vesicles can undergo further transformations such as budding, tubulation, and pearling within 5 min of formation. Using dye-labeled phospholipases, we can monitor the presence of the enzyme at specific positions on the membrane as the shape transformations occur. Furthermore, incorporating the products of hydrolysis into POPC membranes is shown to induce transformations similar to those observed for enzyme action. The results suggest that phospholipase-mediated hydrolysis plays an important role in membrane transformations by altering the membrane composition, and a model is proposed for membrane curvature based on the presence and shape of hydrolysis products.
Collapse
Affiliation(s)
- Susana Rocha
- Molecular Imaging and Photonics, Faculty of Science and ‡Centre for Surface Chemistry and Catalysis, Faculty of Bioscience Engineering, KU Leuven , Belgium
| | | | | | | | | | | | | |
Collapse
|
11
|
Acyltransferases and transacylases that determine the fatty acid composition of glycerolipids and the metabolism of bioactive lipid mediators in mammalian cells and model organisms. Prog Lipid Res 2014; 53:18-81. [DOI: 10.1016/j.plipres.2013.10.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 07/20/2013] [Accepted: 10/01/2013] [Indexed: 12/21/2022]
|
12
|
Martínez-Alonso E, Tomás M, Martínez-Menárguez JA. Golgi tubules: their structure, formation and role in intra-Golgi transport. Histochem Cell Biol 2013; 140:327-39. [PMID: 23812035 DOI: 10.1007/s00418-013-1114-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2013] [Indexed: 11/28/2022]
Abstract
Tubules are common Golgi elements that can form extensive networks associated with the cis-, lateral and trans-Golgi sides, but despite this, they have almost been forgotten for decades. The molecular mechanisms involved in their formation, elongation and fission are only just beginning to be understood. However, the role of these membranes is not well understood. In the present review, we analyze the mechanisms that induce Golgi tubulation or, conversely, disrupt tubules in order to throw some lights on the nature of these elements. The putative role of these elements in the framework of current models for intra-Golgi transport is also discussed.
Collapse
Affiliation(s)
- Emma Martínez-Alonso
- Department of Cell Biology and Histology, Medical School, University of Murcia, 30100 Murcia, Spain
| | | | | |
Collapse
|
13
|
Baba T, Yamamoto A, Tagaya M, Tani K. A lysophospholipid acyltransferase antagonist, CI-976, creates novel membrane tubules marked by intracellular phospholipase A1 KIAA0725p. Mol Cell Biochem 2013; 376:151-61. [PMID: 23378048 DOI: 10.1007/s11010-013-1563-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/18/2013] [Indexed: 01/30/2023]
Abstract
CI-976 is a lysophospholipid acyltransferase antagonist that is known to affect secretory and endocytic membrane-trafficking pathways likely by increasing the lysophospholipid content in membranes. Our previous study suggested that lysophospholipids formed through the action of an intracellular phospholipase A(1), KIAA0725p (also known as DDHD2 and iPLA(1)γ), may be important for the association of this enzyme with membranes. In this study, we examined the effect of CI-976 on the membrane association of KIAA0725p. While in HeLa cells KIAA0725p is localized in the Golgi and cytosol, in mouse embryonic fibroblasts (MEFs), it was found to be principally localized in the cytosol with some on post-endoplasmic reticulum compartments including the cis-Golgi. Treatment of MEFs with CI-976 induced the redistribution of KIAA0725p to membrane tubules, which were in vicinity to fragmented mitochondria. These tubules were not decorated with canonical organelle markers including Golgi proteins. A human KIAA0725p mutant, which exhibits decreased membrane-binding ability, was also redistributed to membrane structures upon CI-976 treatment. Our data suggest that the association of KIAA0725p with membranes is regulated by lipid metabolism, and that CI-976 may create unique membrane structures that can be marked by KIAA0725p.
Collapse
Affiliation(s)
- Takashi Baba
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | | | | | | |
Collapse
|
14
|
Abstract
The striking morphology of the Golgi complex has fascinated cell biologists since its discovery over 100 years ago. Yet, despite intense efforts to understand how membrane flow relates to Golgi form and function, this organelle continues to baffle cell biologists and biochemists alike. Fundamental questions regarding Golgi function, while hotly debated, remain unresolved. Historically, Golgi function has been described from a protein-centric point of view, but we now appreciate that conceptual frameworks for how lipid metabolism is integrated with Golgi biogenesis and function are essential for a mechanistic understanding of this fascinating organelle. It is from a lipid-centric perspective that we discuss the larger question of Golgi dynamics and membrane trafficking. We review the growing body of evidence for how lipid metabolism is integrally written into the engineering of the Golgi system and highlight questions for future study.
Collapse
Affiliation(s)
- Vytas A Bankaitis
- Department of Cell and Developmental Biology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7090, USA.
| | | | | |
Collapse
|
15
|
Regulation of the Golgi complex by phospholipid remodeling enzymes. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1078-88. [PMID: 22562055 DOI: 10.1016/j.bbalip.2012.04.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/15/2012] [Accepted: 04/13/2012] [Indexed: 11/23/2022]
Abstract
The mammalian Golgi complex is a highly dynamic organelle consisting of stacks of flattened cisternae with associated coated vesicles and membrane tubules that contribute to cargo import and export, intra-cisternal trafficking, and overall Golgi architecture. At the morphological level, all of these structures are continuously remodeled to carry out these trafficking functions. Recent advances have shown that continual phospholipid remodeling by phospholipase A (PLA) and lysophospholipid acyltransferase (LPAT) enzymes, which deacylate and reacylate Golgi phospholipids, respectively, contributes to this morphological remodeling. Here we review the identification and characterization of four cytoplasmic PLA enzymes and one integral membrane LPAT that participate in the dynamic functional organization of the Golgi complex, and how some of these enzymes are integrated to determine the relative abundance of COPI vesicle and membrane tubule formation. This article is part of a Special Issue entitled Lipids and Vesicular Transport.
