1
|
Ayala I, Colanzi A. Structural Organization and Function of the Golgi Ribbon During Cell Division. Front Cell Dev Biol 2022; 10:925228. [PMID: 35813197 PMCID: PMC9263219 DOI: 10.3389/fcell.2022.925228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022] Open
Abstract
The Golgi complex has a central role in the secretory traffic. In vertebrate cells it is generally organized in polarized stacks of cisternae that are laterally connected by membranous tubules, forming a structure known as Golgi ribbon. The steady state ribbon arrangement results from a dynamic equilibrium between formation and cleavage of the membrane tubules connecting the stacks. This balance is of great physiological relevance as the unlinking of the ribbon during G2 is required for mitotic entry. A block of this process induces a potent G2 arrest of the cell cycle, indicating that a mitotic “Golgi checkpoint” controls the correct pre-mitotic segregation of the Golgi ribbon. Then, after mitosis onset, the Golgi stacks undergo an extensive disassembly, which is necessary for proper spindle formation. Notably, several Golgi-associated proteins acquire new roles in spindle formation and mitotic progression during mitosis. Here we summarize the current knowledge about the basic principle of the Golgi architecture and its functional relationship with cell division to highlight crucial aspects that need to be addressed to help us understand the physiological significance of the ribbon and the pathological implications of alterations of this organization.
Collapse
|
2
|
Speckner K, Stadler L, Weiss M. Unscrambling exit site patterns on the endoplasmic reticulum as a quenched demixing process. Biophys J 2021; 120:2532-2542. [PMID: 33932435 DOI: 10.1016/j.bpj.2021.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/31/2021] [Accepted: 04/19/2021] [Indexed: 11/19/2022] Open
Abstract
The endoplasmic reticulum (ER) is a vital organelle in mammalian cells with a complex morphology. Consisting of sheet-like cisternae in the cell center, the peripheral ER forms a vast tubular network on which a dispersed pattern of a few hundred specialized domains (ER exit sites (ERESs)) is maintained. Molecular details of cargo sorting and vesicle formation at individual ERESs, fueling the early secretory pathway, have been studied in some detail. The emergence of spatially extended ERES patterns, however, has remained poorly understood. Here, we show that these patterns are determined by the underlying ER morphology, suggesting ERESs to emerge from a demixing process that is quenched by the ER network topology. In particular, we observed fewer but larger ERESs when transforming the ER network to more sheet-like morphologies. In contrast, little to no changes with respect to native ERES patterns were observed when fragmenting the ER, indicating that hampering the diffusion-mediated coarse graining of domains is key for native ERES patterns. Model simulations support the notion of effective diffusion barriers impeding the coarse graining and maturation of ERES patterns. We speculate that tuning a simple demixing mechanism by the ER topology allows for a robust but flexible adaption of ERES patterns, ensuring a properly working early secretory pathway in a variety of conditions.
Collapse
Affiliation(s)
| | - Lorenz Stadler
- Experimental Physics I, University of Bayreuth, Bayreuth, Germany
| | - Matthias Weiss
- Experimental Physics I, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
3
|
Sabri A, Xu X, Krapf D, Weiss M. Elucidating the Origin of Heterogeneous Anomalous Diffusion in the Cytoplasm of Mammalian Cells. PHYSICAL REVIEW LETTERS 2020; 125:058101. [PMID: 32794890 DOI: 10.1103/physrevlett.125.058101] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Diffusion of tracer particles in the cytoplasm of mammalian cells is often anomalous with a marked heterogeneity even within individual particle trajectories. Despite considerable efforts, the mechanisms behind these observations have remained largely elusive. To tackle this problem, we performed extensive single-particle tracking experiments on quantum dots in the cytoplasm of living mammalian cells at varying conditions. Analyses of the trajectories reveal a strong, microtubule-dependent subdiffusion with antipersistent increments and a substantial heterogeneity. Furthermore, particles stochastically switch between different mobility states, most likely due to transient associations with the cytoskeleton-shaken endoplasmic reticulum network. Comparison to simulations highlight that all experimental observations can be fully described by an intermittent fractional Brownian motion, alternating between two states of different mobility.
Collapse
Affiliation(s)
- Adal Sabri
- Experimental Physics I, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Xinran Xu
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Diego Krapf
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Matthias Weiss
- Experimental Physics I, University of Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
4
|
Lång A, Lång E, Bøe SO. PML Bodies in Mitosis. Cells 2019; 8:cells8080893. [PMID: 31416160 PMCID: PMC6721746 DOI: 10.3390/cells8080893] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 12/14/2022] Open
Abstract
Promyelocytic leukemia (PML) bodies are dynamic intracellular structures that recruit and release a variety of different proteins in response to stress, virus infection, DNA damage and cell cycle progression. While PML bodies primarily are regarded as nuclear compartments, they are forced to travel to the cytoplasm each time a cell divides, due to breakdown of the nuclear membrane at entry into mitosis and subsequent nuclear exclusion of nuclear material at exit from mitosis. Here we review the biochemical and biophysical transitions that occur in PML bodies during mitosis and discuss this in light of post-mitotic nuclear import, cell fate decision and acute promyelocytic leukemia therapy.
Collapse
Affiliation(s)
- Anna Lång
- Oslo University Hospital, Department of Molecular Microbiology, Forskningsveien 1, 0373 Oslo, Norway
| | - Emma Lång
- Oslo University Hospital, Department of Molecular Microbiology, Forskningsveien 1, 0373 Oslo, Norway
| | - Stig Ove Bøe
- Oslo University Hospital, Department of Molecular Microbiology, Forskningsveien 1, 0373 Oslo, Norway.
| |
Collapse
|
5
|
The Golgi Apparatus in Polarized Neuroepithelial Stem Cells and Their Progeny: Canonical and Noncanonical Features. Results Probl Cell Differ 2019; 67:359-375. [PMID: 31435803 DOI: 10.1007/978-3-030-23173-6_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neurons forming the central nervous system are generated by neural stem and progenitor cells, via a process called neurogenesis (Götz and Huttner, Nat Rev Mol Cell Biol, 6:777-788, 2005). In this book chapter, we focus on neurogenesis in the dorsolateral telencephalon, the rostral-most region of the neural tube, which contains the part of the central nervous system that is most expanded in mammals (Borrell and Reillo, Dev Neurobiol, 72:955-971, 2012; Wilsch-Bräuninger et al., Curr Opin Neurobiol 39:122-132, 2016). We will discuss recent advances in the dissection of the cell biological mechanisms of neurogenesis, with particular attention to the organization and function of the Golgi apparatus and its relationship to the centrosome.
Collapse
|
6
|
Bieberich E. Sphingolipids and lipid rafts: Novel concepts and methods of analysis. Chem Phys Lipids 2018; 216:114-131. [PMID: 30194926 PMCID: PMC6196108 DOI: 10.1016/j.chemphyslip.2018.08.003] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/20/2018] [Accepted: 08/25/2018] [Indexed: 12/12/2022]
Abstract
About twenty years ago, the functional lipid raft model of the plasma membrane was published. It took into account decades of research showing that cellular membranes are not just homogenous mixtures of lipids and proteins. Lateral anisotropy leads to assembly of membrane domains with specific lipid and protein composition regulating vesicular traffic, cell polarity, and cell signaling pathways in a plethora of biological processes. However, what appeared to be a clearly defined entity of clustered raft lipids and proteins became increasingly fluid over the years, and many of the fundamental questions about biogenesis and structure of lipid rafts remained unanswered. Experimental obstacles in visualizing lipids and their interactions hampered progress in understanding just how big rafts are, where and when they are formed, and with which proteins raft lipids interact. In recent years, we have begun to answer some of these questions and sphingolipids may take center stage in re-defining the meaning and functional significance of lipid rafts. In addition to the archetypical cholesterol-sphingomyelin raft with liquid ordered (Lo) phase and the liquid-disordered (Ld) non-raft regions of cellular membranes, a third type of microdomains termed ceramide-rich platforms (CRPs) with gel-like structure has been identified. CRPs are "ceramide rafts" that may offer some fresh view on the membrane mesostructure and answer several critical questions for our understanding of lipid rafts.
Collapse
Affiliation(s)
- Erhard Bieberich
- Department of Physiology at the University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
7
|
Abstract
A portfolio is presented documenting economic, high-resolution correlative focused ion beam scanning electron microscopy (FIB/SEM) in routine, comprising: (i) the use of custom-labeled slides and coverslips, (ii) embedding of cells in thin, or ultra-thin resin layers for correlative light and electron microscopy (CLEM) and (iii) the claim to reach the highest resolution possible with FIB/SEM in xyz. Regions of interest (ROIs) defined in light microscope (LM), can be relocated quickly and precisely in SEM. As proof of principle, HeLa cells were investigated in 3D context at all stages of the cell cycle, documenting ultrastructural changes during mitosis: nuclear envelope breakdown and reassembly, Golgi degradation and reconstitution and the formation of the midzone and midbody.
