1
|
Su Y, Shea J, Destephanis D, Su Z. Transcriptomic analysis of the spatiotemporal axis of oogenesis and fertilization in C. elegans. Front Cell Dev Biol 2024; 12:1436975. [PMID: 39224437 PMCID: PMC11366716 DOI: 10.3389/fcell.2024.1436975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Caenorhabditis elegans hermaphrodite presents a unique model to study the formation of oocytes. However, the size of the model animal and difficulties in retrieval of specific stages of the germline have obviated closer systematic studies of this process throughout the years. Here, we present a transcriptomic level analysis into the oogenesis of C. elegans hermaphrodites. We dissected a hermaphrodite gonad into seven sections corresponding to the mitotic distal region, the pachytene region, the diplotene region, the early diakinesis region and the 3 most proximal oocytes, and deeply sequenced the transcriptome of each of them along with that of the fertilized egg using a single-cell RNA-seq (scRNA-seq) protocol. We identified specific gene expression events as well as gene splicing events in finer detail along the gonad and provided novel insights into underlying mechanisms of the oogenesis process. Furthermore, through careful review of relevant research literature coupled with patterns observed in our analysis, we delineate transcripts that may serve functions in the interactions between the germline and cells of the somatic gonad. These results expand our knowledge of the transcriptomic space of the C. elegans germline and lay a foundation on which future studies of the germline can be based upon.
Collapse
Affiliation(s)
| | | | | | - Zhengchang Su
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
2
|
Su Y, Shea J, DeStephanis D, Su Z. Transcriptomic Analysis of the Spatiotemporal Axis of Oogenesis and Fertilization in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597235. [PMID: 38895354 PMCID: PMC11185608 DOI: 10.1101/2024.06.03.597235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The oocyte germline of the C. elegans hermaphrodite presents a unique model to study the formation of oocytes. However, the size of the model animal and difficulties in retrieval of specific stages of the germline have obviated closer systematic studies of this process throughout the years. Here, we present a transcriptomic level analysis into the oogenesis of C. elegans hermaphrodites. We dissected a hermaphrodite gonad into seven sections corresponding to the mitotic distal region, the pachytene, the diplotene, the early diakinesis region and the 3 most proximal oocytes, and deeply sequenced the transcriptome of each of them along with that of the fertilized egg using a single-cell RNA-seq protocol. We identified specific gene expression events as well as gene splicing events in finer detail along the oocyte germline and provided novel insights into underlying mechanisms of the oogenesis process. Furthermore, through careful review of relevant research literature coupled with patterns observed in our analysis, we attempt to delineate transcripts that may serve functions in the interaction between the germline and cells of the somatic gonad. These results expand our knowledge of the transcriptomic space of the C. elegans germline and lay a foundation on which future studies of the germline can be based upon.
Collapse
Affiliation(s)
- Yangqi Su
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Jonathan Shea
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Darla DeStephanis
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Zhengchang Su
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
3
|
Ono S, Watabe E, Morisaki K, Ono K, Kuroyanagi H. Alternative splicing of a single exon causes a major impact on the affinity of Caenorhabditis elegans tropomyosin isoforms for actin filaments. Front Cell Dev Biol 2023; 11:1208913. [PMID: 37745299 PMCID: PMC10512467 DOI: 10.3389/fcell.2023.1208913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Tropomyosin is generally known as an actin-binding protein that regulates actomyosin interaction and actin filament stability. In metazoans, multiple tropomyosin isoforms are expressed, and some of them are involved in generating subpopulations of actin cytoskeleton in an isoform-specific manner. However, functions of many tropomyosin isoforms remain unknown. Here, we report identification of a novel alternative exon in the Caenorhabditis elegans tropomyosin gene and characterization of the effects of alternative splicing on the properties of tropomyosin isoforms. Previous studies have reported six tropomyosin isoforms encoded by the C. elegans lev-11 tropomyosin gene. We identified a seventh isoform, LEV-11U, that contained a novel alternative exon, exon 7c (E7c). LEV-11U is a low-molecular-weight tropomyosin isoform that differs from LEV-11T only at the exon 7-encoded region. In silico analyses indicated that the E7c-encoded peptide sequence was unfavorable for coiled-coil formation and distinct from other tropomyosin isoforms in the pattern of electrostatic surface potentials. In vitro, LEV-11U bound poorly to actin filaments, whereas LEV-11T bound to actin filaments in a saturable manner. When these isoforms were transgenically expressed in the C. elegans striated muscle, LEV-11U was present in the diffuse cytoplasm with tendency to form aggregates, whereas LEV-11T co-localized with sarcomeric actin filaments. Worms with a mutation in E7c showed reduced motility and brood size, suggesting that this exon is important for the optimal health. These results indicate that alternative splicing of a single exon can produce biochemically diverged tropomyosin isoforms and suggest that a tropomyosin isoform with poor actin affinity has a novel biological function.