Collapse
|
16
|
Cai B, Caplan S, Naslavsky N. cPLA2α and EHD1 interact and regulate the vesiculation of cholesterol-rich, GPI-anchored, protein-containing endosomes. Mol Biol Cell 2012; 23:1874-88. [PMID: 22456504 PMCID: PMC3350552 DOI: 10.1091/mbc.e11-10-0881] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
cPLA2 hydrolyzes phospholipids and regulates membrane curvature and/or tubulation. Despite disparate roles for cPLA2 at the Golgi and early endosomes, its function in the regulation of membranes containing GPI-anchored proteins is not known. A role for cPLA2α and EHD1 is identified in the vesiculation of cholesterol-rich, GPI-AP–containing membranes. The lipid modifier phospholipase A2 catalyzes the hydrolysis of phospholipids to inverted-cone–shaped lysophospholipids that contribute to membrane curvature and/or tubulation. Conflicting findings exist regarding the function of cytosolic phospholipase A2 (cPLA2) and its role in membrane regulation at the Golgi and early endosomes. However, no studies addressed the role of cPLA2 in the regulation of cholesterol-rich membranes that contain glycosylphosphatidylinositol-anchored proteins (GPI-APs). Our studies support a role for cPLA2α in the vesiculation of GPI-AP–containing membranes, using endogenous CD59 as a model for GPI-APs. On cPLA2α depletion, CD59-containing endosomes became hypertubular. Moreover, accumulation of lysophospholipids induced by a lysophospholipid acyltransferase inhibitor extensively vesiculated CD59-containing endosomes. However, overexpression of cPLA2α did not increase the endosomal vesiculation, implying a requirement for additional factors. Indeed, depletion of the “pinchase” EHD1, a C-terminal Eps15 homology domain (EHD) ATPase, also induced hypertubulation of CD59-containing endosomes. Furthermore, EHD1 and cPLA2α demonstrated in situ proximity (<40 nm) and interacted in vivo. The results presented here provide evidence that the lipid modifier cPLA2α and EHD1 are involved in the vesiculation of CD59-containing endosomes. We speculate that cPLA2α induces membrane curvature and allows EHD1, possibly in the context of a complex, to sever the curved membranes into vesicles.
Collapse
Affiliation(s)
- Bishuang Cai
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | |
Collapse
|
17
|
Shin HW, Takatsu H, Nakayama K. Mechanisms of membrane curvature generation in membrane traffic. MEMBRANES 2012; 2:118-33. [PMID: 24957965 PMCID: PMC4021884 DOI: 10.3390/membranes2010118] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 11/17/2022]
Abstract
During the vesicular trafficking process, cellular membranes undergo dynamic morphological changes, in particular at the vesicle generation and fusion steps. Changes in membrane shape are regulated by small GTPases, coat proteins and other accessory proteins, such as BAR domain-containing proteins. In addition, membrane deformation entails changes in the lipid composition as well as asymmetric distribution of lipids over the two leaflets of the membrane bilayer. Given that P4-ATPases, which catalyze unidirectional flipping of lipid molecules from the exoplasmic to the cytoplasmic leaflets of the bilayer, are crucial for the trafficking of proteins in the secretory and endocytic pathways, changes in the lipid composition are involved in the vesicular trafficking process. Membrane remodeling is under complex regulation that involves the composition and distribution of lipids as well as assembly of proteins.
Collapse
Affiliation(s)
- Hye-Won Shin
- Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Hiroyuki Takatsu
- Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
18
|
Role of phospholipase A(2) in retrograde transport of ricin. Toxins (Basel) 2011; 3:1203-19. [PMID: 22069763 PMCID: PMC3202871 DOI: 10.3390/toxins3091203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/25/2011] [Accepted: 09/16/2011] [Indexed: 12/03/2022] Open
Abstract
Ricin is a protein toxin classified as a bioterror agent, for which there are no known treatment options available after intoxication. It is composed of an enzymatically active A-chain connected by a disulfide bond to a cell binding B-chain. After internalization by endocytosis, ricin is transported retrogradely to the Golgi and ER, from where the ricin A-chain is translocated to the cytosol where it inhibits protein synthesis and thus induces cell death. We have identified cytoplasmic phospholipase A2 (PLA2) as an important factor in ricin retrograde transport. Inhibition of PLA2 protects against ricin challenge, however the toxin can still be endocytosed and transported to the Golgi. Interestingly, ricin transport from the Golgi to the ER is strongly impaired in response to PLA2 inhibition. Confocal microscopy analysis shows that ricin is still colocalized with the trans-Golgi marker TGN46 in the presence of PLA2 inhibitor, but less is colocalized with the cis-Golgi marker GM130. We propose that PLA2 inhibition results in impaired ricin transport through the Golgi stack, thus preventing it from reaching the ER. Consequently, ricin cannot be translocated to the cytosol to exert its toxic action.
Collapse
|
19
|
Melser S, Molino D, Batailler B, Peypelut M, Laloi M, Wattelet-Boyer V, Bellec Y, Faure JD, Moreau P. Links between lipid homeostasis, organelle morphodynamics and protein trafficking in eukaryotic and plant secretory pathways. PLANT CELL REPORTS 2011; 30:177-193. [PMID: 21120657 DOI: 10.1007/s00299-010-0954-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 11/15/2010] [Indexed: 05/30/2023]
Abstract
The role of lipids as molecular actors of protein transport and organelle morphology in plant cells has progressed over the last years through pharmacological and genetic investigations. The manuscript is reviewing the roles of various lipid families in membrane dynamics and trafficking in eukaryotic cells, and summarizes some of the related physicochemical properties of the lipids involved. The article also focuses on the specific requirements of the sphingolipid glucosylceramide (GlcCer) in Golgi morphology and protein transport through the plant secretory pathway. The use of a specific inhibitor of plant glucosylceramide synthase and selected Arabidopsis thaliana RNAi lines stably expressing several markers of the plant secretory pathway, establishes specific steps sensitive to GlcCer biosynthesis. Collectively, data of the literature demonstrate the existence of links between protein trafficking, organelle morphology, and lipid metabolism/homeostasis in eukaryotic cells including plant cells.
Collapse
Affiliation(s)
- Su Melser
- Laboratoire de Biogenèse Membranaire, UMR 5200 Université Bordeaux 2-CNRS, Université Bordeaux 2, case 92, 146 rue Léo-Saignat, 33076 Bordeaux, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Schmidt JA, Kalkofen DN, Donovan KW, Brown WJ. A role for phospholipase A2 activity in membrane tubule formation and TGN trafficking. Traffic 2010; 11:1530-6. [PMID: 20874826 DOI: 10.1111/j.1600-0854.2010.01115.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have investigated the role of phospholipase A(2) (PLA(2) ) enzymes in generating membrane tubules at the trans-Golgi network (TGN). Constitutive TGN membrane tubules and those induced by over-expressing kinase dead protein kinase D were inhibited by the PLA(2) inhibitors ONO-RS-082 (ONO) and bromoenol lactone. These antagonists also inhibited secretory delivery of both soluble and transmembrane cargoes. Finally, use of the reversible antagonist ONO and time-lapse imaging revealed for the first time that PLA(2) antagonists inhibit the initiation of membrane tubule formation at the TGN. Thus, PLA(2) enzymes appear to have an important role in the earliest steps of membrane tubule formation at the TGN, which are utilized for membrane trafficking.
