1
|
Kumawat R, Tomar RS. Dissecting the role of mitogen-activated protein kinase Hog1 in yeast flocculation. FEBS J 2024; 291:3080-3103. [PMID: 38648231 DOI: 10.1111/febs.17137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/25/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
Living organisms are frequently exposed to multiple biotic and abiotic stress forms during their lifetime. Organisms cope with stress conditions by regulating their gene expression programs. In response to different environmental stress conditions, yeast cells activate different tolerance mechanisms, many of which share common signaling pathways. Flocculation is one of the key mechanisms underlying yeast survival under unfavorable environmental conditions, and the Tup1-Cyc8 corepressor complex is a major regulator of this process. Additionally, yeast cells can utilize different mitogen-activated protein kinase (MAPK) pathways to modulate gene expression during stress conditions. Here, we show that the high osmolarity glycerol (HOG) MAPK pathway is involved in the regulation of yeast flocculation. We observed that the HOG MAPK pathway was constitutively activated in flocculating cells, and found that the interaction between phosphorylated Hog1 and the FLO genes promoter region increased significantly upon sodium chloride exposure. We found that treatment of cells with cantharidin decreased Hog1 phosphorylation, causing a sharp reduction in the expression of FLO genes and the flocculation phenotype. Similarly, deletion of HOG1 in yeast cells reduced flocculation. Altogether, our results suggest a role for HOG MAPK signaling in the regulation of FLO genes and yeast flocculation.
Collapse
Affiliation(s)
- Ramesh Kumawat
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| |
Collapse
|
2
|
Lee E, Jung D, Kim J. Roles of Dhh1 RNA helicase in yeast filamentous growth: Analysis of N-terminal phosphorylation residues and ATPase domains. J Microbiol 2020; 58:853-858. [PMID: 32989641 DOI: 10.1007/s12275-020-0431-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/24/2022]
Abstract
In yeast Saccharomyces cerevisiae, the Dhh1 protein, a member of the DEAD-box RNA helicase, stimulates Dcp2/Dcp1-mediated mRNA decapping and functions as a general translation repressor. Dhh1 also positively regulates translation of a selected set of mRNAs, including Ste12, a transcription factor for yeast mating and pseudohyphal growth. Given the diverse functions of Dhh1, we investigated whether the putative phosphorylation sites or the conserved motifs for the DEAD-box RNA helicases were crucial in the regulatory roles of Dhh1 during pseudohyphal growth. Mutations in the ATPase A or B motif (DHH1-K96R or DHH1-D195A) showed significant defects in pseudohyphal colony morphology and agar invasive phenotypes. The N-terminal phospho-mimetic mutation, DHH1-T16E, showed defects in pseudohyphal phenotypes. Decreased levels of Ste12 protein were also observed in these pseudohyphal-defective mutant cells under filamentous-inducing low nitrogen conditions. We suggest that the ATPase motifs and the Thr16 phosphorylation site of Dhh1 are crucial to its regulatory roles in pseudohyphal growth under low nitrogen conditions.
Collapse
Affiliation(s)
- Eunji Lee
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Daehee Jung
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jinmi Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
3
|
Ji H, Xu K, Dong X, Sun D, Peng R, Lin S, Zhang K, Jin L. Transcriptional profiling reveals molecular basis and the role of arginine in response to low-pH stress in Pichia kudriavzevii. J Biosci Bioeng 2020; 130:588-595. [PMID: 32798135 DOI: 10.1016/j.jbiosc.2020.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/11/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022]
Abstract
The non-conventional yeast Pichia kudriavzevii is considered to be a promising biotechnological host for the production of organic acids under low-pH conditions. However, little is known about the low-pH stress response in P. kudriavzevii, which significantly restricts its future development. In this study, P. kudriavzevii N-X showed great tolerance to low-pH stress, but the cell aggregation upon extremely acidic conditions might be unfavorable for low-pH fermentation. We therefore conducted RNA-Seq to compare global gene expression of P. kudriavzevii N-X in response to different pH stresses. Totally 434 genes were identified to be differentially expressed genes (DEGs), and annotation and enrichment analysis suggested that multiple genes associated with regulation of membrane lipid composition, filamentous growth and arginine metabolism were differentially expressed. The increased specific activity of arginase and intracellular ammonia concentration of P. kudriavzevii cultured at pH 2.0 further implied potential roles of arginine in response to extreme low-pH conditions. Extracellular supplementation of 5 mM arginine resulted in increased pHi and cell growth at pH 2.0, meanwhile the cell aggregation was partially suppressed. Additionally, overexpression of ARG J involving in arginine synthesis can also enhance the cell growth and reduce the aggregation effect. These results suggested that increasing arginine flux might be an alternative approach in the developing of P. kudriavzevii as a platform host for production of organic acids under low-pH conditions.
Collapse
Affiliation(s)
- Hao Ji
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, PR China; Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, Zhejiang 325035, PR China.
| | - Ke Xu
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, PR China; Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, Zhejiang 325035, PR China
| | - Xiameng Dong
- Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou, Zhejiang 325006, PR China
| | - Da Sun
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, PR China; Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, Zhejiang 325035, PR China
| | - Renyi Peng
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, PR China; Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, Zhejiang 325035, PR China
| | - Sue Lin
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, PR China; Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, Zhejiang 325035, PR China
| | - Kailun Zhang
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, PR China; Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, Zhejiang 325035, PR China
| | - Libo Jin
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, PR China; Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, Zhejiang 325035, PR China
| |
Collapse
|
4
|
Mutlu N, Sheidy DT, Hsu A, Jeong HS, Wozniak KJ, Kumar A. A Stress-Responsive Signaling Network Regulating Pseudohyphal Growth and Ribonucleoprotein Granule Abundance in Saccharomyces cerevisiae. Genetics 2019; 213:705-720. [PMID: 31455721 PMCID: PMC6781900 DOI: 10.1534/genetics.119.302538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/21/2019] [Indexed: 11/18/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae undergoes a stress-responsive transition to a pseudohyphal growth form in which cells elongate and remain connected in multicellular filaments. Pseudohyphal growth is regulated through conserved signaling networks that control cell growth and the response to glucose or nitrogen limitation in metazoans. These networks are incompletely understood, and our studies identify the TORC1- and PKA-regulated kinase Ksp1p as a key stress-responsive signaling effector in the yeast pseudohyphal growth response. The kinase-defective ksp1-K47D allele results in decreased pseudohyphal morphology at the cellular and colony level, indicating that Ksp1p kinase signaling is required for pseudohyphal filamentation. To determine the functional consequences of Ksp1p signaling, we implemented transcriptional profiling and quantitative phosphoproteomic analysis of ksp1-K47D on a global scale. Ksp1p kinase signaling maintains wild-type transcript levels of many pathways for amino acid synthesis and metabolism, relevant for the regulation of translation under conditions of nutrient stress. Proteins in stress-responsive ribonucleoprotein granules are regulated post-translationally by Ksp1p, and the Ksp1p-dependent phosphorylation sites S176 in eIF4G/Tif4631p and S436 in Pbp1p are required for wild-type levels of pseudohyphal growth and Protein Kinase A pathway activity. Pbp1p and Tif4631p localize in stress granules, and the ksp1 null mutant shows elevated abundance of Pbp1p puncta relative to wild-type. Collectively, the Ksp1p kinase signaling network integrates polarized pseudohyphal morphogenesis and translational regulation through the stress-responsive transcriptional control of pathways for amino acid metabolism and post-translational modification of translation factors affecting stress granule abundance.
Collapse
Affiliation(s)
- Nebibe Mutlu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Daniel T Sheidy
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | | | - Han Seol Jeong
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Katherine J Wozniak
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
- Program in Molecular and Cellular Biology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
5
|
Abstract
Understanding how and why cells cooperate to form multicellular organisms is a central aim of evolutionary biology. Multicellular groups can form through clonal development (where daughter cells stick to mother cells after division) or by aggregation (where cells aggregate to form groups). These different ways of forming groups directly affect relatedness between individual cells, which in turn can influence the degree of cooperation and conflict within the multicellular group. It is hard to study the evolution of multicellularity by focusing only on obligately multicellular organisms, like complex animals and plants, because the factors that favour multicellular cooperation cannot be disentangled, as cells cannot survive and reproduce independently. We support the use of Saccharomyces cerevisiae as an ideal model for studying the very first stages of the evolution of multicellularity. This is because it can form multicellular groups both clonally and through aggregation and uses a family of proteins called ‘flocculins’ that determine the way in which groups form, making it particularly amenable to laboratory experiments. We briefly review current knowledge about multicellularity in S. cerevisiae and then propose a framework for making predictions about the evolution of multicellular phenotypes in yeast based on social evolution theory. We finish by explaining how S. cerevisiae is a particularly useful experimental model for the analysis of open questions concerning multicellularity.
Collapse
Affiliation(s)
- R M Fisher
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - B Regenberg
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Zara G, Bou Zeidan M, Fancello F, Sanna ML, Mannazzu I, Budroni M, Zara S. The administration of L-cysteine and L-arginine inhibits biofilm formation in wild-type biofilm-forming yeast by modulating FLO11 gene expression. Appl Microbiol Biotechnol 2019; 103:7675-7685. [PMID: 31300852 DOI: 10.1007/s00253-019-09996-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/17/2019] [Accepted: 06/22/2019] [Indexed: 01/25/2023]
Abstract
Microbial biofilms are undesired in food manufacturing, drinking water distribution systems, and clinical realms. Yeast biofilms are particularly problematic because of the strong capacity of yeast cells to adhere to abiotic surfaces, cells, and tissues. Novel approaches have been developed over recent years to prevent the establishment of microbial biofilms, such as through the use of small molecules with inhibiting and dispersing properties. Here, we studied the inhibitory activity of 11 different amino acids on the biofilm formation ability of three wild-type Saccharomyces cerevisiae strains and the reference strain ∑1278b. Subsequent evaluation of different concentrations of the two most effective amino acids, namely, arginine and cysteine, revealed that they acted in different ways. Arginine prevented biofilm formation by reducing FLO11 gene expression; its addition did not affect cell viability and was even found to enhance cell metabolism (vitality marker) as determined by phenotype microarray (PM) analysis. On the contrary, the addition of cysteine reduced both cell viability and vitality as well as FLO11 expression. Thus, the use of cysteine and arginine as agents against biofilm formation can be diversified depending on the most desired action towards yeast growth.