Collapse
|
8
|
Sanders JR, Ashley B, Moon A, Woolley TE, Swann K. PLCζ Induced Ca 2+ Oscillations in Mouse Eggs Involve a Positive Feedback Cycle of Ca 2+ Induced InsP 3 Formation From Cytoplasmic PIP 2. Front Cell Dev Biol 2018; 6:36. [PMID: 29666796 PMCID: PMC5891639 DOI: 10.3389/fcell.2018.00036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/15/2018] [Indexed: 11/13/2022] Open
Abstract
Egg activation at fertilization in mammalian eggs is caused by a series of transient increases in the cytosolic free Ca2+ concentration, referred to as Ca2+ oscillations. It is widely accepted that these Ca2+ oscillations are initiated by a sperm derived phospholipase C isoform, PLCζ that hydrolyses its substrate PIP2 to produce the Ca2+ releasing messenger InsP3. However, it is not clear whether PLCζ induced InsP3 formation is periodic or monotonic, and whether the PIP2 source for generating InsP3 from PLCζ is in the plasma membrane or the cytoplasm. In this study we have uncaged InsP3 at different points of the Ca2+ oscillation cycle to show that PLCζ causes Ca2+ oscillations by a mechanism which requires Ca2+ induced InsP3 formation. In contrast, incubation in Sr2+ media, which also induces Ca2+ oscillations in mouse eggs, sensitizes InsP3-induced Ca2+ release. We also show that the cytosolic level Ca2+ is a key factor in setting the frequency of Ca2+ oscillations since low concentrations of the Ca2+ pump inhibitor, thapsigargin, accelerates the frequency of PLCζ induced Ca2+ oscillations in eggs, even in Ca2+ free media. Given that Ca2+ induced InsP3 formation causes a rapid wave during each Ca2+ rise, we use a mathematical model to show that InsP3 generation, and hence PLCζ's substate PIP2, has to be finely distributed throughout the egg cytoplasm. Evidence for PIP2 distribution in vesicles throughout the egg cytoplasm is provided with a rhodamine-peptide probe, PBP10. The apparent level of PIP2 in such vesicles could be reduced by incubating eggs in the drug propranolol which also reversibly inhibited PLCζ induced, but not Sr2+ induced, Ca2+ oscillations. These data suggest that the cytosolic Ca2+ level, rather than Ca2+ store content, is a key variable in setting the pace of PLCζ induced Ca2+ oscillations in eggs, and they imply that InsP3 oscillates in synchrony with Ca2+ oscillations. Furthermore, they support the hypothesis that PLCζ and sperm induced Ca2+ oscillations in eggs requires the hydrolysis of PIP2 from finely spaced cytoplasmic vesicles.
Collapse
Affiliation(s)
| | - Bethany Ashley
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Anna Moon
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Thomas E Woolley
- School of Mathematics, Cardiff University, Cardiff, United Kingdom
| | - Karl Swann
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
9
|
Ayala I, Colanzi A. Mitotic inheritance of the Golgi complex and its role in cell division. Biol Cell 2017; 109:364-374. [PMID: 28799169 DOI: 10.1111/boc.201700032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 12/30/2022]
Abstract
The Golgi apparatus plays essential roles in the processing and sorting of proteins and lipids, but it can also act as a signalling hub and a microtubule-nucleation centre. The Golgi complex (GC) of mammalian cells is composed of stacks connected by tubular bridges to form a continuous membranous system. In spite of this structural complexity, the GC is highly dynamic, and this feature becomes particularly evident during mitosis, when the GC undergoes a multi-step disassembly process that allows its correct partitioning and inheritance by daughter cells. Strikingly, different steps of Golgi disassembly control mitotic entry and progression, indicating that cells actively monitor Golgi integrity during cell division. Here, we summarise the basic mechanisms and the molecular players that are involved in Golgi disassembly, focussing in particular on recent studies that have revealed the fundamental signalling pathways that connect Golgi inheritance to mitotic entry and progression.
Collapse
Affiliation(s)
- Inmaculada Ayala
- Institute of Protein Biochemistry, National Research Council, Naples, 80131, Italy
| | - Antonino Colanzi
- Institute of Protein Biochemistry, National Research Council, Naples, 80131, Italy
| |
Collapse
|
10
|
Klayman LM, Wedegaertner PB. Inducible Inhibition of Gβγ Reveals Localization-dependent Functions at the Plasma Membrane and Golgi. J Biol Chem 2016; 292:1773-1784. [PMID: 27994056 DOI: 10.1074/jbc.m116.750430] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 12/16/2016] [Indexed: 01/28/2023] Open
Abstract
Heterotrimeric G proteins signal at a variety of endomembrane locations, in addition to their canonical function at the cytoplasmic surface of the plasma membrane (PM), where they are activated by cell surface G protein-coupled receptors. Here we focus on βγ signaling at the Golgi, where βγ activates a signaling cascade, ultimately resulting in vesicle fission from the trans-Golgi network (TGN). To develop a novel molecular tool for inhibiting endogenous βγ in a spatial-temporal manner, we take advantage of a lipid association mutant of the widely used βγ inhibitor GRK2ct (GRK2ct-KERE) and the FRB/FKBP heterodimerization system. We show that GRK2ct-KERE cannot inhibit βγ function when expressed in cells, but recruitment to a specific membrane location recovers the ability of GRK2ct-KERE to inhibit βγ signaling. PM-recruited GRK2ct-KERE inhibits lysophosphatidic acid-induced phosphorylation of Akt, whereas Golgi-recruited GRK2ct-KERE inhibits cargo transport from the TGN to the PM. Moreover, we show that Golgi-recruited GRK2ct-KERE inhibits model basolaterally targeted but not apically targeted cargo delivery, for both PM-destined and secretory cargo, providing the first evidence of selectivity in terms of cargo transport regulated by βγ. Last, we show that Golgi fragmentation induced by ilimaquinone and nocodazole is blocked by βγ inhibition, demonstrating that βγ is a key regulator of multiple pathways that impact Golgi morphology. Thus, we have developed a new molecular tool, recruitable GRK2ct-KERE, to modulate βγ signaling at specific subcellular locations, and we demonstrate novel cargo selectivity for βγ regulation of TGN to PM transport and a novel role for βγ in mediating Golgi fragmentation.
Collapse
Affiliation(s)
- Lauren M Klayman
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Philip B Wedegaertner
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
| |
Collapse
|
11
|
Villeneuve J, Duran J, Scarpa M, Bassaganyas L, Van Galen J, Malhotra V. Golgi enzymes do not cycle through the endoplasmic reticulum during protein secretion or mitosis. Mol Biol Cell 2016; 28:141-151. [PMID: 27807044 PMCID: PMC5221618 DOI: 10.1091/mbc.e16-08-0560] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/21/2016] [Accepted: 10/26/2016] [Indexed: 01/08/2023] Open
Abstract
The question of whether the Golgi complex is a stable compartment or is constantly regenerated from the endoplasmic reticulum (ER) is an important issue under debate. Using an ER trapping procedure and Golgi-specific O-linked glycosylation of a resident ER protein, this study demonstrates that Golgi enzymes do not cycle through the ER during secretion and mitosis. Golgi-specific sialyltransferase (ST) expressed as a chimera with the rapamycin-binding domain of mTOR, FRB, relocates to the endoplasmic reticulum (ER) in cells exposed to rapamycin that also express invariant chain (Ii)-FKBP in the ER. This result has been taken to indicate that Golgi-resident enzymes cycle to the ER constitutively. We show that ST-FRB is trapped in the ER even without Ii-FKBP upon rapamycin addition. This is because ER-Golgi–cycling FKBP proteins contain a C-terminal KDEL-like sequence, bind ST-FRB in the Golgi, and are transported together back to the ER by KDEL receptor–mediated retrograde transport. Moreover, depletion of KDEL receptor prevents trapping of ST-FRB in the ER by rapamycin. Thus ST-FRB cycles artificially by binding to FKBP domain–containing proteins. In addition, Golgi-specific O-linked glycosylation of a resident ER protein occurs only upon artificial fusion of Golgi membranes with ER. Together these findings support the consensus view that there is no appreciable mixing of Golgi-resident enzymes with ER under normal conditions.
