1
|
Georgieva E, Leber SL, Wex C, Garbers C. Perturbation of the Actin Cytoskeleton in Human Hepatoma Cells Influences Interleukin-6 (IL-6) Signaling, but Not Soluble IL-6 Receptor Generation or NF-κB Activation. Int J Mol Sci 2021; 22:ijms22137171. [PMID: 34281231 PMCID: PMC8268250 DOI: 10.3390/ijms22137171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 01/10/2023] Open
Abstract
The transcription factor nuclear factor-kappa B (NF-κB) is critically involved in inflammation and cancer development. Activation of NF-κB induces the expression and release of several pro-inflammatory proteins, which include the cytokine interleukin-6 (IL-6). Perturbation of the actin cytoskeleton has been previously shown to activate NF-κB signaling. In this study, we analyze the influence of different compounds that modulate the actin cytoskeleton on NF-κB activation, IL-6 signaling and the proteolytic generation of the soluble IL-6 receptor (sIL-6R) in human hepatoma cells. We show that perturbation of the actin cytoskeleton is not sufficient to induce NF-κB activation and IL-6 secretion. However, perturbation of the actin cytoskeleton reduces IL-6-induced activation of the transcription factor STAT3 in Hep3B cells. In contrast, IL-6R proteolysis by the metalloprotease ADAM10 did not depend upon the integrity of the actin cytoskeleton. In summary, we uncover a previously unknown function of the actin cytoskeleton in IL-6-mediated signal transduction in Hep3B cells.
Collapse
Affiliation(s)
- Elizabeta Georgieva
- Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany;
| | - Stefan L. Leber
- Division of Neuroradiology, Vascular & Interventional Radiology, Department of Radiology, Medical University of Graz, 8036 Graz, Austria;
| | - Cora Wex
- Department of General, Visceral, Vascular and Transplantation Surgery, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany;
| | - Christoph Garbers
- Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany;
- Correspondence:
| |
Collapse
|
2
|
Articular Chondrocyte Phenotype Regulation through the Cytoskeleton and the Signaling Processes That Originate from or Converge on the Cytoskeleton: Towards a Novel Understanding of the Intersection between Actin Dynamics and Chondrogenic Function. Int J Mol Sci 2021; 22:ijms22063279. [PMID: 33807043 PMCID: PMC8004672 DOI: 10.3390/ijms22063279] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023] Open
Abstract
Numerous studies have assembled a complex picture, in which extracellular stimuli and intracellular signaling pathways modulate the chondrocyte phenotype. Because many diseases are mechanobiology-related, this review asked to what extent phenotype regulators control chondrocyte function through the cytoskeleton and cytoskeleton-regulating signaling processes. Such information would generate leverage for advanced articular cartilage repair. Serial passaging, pro-inflammatory cytokine signaling (TNF-α, IL-1α, IL-1β, IL-6, and IL-8), growth factors (TGF-α), and osteoarthritis not only induce dedifferentiation but also converge on RhoA/ROCK/Rac1/mDia1/mDia2/Cdc42 to promote actin polymerization/crosslinking for stress fiber (SF) formation. SF formation takes center stage in phenotype control, as both SF formation and SOX9 phosphorylation for COL2 expression are ROCK activity-dependent. Explaining how it is molecularly possible that dedifferentiation induces low COL2 expression but high SF formation, this review theorized that, in chondrocyte SOX9, phosphorylation by ROCK might effectively be sidelined in favor of other SF-promoting ROCK substrates, based on a differential ROCK affinity. In turn, actin depolymerization for redifferentiation would “free-up” ROCK to increase COL2 expression. Moreover, the actin cytoskeleton regulates COL1 expression, modulates COL2/aggrecan fragment generation, and mediates a fibrogenic/catabolic expression profile, highlighting that actin dynamics-regulating processes decisively control the chondrocyte phenotype. This suggests modulating the balance between actin polymerization/depolymerization for therapeutically controlling the chondrocyte phenotype.
Collapse
|
3
|
Alan JK, Robinson SK, Magsig KL, Demarco RS, Lundquist EA. The Atypical Rho GTPase CHW-1 Works with SAX-3/Robo To Mediate Axon Guidance in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2018; 8:1885-1895. [PMID: 29653940 PMCID: PMC5982818 DOI: 10.1534/g3.118.200148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/26/2018] [Indexed: 01/12/2023]
Abstract
During development, neuronal cells extend an axon toward their target destination in response to a cue to form a properly functioning nervous system. Rho proteins, Ras-related small GTPases that regulate cytoskeletal organization and dynamics, cell adhesion, and motility, are known to regulate axon guidance. Despite extensive knowledge about canonical Rho proteins (RhoA/Rac1/Cdc42), little is known about the Caenorhabditis elegans (C. elegans) atypical Cdc42-like family members CHW-1 and CRP-1 in regards to axon pathfinding and neuronal migration. chw-1(Chp/Wrch) encodes a protein that resembles human Chp (Wrch-2/RhoV) and Wrch-1 (RhoU), and crp-1 encodes for a protein that resembles TC10 and TCL. Here, we show that chw-1 works redundantly with crp-1 and cdc-42 in axon guidance. Furthermore, proper levels of chw-1 expression and activity are required for proper axon guidance. When examining CHW-1 GTPase mutants, we found that the native CHW-1 protein is likely partially activated, and mutations at a conserved residue (position 12 using Ras numbering, position 18 in CHW-1) alter axon guidance and neural migration. Additionally, we showed that chw-1 genetically interacts with the guidance receptor sax-3 in PDE neurons. Finally, in VD/DD motor neurons, chw-1 works downstream of sax-3 to control axon guidance. In summary, this is the first study implicating the atypical Rho GTPases chw-1 and crp-1 in axon guidance. Furthermore, this is the first evidence of genetic interaction between chw-1 and the guidance receptor sax-3 These data suggest that chw-1 is likely acting downstream and/or in parallel to sax-3 in axon guidance.
Collapse
Affiliation(s)
- Jamie K Alan
- Department of Pharmacology and Toxicology; Michigan State University; East Lansing, MI 48824
| | - Sara K Robinson
- College of Medicine; Central Michigan University; Mount Pleasant, MI 48859
| | - Katie L Magsig
- College of Medicine; Central Michigan University; Mount Pleasant, MI 48859
| | - Rafael S Demarco
- Department of Molecular Biosciences; University of Kansas; Lawrence, KS 60045
| | - Erik A Lundquist
- Department of Molecular Biosciences; University of Kansas; Lawrence, KS 60045
| |
Collapse
|
4
|
Yasen A, Herrera R, Rosbe K, Lien K, Tugizov SM. Release of HIV-1 sequestered in the vesicles of oral and genital mucosal epithelial cells by epithelial-lymphocyte interaction. PLoS Pathog 2017; 13:e1006247. [PMID: 28241053 PMCID: PMC5344537 DOI: 10.1371/journal.ppat.1006247] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/09/2017] [Accepted: 02/16/2017] [Indexed: 01/16/2023] Open
Abstract
Oropharyngeal mucosal epithelia of fetuses/neonates/infants and the genital epithelia of adults play a critical role in HIV-1 mother-to-child transmission and sexual transmission of virus, respectively. To study the mechanisms of HIV-1 transmission through mucosal epithelium, we established polarized tonsil, cervical and foreskin epithelial cells. Analysis of HIV-1 transmission through epithelial cells showed that approximately 0.05% of initially inoculated virions transmigrated via epithelium. More than 90% of internalized virions were sequestered in the endosomes of epithelial cells, including multivesicular bodies (MVBs) and vacuoles. Intraepithelial HIV-1 remained infectious for 9 days without viral release. Release of sequestered intraepithelial HIV-1 was induced by the calcium ionophore ionomycin and by cytochalasin D, which increase intracellular calcium and disrupt the cortical actin of epithelial cells, respectively. Cocultivation of epithelial cells containing HIV-1 with activated peripheral blood mononuclear cells and CD4+ T lymphocytes led to the disruption of epithelial cortical actin and spread of virus from epithelial cells to lymphocytes. Treatment of epithelial cells with proinflammatory cytokines tumor necrosis factor-alpha and interferon gamma also induced reorganization of cortical actin and release of virus. Inhibition of MVB formation by small interfering RNA (siRNA)-mediated silencing of its critical protein hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) expression reduced viral sequestration in epithelial cells and its transmission from epithelial cells to lymphocytes by ~60-70%. Furthermore, inhibition of vacuole formation of epithelial cells by siRNA-inactivated rabankyrin-5 expression also significantly reduced HIV-1 sequestration in epithelial cells and spread of virus from epithelial cells to lymphocytes. Interaction of the intercellular adhesion molecule-1 of epithelial cells with the function-associated antigen-1 of lymphocytes was important for inducing the release of sequestered HIV-1 from epithelial cells and facilitating cell-to-cell spread of virus from epithelial cells to lymphocytes. This mechanism may serve as a pathway of HIV-1 mucosal transmission.