Collapse
Affiliation(s)
- Giacomo Zara
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy.
| | - Marc Bou Zeidan
- Department of Agri-Food Sciences, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Francesco Fancello
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Maria Lina Sanna
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Ilaria Mannazzu
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Marilena Budroni
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Severino Zara
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy.
| |
Collapse
|
7
|
Variation in Filamentous Growth and Response to Quorum-Sensing Compounds in Environmental Isolates of Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2019; 9:1533-1544. [PMID: 30862622 PMCID: PMC6505140 DOI: 10.1534/g3.119.400080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In fungi, filamentous growth is a major developmental transition that occurs in response to environmental cues. In diploid Saccharomyces cerevisiae, it is known as pseudohyphal growth and presumed to be a foraging mechanism. Rather than unicellular growth, multicellular filaments composed of elongated, attached cells spread over and into surfaces. This morphogenetic switch can be induced through quorum sensing with the aromatic alcohols phenylethanol and tryptophol. Most research investigating pseudohyphal growth has been conducted in a single lab background, Σ1278b. To investigate the natural variation in this phenotype and its induction, we assayed the diverse 100-genomes collection of environmental isolates. Using computational image analysis, we quantified the production of pseudohyphae and observed a large amount of variation. Population origin was significantly associated with pseudohyphal growth, with the West African population having the most. Surprisingly, most strains showed little or no response to exogenous phenylethanol or tryptophol. We also investigated the amount of natural genetic variation in pseudohyphal growth using a mapping population derived from a highly-heterozygous clinical isolate that contained as much phenotypic variation as the environmental panel. A bulk-segregant analysis uncovered five major peaks with candidate loci that have been implicated in the Σ1278b background. Our results indicate that the filamentous growth response is a generalized, highly variable phenotype in natural populations, while response to quorum sensing molecules is surprisingly rare. These findings highlight the importance of coupling studies in tractable lab strains with natural isolates in order to understand the relevance and distribution of well-studied traits.
Collapse
|
8
|
David-Vaizant V, Alexandre H. Flor Yeast Diversity and Dynamics in Biologically Aged Wines. Front Microbiol 2018; 9:2235. [PMID: 30319565 PMCID: PMC6167421 DOI: 10.3389/fmicb.2018.02235] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/03/2018] [Indexed: 11/29/2022] Open
Abstract
Wine biological aging is characterized by the development of yeast strains that form a biofilm on the wine surface after alcoholic fermentation. These yeasts, known as flor yeasts, form a velum that protects the wine from oxidation during aging. Thirty-nine velums aged from 1 to 6 years were sampled from “Vin jaune” from two different cellars. We show for the first time that these velums possess various aspects in term of color and surface aspects. Surprisingly, the heterogeneous velums are mostly composed of one species, S. cerevisiae. Scanning electron microscope observations of these velums revealed unprecedented biofilm structures and various yeast morphologies formed by the sole S. cerevisiae species. Our results highlight that different strains of Saccharomyces are present in these velums. Unexpectedly, in the same velum, flor yeast strain succession occurred during aging, supporting the assumption that environmental changes are responsible for these shifts. Despite numerous sample wine analyses, very few flor yeasts could be isolated from wine following alcoholic fermentation, suggesting that flor yeast development results from the colonization of yeast present in the aging cellar. We analyzed the FLO11 and ICR1 sequence of different S. cerevisiae strains in order to understand how the same strain of S. cerevisiae could form various types of biofilm. Among the strains analyzed, some were heterozygote at the FLO11 locus, while others presented two different alleles of ICR1 (wild type and a 111 bp deletion). We could not find a strong link between strain genotypes and velum characteristics. The same strain in different wines could form a velum having very different characteristics, highlighting a matrix effect.
Collapse
Affiliation(s)
- Vanessa David-Vaizant
- AgroSup Dijon, PAM UMR A 02.102, Université Bourgogne Franche-Comté, Dijon, France.,Equipe VAlMiS, Institut Universitaire de la Vigne et du Vin, Dijon, France
| | - Hervé Alexandre
- AgroSup Dijon, PAM UMR A 02.102, Université Bourgogne Franche-Comté, Dijon, France.,Equipe VAlMiS, Institut Universitaire de la Vigne et du Vin, Dijon, France
| |
Collapse
|
9
|
Mutlu N, Kumar A. Messengers for morphogenesis: inositol polyphosphate signaling and yeast pseudohyphal growth. Curr Genet 2018; 65:119-125. [PMID: 30101372 DOI: 10.1007/s00294-018-0874-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 12/20/2022]
Abstract
In response to various environmental stimuli and stressors, the budding yeast Saccharomyces cerevisiae can initiate a striking morphological transition from its classic growth mode as isolated single cells to a filamentous form in which elongated cells remain connected post-cytokinesis in multi-cellular pseudohyphae. The formation of pseudohyphal filaments is regulated through an expansive signaling network, encompassing well studied and highly conserved pathways enabling changes in cell polarity, budding, cytoskeletal organization, and cell adhesion; however, changes in metabolite levels underlying the pseudohyphal growth transition are less well understood. We have recently identified a function for second messenger inositol polyphosphates (InsPs) in regulating pseudohyphal growth. InsPs are formed through the cleavage of membrane-bound phosphatidylinositol 4,5-bisphosphate (PIP2), and these soluble compounds are now being appreciated as important regulators of diverse processes, from phosphate homeostasis to cell migration. We find that kinases in the InsP pathway are required for wild-type pseudohyphal growth, and that InsP species exhibit characteristic profiles under conditions promoting filamentation. Ratios of the doubly phosphorylated InsP7 isoforms 5PP-InsP5 to 1PP-InsP5 are elevated in mutants exhibiting exaggerated pseudohyphal growth. Interestingly, S. cerevisiae mutants deleted of the mitogen-activated protein kinases (MAPKs) Kss1p or Fus3p or the AMP-activated kinase (AMPK) family member Snf1p display mutant InsP profiles, suggesting that these signaling pathways may contribute to the regulatory mechanism controlling InsP levels. Consequently, analyses of yeast pseudohyphal growth may be informative in identifying mechanisms regulating InsPs, while indicating a new function for these conserved second messengers in modulating cell stress responses and morphogenesis.
Collapse
Affiliation(s)
- Nebibe Mutlu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
10
|
Tekarslan-Sahin SH, Alkim C, Sezgin T. Physiological and transcriptomic analysis of a salt-resistant Saccharomyces cerevisiae mutant obtained by evolutionary engineering. Bosn J Basic Med Sci 2018; 18:55-65. [PMID: 28954203 PMCID: PMC5826675 DOI: 10.17305/bjbms.2017.2250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 12/19/2022] Open
Abstract
Salt-resistant yeast strains are highly demanded by industry due to the exposure of yeast cells to high concentrations of salt, in various industrial bioprocesses. The aim of this study was to perform a physiological and transcriptomic analysis of a salt-resistant Saccharomyces cerevisiae (S. cerevisiae) mutant generated by evolutionary engineering. NaCl-resistant S. cerevisiae strains were obtained by ethyl methanesulfonate (EMS) mutagenesis followed by successive batch cultivations in the presence of gradually increasing NaCl concentrations, up to 8.5% w/v of NaCl (1.45 M). The most probable number (MPN) method, high-performance liquid chromatography (HPLC), and glucose oxidase/peroxidase method were used for physiological analysis, while Agilent yeast DNA microarray systems were used for transcriptome analysis. NaCl-resistant mutant strain T8 was highly cross-resistant to LiCl and highly sensitive to AlCl3. In the absence of NaCl stress, T8 strain had significantly higher trehalose and glycogen levels compared to the reference strain. Global transcriptome analysis by means of DNA microarrays showed that the genes related to stress response, carbohydrate transport, glycogen and trehalose biosynthesis, as well as biofilm formation, were upregulated. According to gene set enrichment analysis, 548 genes were upregulated and 22 downregulated in T8 strain, compared to the reference strain. Among the 548 upregulated genes, the highest upregulation was observed for the FLO11 (MUC1) gene (92-fold that of the reference strain). Overall, evolutionary engineering by chemical mutagenesis and increasing NaCl concentrations is a promising approach in developing industrial strains for biotechnological applications.
Collapse
Affiliation(s)
- Seyma Hande Tekarslan-Sahin
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey; Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey; Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey.
| | | | | |
Collapse
|
11
|
Wang D, Akhberdi O, Hao X, Yu X, Chen L, Liu Y, Zhu X. Amino Acid Sensor Kinase Gcn2 Is Required for Conidiation, Secondary Metabolism, and Cell Wall Integrity in the Taxol-Producer Pestalotiopsis microspora. Front Microbiol 2017; 8:1879. [PMID: 29021785 PMCID: PMC5623678 DOI: 10.3389/fmicb.2017.01879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/14/2017] [Indexed: 12/21/2022] Open
Abstract
The canonical Gcn2/Cpc1 kinase in fungi coordinates the expression of target genes in response to amino acid starvation. To investigate its possible role in secondary metabolism, we characterized a gcn2 homolog in the taxol-producing fungus Pestalotiopsis microspora. Deletion of the gene led to severe physiological defects under amino acid starvation, suggesting a conserved function of gcn2 in amino acid sensing. The mutant strain Δgcn2 displayed retardation in vegetative growth. It generated dramatically fewer conidia, suggesting a connection between amino acid metabolism and conidiation in this fungus. Importantly, disruption of the gene altered the production of secondary metabolites by HPLC profiling. For instance, under amino acid starvation, the deletion strain Δgcn2 barely produced secondary metabolites including the known natural product pestalotiollide B. Even more, we showed that gcn2 played critical roles in the tolerance to several stress conditions. Δgcn2 exhibited a hypersensitivity to Calcofluor white and Congo red, implying a role of Gcn2 in maintaining the integrity of the cell wall. This study suggests that Gcn2 kinase is an important global regulator in the growth and development of filamentous fungi and will provide knowledge for the manipulation of secondary metabolism in P. microspora.
Collapse
Affiliation(s)
- Dan Wang
- National Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Oren Akhberdi
- National Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoran Hao
- National Experimental Teaching Demonstrating Center, School of Life Sciences, Beijing Normal University, Beijing, China
| | - Xi Yu
- National Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Longfei Chen
- National Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yanjie Liu
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Molecular Biology, School of Life Sciences, Beijing Normal University, Beijing, China
| | - Xudong Zhu
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Molecular Biology, School of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
12
|
Du Z, Goncharoff DK, Cheng X, Li L. Analysis of [SWI + ] formation and propagation events. Mol Microbiol 2017; 104:105-124. [PMID: 28035761 DOI: 10.1111/mmi.13616] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2016] [Indexed: 01/01/2023]
Abstract
The budding yeast, Saccharomyces cerevisiae, harbors several prions that are transmitted as altered, heritable protein conformations. [SWI+ ] is one such prion whose determinant is Swi1, a subunit of the evolutionarily conserved chromatin-remodeling complex SWI/SNF. Despite the importance of Swi1, the molecular events that lead to [SWI+ ] prionogenesis remain poorly understood. In this study, we have constructed floccullin-promoter-based URA3 reporters for [SWI+ ] identification. Using these reporters, we show that the spontaneous formation frequency of [SWI+ ] is significantly higher than that of [PSI+ ] (prion form of Sup35). We also show that preexisting [PSI+ ] or [PIN+ ] (prion form of Rnq1), or overproduction of Swi1 prion-domain (PrD) can considerably promote Swi1 prionogenesis. Moreover, our data suggest a strain-specific effect of overproduction of Sse1 - a nucleotide exchange factor of the molecular chaperone Hsp70, and its interaction with another molecular chaperone Hsp104 on [SWI+ ] maintenance. Additionally, we show that Swi1 aggregates are initially ring/ribbon-like then become dot-like in mature [SWI+ ] cells. In the presence of [PSI+ ] or [PIN+ ], Swi1 ring/ribbon-like aggregates predominantly colocalize with the Sup35 or Rnq1 aggregates; without a preexisting prion, however, such colocalizations are rarely seen during Swi1-PrD overproduction-promoted Swi1 prionogenesis. We have thus demonstrated a complex interacting mechanism of yeast prionogenesis.