Collapse
Affiliation(s)
- Julien Villeneuve
- Cell and Developmental Biology Department, Centre for Genomic Regulation, Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.,Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720
| | - Juan Duran
- Cell and Developmental Biology Department, Centre for Genomic Regulation, Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Margherita Scarpa
- Cell and Developmental Biology Department, Centre for Genomic Regulation, Barcelona Institute for Science and Technology, 08003 Barcelona, Spain
| | - Laia Bassaganyas
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143.,Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143
| | - Josse Van Galen
- Cell and Developmental Biology Department, Centre for Genomic Regulation, Barcelona Institute for Science and Technology, 08003 Barcelona, Spain
| | - Vivek Malhotra
- Cell and Developmental Biology Department, Centre for Genomic Regulation, Barcelona Institute for Science and Technology, 08003 Barcelona, Spain .,Universitat Pompeu Fabra, 08002 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
12
|
Valente C, Colanzi A. Mechanisms and Regulation of the Mitotic Inheritance of the Golgi Complex. Front Cell Dev Biol 2015; 3:79. [PMID: 26734607 PMCID: PMC4679863 DOI: 10.3389/fcell.2015.00079] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/27/2015] [Indexed: 11/13/2022] Open
Abstract
In mammalian cells, the Golgi complex is structured in the form of a continuous membranous system composed of stacks connected by tubular bridges: the "Golgi ribbon." At the onset of mitosis, the Golgi complex undergoes a multi-step fragmentation process that is required for its correct partition into the dividing cells. Importantly, inhibition of Golgi disassembly results in cell-cycle arrest at the G2 stage, which indicates that accurate inheritance of the Golgi complex is monitored by a "Golgi mitotic checkpoint." Moreover, mitotic Golgi disassembly correlates with the release of a set of Golgi-localized proteins that acquire specific functions during mitosis, such as mitotic spindle formation and regulation of the spindle checkpoint. Most of these events are regulated by small GTPases of the Arf and Rab families. Here, we review recent studies that are revealing the fundamental mechanisms, the molecular players, and the biological significance of mitotic inheritance of the Golgi complex in mammalian cells. We also briefly comment on how Golgi partitioning is coordinated with mitotic progression.
Collapse
Affiliation(s)
- Carmen Valente
- Institute of Protein Biochemistry, National Research Council Naples, Italy
| | - Antonino Colanzi
- Institute of Protein Biochemistry, National Research Council Naples, Italy
| |
Collapse
|
13
|
ER trapping reveals Golgi enzymes continually revisit the ER through a recycling pathway that controls Golgi organization. Proc Natl Acad Sci U S A 2015; 112:E6752-61. [PMID: 26598700 DOI: 10.1073/pnas.1520957112] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Whether Golgi enzymes remain localized within the Golgi or constitutively cycle through the endoplasmic reticulum (ER) is unclear, yet is important for understanding Golgi dependence on the ER. Here, we demonstrate that the previously reported inefficient ER trapping of Golgi enzymes in a rapamycin-based assay results from an artifact involving an endogenous ER-localized 13-kD FK506 binding protein (FKBP13) competing with the FKBP12-tagged Golgi enzyme for binding to an FKBP-rapamycin binding domain (FRB)-tagged ER trap. When we express an FKBP12-tagged ER trap and FRB-tagged Golgi enzymes, conditions precluding such competition, the Golgi enzymes completely redistribute to the ER upon rapamycin treatment. A photoactivatable FRB-Golgi enzyme, highlighted only in the Golgi, likewise redistributes to the ER. These data establish Golgi enzymes constitutively cycle through the ER. Using our trapping scheme, we identify roles of rab6a and calcium-independent phospholipase A2 (iPLA2) in Golgi enzyme recycling, and show that retrograde transport of Golgi membrane underlies Golgi dispersal during microtubule depolymerization and mitosis.
Collapse
|
14
|
Ito Y, Uemura T, Nakano A. Formation and maintenance of the Golgi apparatus in plant cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 310:221-87. [PMID: 24725428 DOI: 10.1016/b978-0-12-800180-6.00006-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Golgi apparatus plays essential roles in intracellular trafficking, protein and lipid modification, and polysaccharide synthesis in eukaryotic cells. It is well known for its unique stacked structure, which is conserved among most eukaryotes. However, the mechanisms of biogenesis and maintenance of the structure, which are deeply related to ER-Golgi and intra-Golgi transport systems, have long been mysterious. Now having extremely powerful microscopic technologies developed for live-cell imaging, the plant Golgi apparatus provides an ideal system to resolve the question. The plant Golgi apparatus has unique features that are not conserved in other kingdoms, which will also give new insights into the Golgi functions in plant life. In this review, we will summarize the features of the plant Golgi apparatus and transport mechanisms around it, with a focus on recent advances in Golgi biogenesis by live imaging of plants cells.
Collapse
Affiliation(s)
- Yoko Ito
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomohiro Uemura
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan; Live Cell Molecular Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan.
| |
Collapse
|
15
|
Jongsma MLM, Berlin I, Neefjes J. On the move: organelle dynamics during mitosis. Trends Cell Biol 2014; 25:112-24. [PMID: 25466831 DOI: 10.1016/j.tcb.2014.10.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/23/2014] [Accepted: 10/28/2014] [Indexed: 10/24/2022]
Abstract
A cell constitutes the minimal self-replicating unit of all organisms, programmed to propagate its genome as it proceeds through mitotic cell division. The molecular processes entrusted with ensuring high fidelity of DNA replication and subsequent segregation of chromosomes between daughter cells have therefore been studied extensively. However, to process the information encoded in its genome a cell must also pass on its non-genomic identity to future generations. To achieve productive sharing of intracellular organelles, cells have evolved complex mechanisms of organelle inheritance. Many membranous compartments undergo vast spatiotemporal rearrangements throughout mitosis. These controlled organizational changes are crucial to enabling completion of the division cycle and ensuring successful progeny. Herein we review current understanding of intracellular organelle segregation during mitotic division in mammalian cells, with a focus on compartment organization and integrity throughout the inheritance process.
Collapse
Affiliation(s)
- Marlieke L M Jongsma
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Ilana Berlin
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Jacques Neefjes
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Ronchi P, Tischer C, Acehan D, Pepperkok R. Positive feedback between Golgi membranes, microtubules and ER exit sites directs de novo biogenesis of the Golgi. J Cell Sci 2014; 127:4620-33. [PMID: 25189616 DOI: 10.1242/jcs.150474] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Golgi complex is the central organelle of the secretory pathway. It undergoes dynamic changes during the cell cycle, but how it acquires and maintains its complex structure is unclear. To address this question, we have used laser nanosurgery to deplete BSC1 cells of the Golgi complex and have monitored its biogenesis by quantitative time-lapse microscopy and correlative electron microscopy. After Golgi depletion, endoplasmic reticulum (ER) export is inhibited and the number of ER exit sites (ERES) is reduced and does not increase for several hours. Occasional fusion of small post-ER carriers to form the first larger structures triggers a rapid and drastic growth of Golgi precursors, due to the capacity of these structures to attract more carriers by microtubule nucleation and to stimulate ERES biogenesis. Increasing the chances of post-ER carrier fusion close to ERES by depolymerizing microtubules results in the acceleration of Golgi and ERES biogenesis. Taken together, on the basis of our results, we propose a self-organizing principle of the early secretory pathway that integrates Golgi biogenesis, ERES biogenesis and the organization of the microtubule network by positive-feedback loops.
Collapse
Affiliation(s)
- Paolo Ronchi
- European Molecular Biology Laboratory (EMBL), Cell biology and biophysics unit
| | - Christian Tischer
- European Molecular Biology Laboratory (EMBL), Advanced Light Microscopy
| | - Devrim Acehan
- European Molecular Biology Laboratory (EMBL), Electron Microscopy Core Facilities, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Rainer Pepperkok
- European Molecular Biology Laboratory (EMBL), Cell biology and biophysics unit European Molecular Biology Laboratory (EMBL), Advanced Light Microscopy
| |
Collapse
|
17
|
Jagannathan S, Hsu JCC, Reid DW, Chen Q, Thompson WJ, Moseley AM, Nicchitta CV. Multifunctional roles for the protein translocation machinery in RNA anchoring to the endoplasmic reticulum. J Biol Chem 2014; 289:25907-24. [PMID: 25063809 DOI: 10.1074/jbc.m114.580688] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Signal sequence-encoding mRNAs undergo translation-dependent localization to the endoplasmic reticulum (ER) and at the ER are anchored via translation on Sec61-bound ribosomes. Recent investigations into the composition and membrane association characteristics of ER-associated mRNAs have, however, revealed both ribosome-dependent (indirect) and ribosome-independent (direct) modes of mRNA association with the ER. These findings raise important questions regarding our understanding of how mRNAs are selected, localized, and anchored to the ER. Using semi-intact tissue culture cells, we performed a polysome solubilization screen and identified conditions that distinguish polysomes engaged in the translation of distinct cohorts of mRNAs. To gain insight into the molecular basis of direct mRNA anchoring to the ER, we performed RNA-protein UV photocross-linking studies in rough microsomes and demonstrate that numerous ER integral membrane proteins display RNA binding activity. Quantitative proteomic analyses of HeLa cytosolic and ER-bound polysome fractions identified translocon components as selective polysome-interacting proteins. Notably, the Sec61 complex was highly enriched in polysomes engaged in the translation of endomembrane organelle proteins, whereas translocon accessory proteins, such as ribophorin I, were present in all subpopulations of ER-associated polysomes. Analyses of the protein composition of oligo(dT)-selected UV photocross-linked ER protein-RNA adducts identified Sec61α,β and ribophorin I as ER-poly(A) mRNA-binding proteins, suggesting unexpected roles for the protein translocation and modification machinery in mRNA anchoring to the ER. In summary, we propose that multiple mechanisms of mRNA and ribosome association with ER operate to enable an mRNA transcriptome-wide function for the ER in protein synthesis.