Collapse
Affiliation(s)
- Aizezi Yasen
- Department of Medicine, University of California–San Francisco, San Francisco, California, United States of America
| | - Rossana Herrera
- Department of Medicine, University of California–San Francisco, San Francisco, California, United States of America
| | - Kristina Rosbe
- Department of Otolaryngology, University of California–San Francisco, San Francisco, California, United States of America
| | - Kathy Lien
- Department of Medicine, University of California–San Francisco, San Francisco, California, United States of America
| | - Sharof M. Tugizov
- Department of Medicine, University of California–San Francisco, San Francisco, California, United States of America
| |
Collapse
|
5
|
Dasgupta A, Sawant MA, Kavishwar G, Lavhale M, Sitasawad S. AECHL-1 targets breast cancer progression via inhibition of metastasis, prevention of EMT and suppression of Cancer Stem Cell characteristics. Sci Rep 2016; 6:38045. [PMID: 27974826 PMCID: PMC5156909 DOI: 10.1038/srep38045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/02/2016] [Indexed: 12/30/2022] Open
Abstract
Triple negative breast cancer (TNBC) features among the most aggressive manifestations of cancer due to its enhanced metastatic potential and immunity to therapeutics which target hormone receptors. Under such scenarios, anti-cancer compounds with an ability to influence multiple targets, or an entire process, will have an advantage over specific signal transduction inhibitors. To counter the metastatic threat it is essential to target cellular components central to the processes of cancer cell migration and adaptation. Our previous work on a novel triterpenoid, AECHL-1, explored its anti-cancer potential, and linked it to elevated ER stress in cancer cells, while its anti-angiogenic potential was credited for its ability to manipulate the cytoskeleton. Here, we broaden its range of action by showing that it curbs the metastatic ability of TNBC cells, both in vitro in MDA-MB-231 cell line and in vivo, in mouse models of metastasis. AECHL-1 does so by disrupting the cytoskeletal network, and also suppressing NF-κB and β-Catenin mediated key molecular pathways. These activities also contributed to AECHL-1 mediated suppression of TGF-β/TNF-α induced Epithelial to Mesenchymal Transition (EMT) and cancer stem cell characteristic. Thus, we present AECHL-1 as a promising therapeutic inhibitor of metastatic disease.
Collapse
Affiliation(s)
- Aparajita Dasgupta
- National Centre for Cell Science, NCCS Complex, S.P. Pune University, Ganeshkhind, Pune 411007, Maharashtra, India
| | - Mithila A. Sawant
- National Centre for Cell Science, NCCS Complex, S.P. Pune University, Ganeshkhind, Pune 411007, Maharashtra, India
| | - Gayatri Kavishwar
- National Centre for Cell Science, NCCS Complex, S.P. Pune University, Ganeshkhind, Pune 411007, Maharashtra, India
| | - Manish Lavhale
- Pharmazz India Private Limited, H-6, Site-C, Surajpur Industrial area, Greater Noida, UP- 201307, India
| | - Sandhya Sitasawad
- National Centre for Cell Science, NCCS Complex, S.P. Pune University, Ganeshkhind, Pune 411007, Maharashtra, India
| |
Collapse
|
6
|
Singh DP, Borse SP, Nivsarkar M. Clinical importance of nonsteroidal anti-inflammatory drug enteropathy: the relevance of tumor necrosis factor as a promising target. Transl Res 2016; 175:76-91. [PMID: 27083387 DOI: 10.1016/j.trsl.2016.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 12/13/2022]
Abstract
The pathogenesis of nonsteroidal anti-inflammatory drug (NSAID) enteropathy is still unclear, and consequently, there is no approved therapeutic strategy for ameliorating such damage. On the other hand, molecular treatment strategies targeting tumor necrosis factor (TNF) exerts beneficial effects on NSAID-induced intestinal lesions in rodents and rheumatoid arthritis patients. Thus, TNF appears to be a potential therapeutic target for both the prevention and treatment of NSAID enteropathy. However, the causative relationship between TNF and NSAID enteropathy is largely unknown. Currently approved anti-TNF agents are highly expensive and exhibit numerous side effects. Hence, in this review, the pivotal role of TNF in NSAID enteropathy has been summarized and plant-derived polyphenols have been suggested as useful alternative anti-TNF agents because of their ability to suppress TNF activated inflammatory pathways both in vitro and in vivo.
Collapse
Affiliation(s)
- Devendra Pratap Singh
- Department of Pharmacology and Toxicology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Thaltej, Ahmedabad, Gujarat, India; Registered Ph.D Scholar (External) at Institute of Pharmacy, NIRMA University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, India
| | - Swapnil P Borse
- Department of Pharmacology and Toxicology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Thaltej, Ahmedabad, Gujarat, India; Registered Ph.D Scholar (External) at Institute of Pharmacy, NIRMA University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, India
| | - Manish Nivsarkar
- Department of Pharmacology and Toxicology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Thaltej, Ahmedabad, Gujarat, India.