Collapse
Affiliation(s)
- John A Schmidt
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
21
|
Schmidt JA, Yvone GM, Brown WJ. Membrane topology of human AGPAT3 (LPAAT3). Biochem Biophys Res Commun 2010; 397:661-7. [PMID: 20537980 PMCID: PMC2902680 DOI: 10.1016/j.bbrc.2010.05.149] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 05/27/2010] [Indexed: 11/21/2022]
Abstract
Integral membrane lysophospholipid acyltransferases (AT) are involved in many reactions that produce phospholipids and triglycerides. Enzymes that utilize lysophosphatidic acid (LPA) as an acceptor substrate have been termed LPAATs, and several are members of the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) gene family. Amino acid sequence comparisons with other acyltransferases reveal that AGPATs contain four conserved motifs (I-IV), whose invariant residues appear to be important for catalysis and/or substrate recognition. Although the enzymatic activities of many AGPATs are known, for many members their structural organization within membranes and their exact biological functions are unclear. Recently, a new function for AGPATs was discovered when it was determined that human AGPAT3/LPAAT3 is involved in the structure and function of the Golgi complex. Here we have determined the topological orientation of human AGPAT3/LPAAT3. AGPAT3/LPAAT3 possesses two transmembrane domains, one of which separates motifs I and II, which are thought to form a functional unit that is critical for enzymatic activity. This is a surprising result but similar to a recent study on the topology of human LPAAT 1. The data is consistent with a structural arrangement in which motif I is located in the cytoplasm and motif II is in the endoplasmic reticulum and Golgi lumen, suggesting a different model for AGPAT3/LPAAT3's enzymatic mechanism.
Collapse
Affiliation(s)
- John A. Schmidt
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Griselda Metta Yvone
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - William J. Brown
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
22
|
Graham TR, Kozlov MM. Interplay of proteins and lipids in generating membrane curvature. Curr Opin Cell Biol 2010; 22:430-6. [PMID: 20605711 DOI: 10.1016/j.ceb.2010.05.002] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/09/2010] [Accepted: 05/03/2010] [Indexed: 01/14/2023]
Abstract
The majority of intracellular membranes have strongly bent shapes with radii of curvature ranging from 20 to 50 nm. Many different proteins provide the substantial energy needed to generate and sustain this curvature. One of the most effective mechanisms of curvature creation is based on asymmetry of membrane monolayers. Proteins generate this asymmetry by flipping phospholipid across the membrane, modifying lipid molecules, or embedding their hydrophobic domains into the membrane matrix. We review the physical principles of these mechanisms of membrane bending and highlight the action of specific proteins driving vesicle-mediated transport. A model of clathrin-mediated vesicle budding from the trans-Golgi network is described to illustrate the interplay and mutual reinforcement of different mechanisms for generating membrane curvature.
Collapse
Affiliation(s)
- Todd R Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| | | |
Collapse
|
23
|
Abstract
The role of lipid metabolic enzymes in Golgi membrane remodeling is a subject of intense interest. Now, in this issue, Schmidt and Brown (2009. J. Cell Biol. doi:10.1083/jcb.200904147) report that lysophosphatidic acid-specific acyltransferase, LPAAT3, contributes to Golgi membrane dynamics by suppressing tubule formation.
Collapse
Affiliation(s)
- Vytas A Bankaitis
- Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
24
|
Schmidt JA, Brown WJ. Lysophosphatidic acid acyltransferase 3 regulates Golgi complex structure and function. ACTA ACUST UNITED AC 2009; 186:211-8. [PMID: 19635840 PMCID: PMC2717635 DOI: 10.1083/jcb.200904147] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have suggested that the functional organization of the Golgi complex is dependent on phospholipid remodeling enzymes. Here, we report the identification of an integral membrane lysophosphatidic acid–specific acyltransferase, LPAAT3, which regulates Golgi membrane tubule formation, trafficking, and structure by altering phospholipids and lysophospholipids. Overexpression of LPAAT3 significantly inhibited the formation of Golgi membrane tubules in vivo and in vitro. Anterograde and retrograde protein trafficking was slower in cells overexpressing LPAAT3 and accelerated in cells with reduced expression (by siRNA). Golgi morphology was also dependent on LPAAT3 because its knockdown caused the Golgi to become fragmented. These data are the first to show a direct role for a specific phospholipid acyltransferase in regulating membrane trafficking and organelle structure.
Collapse
Affiliation(s)
- John A Schmidt
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
25
|
Judson BL, Brown WJ. Assembly of an intact Golgi complex requires phospholipase A2 (PLA2) activity, membrane tubules, and dynein-mediated microtubule transport. Biochem Biophys Res Commun 2009; 389:473-7. [PMID: 19747452 DOI: 10.1016/j.bbrc.2009.08.173] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 08/31/2009] [Indexed: 12/23/2022]
Abstract
Previous studies have shown that treatment of mammalian cells with phospholipase A(2) (PLA(2)) antagonists cause the normally interconnected Golgi ribbon to break up into large fragments of stacked Golgi cisternae ("mini-stacks") that remain located in the juxtanuclear region. Using the reversible PLA(2) antagonist, ONO-RS-082 (ONO) and live-cell, time-lapse microscopy to image the Golgi reassembly process, we found that Golgi mini-stacks underwent a burst of membrane tubule formation following washout of ONO: before washout only 4.3+/-3.8 tubules/cell/10 min were formed, whereas after washout 29.9+/-11.9 tubules/cell/10 min formed. These membranes tubules formed bridges between physically separate mini-stacks, thus mediating their coalescence into intact Golgi ribbons. Formation of inter-stack tubules and an intact Golgi ribbon was also facilitated by microtubules because treatment with nocodazole significantly inhibited both processes. This microtubule-dependent process was also dependent on dynein because the dynein inhibitor nordihydroguaiaretic acid (NDGA) inhibited reassembly. These studies show that a late stage of Golgi assembly occurs via membrane tubules, whose formation is dependent on PLA(2) activity and microtubules. Considering these results together, we concluded that the maintenance and assembly of normal Golgi architecture is dependent on the PLA(2)-mediated, dynamic formation of inter-Golgi membrane tubules.