Collapse
Affiliation(s)
| | | | | | - Qiang Chen
- From the Departments of Cell Biology and
| | - Will J Thompson
- the Duke Proteomics Core Facility, Duke University Medical Center, Durham, North Carolina 27710
| | - Arthur M Moseley
- the Duke Proteomics Core Facility, Duke University Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|
18
|
Golgi depletion from living cells with laser nanosurgery. Methods Cell Biol 2013. [PMID: 24295315 DOI: 10.1016/b978-0-12-417164-0.00019-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
How Golgi biogenesis occurs in mammalian cells is a controversial problem. Can the Golgi complex (GC) form de novo from ER membranes or does it require a template? The method described in this chapter uses growth of cells on micropatterns to displace the GC from its juxtanuclear position and laser nanosurgery to subsequently deplete it from living cells. Golgi-depleted karyoplasts can be followed by time-lapse microscopy to address if and how the GC can be de novo synthesized from ER membranes. Furthermore, the study of different processes in the absence of the GC can shed light on the role of this organelle in the intracellular signaling and homeostasis.
Collapse
|
19
|
Siljamäki E, Rintanen N, Kirsi M, Upla P, Wang W, Karjalainen M, Ikonen E, Marjomäki V. Cholesterol dependence of collagen and echovirus 1 trafficking along the novel α2β1 integrin internalization pathway. PLoS One 2013; 8:e55465. [PMID: 23393580 PMCID: PMC3564754 DOI: 10.1371/journal.pone.0055465] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 12/23/2012] [Indexed: 12/29/2022] Open
Abstract
We have previously shown that soluble collagen and a human pathogen, echovirus 1 (EV1) cluster α2β1 integrin on the plasma membrane and cause their internalization into cytoplasmic endosomes. Here we show that cholesterol plays a major role not only in the uptake of α2β1 integrin and its ligands but also in the formation of α2 integrin-specific multivesicular bodies (α2-MVBs) and virus infection. EV1 infection and α2β1 integrin internalization were totally halted by low amounts of the cholesterol-aggregating drugs filipin or nystatin. Inhibition of cholesterol synthesis and accumulation of lanosterol after ketoconazole treatment inhibited uptake of collagen, virus and clustered integrin, and prevented formation of multivesicular bodies and virus infection. Loading of lipid starved cells with cholesterol increased infection to some extent but could not completely restore EV1 infection to control levels. Cold Triton X-100 treatment did not solubilize the α2-MVBs suggesting, together with cholesterol labeling, that the cytoplasmic endosomes were enriched in detergent-resistant lipids in contrast to αV integrin labeled control endosomes in the clathrin pathway. Cholesterol aggregation leading to increased ion permeability caused a significant reduction in EV1 uncoating in endosomes as judged by sucrose gradient centrifugation and by neutral red-based uncoating assay. In contrast, the replication step was not dependent on cholesterol in contrast to the reports on several other viruses. In conclusion, our results showed that the integrin internalization pathway is dependent on cholesterol for uptake of collagen, EV1 and integrin, for maturation of endosomal structures and for promoting EV1 uncoating. The results thus provide novel information for developing anti-viral strategies and more insight into collagen and integrin trafficking.
Collapse
Affiliation(s)
- Elina Siljamäki
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Nina Rintanen
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Maija Kirsi
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Paula Upla
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Wei Wang
- Institute of Biomedicine, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Mikko Karjalainen
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Elina Ikonen
- Institute of Biomedicine, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Varpu Marjomäki
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
- * E-mail:
| |
Collapse
|
20
|
MEK1 inactivates Myt1 to regulate Golgi membrane fragmentation and mitotic entry in mammalian cells. EMBO J 2012; 32:72-85. [PMID: 23241949 DOI: 10.1038/emboj.2012.329] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 11/16/2012] [Indexed: 11/08/2022] Open
Abstract
The pericentriolar stacks of Golgi cisternae are separated from each other in G2 and fragmented extensively during mitosis. MEK1 is required for Golgi fragmentation in G2 and for the entry of cells into mitosis. We now report that Myt1 mediates MEK1's effects on the Golgi complex. Knockdown of Myt1 by siRNA increased the efficiency of Golgi complex fragmentation by mitotic cytosol in permeabilized and intact HeLa cells. Myt1 knockdown eliminated the requirement of MEK1 in Golgi fragmentation and alleviated the delay in mitotic entry due to MEK1 inhibition. The phosphorylation of Myt1 by MEK1 requires another kinase but is independent of RSK, Plk, and CDK1. Altogether our findings reveal that Myt1 is inactivated by MEK1 mediated phosphorylation to fragment the Golgi complex in G2 and for the entry of cells into mitosis. It is known that Myt1 inactivation is required for CDK1 activation. Myt1 therefore is an important link by which MEK1 dependent fragmentation of the Golgi complex in G2 is connected to the CDK1 mediated breakdown of Golgi into tubules and vesicles in mitosis.
Collapse
|
21
|
Marie M, Dale HA, Kouprina N, Saraste J. Division of the intermediate compartment at the onset of mitosis provides a mechanism for Golgi inheritance. J Cell Sci 2012; 125:5403-16. [PMID: 22946056 DOI: 10.1242/jcs.108100] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
As mammalian cells prepare for mitosis, the Golgi ribbon is first unlinked into its constituent stacks and then transformed into spindle-associated, pleiomorphic membrane clusters in a process that remains enigmatic. Also, it remains unclear whether Golgi inheritance involves the incorporation of Golgi enzymes into a pool of coat protein I (COPI) vesicles, or their COPI-independent transfer to the endoplasmic reticulum (ER). Based on the observation that the intermediate compartment (IC) at the ER-Golgi boundary is connected to the centrosome, we examined its mitotic fate and possible role in Golgi breakdown. The use of multiple imaging techniques and markers revealed that the IC elements persist during the M phase, maintain their compositional and structural properties and remain associated with the mitotic spindle, forming circular arrays at the spindle poles. At G2/M transition, the movement of the pericentrosomal domain of the IC (pcIC) to the cell centre and its expansion coincide with the unlinking of the Golgi ribbon. At prophase, coupled to centrosome separation, the pcIC divides together with recycling endosomes, providing novel landmarks for mitotic entry. We provide evidence that the permanent IC elements function as way stations during the COPI-dependent dispersal of Golgi components at prometa- and metaphase, indicating that they correspond to the previously described Golgi clusters. In addition, they continue to communicate with the vesicular 'Golgi haze' and thus are likely to provide templates for Golgi reassembly. These results implicate the IC in mitotic Golgi inheritance, resulting in a model that integrates key features of the two previously proposed pathways.
Collapse
Affiliation(s)
- Michaël Marie
- Department of Biomedicine and Molecular Imaging Center, University of Bergen, Jonas Lies Vei 91, N-5009 Bergen, Norway
| | | | | | | |
Collapse
|
22
|
Ito Y, Uemura T, Shoda K, Fujimoto M, Ueda T, Nakano A. cis-Golgi proteins accumulate near the ER exit sites and act as the scaffold for Golgi regeneration after brefeldin A treatment in tobacco BY-2 cells. Mol Biol Cell 2012; 23:3203-14. [PMID: 22740633 PMCID: PMC3418314 DOI: 10.1091/mbc.e12-01-0034] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 06/05/2012] [Accepted: 06/22/2012] [Indexed: 11/11/2022] Open
Abstract
The Golgi apparatus forms stacks of cisternae in many eukaryotic cells. However, little is known about how such a stacked structure is formed and maintained. To address this question, plant cells provide a system suitable for live-imaging approaches because individual Golgi stacks are well separated in the cytoplasm. We established tobacco BY-2 cell lines expressing multiple Golgi markers tagged by different fluorescent proteins and observed their responses to brefeldin A (BFA) treatment and BFA removal. BFA treatment disrupted cis, medial, and trans cisternae but caused distinct relocalization patterns depending on the proteins examined. Medial- and trans-Golgi proteins, as well as one cis-Golgi protein, were absorbed into the endoplasmic reticulum (ER), but two other cis-Golgi proteins formed small punctate structures. After BFA removal, these puncta coalesced first, and then the Golgi stacks regenerated from them in the cis-to-trans order. We suggest that these structures have a property similar to the ER-Golgi intermediate compartment and function as the scaffold of Golgi regeneration.