Collapse
Affiliation(s)
- Zhiqiang Du
- Department of Biochemistry and Molecular Genetics, the Feinberg School of Medicine, Northwestern University, 320 E Superior St, Searle 7-650, Chicago, IL, 60611, USA
| | - Dustin Kenneth Goncharoff
- Department of Biochemistry and Molecular Genetics, the Feinberg School of Medicine, Northwestern University, 320 E Superior St, Searle 7-650, Chicago, IL, 60611, USA
| | - Xudong Cheng
- Department of Biochemistry and Molecular Genetics, the Feinberg School of Medicine, Northwestern University, 320 E Superior St, Searle 7-650, Chicago, IL, 60611, USA
| | - Liming Li
- Department of Biochemistry and Molecular Genetics, the Feinberg School of Medicine, Northwestern University, 320 E Superior St, Searle 7-650, Chicago, IL, 60611, USA
| |
Collapse
|
13
|
Legras JL, Moreno-Garcia J, Zara S, Zara G, Garcia-Martinez T, Mauricio JC, Mannazzu I, Coi AL, Bou Zeidan M, Dequin S, Moreno J, Budroni M. Flor Yeast: New Perspectives Beyond Wine Aging. Front Microbiol 2016; 7:503. [PMID: 27148192 PMCID: PMC4830823 DOI: 10.3389/fmicb.2016.00503] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/29/2016] [Indexed: 11/24/2022] Open
Abstract
The most important dogma in white-wine production is the preservation of the wine aroma and the limitation of the oxidative action of oxygen. In contrast, the aging of Sherry and Sherry-like wines is an aerobic process that depends on the oxidative activity of flor strains of Saccharomyces cerevisiae. Under depletion of nitrogen and fermentable carbon sources, these yeast produce aggregates of floating cells and form an air–liquid biofilm on the wine surface, which is also known as velum or flor. This behavior is due to genetic and metabolic peculiarities that differentiate flor yeast from other wine yeast. This review will focus first on the most updated data obtained through the analysis of flor yeast with -omic tools. Comparative genomics, proteomics, and metabolomics of flor and wine yeast strains are shedding new light on several features of these special yeast, and in particular, they have revealed the extent of proteome remodeling imposed by the biofilm life-style. Finally, new insights in terms of promotion and inhibition of biofilm formation through small molecules, amino acids, and di/tri-peptides, and novel possibilities for the exploitation of biofilm immobilization within a fungal hyphae framework, will be discussed.
Collapse
Affiliation(s)
- Jean-Luc Legras
- SPO, Institut National de la Recherche Agronomique - SupAgro, Université de Montpellier Montpellier, France
| | - Jaime Moreno-Garcia
- Department of Microbiology, Agrifood Campus of International Excellence ceiA3, University of Cordoba Cordoba, Spain
| | - Severino Zara
- Department of Agricultural Sciences, University of Sassari Sassari, Italy
| | - Giacomo Zara
- Department of Agricultural Sciences, University of Sassari Sassari, Italy
| | - Teresa Garcia-Martinez
- Department of Microbiology, Agrifood Campus of International Excellence ceiA3, University of Cordoba Cordoba, Spain
| | - Juan C Mauricio
- Department of Microbiology, Agrifood Campus of International Excellence ceiA3, University of Cordoba Cordoba, Spain
| | - Ilaria Mannazzu
- Department of Agricultural Sciences, University of Sassari Sassari, Italy
| | - Anna L Coi
- Department of Agricultural Sciences, University of Sassari Sassari, Italy
| | - Marc Bou Zeidan
- Department of Agri-Food Sciences, Holy Spirit University of Kaslik Jounieh, Lebanon
| | - Sylvie Dequin
- SPO, Institut National de la Recherche Agronomique - SupAgro, Université de Montpellier Montpellier, France
| | - Juan Moreno
- Department of Agricultural Chemistry, Agrifood Campus of International Excellence ceiA3, University of Cordoba Cordoba, Spain
| | - Marilena Budroni
- Department of Agricultural Sciences, University of Sassari Sassari, Italy
| |
Collapse
|
14
|
Sarto-Jackson I, Tomaska L. How to bake a brain: yeast as a model neuron. Curr Genet 2016; 62:347-70. [PMID: 26782173 DOI: 10.1007/s00294-015-0554-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 12/14/2022]
Abstract
More than 30 years ago Dan Koshland published an inspirational essay presenting the bacterium as a model neuron (Koshland, Trends Neurosci 6:133-137, 1983). In the article he argued that there are several similarities between neurons and bacterial cells in "how signals are processed within a cell or how this processing machinery can be modified to produce plasticity". He then explored the bacterial chemosensory system to emphasize its attributes that are analogous to information processing in neurons. In this review, we wish to expand Koshland's original idea by adding the yeast cell to the list of useful models of a neuron. The fact that yeasts and neurons are specialized versions of the eukaryotic cell sharing all principal components sets the stage for a grand evolutionary tinkering where these components are employed in qualitatively different tasks, but following analogous molecular logic. By way of example, we argue that evolutionarily conserved key components involved in polarization processes (from budding or mating in Saccharomyces cervisiae to neurite outgrowth or spinogenesis in neurons) are shared between yeast and neurons. This orthologous conservation of modules makes S. cervisiae an excellent model organism to investigate neurobiological questions. We substantiate this claim by providing examples of yeast models used for studying neurological diseases.
Collapse
Affiliation(s)
- Isabella Sarto-Jackson
- Konrad Lorenz Institute for Evolution and Cognition Research, Martinstraße 12, 3400, Klosterneuburg, Austria.
| | - Lubomir Tomaska
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina B-1, Ilkovicova 6, 842 15, Bratislava, Slovak Republic.
| |
Collapse
|
15
|
Du Z, Zhang Y, Li L. The Yeast Prion [SWI(+)] Abolishes Multicellular Growth by Triggering Conformational Changes of Multiple Regulators Required for Flocculin Gene Expression. Cell Rep 2015; 13:2865-78. [PMID: 26711350 DOI: 10.1016/j.celrep.2015.11.060] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/13/2015] [Accepted: 11/18/2015] [Indexed: 11/26/2022] Open
Abstract
Although transcription factors are prevalent among yeast prion proteins, the role of prion-mediated transcriptional regulation remains elusive. Here, we show that the yeast prion [SWI(+)] abolishes flocculin (FLO) gene expression and results in a complete loss of multicellularity. Further investigation demonstrates that besides Swi1, multiple other proteins essential for FLO expression, including Mss11, Sap30, and Msn1 also undergo conformational changes and become inactivated in [SWI(+)] cells. Moreover, the asparagine-rich region of Mss11 can exist as prion-like aggregates specifically in [SWI(+)] cells, which are SDS resistant, heritable, and curable, but become metastable after separation from [SWI(+)]. Our findings thus reveal a prion-mediated mechanism through which multiple regulators in a biological pathway can be inactivated. In combination with the partial loss-of-function phenotypes of [SWI(+)] cells on non-glucose sugar utilization, our data therefore demonstrate that a prion can influence distinct traits differently through multi-level regulations, providing insights into the biological roles of prions.
Collapse
Affiliation(s)
- Zhiqiang Du
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Searle 7-650, Chicago, IL 60611, USA.
| | - Ying Zhang
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, No. 3 Shangyuan Residence, Haidian District, Beijing 100044, China
| | - Liming Li
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Searle 7-650, Chicago, IL 60611, USA.
| |
Collapse
|
16
|
Transcription Factor SomA Is Required for Adhesion, Development and Virulence of the Human Pathogen Aspergillus fumigatus. PLoS Pathog 2015; 11:e1005205. [PMID: 26529322 PMCID: PMC4631450 DOI: 10.1371/journal.ppat.1005205] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/13/2015] [Indexed: 11/19/2022] Open
Abstract
The transcription factor Flo8/Som1 controls filamentous growth in Saccharomyces cerevisiae and virulence in the plant pathogen Magnaporthe oryzae. Flo8/Som1 includes a characteristic N-terminal LUG/LUH-Flo8-single-stranded DNA binding (LUFS) domain and is activated by the cAMP dependent protein kinase A signaling pathway. Heterologous SomA from Aspergillus fumigatus rescued in yeast flo8 mutant strains several phenotypes including adhesion or flocculation in haploids and pseudohyphal growth in diploids, respectively. A. fumigatus SomA acts similarly to yeast Flo8 on the promoter of FLO11 fused with reporter gene (LacZ) in S. cerevisiae. FLO11 expression in yeast requires an activator complex including Flo8 and Mfg1. Furthermore, SomA physically interacts with PtaB, which is related to yeast Mfg1. Loss of the somA gene in A. fumigatus resulted in a slow growth phenotype and a block in asexual development. Only aerial hyphae without further differentiation could be formed. The deletion phenotype was verified by a conditional expression of somA using the inducible Tet-on system. A adherence assay with the conditional somA expression strain indicated that SomA is required for biofilm formation. A ptaB deletion strain showed a similar phenotype supporting that the SomA/PtaB complex controls A. fumigatus biofilm formation. Transcriptional analysis showed that SomA regulates expression of genes for several transcription factors which control conidiation or adhesion of A. fumigatus. Infection assays with fertilized chicken eggs as well as with mice revealed that SomA is required for pathogenicity. These data corroborate a complex control function of SomA acting as a central factor of the transcriptional network, which connects adhesion, spore formation and virulence in the opportunistic human pathogen A. fumigatus. Invasive fungal infections affecting immunocompromised patients are emerging worldwide. Among various human fungal pathogens, Aspergillus fumigatus is one of the most common molds causing severe invasive aspergillosis in immunocompromised patients. The conidia, which can evade from innate immunity and adhere to epithelial cells of alveoli in human lungs will start to germinate and cause the disease. Currently, the understanding of the molecular mechanisms of adherence of fungal cells to hosts is scarce. The transcription factor Flo8 controls adhesion to biotic or abiotic surfaces and morphological development in baker’s yeast. Flo8 homologues in the dimorphic human pathogenic yeast Candida albicans or the filamentous plant pathogen Magnaporthe oryzae are required for development and virulence. We found in this study that the Flo8 homologue SomA of A. fumigatus is required for adhesion and conidiation. Two independent invasive aspergillosis assays using chicken eggs or mouse demonstrated that deletion of the corresponding gene resulted in attenuated virulence. SomA represents an important fungal transcription factor at the interface between adherence, asexual spore formation and pathogenicity in an important opportunistic human pathogen.