Collapse
Affiliation(s)
- Bret L Judson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
26
|
Morikawa RK, Aoki J, Kano F, Murata M, Yamamoto A, Tsujimoto M, Arai H. Intracellular phospholipase A1gamma (iPLA1gamma) is a novel factor involved in coat protein complex I- and Rab6-independent retrograde transport between the endoplasmic reticulum and the Golgi complex. J Biol Chem 2009; 284:26620-30. [PMID: 19632984 DOI: 10.1074/jbc.m109.038869] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The mammalian intracellular phospholipase A(1) (iPLA(1)) family consists of three members, iPLA(1)alpha/PA-PLA(1), iPLA(1)beta/p125, and iPLA(1)gamma/KIAA0725p. Although iPLA(1)beta has been implicated in organization of the ER-Golgi compartments, little is known about the physiological role of its closest paralog, iPLA(1)gamma. Here we show that iPLA(1)gamma mediates a specific retrograde membrane transport pathway between the endoplasmic reticulum (ER) and the Golgi complex. iPLA(1)gamma appeared to be localized to the cytosol, the cis-Golgi, and the ER-Golgi intermediate compartment (ERGIC). Time-lapse microscopy revealed that a population of GFP-iPLA(1)gamma was associated with transport carriers moving out from the Golgi complex. Knockdown of iPLA(1)gamma expression by RNAi did not affect the anterograde transport of VSVGts045 but dramatically delayed two types of Golgi-to-ER retrograde membrane transport; that is, transfer of the Golgi membrane into the ER in the presence of brefeldin A and delivery of cholera toxin B subunit from the Golgi complex to the ER. Notably, knockdown of iPLA(1)gamma did not impair COPI- and Rab6-dependent retrograde transports represented by ERGIC-53 recycling and ER delivery of Shiga toxin, respectively. Thus, iPLA(1)gamma is a novel membrane transport factor that contributes to a specific Golgi-to-ER retrograde pathway distinct from presently characterized COPI- and Rab6-dependent pathways.
Collapse
Affiliation(s)
- Rei K Morikawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Jain S, Zhang X, Khandelwal PJ, Saunders AJ, Cummings BS, Oelkers P. Characterization of human lysophospholipid acyltransferase 3. J Lipid Res 2009; 50:1563-70. [PMID: 19351971 DOI: 10.1194/jlr.m800398-jlr200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Esterifying lysophospholipids may serve a variety of functions, including phospholipid remodeling and limiting the abundance of bioactive lipids. Recently, a yeast enzyme, Lpt1p, that esterifies an array of lysophospholipids was identified. Described here is the characterization of a human homolog of LPT1 that we have called lysophosphatidylcholine acyltransferase 3 (LPCAT3). Expression of LPCAT3 in Sf9 insect cells conferred robust esterification of lysophosphatidylcholine in vitro. Kinetic analysis found apparent cooperativity with a saturated acyl-CoA having the lowest K0.5 (5 microM), a monounsaturated acyl-CoA having the highest apparent Vmax (759 nmol/min/mg), and two polyunsaturated acyl-CoAs showing intermediate values. Lysophosphatidylethanolamine and lysophosphatidylserine were also utilized as substrates. Electrospray ionization mass spectrometric analysis of phospholipids in Sf9 cells expressing LPCAT3 showed a relative increase in phosphatidylcholine containing saturated acyl chains and a decrease in phosphatidylcholine containing unsaturated acyl chains. Targeted reduction of LPCAT3 expression in HEK293 cells had essentially an opposite effect, resulting in decreased abundance of saturated phospholipid species and more unsaturated species. Reduced LPCAT3 expression resulted in more apoptosis and distinctly fewer lamellipodia, suggesting a necessary role for lysophospholipid esterification in maintaining cellular function and structure.
Collapse
Affiliation(s)
- Shilpa Jain
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
28
|
Geiser DL, Shen MC, Mayo JJ, Winzerling JJ. Iron loaded ferritin secretion and inhibition by CI-976 in Aedes aegypti larval cells. Comp Biochem Physiol B Biochem Mol Biol 2009; 152:352-63. [PMID: 19168145 PMCID: PMC2649984 DOI: 10.1016/j.cbpb.2009.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 01/01/2009] [Accepted: 01/03/2009] [Indexed: 12/26/2022]
Abstract
Ferritin is a multimer of 24 subunits of heavy and light chains. In mammals, iron taken into cells is stored in ferritin or incorporated into iron-containing proteins. Very little ferritin is found circulating in mammalian serum; most is retained in the cytoplasm. Female mosquitoes, such as Aedes aegypti (yellow fever mosquito, Diptera), require a blood meal for oogenesis. Mosquitoes receive a potentially toxic level of iron in the blood meal which must be processed and stored. We demonstrate by (59)Fe pulse-chase experiments that cultured A. aegypti larval CCL-125 cells take up iron from culture media and store it in ferritin found mainly in the membrane fraction and secrete iron-loaded ferritin. We observe that in these larval cells ferritin co-localizes with ceramide-containing membranes in the absence of iron. With iron treatment, ferritin is found associated with ceramide-containing membranes as well as in cytoplasmic non-ceramide vesicles. Treatment of CCL-125 cells with iron and CI-976, an inhibitor of lysophospholipid acyl transferases, disrupts ferritin secretion with a concomitant decrease in cell viability. Interfering with ferritin secretion may limit the ability of mosquitoes to adjust to the high iron load of the blood meal and decrease iron delivery to the ovaries reducing egg numbers.
Collapse
Affiliation(s)
- Dawn L Geiser
- Department of Nutritional Sciences, The University of Arizona, Tucson, 85721, USA.
| | | | | | | |
Collapse
|
29
|
Furt F, Moreau P. Importance of lipid metabolism for intracellular and mitochondrial membrane fusion/fission processes. Int J Biochem Cell Biol 2009; 41:1828-36. [PMID: 19703652 DOI: 10.1016/j.biocel.2009.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/06/2009] [Accepted: 02/10/2009] [Indexed: 10/21/2022]
Abstract
Mitochondria move along cytoskeletal tracks, fuse and divide. These dynamic features have been shown to be critical for several mitochondrial functions in cell viability and cell death. After a rapid recall of the proteic machineries that are known to be involved, the review will focus on lipids, other key molecular actors of membrane dynamics. A summary of the current knowledge on lipids and their implication in various cellular membrane fusion/fission processes will be first presented. The review will then report what has been discovered or can be expected on the role of the different families of lipids in mitochondrial membrane fusion and fission processes.