| |
Collapse
|
7
|
Fajol A, Honisch S, Zhang B, Schmidt S, Alkahtani S, Alarifi S, Lang F, Stournaras C, Föller M. Fibroblast growth factor (Fgf) 23 gene transcription depends on actin cytoskeleton reorganization. FEBS Lett 2016; 590:705-15. [DOI: 10.1002/1873-3468.12096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/27/2016] [Accepted: 02/11/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Abul Fajol
- Department of Physiology; University of Tübingen; Germany
| | - Sabina Honisch
- Department of Physiology; University of Tübingen; Germany
| | - Bingbing Zhang
- Department of Physiology; University of Tübingen; Germany
| | | | - Saad Alkahtani
- Department of Zoology; Science College; King Saud University; Riyadh Saudi Arabia
- Department of Biochemistry; University of Crete Medical School; Heraklion Greece
| | - Saud Alarifi
- Department of Zoology; Science College; King Saud University; Riyadh Saudi Arabia
- Department of Biochemistry; University of Crete Medical School; Heraklion Greece
| | - Florian Lang
- Department of Physiology; University of Tübingen; Germany
| | - Christos Stournaras
- Department of Physiology; University of Tübingen; Germany
- Department of Biochemistry; University of Crete Medical School; Heraklion Greece
| | - Michael Föller
- Institute of Agricultural and Nutritional Sciences; Martin-Luther University Halle-Wittenberg; Halle (Saale) Germany
| |
Collapse
|
8
|
Liu G, Honisch S, Liu G, Schmidt S, Alkahtani S, AlKahtane AA, Stournaras C, Lang F. Up-regulation of Orai1 expression and store operated Ca(2+) entry following activation of membrane androgen receptors in MCF-7 breast tumor cells. BMC Cancer 2015; 15:995. [PMID: 26690689 PMCID: PMC4687293 DOI: 10.1186/s12885-015-2014-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 12/15/2015] [Indexed: 12/20/2022] Open
Abstract
Background Membrane androgen receptors (mAR) are functionally expressed in a variety of tumor-cells including the breast tumor-cell line MCF-7. They are specifically activated by testosterone albumin conjugates (TAC). The mAR sensitive signaling includes activation of Ras-related C3 botulinum toxin substrate 1 (Rac1) and reorganization of the actin filament network. Signaling of tumor-cells may further involve up-regulation of pore forming Ca2+ channel protein Orai1, which accomplishes store operated Ca2+ entry (SOCE). This study explored the regulation of Orai1 abundance and SOCE by mAR. Methods Actin filaments were visualized utilizing confocal microscopy, Rac1 activity using GST-GBD assay, Orai1 transcript levels by RT-PCR and total protein abundance by western blotting, Orai1 abundance at the cell surface by confocal microscopy and FACS-analysis, cytosolic Ca2+ activity ([Ca2+]i) utilizing Fura-2-fluorescence, and SOCE from increase of [Ca2+]i following readdition of Ca2+ after store depletion with thapsigargin (1 μM). Results TAC treatment of MCF-7 cells was followed by Rac1 activation, actin polymerization, transient increase of Orai1transcript levels and protein abundance, and transient increase of SOCE. The transient increase of Orai1 protein abundance was abrogated by Rac1 inhibitor NSC23766 (50 μM) and by prevention of actin reorganization with cytochalasin B (1 μM). Conclusions mAR sensitive Rac1 activation and actin reorganization contribute to the regulation of Orai1 protein abundance and SOCE.
Collapse
Affiliation(s)
- Guilai Liu
- Department of Physiology, University of Tuebingen, Tuebingen, Germany.
| | - Sabina Honisch
- Department of Physiology, University of Tuebingen, Tuebingen, Germany.
| | - Guoxing Liu
- Department of Physiology, University of Tuebingen, Tuebingen, Germany.
| | - Sebastian Schmidt
- Department of Physiology, University of Tuebingen, Tuebingen, Germany.
| | - Saad Alkahtani
- Department of Biochemistry, University of Crete Medical School, Heraklion, Crete, Greece. .,Department of Zoology, Science College, King Saud University, Riyadh, Saudi Arabia.
| | - Abdullah A AlKahtane
- Department of Zoology, Science College, King Saud University, Riyadh, Saudi Arabia.
| | - Christos Stournaras
- Department of Physiology, University of Tuebingen, Tuebingen, Germany. .,Department of Biochemistry, University of Crete Medical School, Heraklion, Crete, Greece.
| | - Florian Lang
- Department of Physiology, University of Tuebingen, Tuebingen, Germany. .,Physiologisches Institut, der Universität Tübingen, Gmelinstr. 5, D-72076, Tübingen, Germany.
| |
Collapse
|
9
|
Liu G, Honisch S, Liu G, Schmidt S, Pantelakos S, Alkahtani S, Toulany M, Lang F, Stournaras C. Inhibition of SGK1 enhances mAR-induced apoptosis in MCF-7 breast cancer cells. Cancer Biol Ther 2015; 16:52-9. [PMID: 25427201 DOI: 10.4161/15384047.2014.986982] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Functional membrane androgen receptors (mAR) have previously been described in MCF-7 breast cancer cells. Their stimulation by specific testosterone albumin conjugates (TAC) activate rapidly non-genomic FAK/PI3K/Rac1/Cdc42 signaling, trigger actin reorganization and inhibit cell motility. PI3K stimulates serum and glucocorticoid inducible kinase SGK1, which in turn regulates the function of mAR. In the present study we addressed the role of SGK1 in mAR-induced apoptosis. TAC-stimulated mAR activation elicited apoptosis of MCF-7 cells, an effect significantly potentiated by concomitant incubation of the cells with TAC and the specific SGK1 inhibitors EMD638683 and GSK650394. In line with this, TAC and EMD638683 activated caspase-3. These effects were insensitive to the classical androgen receptor (iAR) antagonist flutamide, pointing to iAR-independent, mAR-induced responses. mAR activation and SGK1 inhibition further considerably augmented the radiation-induced apoptosis of MCF-7 cells. Moreover, TAC- and EMD638683 triggered early actin polymerization in MCF-7 cells. Blocking actin restructuring with cytochalasin B abrogated the TAC- and EMD638683-induced pro-apoptotic responses. Further analysis of the molecular signaling revealed late de-phosphorylation of FAK and Akt. Our results demonstrate that mAR activation triggers pro-apoptotic responses in breast tumor cells, an effect significantly enhanced by SGK1 inhibition, involving actin reorganization and paralleled by down-regulation of FAK/Akt signaling.
Collapse
Affiliation(s)
- Guilai Liu
- a Department of Physiology ; University of Tübingen ; Tübingen , Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
TNFR1 mediates TNF-α-induced tumour lymphangiogenesis and metastasis by modulating VEGF-C-VEGFR3 signalling. Nat Commun 2014; 5:4944. [PMID: 25229256 DOI: 10.1038/ncomms5944] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 08/07/2014] [Indexed: 12/31/2022] Open
Abstract
Inflammation and lymphangiogenesis are two cohesively coupled processes that promote tumour growth and invasion. Here we report that TNF-α markedly promotes tumour lymphangiogenesis and lymphatic metastasis. The TNF-α-TNFR1 signalling pathway directly stimulates lymphatic endothelial cell activity through a VEGFR3-independent mechanism. However, VEGFR3-induced lymphatic endothelial cell tips are a prerequisite for lymphatic vessel growth in vivo, and a VEGFR3 blockade completely ablates TNF-α-induced lymphangiogenesis. Moreover, TNF-α-TNFR1-activated inflammatory macrophages produce high levels of VEGF-C to coordinately activate VEGFR3. Genetic deletion of TNFR1 (Tnfr1(-/-)) in mice or depletion of tumour-associated macrophages (TAMs) virtually eliminates TNF-α-induced lymphangiogenesis and lymphatic metastasis. Gain-of-function experiments show that reconstitution of Tnfr1(+/+) macrophages in Tnfr1(-/-) mice largely restores tumour lymphangiogenesis and lymphatic metastasis. These findings shed mechanistic light on the intimate interplay between inflammation and lymphangiogenesis in cancer metastasis, and propose therapeutic intervention of lymphatic metastasis by targeting the TNF-α-TNFR1 pathway.
Collapse
|
11
|
Marcos-Ramiro B, García-Weber D, Millán J. TNF-induced endothelial barrier disruption: beyond actin and Rho. Thromb Haemost 2014; 112:1088-102. [PMID: 25078148 DOI: 10.1160/th14-04-0299] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/16/2014] [Indexed: 11/05/2022]
Abstract
The decrease of endothelial barrier function is central to the long-term inflammatory response. A pathological alteration of the ability of endothelial cells to modulate the passage of cells and solutes across the vessel underlies the development of inflammatory diseases such as atherosclerosis and multiple sclerosis. The inflammatory cytokine tumour necrosis factor (TNF) mediates changes in the barrier properties of the endothelium. TNF activates different Rho GTPases, increases filamentous actin and remodels endothelial cell morphology. However, inhibition of actin-mediated remodelling is insufficient to prevent endothelial barrier disruption in response to TNF, suggesting that additional molecular mechanisms are involved. Here we discuss, first, the pivotal role of Rac-mediated generation of reactive oxygen species (ROS) to regulate the integrity of endothelial cell-cell junctions and, second, the ability of endothelial adhesion receptors such as ICAM-1, VCAM-1 and PECAM-1, involved in leukocyte transendothelial migration, to control endothelial permeability to small molecules, often through ROS generation. These adhesion receptors regulate endothelial barrier function in ways both dependent on and independent of their engagement by immune cells, and orchestrate the crosstalk between leukocyte transendothelial migration and endothelial permeability during inflammation.