Collapse
|
17
|
Rossouw D, Bagheri B, Setati ME, Bauer FF. Co-Flocculation of Yeast Species, a New Mechanism to Govern Population Dynamics in Microbial Ecosystems. PLoS One 2015; 10:e0136249. [PMID: 26317200 PMCID: PMC4552943 DOI: 10.1371/journal.pone.0136249] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 07/31/2015] [Indexed: 01/22/2023] Open
Abstract
Flocculation has primarily been studied as an important technological property of Saccharomyces cerevisiae yeast strains in fermentation processes such as brewing and winemaking. These studies have led to the identification of a group of closely related genes, referred to as the FLO gene family, which controls the flocculation phenotype. All naturally occurring S. cerevisiae strains assessed thus far possess at least four independent copies of structurally similar FLO genes, namely FLO1, FLO5, FLO9 and FLO10. The genes appear to differ primarily by the degree of flocculation induced by their expression. However, the reason for the existence of a large family of very similar genes, all involved in the same phenotype, has remained unclear. In natural ecosystems, and in wine production, S. cerevisiae growth together and competes with a large number of other Saccharomyces and many more non-Saccharomyces yeast species. Our data show that many strains of such wine-related non-Saccharomyces species, some of which have recently attracted significant biotechnological interest as they contribute positively to fermentation and wine character, were able to flocculate efficiently. The data also show that both flocculent and non-flocculent S. cerevisiae strains formed mixed species flocs (a process hereafter referred to as co-flocculation) with some of these non-Saccharomyces yeasts. This ability of yeast strains to impact flocculation behaviour of other species in mixed inocula has not been described previously. Further investigation into the genetic regulation of co-flocculation revealed that different FLO genes impact differently on such adhesion phenotypes, favouring adhesion with some species while excluding other species from such mixed flocs. The data therefore strongly suggest that FLO genes govern the selective association of S. cerevisiae with specific species of non-Saccharomyces yeasts, and may therefore be drivers of ecosystem organisational patterns. Our data provide, for the first time, insights into the role of the FLO gene family beyond intraspecies cellular association, and suggest a wider evolutionary role for the FLO genes. Such a role would explain the evolutionary persistence of a large multigene family of genes with apparently similar function.
Collapse
Affiliation(s)
- Debra Rossouw
- Institute for Wine Biotechnology, Department of Oenology and Viticulture, Private Bag X1, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Bahareh Bagheri
- Institute for Wine Biotechnology, Department of Oenology and Viticulture, Private Bag X1, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Mathabatha Evodia Setati
- Institute for Wine Biotechnology, Department of Oenology and Viticulture, Private Bag X1, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Florian Franz Bauer
- Institute for Wine Biotechnology, Department of Oenology and Viticulture, Private Bag X1, Stellenbosch University, Stellenbosch, 7600, South Africa
- * E-mail:
| |
Collapse
|
18
|
Molecular mechanism of flocculation self-recognition in yeast and its role in mating and survival. mBio 2015; 6:mBio.00427-15. [PMID: 25873380 PMCID: PMC4453552 DOI: 10.1128/mbio.00427-15] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We studied the flocculation mechanism at the molecular level by determining the atomic structures of N-Flo1p and N-Lg-Flo1p in complex with their ligands. We show that they have similar ligand binding mechanisms but distinct carbohydrate specificities and affinities, which are determined by the compactness of the binding site. We characterized the glycans of Flo1p and their role in this binding process and demonstrate that glycan-glycan interactions significantly contribute to the cell-cell adhesion mechanism. Therefore, the extended flocculation mechanism is based on the self-interaction of Flo proteins and this interaction is established in two stages, involving both glycan-glycan and protein-glycan interactions. The crucial role of calcium in both types of interaction was demonstrated: Ca2+ takes part in the binding of the carbohydrate to the protein, and the glycans aggregate only in the presence of Ca2+. These results unify the generally accepted lectin hypothesis with the historically first-proposed “Ca2+-bridge” hypothesis. Additionally, a new role of cell flocculation is demonstrated; i.e., flocculation is linked to cell conjugation and mating, and survival chances consequently increase significantly by spore formation and by introduction of genetic variability. The role of Flo1p in mating was demonstrated by showing that mating efficiency is increased when cells flocculate and by differential transcriptome analysis of flocculating versus nonflocculating cells in a low-shear environment (microgravity). The results show that a multicellular clump (floc) provides a uniquely organized multicellular ultrastructure that provides a suitable microenvironment to induce and perform cell conjugation and mating. Yeast cells can form multicellular clumps under adverse growth conditions that protect cells from harsh environmental stresses. The floc formation is based on the self-interaction of Flo proteins via an N-terminal PA14 lectin domain. We have focused on the flocculation mechanism and its role. We found that carbohydrate specificity and affinity are determined by the accessibility of the binding site of the Flo proteins where the external loops in the ligand-binding domains are involved in glycan recognition specificity. We demonstrated that, in addition to the Flo lectin-glycan interaction, glycan-glycan interactions also contribute significantly to cell-cell recognition and interaction. Additionally, we show that flocculation provides a uniquely organized multicellular ultrastructure that is suitable to induce and accomplish cell mating. Therefore, flocculation is an important mechanism to enhance long-term yeast survival.
Collapse
|
19
|
The Histone Acetyltransferase Gcn5 Regulates ncRNA-ICR1 and FLO11 Expression during Pseudohyphal Development in Saccharomyces cerevisiae. BIOMED RESEARCH INTERNATIONAL 2015; 2015:284692. [PMID: 25922832 PMCID: PMC4398931 DOI: 10.1155/2015/284692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 03/09/2015] [Indexed: 11/18/2022]
Abstract
Filamentous growth is one of the key features of pathogenic fungi during the early infectious phase. The pseudohyphal development of yeast Saccharomyces cerevisiae shares similar characteristics with hyphae elongation in pathogenic fungi. The expression of FLO11 is essential for adhesive growth and filament formation in yeast and is governed by a multilayered transcriptional network. Here we discovered a role for the histone acetyltransferase general control nonderepressible 5 (Gcn5) in regulating FLO11-mediated pseudohyphal growth. The expression patterns of FLO11 were distinct in haploid and diploid yeast under amino acid starvation induced by 3-amino-1,2,4-triazole (3AT). In diploids, FLO11 expression was substantially induced at a very early stage of pseudohyphal development and decreased quickly, but in haploids, it was gradually induced. Furthermore, the transcription factor Gcn4 was recruited to the Sfl1-Flo8 toggle sites at the FLO11 promoter under 3AT treatment. Moreover, the histone acetylase activity of Gcn5 was required for FLO11 induction. Finally, Gcn5 functioned as a negative regulator of the noncoding RNA ICR1, which is known to suppress FLO11 expression. Gcn5 plays an important role in the regulatory network of FLO11 expression via Gcn4 by downregulating ICR1 expression, which derepresses FLO11 for promoting pseudohyphal development.
Collapse
|
20
|
Fine-tuning of histone H3 Lys4 methylation during pseudohyphal differentiation by the CDK submodule of RNA polymerase II. Genetics 2014; 199:435-53. [PMID: 25467068 DOI: 10.1534/genetics.114.172841] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Transcriptional regulation is dependent upon the interactions between the RNA pol II holoenzyme complex and chromatin. RNA pol II is part of a highly conserved multiprotein complex that includes the core mediator and CDK8 subcomplex. In Saccharomyces cerevisiae, the CDK8 subcomplex, composed of Ssn2p, Ssn3p, Ssn8p, and Srb8p, is thought to play important roles in mediating transcriptional control of stress-responsive genes. Also central to transcriptional control are histone post-translational modifications. Lysine methylation, dynamically balanced by lysine methyltransferases and demethylases, has been intensively studied, uncovering significant functions in transcriptional control. A key question remains in understanding how these enzymes are targeted during stress response. To determine the relationship between lysine methylation, the CDK8 complex, and transcriptional control, we performed phenotype analyses of yeast lacking known lysine methyltransferases or demethylases in isolation or in tandem with SSN8 deletions. We show that the RNA pol II CDK8 submodule components SSN8/SSN3 and the histone demethylase JHD2 are required to inhibit pseudohyphal growth-a differentiation pathway induced during nutrient limitation-under rich conditions. Yeast lacking both SSN8 and JHD2 constitutively express FLO11, a major regulator of pseudohyphal growth. Interestingly, deleting known FLO11 activators including FLO8, MSS11, MFG1, TEC1, SNF1, KSS1, and GCN4 results in a range of phenotypic suppression. Using chromatin immunoprecipitation, we found that SSN8 inhibits H3 Lys4 trimethylation independently of JHD2 at the FLO11 locus, suggesting that H3 Lys4 hypermethylation is locking FLO11 into a transcriptionally active state. These studies implicate the CDK8 subcomplex in fine-tuning H3 Lys4 methylation levels during pseudohyphal differentiation.
Collapse
|
21
|
Bou Zeidan M, Zara G, Viti C, Decorosi F, Mannazzu I, Budroni M, Giovannetti L, Zara S. L-histidine inhibits biofilm formation and FLO11-associated phenotypes in Saccharomyces cerevisiae flor yeasts. PLoS One 2014; 9:e112141. [PMID: 25369456 PMCID: PMC4219837 DOI: 10.1371/journal.pone.0112141] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 09/18/2014] [Indexed: 11/19/2022] Open
Abstract
Flor yeasts of Saccharomyces cerevisiae have an innate diversity of Flo11p which codes for a highly hydrophobic and anionic cell-wall glycoprotein with a fundamental role in biofilm formation. In this study, 380 nitrogen compounds were administered to three S. cerevisiae flor strains handling Flo11p alleles with different expression levels. S. cerevisiae strain S288c was used as the reference strain as it cannot produce Flo11p. The flor strains generally metabolized amino acids and dipeptides as the sole nitrogen source, although with some exceptions regarding L-histidine and histidine containing dipeptides. L-histidine completely inhibited growth and its effect on viability was inversely related to Flo11p expression. Accordingly, L-histidine did not affect the viability of the Δflo11 and S288c strains. Also, L-histidine dramatically decreased air-liquid biofilm formation and adhesion to polystyrene of the flor yeasts with no effect on the transcription level of the Flo11p gene. Moreover, L-histidine modified the chitin and glycans content on the cell-wall of flor yeasts. These findings reveal a novel biological activity of L-histidine in controlling the multicellular behavior of yeasts [corrected].