Collapse
Affiliation(s)
- Fabienne Furt
- Membrane Biogenesis Laboratory, UMR 5200, University of Bordeaux II-CNRS, France
| | | |
Collapse
|
30
|
Jackson SK, Abate W, Parton J, Jones S, Harwood JL. Lysophospholipid metabolism facilitates Toll-like receptor 4 membrane translocation to regulate the inflammatory response. J Leukoc Biol 2008; 84:86-92. [PMID: 18403647 DOI: 10.1189/jlb.0907601] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sepsis, an overwhelming inflammatory response to infection, is a major cause of morbidity and mortality worldwide and has no specific therapy. Phospholipid metabolites, such as lysophospholipids, have been shown to regulate inflammatory responses in sepsis, although their mechanism of action is not well understood. The phospholipid-metabolizing enzymes, lysophospholipid acyltransferases, control membrane phospholipid composition, function, and the inflammatory responses of innate immune cells. Here, we show that lysophosphatidylcholine acyltransferase (LPCAT) regulates inflammatory responses to LPS and other microbial stimuli. Specific inhibition of LPCAT down-regulated inflammatory cytokine production in monocytes and epithelial cells by preventing translocation of TLR4 into membrane lipid raft domains. Our observations demonstrate a new regulatory mechanism that facilitates the innate immune responses to microbial molecular patterns and provide a basis for the anti-inflammatory activity observed in many phospholipid metabolites. This provides the possibility of the development of new classes of anti-inflammatory and antisepsis agents.
Collapse
Affiliation(s)
- Simon K Jackson
- Centre for Research in Biomedicine, University of the West of England, Bristol, BS16 1QY, UK.
| | | | | | | | | |
Collapse
|
31
|
Acyl-CoA-binding protein (ACBP) localizes to the endoplasmic reticulum and Golgi in a ligand-dependent manner in mammalian cells. Biochem J 2008; 410:463-72. [PMID: 17953517 DOI: 10.1042/bj20070559] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present study, we microinjected fluorescently labelled liver bovine ACBP (acyl-CoA-binding protein) [FACI-50 (fluorescent acyl-CoA indicator-50)] into HeLa and BMGE (bovine mammary gland epithelial) cell lines to characterize the localization and dynamics of ACBP in living cells. Results showed that ACBP targeted to the ER (endoplasmic reticulum) and Golgi in a ligand-binding-dependent manner. A variant Y28F/K32A-FACI-50, which is unable to bind acyl-CoA, did no longer show association with the ER and became segregated from the Golgi, as analysed by intensity correlation calculations. Depletion of fatty acids from cells by addition of FAFBSA (fatty-acid-free BSA) significantly decreased FACI-50 association with the Golgi, whereas fatty acid overloading increased Golgi association, strongly supporting that ACBP associates with the Golgi in a ligand-dependent manner. FRAP (fluorescence recovery after photobleaching) showed that the fatty-acid-induced targeting of FACI-50 to the Golgi resulted in a 5-fold reduction in FACI-50 mobility. We suggest that ACBP is targeted to the ER and Golgi in a ligand-binding-dependent manner in living cells and propose that ACBP may be involved in vesicular trafficking.
Collapse
|
32
|
Brown WJ, Plutner H, Drecktrah D, Judson BL, Balch WE. The lysophospholipid acyltransferase antagonist CI-976 inhibits a late step in COPII vesicle budding. Traffic 2008; 9:786-97. [PMID: 18331383 DOI: 10.1111/j.1600-0854.2008.00711.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The mechanism of coat protein (COP)II vesicle fission from the endoplasmic reticulum (ER) remains unclear. Lysophospholipid acyltransferases (LPATs) catalyze the conversion of various lysophospholipids to phospholipids, a process that can promote spontaneous changes in membrane curvature. Here, we show that 2,2-methyl-N-(2,4,6,-trimethoxyphenyl)dodecanamide (CI-976), a potent LPAT inhibitor, reversibly inhibited export from the ER in vivo and the formation of COPII vesicles in vitro. Moreover, CI-976 caused the rapid and reversible accumulation of cargo at ER exit sites (ERESs) containing the COPII coat components Sec23/24 and Sec13/31 and a marked enhancement of Sar1p-mediated tubule formation from ERESs, suggesting that CI-976 inhibits the fission of assembled COPII budding elements. These results identify a small molecule inhibitor of a very late step in COPII vesicle formation, consistent with fission inhibition, and demonstrate that this step is likely facilitated by an ER-associated LPAT.
Collapse
Affiliation(s)
- William J Brown
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | |
Collapse
|
33
|
Kienesberger PC, Lass A, Preiss-Landl K, Wolinski H, Kohlwein SD, Zimmermann R, Zechner R. Identification of an insulin-regulated lysophospholipase with homology to neuropathy target esterase. J Biol Chem 2007; 283:5908-17. [PMID: 18086666 DOI: 10.1074/jbc.m709598200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuropathy target esterase (NTE) is a member of the family of patatin domain-containing proteins and exhibits phospholipase activity in brain and cultured cells. NTE was originally identified as target enzyme for organophosphorus compounds that cause a delayed paralyzing syndrome with degeneration of nerve axons. Here we show that the structurally related murine protein NTE-related esterase (NRE) is a potent lysophospholipase. The enzyme efficiently hydrolyzes sn-1 esters in lysophosphatidylcholine and lysophosphatidic acid. No lipase activity was observed when triacylglycerols, cholesteryl esters, retinyl esters, phosphatidylcholine, or monoacylglycerol were used as substrates. Although NTE is predominantly expressed in the nervous system, we found the highest NRE mRNA levels in testes, skeletal muscle, cardiac muscle, and adipose tissue. Induction of NRE mRNA concentrations in these tissues during fasting suggested a nutritional regulation of enzyme expression and, in accordance with this observation, insulin reduced NRE mRNA levels in a dose-dependent manner in 3T3-L1 adipocytes. A green fluorescent protein-NRE fusion protein colocalized to the endoplasmic reticulum and lipid droplets. Thus, NRE is a previously unrecognized ER- and lipid droplet-associated lysophospholipase. Regulation of enzyme expression by the nutritional status and insulin suggests a role of NRE in the catabolism of lipid precursors and/or mediators that affect energy metabolism in mammals.