Collapse
Affiliation(s)
| | | | - J Millán
- Jaime Millán, Centro de Biología Molecular Severo Ochoa, C/ Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain, Tel.: +34 911964713, Fax: +34 911964420, E-mail:
| |
Collapse
|
12
|
Claro S, Oshiro MEM, Mortara RA, Paredes-Gamero EJ, Pereira GJS, Smaili SS, Ferreira AT. γ-Rays-generated ROS induce apoptosis via mitochondrial and cell cycle alteration in smooth muscle cells. Int J Radiat Biol 2014; 90:914-27. [DOI: 10.3109/09553002.2014.911988] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Abstract
Tumor necrosis factor receptor (TNFR)-associated factor 2 (TRAF2) is a pivotal intracellular mediator of signaling pathways downstream of TNFR1 and -2 with known pro- and antiviral effects. We investigated its role in the replication of the prototype poxvirus vaccinia virus (VACV). Loss of TRAF2 expression, either through small interfering RNA treatment of HeLa cells or through genetic knockout in murine embryonic fibroblasts (MEFs), led to significant reductions in VACV growth following low-multiplicity infection. In single-cycle infections, there was delayed production of both early and late VACV proteins as well as accelerated virus-induced alterations to cell morphology, indicating that TRAF2 influences early stages of virus replication. Consistent with an early role, uncoating assays showed normal virus attachment but delayed virus entry in the absence of TRAF2. Although alterations to c-Jun N-terminal kinase (JNK) signaling were apparent in VACV-infected TRAF2−/− MEFs, treatment of wild-type cells with a JNK inhibitor did not affect virus entry. Instead, treatment with an inhibitor of endosomal acidification greatly reduced virus entry into TRAF2−/− MEFs, suggesting that VACV is reliant on the endosomal route of entry in the absence of TRAF2. Thus, TRAF2 is a proviral factor for VACV that plays a role in promoting efficient viral entry, most likely via the plasma membrane. IMPORTANCE Tumor necrosis factor receptor-associated factors (TRAFs) are key facilitators of intracellular signaling with roles in innate and adaptive immunity and stress responses. We have discovered that TRAF2 is a proviral factor in vaccinia virus replication in both HeLa cells and mouse embryonic fibroblasts and that its influence is exercised through promotion of efficient virus entry.
Collapse
|
14
|
Alan JK, Struckhoff EC, Lundquist EA. Multiple cytoskeletal pathways and PI3K signaling mediate CDC-42-induced neuronal protrusion in C. elegans. Small GTPases 2013; 4:208-20. [PMID: 24149939 PMCID: PMC4011816 DOI: 10.4161/sgtp.26602] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/23/2013] [Accepted: 09/25/2013] [Indexed: 12/30/2022] Open
Abstract
Rho GTPases are key regulators of cellular protrusion and are involved in many developmental events including axon guidance during nervous system development. Rho GTPase pathways display functional redundancy in developmental events, including axon guidance. Therefore, their roles can often be masked when using simple loss-of-function genetic approaches. As a complement to loss-of-function genetics, we constructed a constitutively activated CDC-42(G12V) expressed in C. elegans neurons. CDC-42(G12V) drove the formation of ectopic lamellipodial and filopodial protrusions in the PDE neurons, which resembled protrusions normally found on migrating growth cones of axons. We then used a candidate gene approach to identify molecules that mediate CDC-42(G12V)-induced ectopic protrusions by determining if loss of function of the genes could suppress CDC-42(G12V). Using this approach, we identified 3 cytoskeletal pathways previously implicated in axon guidance, the Arp2/3 complex, UNC-115/abLIM, and UNC-43/Ena. We also identified the Nck-interacting kinase MIG-15/NIK and p21-activated kinases (PAKs), also implicated in axon guidance. Finally, PI3K signaling was required, specifically the Rictor/mTORC2 branch but not the mTORC1 branch that has been implicated in other aspects of PI3K signaling including stress and aging. Our results indicate that multiple pathways can mediate CDC-42-induced neuronal protrusions that might be relevant to growth cone protrusions during axon pathfinding. Each of these pathways involves Rac GTPases, which might serve to integrate the pathways and coordinate the multiple CDC-42 pathways. These pathways might be relevant to developmental events such as axon pathfinding as well as disease states such as metastatic melanoma.
Collapse
Affiliation(s)
| | - Eric C Struckhoff
- Department of Molecular Biosciences; University of Kansas; Lawrence, KS USA
| | - Erik A Lundquist
- Department of Molecular Biosciences; University of Kansas; Lawrence, KS USA
| |
Collapse
|
15
|
Lang F, Alevizopoulos K, Stournaras C. Targeting membrane androgen receptors in tumors. Expert Opin Ther Targets 2013; 17:951-63. [PMID: 23746222 DOI: 10.1517/14728222.2013.806491] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION In the last decade androgen actions that are originated from non-genomic, rapid signaling have been described in a large number of cell models and tissues. These effects are initiated through the stimulation of membrane androgen-binding sites or receptors (mAR). Although the molecular identity of mARs remains elusive, their activation is known to trigger multiple non-genomic signaling cascades and to regulate numerous cell responses. In recent years specific interest is being paid to the role of mARs in tumors. Specifically, it was demonstrated that mAR activation by non-permeable testosterone conjugates induced potent anti-tumorigenic responses in prostate, breast, colon and glial tumors. In addition, in vivo animal studies further emphasized the potential clinical importance of these receptors. AREAS COVERED This review will summarize the current knowledge on the mAR-induced non-genomic, rapid androgen actions. It will focus on the molecular signaling pathways governed by mAR activation, discuss latest attempts to elucidate the molecular identity of mAR, address the plethora of cell responses initiated by mAR and evaluate the potential role of mAR and mAR-specific signaling as possible therapeutic targets in tumors. EXPERT OPINION mAR and mAR-induced specific signaling may represent novel therapeutic targets in tumors through the development of specific testosterone analogs.
Collapse
Affiliation(s)
- Florian Lang
- University of Tübingen, Department of Physiology, Gmelin Str. 5, Tübingen, 72076, Germany
| | | | | |
Collapse
|
16
|
Li Y, Zhu X, Xu W, Wang D, Yan J. miR-330 regulates the proliferation of colorectal cancer cells by targeting Cdc42. Biochem Biophys Res Commun 2013; 431:560-5. [PMID: 23337504 DOI: 10.1016/j.bbrc.2013.01.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 01/04/2013] [Indexed: 12/25/2022]
Abstract
MicroRNAs are small non-coding RNA molecules that play important roles in the multistep process of colorectal carcinoma (CRC) development. However, the miRNA-mRNA regulatory network is far from being fully understood. The objective of this study was to investigate the expression and the biological roles of miR-330 in colorectal cancer cells. Cdc42, one of the best characterized members of the Rho GTPase family, was found to be up-regulated in several types of human tumors including CRC and has been implicated in cancer initiation and progression. In the present study, we identified miR-330, as a potential regulator of Cdc42, was found to be inversely correlated with Cdc42 expression in colorectal cancer cell lines. Ectopic expression of miR-330 down-regulated Cdc42 expression at both protein and mRNA level, mimicked the effect of Cdc42 knockdown in inhibiting proliferation, inducing G1 cell cycle arrest and apoptosis of the colorectal cancer cells, whereas restoration of Cdc42 could partially attenuate the effects of miR-330. In addition, elevated expression of miR-330 could suppress the immediate downstream effectors of Cdc42 and inhibit the growth of colorectal cancer cells in vivo. To sum up, our results establish a role of miR-330 in negatively regulating Cdc42 expression and colorectal cancer cell proliferation. They suggest that manipulating the expression level of Cdc42 by miR-330 has the potential to influence colorectal cancer progression.