Collapse
Affiliation(s)
- Marc Bou Zeidan
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
| | - Giacomo Zara
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
| | - Carlo Viti
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, University of Florence, Firenze, Italy
| | - Francesca Decorosi
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, University of Florence, Firenze, Italy
| | - Ilaria Mannazzu
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
| | | | - Luciana Giovannetti
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, University of Florence, Firenze, Italy
| | - Severino Zara
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
- * E-mail:
| |
Collapse
|
22
|
Scherz K, Andersen, Bojsen R, Gro L, Rejkjær, Sørensen, Weiss M, Nielsen, Lisby M, Folkesson A, Regenberg B. Genetic basis for Saccharomyces cerevisiae biofilm in liquid medium. G3 (BETHESDA, MD.) 2014; 4:1671-80. [PMID: 25009170 PMCID: PMC4169159 DOI: 10.1534/g3.114.010892] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 06/26/2014] [Indexed: 11/23/2022]
Abstract
Biofilm-forming microorganisms switch between two forms: free-living planktonic and sessile multicellular. Sessile communities of yeast biofilms in liquid medium provide a primitive example of multicellularity and are clinically important because biofilms tend to have other growth characteristics than free-living cells. We investigated the genetic basis for yeast, Saccharomyces cerevisiae, biofilm on solid surfaces in liquid medium by screening a comprehensive deletion mutant collection in the Σ1278b background and found 71 genes that were essential for biofilm development. Quantitative northern blots further revealed that AIM1, ASG1, AVT1, DRN1, ELP4, FLO8, FMP10, HMT1, KAR5, MIT1, MRPL32, MSS11, NCP1, NPR1, PEP5, PEX25, RIM8, RIM101, RGT1, SNF8, SPC2, STB6, STP22, TEC1, VID24, VPS20, VTC3, YBL029W, YBL029C-A, YFL054C, YGR161W-C, YIL014C-A, YIR024C, YKL151C, YNL200C, YOR034C-A, and YOR223W controlled biofilm through FLO11 induction. Almost all deletion mutants that were unable to form biofilms in liquid medium also lost the ability to form surface-spreading biofilm colonies (mats) on agar and 69% also lost the ability to grow invasively. The protein kinase A isoform Tpk3p functioned specifically in biofilm and mat formation. In a tpk3 mutant, transcription of FLO11 was induced three-fold compared with wild-type, but biofilm development and cell-cell adhesion was absent, suggesting that Tpk3p regulates FLO11 positive posttranscriptionally and negative transcriptionally.The study provides a resource of biofilm-influencing genes for additional research on biofilm development and suggests that the regulation of FLO11 is more complex than previously anticipated.
Collapse
Affiliation(s)
- Kaj Scherz
- Department of Biology, University of Copenhagen, Copenhagen, Denmark Department of Systems Biology, Technical University of Denmark, Copenhagen, Denmark
| | - Andersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Bojsen
- Department of Systems Biology, Technical University of Denmark, Copenhagen, Denmark
| | - Laura Gro
- Department of Biology, University of Copenhagen, Copenhagen, Denmark Department of Systems Biology, Technical University of Denmark, Copenhagen, Denmark
| | - Rejkjær
- Department of Biology, University of Copenhagen, Copenhagen, Denmark Department of Systems Biology, Technical University of Denmark, Copenhagen, Denmark
| | - Sørensen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Martin Weiss
- Department of Biology, University of Copenhagen, Copenhagen, Denmark Department of Systems Biology, Technical University of Denmark, Copenhagen, Denmark
| | - Nielsen
- Department of Systems Biology, Technical University of Denmark, Copenhagen, Denmark
| | - Michael Lisby
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Folkesson
- Department of Systems Biology, Technical University of Denmark, Copenhagen, Denmark
| | | |
Collapse
|
23
|
Timpner C, Braus-Stromeyer SA, Tran VT, Braus GH. The Cpc1 regulator of the cross-pathway control of amino acid biosynthesis is required for pathogenicity of the vascular pathogen Verticillium longisporum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1312-1324. [PMID: 23883358 DOI: 10.1094/mpmi-06-13-0181-r] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The plant-pathogenic fungus Verticillium longisporum is a causal agent of early senescence and ripening in cruciferous crops like Brassica napus. Verticillium wilts have become serious agricultural threats in recent decades. Verticillium species infect host plants through the roots and colonize xylem vessels of the host plant. The xylem fluid provides an environment with limited carbon sources and unbalanced amino acid supply, which requires V. longisporum to induce the cross-pathway control of amino acid biosynthesis. RNA-mediated gene silencing reduced the expression of the two CPC1 isogenes (VlCPC1-1 and VlCPC1-2) of the allodiploid V. longisporum up to 85%. VlCPC1 encodes the conserved transcription factor of the cross-pathway control. The silenced mutants were highly sensitive to amino-acid starvation, and the infected plants showed significantly fewer symptoms such as stunting or early senescence in oilseed rape plant infection assays. Consistently, deletion of single CPC1 of the haploid V. dahliae resulted in strains that are sensitive to amino-acid starvation and cause strongly reduced symptoms in the plant-host tomato (Solanum lycopersicum). The allodiploid V. longisporum and the haploid V. dahliae are the first phytopathogenic fungi that were shown to require CPC1 for infection and colonization of their respective host plants, oilseed rape and tomato.
Collapse
|
24
|
Chen YL, Gao Y, Zhang KQ, Zou CG. Autophagy is required for trap formation in the nematode-trapping fungus Arthrobotrys oligospora. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:511-7. [PMID: 23864564 DOI: 10.1111/1758-2229.12054] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 03/20/2013] [Indexed: 05/05/2023]
Abstract
Nematode-trapping fungi live mainly as saprobes in soil environments. When encountering nematodes, these fungi become 'carnivorous' and develop specialized trapping devices to attack their hosts for extracting nutrients, especially nitrogen source. Thus, nematode-trapping fungi are model organisms for understanding the molecular mechanism of the switch between saprobic and parasitic phases of pathogen life cycles. Arthrobotrys oligospora, one of the best-studied nematode-trapping fungi, mainly lives as a saprobe. In the presence of nematodes, A.oligospora enters the parasitic stage by forming adhesive reticulate traps to capture nematodes. In filamentous fungi, autophagy has been shown to be involved in morphogenesis and morphology. In this study, we demonstrate that autophagy is induced by nematodes during the early stage of trap formation in A.oligospora. Disruption of atg8 gene not only abolishes the nematode-induced autophagy, but also suppresses trap formation and reduces pathogenicity for nematodes. During the early stage of trap formation, the expression of genes involved in amino acid biosynthesis is upregulated and the transcriptional activity of GCN4 is induced in A.oligospora, suggesting that nematodes induce autophagy probably by triggering intracellular amino acid starvation. Autophagy is thus crucial for trap formation in A.oligospora during infection of nematodes.
Collapse
Affiliation(s)
- Yuan-Li Chen
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, 650091, China
| | | | | | | |
Collapse
|
25
|
Mutual cross talk between the regulators Hac1 of the unfolded protein response and Gcn4 of the general amino acid control of Saccharomyces cerevisiae. EUKARYOTIC CELL 2013; 12:1142-54. [PMID: 23794510 DOI: 10.1128/ec.00123-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hac1 is the activator of the cellular response to the accumulation of unfolded proteins in the endoplasmic reticulum. Hac1 function requires the activity of Gcn4, which mainly acts as a regulator of the general amino acid control network providing Saccharomyces cerevisiae cells with amino acids. Here, we demonstrate novel functions of Hac1 and describe a mutual connection between Hac1 and Gcn4. Hac1 is required for induction of Gcn4-responsive promoter elements in haploid as well as diploid cells and therefore participates in the cellular amino acid supply. Furthermore, Hac1 and Gcn4 mutually influence their mRNA expression levels. Hac1 is also involved in FLO11 expression and adhesion upon amino acid starvation. Hac1 and Gcn4 act through the same promoter regions of the FLO11 flocculin. The results indicate an indirect effect of both transcription factors on FLO11 expression. Our data suggest a complex mutual cross talk between the Hac1- and Gcn4-controlled networks.
Collapse
|
26
|
Guillas I, Vernay A, Vitagliano JJ, Arkowitz RA. Phosphatidylinositol 4,5-bisphosphate is required for invasive growth in Saccharomyces cerevisiae. J Cell Sci 2013; 126:3602-14. [PMID: 23781030 DOI: 10.1242/jcs.122606] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Phosphatidylinositol phosphates are important regulators of processes such as the cytoskeleton organization, membrane trafficking and gene transcription, which are all crucial for polarized cell growth. In particular, phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] has essential roles in polarized growth as well as in cellular responses to stress. In the yeast Saccharomyces cerevisiae, the sole phosphatidylinositol-4-phosphate 5-kinase (PI4P5K) Mss4p is essential for generating plasma membrane PtdIns(4,5)P2. Here, we show that Mss4p is required for yeast invasive growth in low-nutrient conditions. We isolated specific mss4 mutants that were defective in cell elongation, induction of the Flo11p flocculin, adhesion and cell wall integrity. We show that mss4-f12 cells have reduced plasma membrane PtdIns(4,5)P2 levels as well as a defect in its polarized distribution, yet Mss4-f12p is catalytically active in vitro. In addition, the Mss4-f12 protein was defective in localizing to the plasma membrane. Furthermore, addition of cAMP, but not an activated MAPKKK allele, partially restored the invasive growth defect of mss4-f12 cells. Taken together, our results indicate that plasma membrane PtdIns(4,5)P2 is crucial for yeast invasive growth and suggest that this phospholipid functions upstream of the cAMP-dependent protein kinase A signaling pathway.
Collapse
Affiliation(s)
- Isabelle Guillas
- Université Nice - Sophia Antipolis, Institute of Biology Valrose, 06108 Nice Cedex 2, France
| | | | | | | |
Collapse
|
27
|
Kroll K, Pähtz V, Kniemeyer O. Elucidating the fungal stress response by proteomics. J Proteomics 2013; 97:151-63. [PMID: 23756228 DOI: 10.1016/j.jprot.2013.06.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/09/2013] [Accepted: 06/01/2013] [Indexed: 10/26/2022]
Abstract
Fungal species need to cope with stress, both in the natural environment and during interaction of human- or plant pathogenic fungi with their host. Many regulatory circuits governing the fungal stress response have already been discovered. However, there are still large gaps in the knowledge concerning the changes of the proteome during adaptation to environmental stress conditions. With the application of proteomic methods, particularly 2D-gel and gel-free, LC/MS-based methods, first insights into the composition and dynamic changes of the fungal stress proteome could be obtained. Here, we review the recent proteome data generated for filamentous fungi and yeasts. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Collapse
Affiliation(s)
- Kristin Kroll
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany; Friedrich Schiller University, Institute of Microbiology, Philosophenweg 12, 07743 Jena, Germany
| | - Vera Pähtz
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany; Friedrich Schiller University, Institute of Microbiology, Philosophenweg 12, 07743 Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care Jena, University Hospital (CSCC), 07747 Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany; Friedrich Schiller University, Institute of Microbiology, Philosophenweg 12, 07743 Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care Jena, University Hospital (CSCC), 07747 Jena, Germany.
| |
Collapse
|
28
|
Systematic measurement of transcription factor-DNA interactions by targeted mass spectrometry identifies candidate gene regulatory proteins. Proc Natl Acad Sci U S A 2013; 110:3645-50. [PMID: 23388641 DOI: 10.1073/pnas.1216918110] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Regulation of gene expression involves the orchestrated interaction of a large number of proteins with transcriptional regulatory elements in the context of chromatin. Our understanding of gene regulation is limited by the lack of a protein measurement technology that can systematically detect and quantify the ensemble of proteins associated with the transcriptional regulatory elements of specific genes. Here, we introduce a set of selected reaction monitoring (SRM) assays for the systematic measurement of 464 proteins with known or suspected roles in transcriptional regulation at RNA polymerase II transcribed promoters in Saccharomyces cerevisiae. Measurement of these proteins in nuclear extracts by SRM permitted the reproducible quantification of 42% of the proteins over a wide range of abundances. By deploying the assay to systematically identify DNA binding transcriptional regulators that interact with the environmentally regulated FLO11 promoter in cell extracts, we identified 15 regulators that bound specifically to distinct regions along ∼600 bp of the regulatory sequence. Importantly, the dataset includes a number of regulators that have been shown to either control FLO11 expression or localize to these regulatory regions in vivo. We further validated the utility of the approach by demonstrating that two of the SRM-identified factors, Mot3 and Azf1, are required for proper FLO11 expression. These results demonstrate the utility of SRM-based targeted proteomics to guide the identification of gene-specific transcriptional regulators.