Collapse
Affiliation(s)
- Yoko Ito
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Tomohiro Uemura
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Keiko Shoda
- Molecular Membrane Biology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan
| | - Masaru Fujimoto
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Takashi Ueda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 Japan
- Molecular Membrane Biology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan
| |
Collapse
|
23
|
Phosphoregulation of STIM1 leads to exclusion of the endoplasmic reticulum from the mitotic spindle. Curr Biol 2012; 22:1487-93. [PMID: 22748319 DOI: 10.1016/j.cub.2012.05.057] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/03/2012] [Accepted: 05/31/2012] [Indexed: 12/18/2022]
Abstract
The endoplasmic reticulum (ER) undergoes significant reorganization between interphase and mitosis, but the underlying mechanisms are unknown. Stromal interaction molecule 1 (STIM1) is an ER Ca(2+) sensor that activates store-operated Ca(2+) entry (SOCE) and also functions in ER morphogenesis through its interaction with the microtubule +TIP protein end binding 1 (EB1). We previously demonstrated that phosphorylation of STIM1 during mitosis suppresses SOCE. We now show that STIM1 phosphorylation is a major regulatory mechanism that excludes ER from the mitotic spindle. In mitotic HeLa cells, the ER forms concentric sheets largely excluded from the mitotic spindle. We show that STIM1 dissociates from EB1 in mitosis and localizes to the concentric ER sheets. However, a nonphosphorylatable STIM1 mutant (STIM1(10A)) colocalized extensively with EB1 and drove ER mislocalization by pulling ER tubules into the spindle. This effect was rescued by mutating the EB1 interaction site of STIM1(10A), demonstrating that aberrant association of STIM1(10A) with EB1 is responsible for the ER mislocalization. A STIM1 phosphomimetic exhibited significantly impaired +TIP tracking in interphase but was ineffective at inhibiting SOCE, suggesting different mechanisms of regulation of these two STIM1 functions by phosphorylation. Thus, ER spindle exclusion and ER-dependent Ca(2+) signaling during mitosis require multimodal STIM1 regulation by phosphorylation.
Collapse
|
24
|
Modular organization of the mammalian Golgi apparatus. Curr Opin Cell Biol 2012; 24:467-74. [PMID: 22726585 DOI: 10.1016/j.ceb.2012.05.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 05/29/2012] [Indexed: 02/07/2023]
Abstract
The Golgi apparatus is essential for post-translational modifications and sorting of proteins in the secretory pathway. In addition, it further performs a broad range of specialized functions. This functional diversity is achieved by combining basic morphological modules of cisternae into higher ordered structures. Linking cisternae into stacks that are further connected through tubules into a continuous Golgi ribbon greatly increases its efficiency and expands its repertoire of functions. During cell division, the different modules of the Golgi are inherited by different mechanisms to maintain its functional and morphological composition.
Collapse
|
25
|
Sigismund S, Confalonieri S, Ciliberto A, Polo S, Scita G, Di Fiore PP. Endocytosis and signaling: cell logistics shape the eukaryotic cell plan. Physiol Rev 2012; 92:273-366. [PMID: 22298658 DOI: 10.1152/physrev.00005.2011] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Our understanding of endocytosis has evolved remarkably in little more than a decade. This is the result not only of advances in our knowledge of its molecular and biological workings, but also of a true paradigm shift in our understanding of what really constitutes endocytosis and of its role in homeostasis. Although endocytosis was initially discovered and studied as a relatively simple process to transport molecules across the plasma membrane, it was subsequently found to be inextricably linked with almost all aspects of cellular signaling. This led to the notion that endocytosis is actually the master organizer of cellular signaling, providing the cell with understandable messages that have been resolved in space and time. In essence, endocytosis provides the communications and supply routes (the logistics) of the cell. Although this may seem revolutionary, it is still likely to be only a small part of the entire story. A wealth of new evidence is uncovering the surprisingly pervasive nature of endocytosis in essentially all aspects of cellular regulation. In addition, many newly discovered functions of endocytic proteins are not immediately interpretable within the classical view of endocytosis. A possible framework, to rationalize all this new knowledge, requires us to "upgrade" our vision of endocytosis. By combining the analysis of biochemical, biological, and evolutionary evidence, we propose herein that endocytosis constitutes one of the major enabling conditions that in the history of life permitted the development of a higher level of organization, leading to the actuation of the eukaryotic cell plan.
Collapse
Affiliation(s)
- Sara Sigismund
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
The Golgi is an essential membrane-bound organelle in the secretary pathway of eukaryotic cells. In mammalian cells, the Golgi stacks are integrated into a continuous perinuclear ribbon, which poses a challenge for the daughter cells to inherit this membrane organelle during cell division. To facilitate proper partitioning, the mammalian Golgi ribbon is disassembled into vesicles in early mitosis. Following segregation into the daughter cells, a functional Golgi is reformed. Here we summarize our current understanding of the molecular mechanisms that control the mitotic Golgi disassembly and postmitotic reassembly cycle in mammalian cells.
Collapse
Affiliation(s)
- Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | |
Collapse
|
27
|
Tängemo C, Ronchi P, Colombelli J, Haselmann U, Simpson JC, Antony C, Stelzer EHK, Pepperkok R, Reynaud EG. A novel laser nanosurgery approach supports de novo Golgi biogenesis in mammalian cells. J Cell Sci 2011; 124:978-87. [PMID: 21378314 DOI: 10.1242/jcs.079640] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Golgi complex has a central role in the secretory pathway of all higher organisms. To explain the synthesis of its unique stacked structure in mammalian cells, two major models have been proposed. One suggests that it is synthesized de novo from the endoplasmic reticulum. The second model postulates a pre-existing Golgi template that serves as a scaffold for its biogenesis. To test these hypotheses directly, we have developed an approach in which we deplete the Golgi complex from living cells by laser nanosurgery, and subsequently analyze the 'Golgi-depleted' karyoplast using time-lapse and electron microscopy. We show that biosynthetic transport is blocked after Golgi depletion, but is restored 12 hours later. This recovery of secretory transport coincides with an ordered assembly of stacked Golgi structures, and we also observe the appearance of matrix proteins before that of Golgi enzymes. Functional experiments using RNA interference-mediated knockdown of GM130 further demonstrate the importance of the matrix during Golgi biogenesis. By contrast, the centrosome, which can also be removed by laser nanosurgery and is not reformed within the considered time frame, is not required for this process. Altogether, our data provide evidence that de novo Golgi biogenesis can occur in mammalian cells.
Collapse
Affiliation(s)
- Carolina Tängemo
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
OBJECTIVE Loss-of-function mutations in Perk (EIF2AK3) result in permanent neonatal diabetes in humans (Wolcott-Rallison Syndrome) and mice. Previously, we found that diabetes associated with Perk deficiency resulted from insufficient proliferation of beta-cells and from defects in insulin secretion. A substantial fraction of PERK-deficient beta-cells display a highly abnormal cellular phenotype characterized by grossly distended endoplasmic reticulum (ER) and retention of proinsulin. We investigated over synthesis, lack of ER-associated degradation (ERAD), and defects in ER to Golgi trafficking as possible causes. RESEARCH DESIGN AND METHODS ER functions of PERK were investigated in cell culture and mice in which Perk was impaired or gene dosage modulated. The Ins2(+/Akita) mutant mice were used as a model system to test the role of PERK in ERAD. RESULTS We report that loss of Perk function does not lead to uncontrolled protein synthesis but impaired ER-to-Golgi anterograde trafficking, retrotranslocation from the ER to the cytoplasm, and proteasomal degradation. PERK was also shown to be required to maintain the integrity of the ER and Golgi and processing of ATF6. Moreover, decreasing Perk dosage surprisingly ameliorates the progression of the Akita mutants toward diabetes. CONCLUSIONS PERK is a positive regulator of ERAD and proteasomal activity. Reducing PERK activity ameliorates the progression of diabetes in the Akita mouse, whereas increasing PERK dosage hastens its progression. We speculate that PERK acts as a metabolic sensor in the insulin-secreting beta-cells to modulate the trafficking and quality control of proinsulin in the ER relative to the physiological demands for circulating insulin.
Collapse
Affiliation(s)
- Sounak Gupta
- From the Department of Biology, The Huck Institutes of the Life Sciences, Penn State Institute for Diabetes and Obesity, Pennsylvania State University, University Park, Pennsylvania
| | - Barbara McGrath
- From the Department of Biology, The Huck Institutes of the Life Sciences, Penn State Institute for Diabetes and Obesity, Pennsylvania State University, University Park, Pennsylvania
| | - Douglas R. Cavener
- From the Department of Biology, The Huck Institutes of the Life Sciences, Penn State Institute for Diabetes and Obesity, Pennsylvania State University, University Park, Pennsylvania
- Corresponding author: Douglas R. Cavener,
| |
Collapse
|
29
|
Wei JH, Seemann J. Spindle-dependent partitioning of the Golgi ribbon. Commun Integr Biol 2010; 2:406-7. [PMID: 19907701 DOI: 10.4161/cib.2.5.8764] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 04/17/2009] [Indexed: 11/19/2022] Open
Abstract
During mitosis, the Golgi apparatus needs to be divided into the daughter cells. To achieve successful division, the single continuous Golgi ribbon is disassembled in early mitosis into vesicular and tubular membranes, which upon segregation fuse to reform a functional Golgi complex in telophase. Although the process of Golgi division has been well described, the underlying mechanisms remain largely unknown. The observation that Golgi membranes accumulate around the spindle poles implies a role of the mitotic spindle in Golgi partitioning. By inducing asymmetrical cell division where the spindle goes into only one of the daughter cells, we have recently shown that the inheritance of a continuous Golgi ribbon critically relies on the mitotic spindle, while membranes sufficient to reassemble polarized, functional Golgi stacks are inherited independently.