Collapse
Affiliation(s)
- Yuefeng Li
- The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | | | | | | | | |
Collapse
|
17
|
Kakiashvili E, Dan Q, Vandermeer M, Zhang Y, Waheed F, Pham M, Szászi K. The epidermal growth factor receptor mediates tumor necrosis factor-alpha-induced activation of the ERK/GEF-H1/RhoA pathway in tubular epithelium. J Biol Chem 2011; 286:9268-79. [PMID: 21212278 PMCID: PMC3059019 DOI: 10.1074/jbc.m110.179903] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Revised: 01/05/2011] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor (TNF)-α induces cytoskeleton and intercellular junction remodeling in tubular epithelial cells; the underlying mechanisms, however, are incompletely explored. We have previously shown that ERK-mediated stimulation of the RhoA GDP/GTP exchange factor GEF-H1/Lfc is critical for TNF-α-induced RhoA stimulation. Here we investigated the upstream mechanisms of ERK/GEF-H1 activation. Surprisingly, TNF-α-induced ERK and RhoA stimulation in tubular cells were prevented by epidermal growth factor receptor (EGFR) inhibition or silencing. TNF-α also enhanced phosphorylation of the EGFR. EGF treatment mimicked the effects of TNF-α, as it elicited potent, ERK-dependent GEF-H1 and RhoA activation. Moreover, EGF-induced RhoA activation was prevented by GEF-H1 silencing, indicating that GEF-H1 is a key downstream effector of the EGFR. The TNF-α-elicited EGFR, ERK, and RhoA stimulation were mediated by the TNF-α convertase enzyme (TACE) that can release EGFR ligands. Further, EGFR transactivation also required the tyrosine kinase Src, as Src inhibition prevented TNF-α-induced activation of the EGFR/ERK/GEF-H1/RhoA pathway. Importantly, a bromodeoxyuridine (BrdU) incorporation assay and electric cell substrate impedance-sensing (ECIS) measurements revealed that TNF-α stimulated cell growth in an EGFR-dependent manner. In contrast, TNF-α-induced NFκB activation was not prevented by EGFR or Src inhibition, suggesting that TNF-α exerts both EGFR-dependent and -independent effects. In summary, in the present study we show that the TNF-α-induced activation of the ERK/GEF-H1/RhoA pathway in tubular cells is mediated through Src- and TACE-dependent EGFR activation. Such a mechanism could couple inflammatory and proliferative stimuli and, thus, may play a key role in the regulation of wound healing and fibrogenesis.
Collapse
Affiliation(s)
- Eli Kakiashvili
- From the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Department of Surgery, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Qinghong Dan
- From the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Department of Surgery, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Matthew Vandermeer
- From the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Department of Surgery, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Yuqian Zhang
- From the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Department of Surgery, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Faiza Waheed
- From the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Department of Surgery, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Monica Pham
- From the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Department of Surgery, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Katalin Szászi
- From the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Department of Surgery, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| |
Collapse
|
18
|
Chen H, Xiao L, Zhang H, Liu N, Liu T, Liu L, Hu X, Yan D, Yang K, Yin B, Wang J, Li Q, Li Z. The involvement of β-actin in the signaling of transmembrane TNF-α-mediated cytotoxicity. J Leukoc Biol 2011; 89:917-26. [DOI: 10.1189/jlb.1209812] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
19
|
Mathew SJ, Haubert D, Krönke M, Leptin M. Looking beyond death: a morphogenetic role for the TNF signalling pathway. J Cell Sci 2009; 122:1939-46. [PMID: 19494121 DOI: 10.1242/jcs.044487] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tumour necrosis factor alpha (TNFalpha) is a pro-inflammatory mediator with the capacity to induce apoptosis. An integral part of its apoptotic and inflammatory programmes is the control of cell shape through modulation of the cytoskeleton, but it is now becoming apparent that this morphogenetic function of TNF signalling is also employed outside inflammatory responses and is shared by the signalling pathways of other members of the TNF-receptor superfamily. Some proteins that are homologous to the components of the TNF signalling pathway, such as the adaptor TNF-receptor-associated factor 4 and the ectodysplasin A receptor (and its ligand and adaptors), have dedicated morphogenetic roles. The mechanism by which TNF signalling affects cell shape is not yet fully understood, but Rho-family GTPases have a central role. The fact that the components of the TNF signalling pathway are evolutionarily old suggests that an ancestral cassette from unicellular organisms has diversified its functions into partly overlapping morphogenetic, inflammatory and apoptotic roles in multicellular higher organisms.
Collapse
Affiliation(s)
- Sam J Mathew
- Institute for Genetics, University of Cologne, Zülpicher Strasse 47, D-50674 Köln, Germany
| | | | | | | |
Collapse
|
20
|
Kardassis D, Murphy C, Fotsis T, Moustakas A, Stournaras C. Control of transforming growth factor β signal transduction by small GTPases. FEBS J 2009; 276:2947-65. [DOI: 10.1111/j.1742-4658.2009.07031.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Kakiashvili E, Speight P, Waheed F, Seth R, Lodyga M, Tanimura S, Kohno M, Rotstein OD, Kapus A, Szászi K. GEF-H1 mediates tumor necrosis factor-alpha-induced Rho activation and myosin phosphorylation: role in the regulation of tubular paracellular permeability. J Biol Chem 2009; 284:11454-66. [PMID: 19261619 PMCID: PMC2670151 DOI: 10.1074/jbc.m805933200] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 01/27/2009] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-alpha), an inflammatory cytokine, has been shown to activate the small GTPase Rho, but the underlying signaling mechanisms remained undefined. This general problem is particularly important in the kidney, because TNF-alpha, a major mediator of kidney injury, is known to increase paracellular permeability in tubular epithelia. Here we aimed to determine the effect of TNF-alpha on the Rho pathway in tubular cells (LLC-PK(1) and Madin-Darby canine kidney), define the upstream signaling, and investigate the role of the Rho pathway in the TNF-alpha-induced alterations of paracellular permeability. We show that TNF-alpha induced a rapid and sustained RhoA activation that led to stress fiber formation and Rho kinase-dependent myosin light chain (MLC) phosphorylation. To identify new regulators connecting the TNF receptor to Rho signaling, we applied an affinity precipitation assay with a Rho mutant (RhoG17A), which captures activated GDP-GTP exchange factors (GEFs). Mass spectrometry analysis of the RhoG17A-precipitated proteins identified GEF-H1 as a TNF-alpha-activated Rho GEF. Consistent with a central role of GEF-H1, its down-regulation by small interfering RNA prevented the activation of the Rho pathway. Moreover GEF-H1 and Rho activation are downstream of ERK signaling as the MEK1/2 inhibitor PD98059 mitigated TNF-alpha-induced activation of these proteins. Importantly TNF-alpha enhanced the ERK pathway-dependent phosphorylation of Thr-678 of GEF-H1 that was key for activation. Finally the TNF-alpha-induced paracellular permeability increase was absent in LLC-PK(1) cells stably expressing a non-phosphorylatable, dominant negative MLC. In summary, we have identified the ERK/GEF-H1/Rho/Rho kinase/phospho-MLC pathway as the mechanism mediating TNF-alpha-induced elevation of tubular epithelial permeability, which in turn might contribute to kidney injury.