Collapse
|
29
|
Rachfall N, Schmitt K, Bandau S, Smolinski N, Ehrenreich A, Valerius O, Braus GH. RACK1/Asc1p, a ribosomal node in cellular signaling. Mol Cell Proteomics 2012; 12:87-105. [PMID: 23071099 DOI: 10.1074/mcp.m112.017277] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
RACK1/Asc1p and its essential orthologues in higher eukaryotes, such as RACK1 in metazoa, are involved in several distinct cellular signaling processes. The implications of a total deletion have never been assessed in a comprehensive manner. This study reveals the major cellular processes affected in a Saccharomyces cerevisiae Δasc1 deletion background via de novo proteome and transcriptome analysis, as well as subsequent phenotypical characterizations. The deletion of ASC1 reduces iron uptake and causes nitrosative stress, both known indicators for hypoxia, which manifests in a shift of energy metabolism from respiration to fermentation in the Δasc1 strain. Asc1p further impacts cellular metabolism through its regulative role in the MAP kinase signal transduction pathways of invasive/filamentous growth and cell wall integrity. In the Δasc1 mutant strain, aberrations from the expected cellular response, mediated by these pathways, can be observed and are linked to changes in protein abundances of pathway-targeted transcription factors. Evidence of the translational regulation of such transcription factors suggests that ribosomal Asc1p is involved in signal transduction pathways and controls the biosynthesis of the respective final transcriptional regulators.
Collapse
Affiliation(s)
- Nicole Rachfall
- Institute of Microbiology and Genetics, Georg-August Universität, D-37077 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Torbensen R, Møller HD, Gresham D, Alizadeh S, Ochmann D, Boles E, Regenberg B. Amino acid transporter genes are essential for FLO11-dependent and FLO11-independent biofilm formation and invasive growth in Saccharomyces cerevisiae. PLoS One 2012; 7:e41272. [PMID: 22844449 PMCID: PMC3406018 DOI: 10.1371/journal.pone.0041272] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 06/19/2012] [Indexed: 11/25/2022] Open
Abstract
Amino acids can induce yeast cell adhesion but how amino acids are sensed and signal the modulation of the FLO adhesion genes is not clear. We discovered that the budding yeast Saccharomyces cerevisiae CEN.PK evolved invasive growth ability under prolonged nitrogen limitation. Such invasive mutants were used to identify amino acid transporters as regulators of FLO11 and invasive growth. One invasive mutant had elevated levels of FLO11 mRNA and a Q320STOP mutation in the SFL1 gene that encodes a protein kinase A pathway regulated repressor of FLO11. Glutamine-transporter genes DIP5 and GNP1 were essential for FLO11 expression, invasive growth and biofilm formation in this mutant. Invasive growth relied on known regulators of FLO11 and the Ssy1-Ptr3-Ssy5 complex that controls DIP5 and GNP1, suggesting that Dip5 and Gnp1 operates downstream of the Ssy1-Ptr3-Ssy5 complex for regulation of FLO11 expression in a protein kinase A dependent manner. The role of Dip5 and Gnp1 appears to be conserved in the S. cerevisiae strain ∑1278b since the dip5 gnp1 ∑1278b mutant showed no invasive phenotype. Secondly, the amino acid transporter gene GAP1 was found to influence invasive growth through FLO11 as well as other FLO genes. Cells carrying a dominant loss-of-function PTR3(647::CWNKNPLSSIN) allele had increased transcription of the adhesion genes FLO1, 5, 9, 10, 11 and the amino acid transporter gene GAP1. Deletion of GAP1 caused loss of FLO11 expression and invasive growth. However, deletions of FLO11 and genes encoding components of the mitogen-activated protein kinase pathway or the protein kinase A pathway were not sufficient to abolish invasive growth, suggesting involvement of other FLO genes and alternative pathways. Increased intracellular amino acid pools in the PTR3(647::CWNKNPLSSIN)-containing strain opens the possibility that Gap1 regulates the FLO genes through alteration of the amino acid pool sizes.
Collapse
Affiliation(s)
- Rasmus Torbensen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - David Gresham
- Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
- Department of Biology, New York, New York University, New York, United States of America
| | - Sefa Alizadeh
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Doreen Ochmann
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Eckhard Boles
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | |
Collapse
|
31
|
Song Q, Kumar A. An Overview of Autophagy and Yeast Pseudohyphal Growth: Integration of Signaling Pathways during Nitrogen Stress. Cells 2012; 1:263-83. [PMID: 24710476 PMCID: PMC3901118 DOI: 10.3390/cells1030263] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/14/2012] [Accepted: 06/19/2012] [Indexed: 11/24/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae responds to nutritional stress through the regulated activities of signaling pathways mediating autophagy and other conserved cellular processes. Autophagy has been studied intensely in yeast, where over 30 autophagy-related genes have been identified with defined roles enabling the formation of autophagic vesicles and their subsequent trafficking to the central yeast vacuole. Much less, however, is known regarding the regulatory mechanisms through which autophagy is integrated with other yeast stress responses. Nitrogen limitation initiates autophagy and pseudohyphal growth in yeast, the latter being a fascinating stress response characterized by the formation of multicellular chains or filaments of elongated cells. An increasing body of evidence suggests an interrelationship between processes responsive to nitrogen stress with cAMP-dependent PKA and the TOR kinase complex acting as key regulators of autophagy, pseudohyphal growth, and endocytosis. In this review, we will summarize our current understanding of the regulatory events controlling these processes. In particular, we explore the interplay between autophagy, polarized pseudohyphal growth, and to a lesser extent endocytosis, and posit that the integrated response of these processes in yeast is a critical point for further laboratory experimentation as a model of cellular responses to nitrogen limitation throughout the Eukaryota.
Collapse
Affiliation(s)
- Qingxuan Song
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
32
|
The mRNA decay pathway regulates the expression of the Flo11 adhesin and biofilm formation in Saccharomyces cerevisiae. Genetics 2012; 191:1387-91. [PMID: 22595243 DOI: 10.1534/genetics.112.141432] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Regulation of the FLO11 adhesin is a model for gene expression control by extracellular signals and developmental switches. We establish that the major mRNA decay pathway regulates FLO11 expression. mRNA deadenylation of transcriptional repressors of FLO11 by the exonuclease Ccr4 keeps their levels low, thereby allowing FLO11 transcription.
Collapse
|
33
|
Abstract
Filamentous growth is a nutrient-regulated growth response that occurs in many fungal species. In pathogens, filamentous growth is critical for host-cell attachment, invasion into tissues, and virulence. The budding yeast Saccharomyces cerevisiae undergoes filamentous growth, which provides a genetically tractable system to study the molecular basis of the response. Filamentous growth is regulated by evolutionarily conserved signaling pathways. One of these pathways is a mitogen activated protein kinase (MAPK) pathway. A remarkable feature of the filamentous growth MAPK pathway is that it is composed of factors that also function in other pathways. An intriguing challenge therefore has been to understand how pathways that share components establish and maintain their identity. Other canonical signaling pathways-rat sarcoma/protein kinase A (RAS/PKA), sucrose nonfermentable (SNF), and target of rapamycin (TOR)-also regulate filamentous growth, which raises the question of how signals from multiple pathways become integrated into a coordinated response. Together, these pathways regulate cell differentiation to the filamentous type, which is characterized by changes in cell adhesion, cell polarity, and cell shape. How these changes are accomplished is also discussed. High-throughput genomics approaches have recently uncovered new connections to filamentous growth regulation. These connections suggest that filamentous growth is a more complex and globally regulated behavior than is currently appreciated, which may help to pave the way for future investigations into this eukaryotic cell differentiation behavior.
Collapse
|
34
|
Chromatin modulation at the FLO11 promoter of Saccharomyces cerevisiae by HDAC and Swi/Snf complexes. Genetics 2012; 191:791-803. [PMID: 22542969 DOI: 10.1534/genetics.112.140301] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cell adhesion and biofilm formation are critical processes in the pathogenicity of fungi and are mediated through a family of adhesin proteins conserved throughout yeasts and fungi. In Saccharomyces cerevisiae, Flo11 is the main adhesin involved in cell adhesion and biofilm formation, making the study of its function and regulation in this nonpathogenic budding yeast highly relevant. The S. cerevisiae FLO11 gene is driven by a TATA-box-containing promoter that is regulated through one of the longest regulatory upstream regions (3 kb) in yeast. We reported recently that two chromatin cofactor complexes, the Rpd3L deacetylase and the Swi/Snf chromatin-remodeling complexes, contribute significantly to the regulation of FLO11. Here, we analyze directly how these complexes impact on FLO11 promoter chromatin structure and dissect further the interplay between histone deacetylases, chromatin remodeling, and the transcriptional repressor Sfl1. We show that the regulation of chromatin structure represents an important layer of control in the highly complex regulation of the FLO11 promoter.
Collapse
|
35
|
Efficient construction of homozygous diploid strains identifies genes required for the hyper-filamentous phenotype in Saccharomyces cerevisiae. PLoS One 2011; 6:e26584. [PMID: 22039512 PMCID: PMC3198790 DOI: 10.1371/journal.pone.0026584] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 09/29/2011] [Indexed: 12/24/2022] Open
Abstract
Yeast cells undergo diploid-specific developments such as spore formation via meiosis and pseudohyphal development under certain nutrient-limited conditions. Studies on these aspects require homozygous diploid mutants, which are generally constructed by crossing strains of opposite mating-type with the same genetic mutation. So far, there has been no direct way to generate and select diploids from haploid cells. Here, we developed a method for efficient construction of homozygous diploids using a PGAL1-HO gene (galactose-inducible mating-type switch) and a PSTE18-URA3 gene (counter selection marker for diploids). Diploids are generated by transient induction of the HO endonuclease, which is followed by mating of part of the haploid population. Since the STE18 promoter is repressed in diploids, diploids carrying PSTE18-URA3 can be selected on 5-fluoroorotic acid (5-FOA) plates where the uracil prototrophic haploids cannot grow. To demonstrate that this method is useful for genetic studies, we screened suppressor mutations of the complex colony morphology, strong agar invasion and/or hyper-filamentous growth caused by lack of the Hog1 MAPK in the diploid Σ1278b strain background. Following this approach, we identified 49 suppressor mutations. Those include well-known positive regulator genes for filamentous growth signaling pathways, genes involved in mitochondrial function, DNA damage checkpoint, chromatin remodeling, and cell cycle, and also previously uncharacterized genes. Our results indicate that combinatorial use of the PGAL1-HO and PSTE18-URA3 genes is suitable to efficiently construct and select diploids and that this approach is useful for genetic studies especially when combined with large-scale screening.