Collapse
|
34
|
Moreau P. Lipids: architects and regulators of membrane dynamics and trafficking. PLANT SIGNALING & BEHAVIOR 2007; 2:157-159. [PMID: 19704742 PMCID: PMC2634043 DOI: 10.4161/psb.2.3.3686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 12/07/2006] [Indexed: 05/28/2023]
Abstract
We have recently shown that an inhibition of sterol synthesis by fenpropimorph leads to an accumulation of sterol precursors, hydroxypalmitic acid-containing glucosylceramides and detergent resistant membranes in the Golgi bodies instead of the plasma membrane, suggesting that the individual molecules or the microdomains were blocked in the Golgi. These results and others from several eukaryotic models link lipid metabolism with membrane morphodynamics that are involved in membrane trafficking. Focus has been expanded to other lipid families, and numerous evidences are given showing lipids and lipid-modifying enzymes as key regulators of membrane homeostasis which can strongly regulate membrane morphodynamics and therefore trafficking. Beside protein-based machineries, lipid-based machineries are also shown as crucial regulatory forces involved in protein transport and sorting.
Collapse
|
35
|
Riekhof WR, Voelker DR. Uptake and utilization of lyso-phosphatidylethanolamine by Saccharomyces cerevisiae. J Biol Chem 2006; 281:36588-96. [PMID: 17015438 DOI: 10.1074/jbc.m608851200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylethanolamine (PtdEtn) is synthesized by multiple pathways located in different subcellular compartments in yeast. Strains defective in the synthesis of PtdEtn via phosphatidylserine (PtdSer) synthase/decarboxylase are auxotrophic for ethanolamine, which must be transported into the cell and converted to phospholipid by the cytidinediphosphate-ethanolamine-dependent Kennedy pathway. We now demonstrate that yeast strains with psd1Delta psd2Delta mutations, devoid of PtdSer decarboxylases, import and acylate exogenous 1-acyl-2-hydroxyl-sn-glycero-3-phosphoethanolamine (lyso-PtdEtn). Lyso-PtdEtn supports growth and replaces the mitochondrial pool of PtdEtn much more efficiently than and independently of PtdEtn derived from the Kennedy pathway. Deletion of both the PtdSer decarboxylase and Kennedy pathways yields a strain that is a stringent lyso-PtdEtn auxotroph. Evidence for the specific uptake of lyso-PtdEtn by yeast comes from analysis of strains harboring deletions of the aminophospholipid translocating P-type ATPases (APLTs). Elimination of the APLTs, Dnf1p and Dnf2p, or their noncatalytic beta-subunit, Lem3p, blocked the import of radiolabeled lyso-PtdEtn and resulted in growth inhibition of lyso-PtdEtn auxotrophs. In cell extracts, lyso-PtdEtn is rapidly converted to PtdEtn by an acyl-CoA-dependent acyltransferase. These results now provide 1) an assay for APLT function based on an auxotrophic phenotype, 2) direct demonstration of APLT action on a physiologically relevant substrate, and 3) a genetic screen aimed at finding additional components that mediate the internalization, trafficking, and acylation of exogenous lyso-phospholipids.
Collapse
Affiliation(s)
- Wayne R Riekhof
- Department of Medicine, Program in Cell Biology, National Jewish Medical and Research Center, Denver, Colorado 80206, USA
| | | |
Collapse
|
36
|
Domanov YA, Kinnunen PKJ. Antimicrobial peptides temporins B and L induce formation of tubular lipid protrusions from supported phospholipid bilayers. Biophys J 2006; 91:4427-39. [PMID: 16997872 PMCID: PMC1779916 DOI: 10.1529/biophysj.106.091702] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The binding of the antimicrobial peptides temporins B and L to supported lipid bilayer (SLB) model membranes composed of phosphatidylcholine and phosphatidylglycerol (4:1, mol/mol) caused the formation of fibrillar protrusions, visible by fluorescent microscopy of both a fluorescent lipid analog and a labeled peptide. Multicolor imaging at low peptide-to-lipid ratios (P/L < approximately 1:5) revealed an initial in-plane segregation of membrane-bound peptide and partial exclusion of lipid from the peptide-enriched areas. Subsequently, at higher P/L numerous flexible lipid fibrils were seen growing from the areas enriched in lipid. The fibrils have diameters <250 nm and lengths of up to approximately 1 mm. Fibril formation reduces the in-plane heterogeneity and results in a relatively even redistribution of bound peptide over the planar bilayer and the fibrils. Physical properties of the lipid fibrils suggest that they have a tubular structure. Our data demonstrate that the peptide-lipid interactions alone can provide a driving force for the spontaneous membrane shape transformations leading to tubule outgrowth and elongation. Further experiments revealed the importance of positive curvature strain in the tubulation process as well as the sufficient positive charge on the peptide (>/=+2). The observed membrane transformations could provide a simplified in vitro model for morphogenesis of intracellular tubular structures and intercellular connections.
Collapse
Affiliation(s)
- Yegor A Domanov
- Helsinki Biophysics & Biomembrane Group, Medical Biochemistry/Institute of Biomedicine, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
37
|
Yang JS, Lee SY, Spanò S, Gad H, Zhang L, Nie Z, Bonazzi M, Corda D, Luini A, Hsu VW. A role for BARS at the fission step of COPI vesicle formation from Golgi membrane. EMBO J 2005; 24:4133-43. [PMID: 16292346 PMCID: PMC1356313 DOI: 10.1038/sj.emboj.7600873] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 10/21/2005] [Indexed: 11/09/2022] Open
Abstract
The core complex of Coat Protein I (COPI), known as coatomer, is sufficient to induce coated vesicular-like structures from liposomal membrane. In the context of biological Golgi membrane, both palmitoyl-coenzyme A (p-coA) and ARFGAP1, a GTPase-activating protein (GAP) for ADP-Ribosylation Factor 1, also participate in vesicle formation, but how their roles may be linked remains unknown. Moreover, whether COPI vesicle formation from Golgi membrane requires additional factors also remains unclear. We now show that Brefeldin-A ADP-Ribosylated Substrate (BARS) plays a critical role in the fission step of COPI vesicle formation from Golgi membrane. This role of BARS requires its interaction with ARFGAP1, which is in turn regulated oppositely by p-coA and nicotinamide adenine dinucleotide, which act as cofactors of BARS. Our findings not only identify a new factor needed for COPI vesicle formation from Golgi membrane but also reveal a surprising mechanism by which the roles of p-coA and GAP are linked in this process.