Collapse
Affiliation(s)
- Eli Kakiashvili
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital and Department of Surgery, University of Toronto, Ontario M5B 1W8, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Papadopoulou N, Papakonstanti EA, Kallergi G, Alevizopoulos K, Stournaras C. Membrane androgen receptor activation in prostate and breast tumor cells: molecular signaling and clinical impact. IUBMB Life 2009; 61:56-61. [PMID: 19109827 DOI: 10.1002/iub.150] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In recent years, membrane androgen receptors (mARs) have been identified in prostate and breast tumor cells, and their activation by specific mAR ligands was linked to the regulation of crucial cell responses, such as cell growth, motility, and apoptosis. Analysis of the molecular signals triggered by mAR in the presence of anti-androgens has clearly differentiated mAR-dependent biological actions from those induced by the activation of the classical intracellular androgen receptors (iARs). In this review, we summarize the specific cellular events attributed to mAR activation and the experimental results on distinct non-genomic signaling cascades operating in various tumor cells independently of the iAR. Furthermore, we discuss the crucial role of actin cytoskeleton organization and signaling in mediating mAR responses. Finally, we assess the clinical impact of the reported mAR-induced apoptotic regression of prostate cancer cells both in vitro and in vivo and discuss the potential role of mAR as a novel therapeutic target.
Collapse
Affiliation(s)
- Natalia Papadopoulou
- Department of Biochemistry, University of Crete Medical School, Heraklion, Greece
| | | | | | | | | |
Collapse
|
23
|
Kyozuka K, Chun JT, Puppo A, Gragnaniello G, Garante E, Santella L. Actin cytoskeleton modulates calcium signaling during maturation of starfish oocytes. Dev Biol 2008; 320:426-35. [DOI: 10.1016/j.ydbio.2008.05.549] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 05/23/2008] [Accepted: 05/27/2008] [Indexed: 10/22/2022]
|
24
|
Vardouli L, Vasilaki E, Papadimitriou E, Kardassis D, Stournaras C. A novel mechanism of TGFβ-induced actin reorganization mediated by Smad proteins and Rho GTPases. FEBS J 2008; 275:4074-87. [DOI: 10.1111/j.1742-4658.2008.06549.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Jin S, Ray RM, Johnson LR. TNF-alpha/cycloheximide-induced apoptosis in intestinal epithelial cells requires Rac1-regulated reactive oxygen species. Am J Physiol Gastrointest Liver Physiol 2008; 294:G928-37. [PMID: 18218673 DOI: 10.1152/ajpgi.00219.2007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previously we have shown that both Rac1 and c-Jun NH(2)-terminal kinase (JNK1/2) are key proapoptotic molecules in tumor necrosis factor (TNF)-alpha/cycloheximide (CHX)-induced apoptosis in intestinal epithelial cells, whereas the role of reactive oxygen species (ROS) in apoptosis is unclear. The present studies tested the hypothesis that Rac1-mediated ROS production is involved in TNF-alpha-induced apoptosis. In this study, we showed that TNF-alpha/CHX-induced ROS production and hydrogen peroxide (H(2)O(2))-induced oxidative stress increased apoptosis. Inhibition of Rac1 by a specific inhibitor NSC23766 prevented TNF-alpha-induced ROS production. The antioxidant, N-acetylcysteine (NAC), or rotenone (Rot), the mitochondrial electron transport chain inhibitor, attenuated mitochondrial ROS production and apoptosis. Rot also prevented JNK1/2 activation during apoptosis. Inhibition of Rac1 by expression of dominant negative Rac1 decreased TNF-alpha-induced mitochondrial ROS production. Moreover, TNF-alpha-induced cytosolic ROS production was inhibited by Rac1 inhibition, diphenyleneiodonium (DPI, an inhibitor of NADPH oxidase), and NAC. In addition, DPI inhibited TNF-alpha-induced apoptosis as judged by morphological changes, DNA fragmentation, and JNK1/2 activation. Mitochondrial membrane potential change is Rac1 or cytosolic ROS dependent. Lastly, all ROS inhibitors inhibited caspase-3 activity. Thus these results indicate that TNF-alpha-induced apoptosis requires Rac1-dependent ROS production in intestinal epithelial cells.
Collapse
Affiliation(s)
- Shi Jin
- Dept. of Physiology, Univ. of Tennessee Health Science Center, 894 Union Ave., Memphis, TN 38163, USA
| | | | | |
Collapse
|
26
|
Papakonstanti EA, Stournaras C. Cell responses regulated by early reorganization of actin cytoskeleton. FEBS Lett 2008; 582:2120-7. [PMID: 18325339 DOI: 10.1016/j.febslet.2008.02.064] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 02/21/2008] [Indexed: 01/20/2023]
Abstract
Microfilaments exist in a dynamic equilibrium between monomeric and polymerized actin and the ratio of monomers to polymeric forms is influenced by a variety of extracellular stimuli. The polymerization, depolymerization and redistribution of actin filaments are modulated by several actin-binding proteins, which are regulated by upstream signalling molecules. Actin cytoskeleton is involved in diverse cellular functions including migration, ion channels activity, secretion, apoptosis and cell survival. In this review we have outlined the role of actin dynamics in representative cell functions induced by the early response to extracellular stimuli.
Collapse
Affiliation(s)
- E A Papakonstanti
- Department of Biochemistry, Medical School, University of Crete, GR-71110, Heraklion-Voutes, Greece.
| | | |
Collapse
|
27
|
Zheng L, Sinniah R, Hsu SIH. Pathogenic role of NF-kappaB activation in tubulointerstitial inflammatory lesions in human lupus nephritis. J Histochem Cytochem 2008; 56:517-29. [PMID: 18285351 DOI: 10.1369/jhc.7a7368.2008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In vitro and in vivo experimental studies suggest that the transcription factor NF-kappaB plays a role in tubulointerstitial injury. We investigated possible cellular and molecular mechanisms involving NF-kappaB activation in the progression of tubulointerstitial lesions in human lupus nephritis (LN). Paraffin-embedded renal biopsies from 50 patients with LN and six control patients with minimal change disease (MCD) were examined by Southwestern histochemistry for in situ detection of active NF-kappaB and AP-1. Immunohistochemistry was performed to examine the expression of NF-kappaB, AP-1, and NF-kappaB regulatory proteins (IkappaB-alpha, p-IkappaB-alpha, and IKK-alpha proteins), as well as NF-kappaB and AP-1 downstream target proinflammatory molecules (ICAM-1, TNF-alpha, IL-1beta, IL-6, and GM-CSF) and NF-kappaB upstream signaling molecules (CD40 and CD40L). We observed extensive upregulation of activated NF-kappaB in renal tubular cells and interstitial cells, in parallel with overactivation of transcription factor AP-1 in LN, as compared with normal controls and MCD. Tubular expression of activated NF-kappaB correlated well with the degree of tubulointerstitial histopathological indices and/or renal function. Tubulointerstitial IKK-alpha expression was specifically upregulated in LN. IkappaB-alpha and p-IkappaB-alpha were detected only in interstitial cells in LN. Tubulointerstitial expression levels of NF-kappaB and AP-1 downstream inflammatory molecules and NF-kappaB upstream signaling molecules CD40 and CD40L were markedly enhanced in LN as compared with MCD or normal controls and were associated with tubulointerstitial histopathological indices and/or renal function. The results suggest that altered IKK-alpha expression and NF-kappaB activation along with AP-1 overexpression may play a pathogenic role in tubulointerstitial injury in human LN mediated through a network of downstream proinflammatory molecules.