Collapse
|
36
|
Zara G, Budroni M, Mannazzu I, Zara S. Air-liquid biofilm formation is dependent on ammonium depletion in a Saccharomyces cerevisiae flor strain. Yeast 2011; 28:809-14. [DOI: 10.1002/yea.1907] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/20/2011] [Accepted: 08/30/2011] [Indexed: 11/09/2022] Open
Affiliation(s)
- Giacomo Zara
- Dipartimento di Scienze Ambientali Agrarie e Biotecnologie Agroalimentari, Sezione di Microbiologia Generale ed Applicata; Università degli Studi di Sassari; 07100; Sassari; Italy
| | - Marilena Budroni
- Dipartimento di Scienze Ambientali Agrarie e Biotecnologie Agroalimentari, Sezione di Microbiologia Generale ed Applicata; Università degli Studi di Sassari; 07100; Sassari; Italy
| | - Ilaria Mannazzu
- Dipartimento di Scienze Ambientali Agrarie e Biotecnologie Agroalimentari, Sezione di Microbiologia Generale ed Applicata; Università degli Studi di Sassari; 07100; Sassari; Italy
| | - Severino Zara
- Dipartimento di Scienze Ambientali Agrarie e Biotecnologie Agroalimentari, Sezione di Microbiologia Generale ed Applicata; Università degli Studi di Sassari; 07100; Sassari; Italy
| |
Collapse
|
37
|
Brückner S, Mösch HU. Choosing the right lifestyle: adhesion and development in Saccharomyces cerevisiae. FEMS Microbiol Rev 2011; 36:25-58. [PMID: 21521246 DOI: 10.1111/j.1574-6976.2011.00275.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The budding yeast Saccharomyces cerevisiae is a eukaryotic microorganism that is able to choose between different unicellular and multicellular lifestyles. The potential of individual yeast cells to switch between different growth modes is advantageous for optimal dissemination, protection and substrate colonization at the population level. A crucial step in lifestyle adaptation is the control of self- and foreign adhesion. For this purpose, S. cerevisiae contains a set of cell wall-associated proteins, which confer adhesion to diverse biotic and abiotic surfaces. Here, we provide an overview of different aspects of S. cerevisiae adhesion, including a detailed description of known lifestyles, recent insights into adhesin structure and function and an outline of the complex regulatory network for adhesin gene regulation. Our review shows that S. cerevisiae is a model system suitable for studying not only the mechanisms and regulation of cell adhesion, but also the role of this process in microbial development, ecology and evolution.
Collapse
Affiliation(s)
- Stefan Brückner
- Department of Genetics, Philipps-Universität Marburg, Marburg, Germany
| | | |
Collapse
|
38
|
Malcher M, Schladebeck S, Mösch HU. The Yak1 protein kinase lies at the center of a regulatory cascade affecting adhesive growth and stress resistance in Saccharomyces cerevisiae. Genetics 2011; 187:717-30. [PMID: 21149646 PMCID: PMC3063667 DOI: 10.1534/genetics.110.125708] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 12/07/2010] [Indexed: 01/26/2023] Open
Abstract
In Saccharomyces cerevisiae, adhesive growth on solid surfaces is mediated by the flocculin Flo11 to confer biofilm and filament formation. Expression of FLO11 is governed by a complex regulatory network that includes, e.g., the protein kinase A (PKA) signaling pathway. In addition, numerous regulatory genes, which have not been integrated into regulatory networks, affect adhesive growth, including WHI3 encoding an RNA-binding protein and YAK1 coding for a dual-specificity tyrosine-regulated protein kinase. In this study, we present evidence that Whi3 and Yak1 form part of a signaling pathway that regulates FLO11-mediated surface adhesion and is involved in stress resistance. Our study further suggests that Whi3 controls YAK1 expression at the post-transcriptional level and that Yak1 targets the transcriptional regulators Sok2 and Phd1 to control FLO11. We also discovered that Yak1 regulates acidic stress resistance and adhesion via the transcription factor Haa1. Finally, we provide evidence that the catalytic PKA subunit Tpk1 inhibits Yak1 by targeting specific serine residues to suppress FLO11. In summary, our data suggest that Yak1 is at the center of a regulatory cascade for adhesive growth and stress resistance, which is under dual control of Whi3 and the PKA subunit Tpk1.
Collapse
Affiliation(s)
| | | | - Hans-Ulrich Mösch
- Department of Genetics, Philipps-Universität Marburg, D-35043 Marburg, Germany
| |
Collapse
|
39
|
Guo J, Wang S, Valerius O, Hall H, Zeng Q, Li JF, Weston DJ, Ellis BE, Chen JG. Involvement of Arabidopsis RACK1 in protein translation and its regulation by abscisic acid. PLANT PHYSIOLOGY 2011; 155:370-83. [PMID: 21098678 PMCID: PMC3075769 DOI: 10.1104/pp.110.160663] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 11/18/2010] [Indexed: 05/20/2023]
Abstract
Earlier studies have shown that RACK1 functions as a negative regulator of abscisic acid (ABA) responses in Arabidopsis (Arabidopsis thaliana), but the molecular mechanism of the action of RACK1 in these processes remains elusive. Global gene expression profiling revealed that approximately 40% of the genes affected by ABA treatment were affected in a similar manner by the rack1 mutation, supporting the view that RACK1 is an important regulator of ABA responses. On the other hand, coexpression analysis revealed that more than 80% of the genes coexpressed with RACK1 encode ribosome proteins, implying a close relationship between RACK1's function and the ribosome complex. These results implied that the regulatory role for RACK1 in ABA responses may be partially due to its putative function in protein translation, which is one of the major cellular processes that mammalian and Saccharomyces cerevisiae RACK1 is involved in. Consistently, all three Arabidopsis RACK1 homologous genes, namely RACK1A, RACK1B, and RACK1C, complemented the growth defects of the S. cerevisiae cross pathway control2/rack1 mutant. In addition, RACK1 physically interacts with Arabidopsis Eukaryotic Initiation Factor6 (eIF6), whose mammalian homolog is a key regulator of 80S ribosome assembly. Moreover, rack1 mutants displayed hypersensitivity to anisomycin, an inhibitor of protein translation, and displayed characteristics of impaired 80S functional ribosome assembly and 60S ribosomal subunit biogenesis in a ribosome profiling assay. Gene expression analysis revealed that ABA inhibits the expression of both RACK1 and eIF6. Taken together, these results suggest that RACK1 may be required for normal production of 60S and 80S ribosomes and that its action in these processes may be regulated by ABA.
Collapse
|
40
|
Van Mulders SE, Stassen C, Daenen L, Devreese B, Siewers V, van Eijsden RGE, Nielsen J, Delvaux FR, Willaert R. The influence of microgravity on invasive growth in Saccharomyces cerevisiae. ASTROBIOLOGY 2011; 11:45-55. [PMID: 21345087 DOI: 10.1089/ast.2010.0518] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This study investigates the effects of microgravity on colony growth and the morphological transition from single cells to short invasive filaments in the model eukaryotic organism Saccharomyces cerevisiae. Two-dimensional spreading of the yeast colonies grown on semi-solid agar medium was reduced under microgravity in the Σ1278b laboratory strain but not in the CMBSESA1 industrial strain. This was supported by the Σ1278b proteome map under microgravity conditions, which revealed upregulation of proteins linked to anaerobic conditions. The Σ1278b strain showed a reduced invasive growth in the center of the yeast colony. Bud scar distribution was slightly affected, with a switch toward more random budding. Together, microgravity conditions disturb spatially programmed budding patterns and generate strain-dependent growth differences in yeast colonies on semi-solid medium.
Collapse
|
41
|
A feedback circuit between transcriptional activation and self-destruction of Gcn4 separates its metabolic and morphogenic response in diploid yeasts. J Mol Biol 2010; 405:909-25. [PMID: 21111745 DOI: 10.1016/j.jmb.2010.11.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 11/06/2010] [Accepted: 11/16/2010] [Indexed: 11/20/2022]
Abstract
The basic zipper Gcn4 protein activates transcription in the yeast Saccharomyces cerevisiae in response to amino acid starvation. This includes numerous metabolic genes of amino acid or purine biosynthesis and the developmental cell-surface flocculin gene FLO11, which is required for diploid pseudohyphae formation and for adhesion upon nutrient starvation. We separated the metabolic from the developmental response by screening for GCN4 alleles that allow growth during amino acid starvation but are impaired in adhesion and are unable to form pseudohyphae. The identified Gcn4(L267S) variant carries an amino acid substitution in the third of the four conserved leucines of the zipper dimerization domain. This mutation abolished FLO11 expression and results in reduced but sufficient transcriptional activity for amino acid biosynthetic genes. The Leu267Ser substitution impairs Gcn4 homodimer formation and is a significantly more stable protein than the wild-type protein. A helix-breaker substitution in Leu253 results in a transcriptionally inactive but highly stable protein variant. This is due to a feedback circuit between transcriptional activity of Gcn4 and its own stability, which depends on the Gcn4-controlled cyclin PCL5. Gcn4(L253G) reduces the expression of Pcl5 and therefore reduces its own degradation. This self-controlled buffer system to restrict transcriptional activity results in a reciprocal correlation between Gcn4 transcriptional activity and protein stability.
Collapse
|
42
|
Goossens K, Willaert R. Flocculation protein structure and cell–cell adhesion mechanism in Saccharomyces cerevisiae. Biotechnol Lett 2010; 32:1571-85. [DOI: 10.1007/s10529-010-0352-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 07/02/2010] [Indexed: 01/08/2023]
|
43
|
López-Berges MS, Rispail N, Prados-Rosales RC, Di Pietro A. A nitrogen response pathway regulates virulence functions in Fusarium oxysporum via the protein kinase TOR and the bZIP protein MeaB. THE PLANT CELL 2010; 22:2459-75. [PMID: 20639450 PMCID: PMC2929112 DOI: 10.1105/tpc.110.075937] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 06/03/2010] [Accepted: 06/22/2010] [Indexed: 05/19/2023]
Abstract
During infection, fungal pathogens activate virulence mechanisms, such as host adhesion, penetration and invasive growth. In the vascular wilt fungus Fusarium oxysporum, the mitogen-activated protein kinase Fmk1 is required for plant infection and controls processes such as cellophane penetration, vegetative hyphal fusion, or root adhesion. Here, we show that these virulence-related functions are repressed by the preferred nitrogen source ammonium and restored by treatment with l-methionine sulfoximine or rapamycin, two specific inhibitors of Gln synthetase and the protein kinase TOR, respectively. Deletion of the bZIP protein MeaB also resulted in nitrogen source-independent activation of virulence mechanisms. Activation of these functions did not require the global nitrogen regulator AreA, suggesting that MeaB-mediated repression of virulence functions does not act through inhibition of AreA. Tomato plants (Solanum lycopersicum) supplied with ammonium rather than nitrate showed a significant reduction in vascular wilt symptoms when infected with the wild type but not with the DeltameaB strain. Nitrogen source also affected invasive growth in the rice blast fungus Magnaporthe oryzae and the wheat head blight pathogen Fusarium graminearum. We propose that a conserved nitrogen-responsive pathway might operate via TOR and MeaB to control virulence in plant pathogenic fungi.