Collapse
Affiliation(s)
- Jen-Hsuan Wei
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
30
|
Phosphorylation and membrane dissociation of the ARF exchange factor GBF1 in mitosis. Biochem J 2010; 427:401-12. [PMID: 20175751 DOI: 10.1042/bj20091681] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Secretory protein trafficking is arrested and the Golgi apparatus fragmented when mammalian cells enter mitosis. These changes are thought to facilitate cell-cycle progression and Golgi inheritance, and are brought about through the actions of mitotically active protein kinases. To better understand how the Golgi apparatus undergoes mitotic fragmentation we have sought to identify novel Golgi targets for mitotic kinases. We report in the present paper the identification of the ARF (ADP-ribosylation factor) exchange factor GBF1 (Golgi-specific brefeldin A-resistant guanine nucleotide-exchange factor 1) as a Golgi phosphoprotein. GBF1 is phosphorylated by CDK1 (cyclin-dependent kinase 1)-cyclin B in mitosis, which results in its dissociation from Golgi membranes. Consistent with a reduced level of GBF1 activity at the Golgi membrane there is a reduction in levels of membrane-associated GTP-bound ARF in mitotic cells. Despite the reduced levels of membrane-bound GBF1 and ARF, COPI (coat protein I) binding to the Golgi membrane appears unaffected in mitotic cells. Surprisingly, this pool of COPI is dependent upon GBF1 for its recruitment to the membrane, suggesting that a low level of GBF1 activity persists in mitosis. We propose that the phosphorylation and membrane dissociation of GBF1 and the consequent reduction in ARF-GTP levels in mitosis are important for changes in Golgi dynamics and possibly other mitotic events mediated through effectors other than the COPI vesicle coat.
Collapse
|
31
|
Ichinohe T, Pang IK, Iwasaki A. Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nat Immunol 2010; 11:404-10. [PMID: 20383149 PMCID: PMC2857582 DOI: 10.1038/ni.1861] [Citation(s) in RCA: 504] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 03/04/2010] [Indexed: 11/30/2022]
Abstract
Influenza virus, a negative stranded RNA virus causing severe illness in humans and animals, stimulates the inflammasome through the NOD-like receptor (NLR), NLRP3. However, the mechanism by which influenza virus activates the NLRP3 inflammasome is unknown. Here, we show that the influenza virus M2 protein, a proton-selective ion channel important in viral pathogenesis, stimulates the NLRP3 inflammasome pathway. M2 channel activity was required for influenza activation of inflammasomes, and was sufficient to activate inflammasomes in primed macrophages and dendritic cells. M2-induced inflammasome activation required its localization to Golgi and was dependent on pH gradient. Our results reveal a mechanism by which influenza virus infection activates inflammasomes, and identifies the sensing of disturbances in intracellular ionic concentrations as a novel pathogen recognition pathway.
Collapse
Affiliation(s)
- Takeshi Ichinohe
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | |
Collapse
|
32
|
Abstract
Newly synthesized secretory cargo molecules pass through the Golgi apparatus while resident Golgi proteins remain in the organelle. However, the pathways of membrane traffic within the Golgi are still uncertain. Most of the available data can be accommodated by the cisternal maturation model, which postulates that Golgi cisternae form de novo, carry secretory cargoes forward and ultimately disappear. The entry face of the Golgi receives material that has been exported from transitional endoplasmic reticulum sites, and the exit face of the Golgi is intimately connected with endocytic compartments. These conserved features are enhanced by cell-type-specific elaborations such as tubular connections between mammalian Golgi cisternae. Key mechanistic questions remain about the formation and maturation of Golgi cisternae, the recycling of resident Golgi proteins, the origins of Golgi compartmental identity, the establishment of Golgi architecture, and the roles of Golgi structural elements in membrane traffic.
Collapse
Affiliation(s)
- Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
33
|
Wei JH, Seemann J. Mitotic division of the mammalian Golgi apparatus. Semin Cell Dev Biol 2009; 20:810-6. [PMID: 19508856 DOI: 10.1016/j.semcdb.2009.03.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 03/16/2009] [Accepted: 03/16/2009] [Indexed: 10/21/2022]
Abstract
Successful cell reproduction requires faithful duplication and proper segregation of cellular contents, including not only the genome but also intracellular organelles. Since the Golgi apparatus is an essential organelle of the secretory pathway, its accurate inheritance is therefore of importance to sustain cellular function. Regulation of Golgi division and its coordination with cell cycle progression involves a series of sequential events that are subjected to a precise spatiotemporal control. Here, we summarize the current knowledge about the underlying mechanisms, the molecular players and the biological relevance of this process, particularly in mammalian cells, and discuss the unsolved problems and future perspectives opened by the recent studies.
Collapse
Affiliation(s)
- Jen-Hsuan Wei
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | |
Collapse
|
34
|
Persico A, Cervigni RI, Barretta ML, Colanzi A. Mitotic inheritance of the Golgi complex. FEBS Lett 2009; 583:3857-62. [PMID: 19879264 DOI: 10.1016/j.febslet.2009.10.077] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 10/26/2009] [Accepted: 10/27/2009] [Indexed: 12/13/2022]
|
35
|
Abstract
Eukaryotic cells possess a sophisticated membrane system to facilitate diverse functions. Whereas much is known about the nature of membrane systems in interphase, the organization and function of the mitotic membrane system are less well understood. In this study, we show that epsin, an endocytic adapter protein, regulates mitotic membrane morphology and spindle integrity in HeLa cells. Using epsin that harbors point mutations in the epsin NH2-terminal homology domain and spindle assembly assays in Xenopus laevis egg extracts, we show that epsin-induced membrane curvature is required for proper spindle morphogenesis, independent of its function in endocytosis during interphase. Although several other membrane-interacting proteins, including clathrin, AP2, autosomal recessive hypercholesterolemia, and GRASP65, are implicated in the regulation of mitosis, whether they participate through regulation of membrane organization is unclear. Our study of epsin provides evidence that mitotic membrane organization influences spindle integrity.
Collapse
Affiliation(s)
- Zhonghua Liu
- Department of Embryology and 2 Howard Hughes Medical Institute, Carnegie Institution of Washington, Baltimore, MD 21218, USA.
| | | |
Collapse
|
36
|
Dorogova NV, Nerusheva OO, Omelyanchuk LV. Structural organization and dynamics of the endoplasmic reticulum during spermatogenesis of Drosophila melanogaster: Studies using PDI-GFP chimera protein. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2009. [DOI: 10.1134/s1990747809010073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Rutz C, Satoh A, Ronchi P, Brügger B, Warren G, Wieland FT. Following the fate in vivo of COPI vesicles generated in vitro. Traffic 2009; 10:994-1005. [PMID: 19497049 DOI: 10.1111/j.1600-0854.2009.00934.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
COPI vesicles are a class of transport carriers that function in the early secretory pathway. Their fate and function are still controversial. This includes their contribution to bidirectional transport within the Golgi apparatus and their role during cell division. Here we describe a method that should address several open questions about the fate and function of COPI vesicles in vivo. To this end, fluorescently labeled COPI vesicles were generated in vitro from isolated rat liver Golgi membranes, labeled with the fluorescent dyes Alexa-488 or Alexa-568. These vesicles appeared to be active and colocalized with endogenous Golgi membranes within 30 min after microinjection into mammalian cells. The COPI vesicle-derived labeled membrane proteins could be classified into two types that behaved like endogenous proteins after Brefeldin A treatment.
Collapse
Affiliation(s)
- Christoph Rutz
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Nobukuni M, Mochizuki H, Okada S, Kameyama N, Tanaka A, Yamamoto H, Amano T, Seki T, Sakai N. The C-Terminal Region of Serotonin Transporter Is Important for Its Trafficking and Glycosylation. J Pharmacol Sci 2009; 111:392-404. [DOI: 10.1254/jphs.09195fp] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
39
|
Abstract
The interface between the endoplasmic reticulum (ER) and the Golgi apparatus is a critical junction in the secretory pathway mediating the transport of both soluble and membrane cargo between the two organelles. Such transport can be bidirectional and is mediated by coated membranes. In this review, we consider the organization and dynamics of this interface in plant cells, the putative structure of which has caused some controversy in the literature, and we speculate on the stages of Golgi biogenesis from the ER and the role of the Golgi and ER on each other's motility.