Collapse
Affiliation(s)
- Ling Zheng
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | |
Collapse
|
28
|
RelA/NF-kappaB transcription factor associates with alpha-actinin-4. Exp Cell Res 2007; 314:1030-8. [PMID: 18215660 DOI: 10.1016/j.yexcr.2007.12.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 11/13/2007] [Accepted: 12/03/2007] [Indexed: 11/23/2022]
Abstract
The NF-kappaB/RelA family of transcription factors regulates inducible transcription of a large number of genes in response to diverse stimuli. Little is known, however, about the location of NF-kappaB in the cytoplasm and the transport mechanism to the nucleus. We found that NF-kappaB is associated with the actin-binding protein alpha-actinin-4. NF-kappaB and alpha-actinin-4 co-localized along actin stress fibers and in membrane lamellae in A431 cells. After a 30-min stimulation with EGF or TNF-alpha, alpha-actinin-4 and p65 were found in the nucleus. Disruption of cytoskeleton by cytochalasin D prior to treatment with TNF-alpha led to increase of p65 nuclear translocation. Antibodies to p65 subunit of NF-kappaB co-immunoprecipitated alpha-actinin-4 from A431 cell lysates and nuclear extracts, but alpha-actinin-1 and beta-actin were not found in the precipitates. Affinity chromatography experiments displayed that p65 and p50 subunits of NF-kappaB can bind to matrix-bound chicken gizzard alpha-actinin. We suggest that the alpha-actinin-4 is important for the NF-kappaB nuclear translocation and its functions inside the nucleus.
Collapse
|
29
|
Abstract
Since the early days of cell volume regulation research, the role of actin cytoskeleton organization and rearrangement has attracted specific interest. Rapid modifications in actin dynamics and architecture have been described. They were shown to regulate cell volume changes, as well as regulatory volume decrease in a large variety of cell types, including hepatocytes, lymphocytes, fibroblasts, myocytes, and various tumor cells. Using microscopic and biochemical analyses, modifications of actin organization and polymerization dynamics were studied. This chapter summarizes the molecular approaches applied so far for the quantitative assessment of actin cytoskeleton dynamics in the various cell types. It demonstrates that rapid modifications of actin cytoskeleton dynamics regulated by specific signaling pathways play a functional role in cell volume regulation. It is concluded that studying actin polymerization dynamics and signaling represents a challenging tool for the understanding of osmosensing and osmosignaling regulation in cellular physiology.
Collapse
|
30
|
Hunter I, Nixon GF. Spatial compartmentalization of tumor necrosis factor (TNF) receptor 1-dependent signaling pathways in human airway smooth muscle cells. Lipid rafts are essential for TNF-alpha-mediated activation of RhoA but dispensable for the activation of the NF-kappaB and MAPK pathways. J Biol Chem 2006; 281:34705-15. [PMID: 16982613 PMCID: PMC2653078 DOI: 10.1074/jbc.m605738200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor (TNF)-alpha-induced activation of RhoA, mediated by TNF receptor 1 (TNFR1), is a prerequisite step in a pathway that leads to increased 20-kDa light chain of myosin (MLC20) phosphorylation and airway smooth muscle contraction. In this study, we have investigated the proximal events in TNF-alpha-induced RhoA activation. TNFR1 is localized to both lipid raft and nonraft regions of the plasma membrane in primary human airway smooth muscle cells. TNF-alpha engagement of TNFR1 recruited the adaptor proteins TRADD, TRAF-2, and RIP into lipid rafts and activated RhoA, NF-kappaB, and MAPK pathways. Depletion of cholesterol from rafts with methyl-beta-cyclodextrin caused a redistribution of TNFR1 to nonraft plasma membrane and prevented ligand-induced RhoA activation. By contrast, TNF-alpha-induced activation of NF-kappaB and MAPKs was unaffected by methyl-beta-cyclodextrin indicating that, in airway smooth muscle cells, activation of these pathways occurred independently of lipid rafts. Targeted knockdown of caveolin-1 completely abrogated TNF-alpha-induced RhoA activation, identifying this raft-resident protein as a positive regulator of the activation process. The signaling adaptors TRADD and RIP were also found to be necessary for ligand-induced RhoA activation. Taken together, our results suggest that in airway smooth muscle cells, spatial compartmentalization of TNFR1 provides a mechanism for generating distinct signaling outcomes in response to ligand engagement and define a mechanistic role for lipid rafts and caveolin-1 in TNF-alpha-induced activation of RhoA.
Collapse
Affiliation(s)
- Irene Hunter
- School of Medical Sciences, University of Aberdeen, IMS Building, Foresterhill, Aberdeen AB25 2ZD, United Kingdom.
| | | |
Collapse
|
31
|
Goteri G, Ciavattini A, Lucarini G, Montik N, Filosa A, Stramazzotti D, Biagini G, Tranquilli AL. Expression of motility-related molecule Cdc42 in endometrial tissue in women with adenomyosis and ovarian endometriomata. Fertil Steril 2006; 86:559-65. [PMID: 16854417 DOI: 10.1016/j.fertnstert.2006.01.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 01/19/2006] [Accepted: 01/19/2006] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To evaluate Cdc42 expression in eutopic and ectopic endometrial tissue in patients with adenomyosis and ovarian endometriotic cysts compared with patients without endometriosis. DESIGN Experimental retrospective study. SETTING University hospital. PATIENT(S) Twenty-four patients with adenomyosis, 19 with ovarian endometriomata, and 9 with fibroids or benign ovarian cysts. INTERVENTION(S) Hysterectomy and bilateral oophorectomy. MAIN OUTCOME MEASURE(S) Immunostaining for Cdc42 of eutopic and ectopic endometrial tissues. RESULT(S) In eutopic endometrium of patients with adenomyosis and with fibroids or benign ovarian cysts, the intensity of Cdc42 immunostaining was weaker, especially in the specialized stromal cells, compared with cases with ovarian endometriosis (chi(2) test, P=.003). Expression of Cdc42 in eutopic endometrium showed a trend to be higher in the secretory than in the proliferative phase and in patients with ovarian endometriotic cysts compared with patients with adenomyosis (unpaired t test, P=.005), especially in the proliferative phase. CONCLUSION(S) An abnormally high expression of Cdc42 in eutopic endometrium in the secretory phase may contribute to the development of ovarian endometriosis, but it does not seem to be involved in the pathogenesis of adenomyosis.
Collapse
Affiliation(s)
- Gaia Goteri
- Institute of Pathology, Department of Neurosciences, Faculty of Medicine, Polytechnic University of Marches, Umberto I-Torrette Hospital, Ancona, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Chen D, Texada DE, Duggan C, Deng Y, Redens TB, Langford MP. Caspase-3 and -7 mediate apoptosis of human Chang's conjunctival cells induced by enterovirus 70. Virology 2006; 347:307-22. [PMID: 16427675 DOI: 10.1016/j.virol.2005.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 10/20/2005] [Accepted: 12/02/2005] [Indexed: 10/25/2022]
Abstract
Enterovirus 70 (EV70) is the major etiological agent of acute hemorrhagic conjunctivitis (AHC). EV70 m.o.i.- (multiplicity of infection) and time-dependently induced apoptosis in human Chang's conjunctival (HCC) cells. UV- or heat-inactivated EV70 did not induce apoptosis. EV70-induced apoptosis was inhibited by cycloheximide and methoxysuccinyl-Ala-Ala-Pro-Val-chloromethylketone (MPCMK), but not actinomycin D and guanidine.HCl (although guanidine.HCl inhibited the apoptosis induced by EV70 infection at 0.5 PFU/cell for 18 h). EV70 infection induced activation of caspase-3 and -7 and degradation of the constitutively activated caspase-6. EV70-induced apoptotic DNA ladders and activated caspase-3 and -7, correlated with virus release. Caspase inhibitor IX (Z-VD-FMK) inhibited EV70-induced apoptosis and virus release, but not intracellular viral production. The results suggest that infectious virus and the syntheses of viral proteins especially EV70 proteases, but not viral genome RNA, are required for caspase-3 and -7-mediated EV70-induced apoptosis, and that apoptosis through cell lysis promotes EV70 release from HCC cells.