Collapse
Affiliation(s)
| | | | | | - Antonio Di Pietro
- Departamento de Genética, Universidad de Córdoba, Campus de Rabanales, Edificio Gregor Mendel, 14071 Córdoba, Spain
| |
Collapse
|
44
|
Zupan J, Raspor P. Invasive growth of Saccharomyces cerevisiae depends on environmental triggers: a quantitative model. Yeast 2010; 27:217-28. [PMID: 20052657 DOI: 10.1002/yea.1746] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In this contribution, the influence of various physicochemical factors on Saccharomyces cerevisiae invasive growth is examined quantitatively. Agar-invasion assays are generally applied for in vitro studies on S. cerevisiae invasiveness, the phenomenon observed as a putative virulence trait in this clinically more and more concerning yeast. However, qualitative agar-invasion assays, used until now, strongly limit the feasibility and interpretation of analyses and therefore needed to be improved. Besides, knowledge in this field concerning the physiology of invasive growth, influenced by stress conditions related to the human alimentary tract and food, is poor and should be expanded. For this purpose, a quantitative agar-invasion assay, presented in our previous work, was applied in this contribution to clarify the significance of the stress factors controlling the adhesion and invasion of the yeast in greater detail. Ten virulent and non-virulent S. cerevisiae strains were assayed at various temperatures, pH values, nutrient starvation, modified atmosphere, and different concentrations of NaCl, CaCl2 and preservatives. With the use of specific parameters, like a relative invasion, eight invasive growth models were hypothesized, which enabled intelligible interpretation of the results. A strong preference for invasive growth (meaning high relative invasion) was observed when the strains were grown on nitrogen- and glucose-depleted media. A significant increase in the invasion of the strains was also determined at temperatures typical for human fever (37-39 degrees C). On the other hand, a strong repressive effect on invasion was found in the presence of salts, anoxia and some preservatives.
Collapse
Affiliation(s)
- Jure Zupan
- Biotechnology, Microbiology and Food Safety, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | | |
Collapse
|
45
|
The TEA transcription factor Tec1 confers promoter-specific gene regulation by Ste12-dependent and -independent mechanisms. EUKARYOTIC CELL 2010; 9:514-31. [PMID: 20118212 DOI: 10.1128/ec.00251-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Saccharomyces cerevisiae, the TEA transcription factor Tec1 is known to regulate target genes together with a second transcription factor, Ste12. Tec1-Ste12 complexes can activate transcription through Tec1 binding sites (TCSs), which can be further combined with Ste12 binding sites (PREs) for cooperative DNA binding. However, previous studies have hinted that Tec1 might regulate transcription also without Ste12. Here, we show that in vivo, physiological amounts of Tec1 are sufficient to stimulate TCS-mediated gene expression and transcription of the FLO11 gene in the absence of Ste12. In vitro, Tec1 is able to bind TCS elements with high affinity and specificity without Ste12. Furthermore, Tec1 contains a C-terminal transcriptional activation domain that confers Ste12-independent activation of TCS-regulated gene expression. On a genome-wide scale, we identified 302 Tec1 target genes that constitute two distinct classes. A first class of 254 genes is regulated by Tec1 in a Ste12-dependent manner and is enriched for genes that are bound by Tec1 and Ste12 in vivo. In contrast, a second class of 48 genes can be regulated by Tec1 independently of Ste12 and is enriched for genes that are bound by the stress transcription factors Yap6, Nrg1, Cin5, Skn7, Hsf1, and Msn4. Finally, we find that combinatorial control by Tec1-Ste12 complexes stabilizes Tec1 against degradation. Our study suggests that Tec1 is able to regulate TCS-mediated gene expression by Ste12-dependent and Ste12-independent mechanisms that enable promoter-specific transcriptional control.
Collapse
|
46
|
Silencing of Vlaro2 for chorismate synthase revealed that the phytopathogen Verticillium longisporum induces the cross-pathway control in the xylem. Appl Microbiol Biotechnol 2009; 85:1961-76. [PMID: 19826808 PMCID: PMC2811248 DOI: 10.1007/s00253-009-2269-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Revised: 09/20/2009] [Accepted: 09/20/2009] [Indexed: 11/18/2022]
Abstract
The first leaky auxotrophic mutant for aromatic amino acids of the near-diploid fungal plant pathogen Verticillium longisporum (VL) has been generated. VL enters its host Brassica napus through the roots and colonizes the xylem vessels. The xylem contains little nutrients including low concentrations of amino acids. We isolated the gene Vlaro2 encoding chorismate synthase by complementation of the corresponding yeast mutant strain. Chorismate synthase produces the first branch point intermediate of aromatic amino acid biosynthesis. A novel RNA-mediated gene silencing method reduced gene expression of both isogenes by 80% and resulted in a bradytrophic mutant, which is a leaky auxotroph due to impaired expression of chorismate synthase. In contrast to the wild type, silencing resulted in increased expression of the cross-pathway regulatory gene VlcpcA (similar to cpcA/GCN4) during saprotrophic life. The mutant fungus is still able to infect the host plant B. napus and the model Arabidopsis thaliana with reduced efficiency. VlcpcA expression is increased in planta in the mutant and the wild-type fungus. We assume that xylem colonization requires induction of the cross-pathway control, presumably because the fungus has to overcome imbalanced amino acid supply in the xylem.
Collapse
|
47
|
Zara G, Zara S, Pinna C, Marceddu S, Budroni M. FLO11 gene length and transcriptional level affect biofilm-forming ability of wild flor strains of Saccharomyces cerevisiae. MICROBIOLOGY-SGM 2009; 155:3838-3846. [PMID: 19729408 DOI: 10.1099/mic.0.028738-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Saccharomyces cerevisiae, FLO11 encodes an adhesin that is associated with different phenotypes, such as adherence to solid surfaces, hydrophobicity, mat and air-liquid biofilm formation. In the present study, we analysed FLO11 allelic polymorphisms and FLO11-associated phenotypes of 20 flor strains. We identified 13 alleles of different lengths, varying from 3.0 to 6.1 kb, thus demonstrating that FLO11 is highly polymorphic. Two alleles of 3.1 and 5.0 kb were cloned into strain BY4742 to compare the FLO11-associated phenotypes in the same genetic background. We show that there is a significant correlation between biofilm-forming ability and FLO11 length both in different and in the same genetic backgrounds. Moreover, we propose a multiple regression model that allows prediction of air-liquid biofilm-forming ability on the basis of transcription levels and lengths of FLO11 alleles in a population of S. cerevisiae flor strains. Considering that transcriptional differences are only partially explained by the differences in the promoter sequences, our results are consistent with the hypothesis that FLO11 transcription levels are strongly influenced by genetic background and affect biofilm-forming ability.
Collapse
Affiliation(s)
- Giacomo Zara
- Dipartimento di Scienze Ambientali Agrarie e Biotecnologie Agro-alimentari (DISAABA), University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Severino Zara
- Dipartimento di Scienze Ambientali Agrarie e Biotecnologie Agro-alimentari (DISAABA), University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Claudia Pinna
- Dipartimento di Scienze Ambientali Agrarie e Biotecnologie Agro-alimentari (DISAABA), University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Salvatore Marceddu
- Istituto di Scienze delle Produzioni Alimentari (ISPA CNR Sassari), Via dei Mille 48, 07100 Sassari, Italy
| | - Marilena Budroni
- Dipartimento di Scienze Ambientali Agrarie e Biotecnologie Agro-alimentari (DISAABA), University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| |
Collapse
|
48
|
Comparative transcriptomic approach to investigate differences in wine yeast physiology and metabolism during fermentation. Appl Environ Microbiol 2009; 75:6600-12. [PMID: 19700545 DOI: 10.1128/aem.01251-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Commercial wine yeast strains of the species Saccharomyces cerevisiae have been selected to satisfy many different, and sometimes highly specific, oenological requirements. As a consequence, more than 200 different strains with significantly diverging phenotypic traits are produced globally. This genetic resource has been rather neglected by the scientific community because industrial strains are less easily manipulated than the limited number of laboratory strains that have been successfully employed to investigate fundamental aspects of cellular biology. However, laboratory strains are unsuitable for the study of many phenotypes that are of significant scientific and industrial interest. Here, we investigate whether a comparative transcriptomics and phenomics approach, based on the analysis of five phenotypically diverging industrial wine yeast strains, can provide insights into the molecular networks that are responsible for the expression of such phenotypes. For this purpose, some oenologically relevant phenotypes, including resistance to various stresses, cell wall properties, and metabolite production of these strains were evaluated and aligned with transcriptomic data collected during alcoholic fermentation. The data reveal significant differences in gene regulation between the five strains. While the genetic complexity underlying the various successive stress responses in a dynamic system such as wine fermentation reveals the limits of the approach, many of the relevant differences in gene expression can be linked to specific phenotypic differences between the strains. This is, in particular, the case for many aspects of metabolic regulation. The comparative approach therefore opens new possibilities to investigate complex phenotypic traits on a molecular level.
Collapse
|
49
|
Van Mulders SE, Christianen E, Saerens SM, Daenen L, Verbelen PJ, Willaert R, Verstrepen KJ, Delvaux FR. Phenotypic diversity of Flo protein family-mediated adhesion inSaccharomyces cerevisiae. FEMS Yeast Res 2009; 9:178-90. [DOI: 10.1111/j.1567-1364.2008.00462.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
50
|
Identification of novel activation mechanisms for FLO11 regulation in Saccharomyces cerevisiae. Genetics 2008; 178:145-56. [PMID: 18202364 DOI: 10.1534/genetics.107.081315] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adhesins play a central role in the cellular response of eukaryotic microorganisms to their host environment. In pathogens such as Candida spp. and other fungi, adhesins are responsible for adherence to mammalian tissues, and in Saccharomyces spp. yeasts also confer adherence to solid surfaces and to other yeast cells. The analysis of FLO11, the main adhesin identified in Saccharomyces cerevisiae, has revealed complex mechanisms, involving both genetic and epigenetic regulation, governing the expression of this critical gene. We designed a genomewide screen to identify new regulators of this pivotal adhesin in budding yeasts. We took advantage of a specific FLO11 allele that confers very high levels of FLO11 expression to wild "flor" strains of S. cerevisiae. We screened for mutants that abrogated the increased FLO11 expression of this allele using the loss of the characteristic fluffy-colony phenotype and a reporter plasmid containing GFP controlled by the same FLO11 promoter. Using this approach, we isolated several genes whose function was essential to maintain the expression of FLO11. In addition to previously characterized activators, we identified a number of novel FLO11 activators, which reveal the pH response pathway and chromatin-remodeling complexes as central elements involved in FLO11 activation.
Collapse
|