Collapse
Affiliation(s)
- Jia-Shu Yang
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Stella Y Lee
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Stefania Spanò
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| | - Helge Gad
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| | - Leiliang Zhang
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Zhongzhen Nie
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD, USA
| | - Matteo Bonazzi
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| | - Daniela Corda
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| | - Alberto Luini
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| | - Victor W Hsu
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, One Jimmy Fund Way, Smith 538, Boston, MA 02115, USA. Tel.: +1 617 525 1103; Fax: +1 617 525 1104; E-mail:
| |
Collapse
|
38
|
Chambers K, Judson B, Brown WJ. A unique lysophospholipid acyltransferase (LPAT) antagonist, CI-976, affects secretory and endocytic membrane trafficking pathways. J Cell Sci 2005; 118:3061-71. [PMID: 15972316 DOI: 10.1242/jcs.02435] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have shown that inhibition of a Golgi-complex-associated lysophospholipid acyltransferase (LPAT) activity by the drug CI-976 stimulates Golgi tubule formation and subsequent redistribution of resident Golgi proteins to the endoplasmic reticulum (ER). Here, we show that CI-976 stimulates tubule formation from all subcompartments of the Golgi complex, and often these tubules formed independently, i.e. individual tubules usually did not contain markers from different subcompartments. Whereas the cis, medial and trans Golgi membranes redistributed to the ER, the trans Golgi network (TGN) collapsed back to a compact juxtanuclear position similar to that seen with brefeldin A (BFA) treatment. Also similar to BFA, CI-976 induced the formation of endosome tubules, but unlike BFA, these tubules did not fuse with TGN tubules. Finally, CI-976 produced an apparently irreversible block in the endocytic recycling pathway of transferrin (Tf) and Tf receptors (TfRs) but had no direct effect on Tf uptake from the cell surface. Tf and TfRs accumulated in centrally located, Rab11-positive vesicles indicating that CI-976 inhibits export of cargo from the central endocytic recycling compartment. These results, together with previous studies, demonstrate that CI-976 inhibits multiple membrane trafficking steps, including ones found in the endocytic and secretory pathways, and imply a wider role for lysophospholipid acyltransferases in membrane trafficking.
Collapse
Affiliation(s)
- Kimberly Chambers
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
39
|
Abstract
Lipids were long considered to be passive passengers of carrier vesicles with the single role of sealing the transport container. We now know that specific phospholipids are required for efficient fusion, while others facilitate budding and fission. Moreover, the various polyphosphoinositides assist in the recruitment from the cytosol of proteins of the transport machinery. Finally, the segregation of membrane lipids into different fluid phases appears to serve as a 'lipid raft' mechanism for protein sorting at various stages of the secretory and endocytic pathways. The current challenge is to understand how proteins control the metabolism and subcellular localization, and thereby the activity, of the various lipids.
Collapse
Affiliation(s)
- Gerrit van Meer
- Department of Membrane Enzymology, Centre for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | |
Collapse
|
40
|
Lagace TA, Ridgway ND. The rate-limiting enzyme in phosphatidylcholine synthesis regulates proliferation of the nucleoplasmic reticulum. Mol Biol Cell 2005; 16:1120-30. [PMID: 15635091 PMCID: PMC551478 DOI: 10.1091/mbc.e04-10-0874] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The nucleus contains a network of tubular invaginations of the nuclear envelope (NE), termed the nucleoplasmic reticulum (NR), implicated in transport, gene expression, and calcium homeostasis. Here, we show that proliferation of the NR, measured by the frequency of NE invaginations and tubules, is regulated by CTP:phosphocholine cytidylyltransferase-alpha (CCTalpha), the nuclear and rate-limiting enzyme in the CDP-choline pathway for phosphatidylcholine (PtdCho) synthesis. In Chinese hamster ovary (CHO)-K1 cells, fatty acids triggered activation and translocation of CCTalpha onto intranuclear tubules characteristic of the NR. This was accompanied by a twofold increase in NR tubules quantified by immunostaining for lamin A/C or the NE. CHO MT58 cells expressing a temperature-sensitive CCTalpha allele displayed reduced PtdCho synthesis and CCTalpha expression and minimal proliferation of the NR in response to oleate compared with CHO MT58 cells stably expressing CCTalpha. Expression of CCTalpha mutants in CHO58 cells revealed that both enzyme activity and membrane binding promoted NR proliferation. In support of a direct role for membrane binding in NR tubule formation, recombinant CCTalpha caused the deformation of liposomes into tubules in vitro. This demonstrates that a key nuclear enzyme in PtdCho synthesis coordinates lipid synthesis and membrane deformation to promote formation of a dynamic nuclear-cytoplasmic interface.
Collapse
Affiliation(s)
- Thomas A Lagace
- Atlantic Research Center, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | |
Collapse
|
41
|
Brown WJ, Schmidt JA. Use of Acyltransferase Inhibitors to Block Vesicular Traffic Between the ER and Golgi Complex. Methods Enzymol 2005; 404:115-25. [PMID: 16413263 DOI: 10.1016/s0076-6879(05)04012-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This article describes the use of acyltransferase inhibitors as probes for studying the potential role of lysophospholipid acyltransferases (LPAT) in intracellular membrane trafficking in the secretory and endocytic pathways. The small molecule inhibitors that are described here were originally found as acyl-CoA:cholesterol acyltransferase (ACAT) inhibitors. One of these, CI-976 (2,2-methyl-N-(2,4,6,-trimethoxyphenyl)dodecanamide), was also found to be a potent LPAT inhibitor. CI-976 is a small, hydrophobic, membrane-permeant compound and both in vivo and in vitro studies have shown that it, but not other ACAT inhibitors, has a profound effect on multiple membrane trafficking pathways in eukaryotic cells including: (1) inhibition of COPII vesicle budding from the endoplasmic reticulum (ER), (2) inhibition of transferrin and transferrin receptor export from the endocytic recycling compartment, and (3) stimulation of tubule-mediated retrograde trafficking of Golgi membranes to the ER. Here we describe the use of CI-976 and other ACAT inhibitors for studies with both cultured mammalian cells and in vitro reconstitution assays, with a particular emphasis on COPII vesicle budding from the ER. All of these studies strongly suggest that CI-976-sensitive LPATs play a role in coated vesicle fission, and therefore, CI-976 is a valuable addition to the arsenal of small molecule inhibitors that can be used to study secretory and endocytic membrane trafficking pathways.