Collapse
Affiliation(s)
- Dequan Chen
- Department of Ophthalmology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Al-Rasheed NM, Willars GB, Brunskill NJ. C-peptide signals via Galpha i to protect against TNF-alpha-mediated apoptosis of opossum kidney proximal tubular cells. J Am Soc Nephrol 2006; 17:986-95. [PMID: 16510765 DOI: 10.1681/asn.2005080797] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Cell loss by apoptosis occurs in renal injury such as diabetic nephropathy. TNF-alpha is a cytokine that induces apoptosis and has been implicated in the pathogenesis of diabetic nephropathy. The aim was to investigate whether C-peptide or insulin could modulate TNF-alpha-mediated cell death in opossum kidney proximal tubular cells and to examine the mechanism(s) of any effects observed. C-peptide and insulin protect against TNF-alpha-induced proximal tubular cell toxicity and apoptosis. Cell viability was analyzed by methylthiazoletetrazolium assay; cell viability was reduced to 60.8 +/- 2.7% of control after stimulation with 300 ng/ml TNF-alpha. Compromised cell viability was reversed by pretreatment with 5 nM C-peptide or 100 nM insulin. TNF-alpha-induced apoptosis was detected by DNA nick-end labeling and by measuring histone associated DNA fragments using ELISA. By ELISA assay, 300 ng/ml TNF-alpha increased apoptosis by 145.8 +/- 4.9% compared with controls, whereas 5 nM C-peptide and 100 nM insulin reduced apoptosis to 81.6 +/- 4.8 and 77.4 +/- 3.1% of control, respectively. The protective effects of C-peptide and insulin were associated with activation of NF-kappaB. Activation of NF-kappaB by C-peptide was pertussis toxin sensitive and dependent on activation of Galpha(i). Phosphatidylinositol 3-kinase but not extracellular signal regulated mitogen-activated protein kinase mediated C-peptide and insulin activation of NF-kappaB. The cytoprotective effects of both C-peptide and insulin were related to increased expression of TNF receptor-associated factor 2, the product of an NF-kappaB-dependent survival gene. These data suggest that C-peptide and/or insulin activation of NF-kappaB-regulated survival genes protects against TNF-alpha-induced renal tubular injury in diabetes. The data further support the concept of C-peptide as a peptide hormone in its own right and suggest a potential therapeutic role for C-peptide.
Collapse
Affiliation(s)
- Nawal M Al-Rasheed
- Department of Nephrology, Leicester General Hospital, Gwendolen Road, Leicester LE5 4PW, UK
| | | | | |
Collapse
|
34
|
The Functional Role of Actin Cytoskeleton Dynamics and Signaling. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1569-2558(06)37009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
35
|
Kanda T, Yokosuka O, Imazeki F, Arai M, Saisho H. Enhanced sensitivity of human hepatoma cells to 5-fluorouracil by small interfering RNA targeting Bcl-2. DNA Cell Biol 2005; 24:805-809. [PMID: 16332177 DOI: 10.1089/dna.2005.24.805] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study was designed to reveal whether the apoptosis induced in human hepatocellular carcinoma (HCC) cell lines by 5-fluorouracil (5-FU) could be enhanced by transfecting Bcl-2 small interfering RNA (siRNA). Bcl-2 siRNA and control siRNA were transfected into cells following treatment with or without 5-FU. Suppression of Bcl-2 expression was confirmed by Western blotting; cell viability was evaluated by MTS assay, and the occurrence of apoptosis in cells was evaluated by apoptosis assay. Expression of Bcl-2 protein after transfection of 20 nM Bcl-2 siRNA was significantly lower than that of control. Incubation of all cell lines with Bcl-2 siRNA reduced cell viability 96 h after 5-FU treatment compared with all other controls: Huh-7 (P < 0.01), Huh-7 with hepatitis C replicon (P < 0.01), HepG2 (P < 0.01), HLE (P < 0.05). Moreover, the proportion of apoptosis in control siRNA, Bcl-2 siRNA, control siRNA prior to 5-FU treatment, and Bcl-2 siRNA prior to 5-FU treatment groups were (4.6 +/- 2.3)%, (7.5 +/- 0.5)%, (6.0 +/- 2.1)%, and (19.5 +/- 0.86)%, respectively. The Bcl-2 siRNA prior to 5-FU treatment group showed the strongest effect of inducing apoptosis. In conclusion, the combination Bcl-2 siRNA and 5-FU might represent a new therapeutic option for HCC.
Collapse
Affiliation(s)
- Tatsuo Kanda
- Department of Medicine and Clinical Oncology, Graduate School of Medicine, Chiba University, Japan.
| | | | | | | | | |
Collapse
|
36
|
Parkash J, Chaudhry MA, Rhoten WB. Tumor necrosis factor-α-induced changes in insulin-producing β-cells. ACTA ACUST UNITED AC 2005; 286:982-93. [PMID: 16114068 DOI: 10.1002/ar.a.20229] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The migration of macrophages and lymphocytes that produce cytokines such as tumor necrosis factor-alpha (TNF-alpha) causes beta-cell death, leading to type 1 diabetes. Similarly, in type 2 diabetes, the adipocyte-derived cytokines including TNF-alpha are elevated in the circulation, causing inflammation and insulin resistance. Thus, the studies described in this article using TNF-alpha are relevant to furthering our understanding of the pathogenesis of diabetes mellitus. We used RINr1046-38 (RIN) insulin-producing beta-cells, which constitutively express calbindin-D(28k), to characterize the effect of TNF-alpha on apoptosis, replication, insulin release, and gene and protein expression. Western blots of TNF-alpha-treated RIN cells revealed a decrease in calbindin-D(28k). By ELISA, TNF-alpha-treated beta-cells had 47% less calbindin-D(28k) than controls. In association with the decline in calbindin-D(28k), TNF-alpha treatment of RIN cells led to a 73% greater increase in changes in intracellular calcium concentration (Delta[Ca(2+)](i)) in TNF-alpha-treated cells as compared to that in control RIN cells upon treatment with 50 mM KCl; caused a greater increase in the [Ca(2+)](i) following the addition of 5.5 microM ionomycin; increased by more than threefold the apoptotic rate, expressed as the percentage of TUNEL-positive nuclei to total nuclei; decreased the rate of cell replication by 36%; and increased and decreased selectively the expression of specific genes as determined by microarray analysis. The subcellular localizations of Bcl-2, an antiapoptotic protein, and Bax, a proapoptotic protein, within RIN cells were altered with TNF-alpha treatment such that the two were colocalized with mitochondria in the perinuclear region. We conclude that the proapoptotic action of TNF-alpha on beta-cells is manifested via decreased expression of calbindin-D(28k) and is mediated at least in part by [Ca(2+)](i).
Collapse
Affiliation(s)
- Jai Parkash
- Joan C. Edwards School of Medicine, Department of Anatomy, Cell and Neurobiology, Marshall University, Huntington, West Virginia 25704, USA.
| | | | | |
Collapse
|