Collapse
Affiliation(s)
- Chris Hawes
- School of Life Sciences, Oxford Brookes University, Headington, Oxford, UK.
| | | | | | | |
Collapse
|
40
|
Abstract
Live-cell imaging is a powerful tool which allows the observation of dynamic cellular processes while maintaining the native organization of the cell. Its advantages over other methods that disrupt cell integrity are abundantly evident in the study of cell division, where multiple subcellular organelles and molecules are involved in dynamic, spatio-temporally regulated processes such as Golgi and nuclear envelope disassembly/reassembly, spindle apparatus formation, chromosome condensation and segregation, and cytoplasmic division. This chapter will describe practical methods for cell synchronization, selection of fluorescent markers for transfection, and setting up imaging conditions and microscope parameters for acquiring time-lapse images of the Golgi apparatus in mitotic cells. These are general methods that can be applied to the study of many different types of organelles and molecules in dividing cells.
Collapse
|
41
|
Bartz R, Sun LP, Bisel B, Wei JH, Seemann J. Spatial separation of Golgi and ER during mitosis protects SREBP from unregulated activation. EMBO J 2008; 27:948-55. [PMID: 18323777 DOI: 10.1038/emboj.2008.36] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 02/13/2008] [Indexed: 12/28/2022] Open
Abstract
Sterol regulatory element-binding proteins (SREBPs) are membrane-bound transcription factors that reside as inactive precursors in the endoplasmic reticulum (ER) membrane. After sterol depletion, the proteins are transported to the Golgi apparatus, where they are cleaved by site-1 protease (S1P). Cleavage releases the active transcription factors, which then enter the nucleus to induce genes that regulate cellular levels of cholesterol and phospholipids. This regulation depends on the spatial separation of the Golgi and the ER, as mixing of the compartments induces unregulated activation of SREBPs. Here, we show that S1P is localized to the Golgi, but cycles continuously through the ER and becomes trapped when ER exit is inhibited. During mitosis, S1P is associated with mitotic Golgi clusters, which remain distinct from the ER. In mitotic cells, S1P is active, but SREBP is not cleaved as S1P and SREBP reside in different compartments. Together, these results indicate that the spatial separation of the Golgi and the ER is maintained during mitosis, which is essential to protect the S1P substrate SREBP from unregulated activation during mitosis.
Collapse
Affiliation(s)
- René Bartz
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | | | | | | | | |
Collapse
|
42
|
Langhans M, Hawes C, Hillmer S, Hummel E, Robinson DG. Golgi regeneration after brefeldin A treatment in BY-2 cells entails stack enlargement and cisternal growth followed by division. PLANT PHYSIOLOGY 2007; 145:527-38. [PMID: 17704232 PMCID: PMC2048719 DOI: 10.1104/pp.107.104919] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 08/02/2007] [Indexed: 05/05/2023]
Abstract
Brefeldin A (BFA) treatment stops secretion and leads to the resorption of much of the Golgi apparatus into the endoplasmic reticulum. This effect is reversible upon washing out the drug, providing a situation for studying Golgi biogenesis. In this investigation Golgi regeneration in synchronized tobacco BY-2 cells was followed by electron microscopy and by the immunofluorescence detection of ARF1, which localizes to the rims of Golgi cisternae and serves as an indicator of COPI vesiculation. Beginning as clusters of vesicles that are COPI positive, mini-Golgi stacks first become recognizable 60 min after BFA washout. They continue to increase in terms of numbers and length of cisternae for a further 90 min before overshooting the size of control Golgi stacks. As a result, increasing numbers of dividing Golgi stacks were observed 120 min after BFA washout. BFA-regeneration experiments performed on cells treated with BFA (10 microg mL(-1)) for only short periods (30-45 min) showed that the formation of ER-Golgi hybrid structures, once initiated by BFA treatment, is an irreversible process, the further incorporation of Golgi membranes into the ER continuing during a subsequent drug washout. Application of the protein kinase A inhibitor H-89, which effectively blocks the reassembly of the Golgi apparatus in mammalian cells, also prevented stack regeneration in BY-2 cells, but only at very high, almost toxic concentrations (>200 microm). Our data suggest that under normal conditions mitosis-related Golgi stack duplication may likely occur via cisternal growth followed by fission.
Collapse
Affiliation(s)
- Markus Langhans
- Department of Cell Biology, Heidelberg Institute for Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
43
|
Jollivet F, Raposo G, Dimitrov A, Sougrat R, Goud B, Perez F. Analysis of de novo Golgi complex formation after enzyme-based inactivation. Mol Biol Cell 2007; 18:4637-47. [PMID: 17855505 PMCID: PMC2043539 DOI: 10.1091/mbc.e07-08-0799] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Golgi complex is characterized by its unique morphology of closely apposed flattened cisternae that persists despite the large quantity of lipids and proteins that transit bidirectionally. Whether such a structure is maintained through endoplasmic reticulum (ER)-based recycling and auto-organization or whether it depends on a permanent Golgi structure is strongly debated. To further study Golgi maintenance in interphase cells, we developed a method allowing for a drug-free inactivation of Golgi dynamics and function in living cells. After Golgi inactivation, a new Golgi-like structure, containing only certain Golgi markers and newly synthesized cargoes, was produced. However, this structure did not acquire a normal Golgi architecture and was unable to ensure a normal trafficking activity. This suggests an integrative model for Golgi maintenance in interphase where the ER is able to autonomously produce Golgi-like structures that need pre-existing Golgi complexes to be organized as morphologically normal and active Golgi elements.
Collapse
Affiliation(s)
- Florence Jollivet
- *Centre National de la Recherche Scientifique Unité Mixte de Recherche 144, 75248 Paris Cedex 05, France
- Institut Curie, 75248 Paris Cedex 05, France; and
| | - Graça Raposo
- *Centre National de la Recherche Scientifique Unité Mixte de Recherche 144, 75248 Paris Cedex 05, France
- Institut Curie, 75248 Paris Cedex 05, France; and
| | - Ariane Dimitrov
- *Centre National de la Recherche Scientifique Unité Mixte de Recherche 144, 75248 Paris Cedex 05, France
- Institut Curie, 75248 Paris Cedex 05, France; and
| | - Rachid Sougrat
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-5430
| | - Bruno Goud
- *Centre National de la Recherche Scientifique Unité Mixte de Recherche 144, 75248 Paris Cedex 05, France
- Institut Curie, 75248 Paris Cedex 05, France; and
| | - Franck Perez
- *Centre National de la Recherche Scientifique Unité Mixte de Recherche 144, 75248 Paris Cedex 05, France
- Institut Curie, 75248 Paris Cedex 05, France; and
| |
Collapse
|
44
|
Colanzi A, Corda D. Mitosis controls the Golgi and the Golgi controls mitosis. Curr Opin Cell Biol 2007; 19:386-93. [PMID: 17689238 DOI: 10.1016/j.ceb.2007.06.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 05/29/2007] [Accepted: 06/03/2007] [Indexed: 11/20/2022]
Abstract
In mammals, the Golgi complex is structured in the form of a continuous membranous system composed of up to 100 stacks connected by tubular bridges, the 'Golgi ribbon'. During mitosis, the Golgi undergoes extensive fragmentation through a multistage process that allows its correct partitioning and inheritance by daughter cells. Strikingly, this Golgi fragmentation is required not only for inheritance but also for mitotic entrance itself, since its block results in the arrest of the cell cycle in G2. This is called the 'Golgi mitotic checkpoint'. Recent studies have identified the severing of the ribbon into its constituent stacks during early G2 as the precise stage of Golgi fragmentation that controls mitotic entry. This opens new ways to elucidate the mechanism of the Golgi checkpoint.
Collapse
Affiliation(s)
- Antonino Colanzi
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, 66030 Santa Maria Imbaro, Chieti, Italy
| | | |
Collapse
|
45
|
Lowe M, Barr FA. Inheritance and biogenesis of organelles in the secretory pathway. Nat Rev Mol Cell Biol 2007; 8:429-39. [PMID: 17505521 DOI: 10.1038/nrm2179] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In eukaryotic cells, cellular functions are compartmentalized into membrane-bound organelles. This has many advantages, as shown by the success of the eukaryotic lineage, but creates many problems for cells, such as the need to build and partition these organelles during cell growth and division. Diverse mechanisms for biogenesis of the endoplasmic reticulum and Golgi apparatus have evolved, ranging from de novo synthesis to the copying of a template organelle. The different mechanisms by which organelles are inherited in yeasts, protozoa and metazoans probably reflect the differences in the structure and copy number of these organelles.