Collapse
Affiliation(s)
- William J Brown
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | | |
Collapse
|
42
|
Grimmer S, Ying M, Wälchli S, van Deurs B, Sandvig K. Golgi Vesiculation Induced by Cholesterol Occurs by a Dynamin- and cPLA2-Dependent Mechanism. Traffic 2004; 6:144-56. [PMID: 15634214 DOI: 10.1111/j.1600-0854.2005.00258.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It was recently demonstrated that an increase in the cellular cholesterol level leads to vesiculation of the Golgi apparatus. This vesiculation affects the entire Golgi apparatus and is a reversible process. We have now started to elucidate the mechanism behind this cholesterol-induced vesiculation of the Golgi apparatus. Transient transfection of cells with dominant negative mutant constructs of dynamin 1 and 2 inhibited the vesiculation; expression of dynK44A in HeLa cells stably transfected with this construct had the same effect. However, the vesiculation seems to be independent of clathrin, as cholesterol-induced vesiculation still occurred following knock down of clathrin heavy chain in HeLa cells using RNA interference as well as in BHK cells where expression of antisense to clathrin heavy chain had been induced. Importantly, the cPLA2 inhibitor MAFP and the chelator BAPTA-AM that binds cytosolic Ca2+ inhibited the cholesterol-induced vesiculation, suggesting involvement of a cPLA2 that requires cytosolic Ca2+ for translocation to membranes. Furthermore, in response to an increased cellular cholesterol level, an EGFP-cPLA2 fusion protein translocated to the Golgi apparatus. Thus, our results demonstrate that the cholesterol-induced vesiculation of the Golgi apparatus is mediated by a cPLA2- and dynamin-dependent mechanism.
Collapse
Affiliation(s)
- Stine Grimmer
- Institute for Cancer Research, Department of Biochemistry, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | | | | | | | | |
Collapse
|
43
|
Chan D, Strang M, Judson B, Brown WJ. Inhibition of membrane tubule formation and trafficking by isotetrandrine, an antagonist of G-protein-regulated phospholipase A2 enzymes. Mol Biol Cell 2004; 15:1871-80. [PMID: 14767064 PMCID: PMC379283 DOI: 10.1091/mbc.e03-09-0644] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Revised: 11/30/2003] [Accepted: 01/11/2004] [Indexed: 11/11/2022] Open
Abstract
Previous studies have established a role for cytoplasmic phospholipase A(2) (PLA(2)) activity in tubule-mediated retrograde trafficking between the Golgi complex and the endoplasmic reticulum (ER). However, little else is known about how membrane tubule formation is regulated. This study demonstrates that isotetrandrine (ITD), a biscoclaurine alkaloid known to inhibit PLA(2) enzyme activation by heterotrimeric G-proteins, effectively prevented brefeldin A (BFA)-induced tubule formation from the Golgi complex and retrograde trafficking to the ER. In addition, ITD inhibited BFA-stimulated tubule formation from the trans-Golgi network and endosomes. ITD inhibition of the BFA response was potent (IC(50) approximately 10-20 microM) and rapid (complete inhibition with a 10-15-min preincubation). ITD also inhibited normal retrograde trafficking as revealed by the formation of nocodazole-induced Golgi mini-stacks at ER exit sites. Treatment of cells with ITD alone caused the normally interconnected Golgi ribbons to become fragmented and dilated, but cisternae were still stacked and located in a juxtanuclear position. These results suggest that a G-protein-binding PLA(2) enzyme plays a pivotal role in tubule mediated trafficking between the Golgi and the ER, the maintenance of the interconnected ribbons of Golgi stacks, and tubule formation from endosomes.
Collapse
Affiliation(s)
- Diane Chan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 18483, USA
| | | | | | | |
Collapse
|
44
|
Chambers K, Brown WJ. Characterization of a novel CI-976-sensitive lysophospholipid acyltransferase that is associated with the Golgi complex. Biochem Biophys Res Commun 2004; 313:681-6. [PMID: 14697244 DOI: 10.1016/j.bbrc.2003.12.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent studies have identified a novel lysophospholipid acyltransferase (LPAT) that is associated with the Golgi complex and that is sensitive to the previously characterized acyl-CoA cholesterol acyltransferase inhibitor, 2,2-methyl-N-(2,4,6-trimethoxyphenyl)dodecanamide (CI-976). Here we show that besides acting on exogenous lysophospholipid (LPL) substrates, the CI-976-sensitive LPAT is also capable of reacylating endogenous Golgi LPL substrates, preferentially lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE). Moreover, using exogenous substrates, we find that the CI-976-sensitive LPAT is capable of using a variety of fatty acyl-CoA donors ranging in chain length from 10 to 20 carbons. Additional characterization demonstrates that the CI-976-sensitive LPAT is ubiquitously expressed in rat tissues, is tightly associated with Golgi membranes, and has a pH optimum between pH 7.0 and 8.0. These studies further define a unique LPC/LPE-specific LPAT from Golgi membranes that likely has a novel function in membrane trafficking.
Collapse
Affiliation(s)
- Kimberly Chambers
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
45
|
Brown WJ, Chambers K, Doody A. Phospholipase A2 (PLA2) enzymes in membrane trafficking: mediators of membrane shape and function. Traffic 2003; 4:214-21. [PMID: 12694560 DOI: 10.1034/j.1600-0854.2003.00078.x] [Citation(s) in RCA: 223] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Since the mid-1990s, there have been tremendous advances in our understanding of the roles that lipid-modifying enzymes play in various intracellular membrane trafficking events. Phospholipases represent the largest group of lipid-modifying enzymes and accordingly display a wide range of functions. The largest class of phospholipases are the phospholipase A(2) (PLA2) enzymes, and these have been most extensively studied for their roles in the generation lipid signaling molecules, e.g. arachidonic acid. In recent years, however, cytoplasmic PLA2 enzymes have also become increasingly associated with various intracellular trafficking events, such as the formation of membrane tubules from the Golgi complex and endosomes, and membrane fusion events in the secretory and endocytic pathways. Moreover, the ability of cytoplasmic PLA2 enzymes to directly affect the structure and function of membranes by altering membrane curvature suggests novel functional roles for these enzymes. This review will focus on the role of cytoplasmic PLA2 enzymes in intracellular membrane trafficking and the mechanisms by which they influence membrane structure and function.
Collapse
Affiliation(s)
- William J Brown
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|