Collapse
Affiliation(s)
- Martin Lowe
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
46
|
Xiang Y, Seemann J, Bisel B, Punthambaker S, Wang Y. Active ADP-ribosylation factor-1 (ARF1) is required for mitotic Golgi fragmentation. J Biol Chem 2007; 282:21829-37. [PMID: 17562717 PMCID: PMC3278854 DOI: 10.1074/jbc.m611716200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammalian cells the Golgi apparatus undergoes an extensive disassembly process at the onset of mitosis that is believed to facilitate equal partitioning of this organelle into the two daughter cells. However, the underlying mechanisms for this fragmentation process are so far unclear. Here we have investigated the role of the ADP-ribosylation factor-1 (ARF1) in this process to determine whether Golgi fragmentation in mitosis is mediated by vesicle budding. ARF1 is a small GTPase that is required for COPI vesicle formation from the Golgi membranes. Treatment of Golgi membranes with mitotic cytosol or with purified coatomer together with wild type ARF1 or its constitutive active form, but not the inactive mutant, converted the Golgi membranes into COPI vesicles. ARF1-depleted mitotic cytosol failed to fragment Golgi membranes. ARF1 is associated with Golgi vesicles generated in vitro and with vesicles in mitotic cells. In addition, microinjection of constitutive active ARF1 did not affect mitotic Golgi fragmentation or cell progression through mitosis. Our results show that ARF1 is active during mitosis and that this activity is required for mitotic Golgi fragmentation.
Collapse
Affiliation(s)
- Yi Xiang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048
| | - Joachim Seemann
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9039
| | - Blaine Bisel
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9039
| | - Sukanya Punthambaker
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048
| | - Yanzhuang Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048
- To whom correspondence should be addressed: Dept. of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University Ave., Ann Arbor, MI 48109-1048. Tel.: 734-936-2134;
| |
Collapse
|
47
|
Colanzi A, Carcedo CH, Persico A, Cericola C, Turacchio G, Bonazzi M, Luini A, Corda D. The Golgi mitotic checkpoint is controlled by BARS-dependent fission of the Golgi ribbon into separate stacks in G2. EMBO J 2007; 26:2465-76. [PMID: 17431394 PMCID: PMC1868899 DOI: 10.1038/sj.emboj.7601686] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 03/21/2007] [Indexed: 11/09/2022] Open
Abstract
The Golgi ribbon is a complex structure of many stacks interconnected by tubules that undergo fragmentation during mitosis through a multistage process that allows correct Golgi inheritance. The fissioning protein CtBP1-S/BARS (BARS) is essential for this, and is itself required for mitotic entry: a block in Golgi fragmentation results in cell-cycle arrest in G2, defining the 'Golgi mitotic checkpoint'. Here, we clarify the precise stage of Golgi fragmentation required for mitotic entry and the role of BARS in this process. Thus, during G2, the Golgi ribbon is converted into isolated stacks by fission of interstack connecting tubules. This requires BARS and is sufficient for G2/M transition. Cells without a Golgi ribbon are independent of BARS for Golgi fragmentation and mitotic entrance. Remarkably, fibroblasts from BARS-knockout embryos have their Golgi complex divided into isolated stacks at all cell-cycle stages, bypassing the need for BARS for Golgi fragmentation. This identifies the precise stage of Golgi fragmentation and the role of BARS in the Golgi mitotic checkpoint, setting the stage for molecular analysis of this process.
Collapse
Affiliation(s)
- Antonino Colanzi
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
- These authors contributed equally to this work
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Via Nazionale, 8/A, Santa Maria Imbaro, Chieti 66030, Italy. Tel.: +39 0872 570353; Fax: +39 0872 570412; E-mail:
| | - Cristina Hidalgo Carcedo
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
- These authors contributed equally to this work
- Present address: Tumour Cell Biology Laboratory, Cancer Research UK London Research Institute, London WC2A 3PX, UK
| | - Angela Persico
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Claudia Cericola
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Gabriele Turacchio
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Matteo Bonazzi
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
- Present address: Unité des Interactions Bactéries-Cellules, Institut Pasteur, 75015 Paris, France
| | - Alberto Luini
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Daniela Corda
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Via Nazionale, 8/A, Santa Maria Imbaro, Chieti 66030, Italy. Tel.: +39 0872 570353; Fax: +39 0872 570412; E-mail:
| |
Collapse
|
48
|
Radulescu AE, Siddhanta A, Shields D. A role for clathrin in reassembly of the Golgi apparatus. Mol Biol Cell 2006; 18:94-105. [PMID: 17065556 PMCID: PMC1751329 DOI: 10.1091/mbc.e06-06-0532] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The Golgi apparatus is a highly dynamic organelle whose organization is maintained by a proteinaceous matrix, cytoskeletal components, and inositol phospholipids. In mammalian cells, disassembly of the organelle occurs reversibly at the onset of mitosis and irreversibly during apoptosis. Several pharmacological agents including nocodazole, brefeldin A (BFA), and primary alcohols (1-butanol) induce reversible fragmentation of the Golgi apparatus. To dissect the mechanism of Golgi reassembly, rat NRK and GH3 cells were treated with 1-butanol, BFA, or nocodazole. During washout of 1-butanol, clathrin, a ubiquitous coat protein implicated in vesicle traffic at the trans-Golgi network and plasma membrane, and abundant clathrin coated vesicles were recruited to the region of nascent Golgi cisternae. Knockdown of endogenous clathrin heavy chain showed that the Golgi apparatus failed to reform efficiently after BFA or 1-butanol removal. Instead, upon 1-butanol washout, it maintained a compact, tight morphology. Our results suggest that clathrin is required to reassemble fragmented Golgi elements. In addition, we show that after butanol treatment the Golgi apparatus reforms via an initial compact intermediate structure that is subsequently remodeled into the characteristic interphase lace-like morphology and that reassembly requires clathrin.
Collapse
Affiliation(s)
| | | | - Dennis Shields
- *Departments of Developmental and Molecular Biology and
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
49
|
Pecot MY, Malhotra V. The Golgi apparatus maintains its organization independent of the endoplasmic reticulum. Mol Biol Cell 2006; 17:5372-80. [PMID: 17050735 PMCID: PMC1679697 DOI: 10.1091/mbc.e06-06-0565] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Under artificial conditions Golgi enzymes have the capacity to rapidly accumulate in the endoplasmic reticulum (ER). These observations prompted the idea that Golgi enzymes constitutively recycle through the ER. We have tested this hypothesis under physiological conditions through use of a procedure that captures Golgi enzymes in the ER. In the presence of rapamycin, which induces a tight association between FKBP (FK506-binding protein) and FRAP (FKBP-rapamycin-associated protein), an FKBP-tagged Golgi enzyme can be trapped when it visits the ER by an ER-retained protein fused to FRAP. We find that although FKBP-ERGIC-53 of the ER-Golgi intermediate compartment (ERGIC) rapidly cycles through the ER (30 min), FKBP-Golgi enzyme chimeras remain stably associated with Golgi membranes. We also demonstrate that Golgi dispersion upon nocodazole treatment mainly occurs through a mechanism that does not involve the recycling of Golgi membranes through the ER. Our findings suggest that the Golgi apparatus, as defined by its collection of resident enzymes, exists independent of the ER.
Collapse
Affiliation(s)
- Matthew Y. Pecot
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| | - Vivek Malhotra
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
50
|
Jiang S, Rhee SW, Gleeson PA, Storrie B. Capacity of the Golgi apparatus for cargo transport prior to complete assembly. Mol Biol Cell 2006; 17:4105-17. [PMID: 16837554 PMCID: PMC1556386 DOI: 10.1091/mbc.e05-12-1112] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In yeast, particular emphasis has been given to endoplasmic reticulum (ER)-derived, cisternal maturation models of Golgi assembly while in mammalian cells more emphasis has been given to golgins as a potentially stable assembly framework. In the case of de novo Golgi formation from the ER after brefeldin A/H89 washout in HeLa cells, we found that scattered, golgin-enriched, structures formed early and contained golgins including giantin, ranging across the entire cis to trans spectrum of the Golgi apparatus. These structures were incompetent in VSV-G cargo transport. Second, we compared Golgi competence in cargo transport to the kinetics of addition of various glycosyltransferases and glycosidases into nascent, golgin-enriched structures after drug washout. Enzyme accumulation was sequential with trans and then medial glycosyltransferases/glycosidases found in the scattered, nascent Golgi. Involvement in cargo transport preceded full accumulation of enzymes or GPP130 into nascent Golgi. Third, during mitosis, we found that the formation of a golgin-positive acceptor compartment in early telophase preceded the accumulation of a Golgi glycosyltransferase in nascent Golgi structures. We conclude that during mammalian Golgi assembly components fit into a dynamic, first-formed, multigolgin-enriched framework that is initially cargo transport incompetent. Resumption of cargo transport precedes full Golgi assembly.
Collapse
Affiliation(s)
- Shu Jiang
- *Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205; and
| | - Sung W. Rhee
- *Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205; and
| | - Paul A. Gleeson
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Brian Storrie
- *Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205; and
| |
Collapse
|