Collapse
Affiliation(s)
- Shoichiro Ono
- Departments of Pathology and Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States
| | - Eichi Watabe
- Laboratory of Gene Expression, Graduate School of Biomedical Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keita Morisaki
- Departments of Pathology and Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Kanako Ono
- Departments of Pathology and Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Graduate School of Biomedical Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Biochemistry, University of the Ryukyus Graduate School of Medicine, Okinawa, Japan
| |
Collapse
|
4
|
Hanif MA, Hossen S, Lee WK, Kho KH. Molecular Characterization of Tropomyosin and Its Potential Involvement in Muscle Contraction in Pacific Abalone. Genes (Basel) 2022; 14:2. [PMID: 36672743 PMCID: PMC9858658 DOI: 10.3390/genes14010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Tropomyosin (TPM) is a contractile protein responsible for muscle contraction through its actin-binding activity. The complete sequence of TPM in Haliotis discus hannai (Hdh-TPM) was 2160 bp, encoding 284 amino acids, and contained a TPM signature motif and a TPM domain. Gene ontology (GO) analysis based on the amino acid sequence predicted Hdh-TPM to have an actin-binding function in the cytoskeleton. The 3D analysis predicted the Hdh-TPM to have a coiled-coil α-helical structure. Phylogenetically, Hdh-TPM formed a cluster with other TPM/TPM1 proteins during analysis. The tissue-specific mRNA expression analysis found the higher expression of Hdh-TPM in the heart and muscles; however, during embryonic and larval development (ELD), the higher expression was found in the trochophore larvae and veliger larvae. Hdh-TPM expression was upregulated in fast-growing abalone. Increasing thermal stress over a long period decreased Hdh-TPM expression. Long-term starvation (>1 week) reduced the mRNA expression of Hdh-TPM in muscle; however, the mRNA expression of Hdh-TPM was significantly higher in the mantle, which may indicate overexpression. This study is the first comprehensive study to characterize the Hdh-TPM gene in Pacific abalone and to report the expression of Hdh-TPM in different organs, and during ELD, different growth patterns, thermal stress, seasonal changes, and starvation.
Collapse
Affiliation(s)
| | | | | | - Kang Hee Kho
- Department of Fisheries Science, Chonnam National University, Yeosu 59626, Republic of Korea
| |
Collapse
|
5
|
Ono S, Lewis M, Ono K. Mutual dependence between tropomodulin and tropomyosin in the regulation of sarcomeric actin assembly in Caenorhabditis elegans striated muscle. Eur J Cell Biol 2022; 101:151215. [PMID: 35306452 PMCID: PMC9081161 DOI: 10.1016/j.ejcb.2022.151215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Tropomodulin and tropomyosin are important components of sarcomeric thin filaments in striated muscles. Tropomyosin decorates the side of actin filaments and enhances tropomodulin capping at the pointed ends of the filaments. Their functional relationship has been extensively characterized in vitro, but in vivo and cellular studies in mammals are often complicated by the presence of functionally redundant isoforms. Here, we used the nematode Caenorhabditis elegans, which has a relatively simple composition of tropomodulin and tropomyosin genes, and demonstrated that tropomodulin (unc-94) and tropomyosin (lev-11) are mutually dependent on each other in their sarcomere localization and regulation of sarcomeric actin assembly. Mutation of tropomodulin caused sarcomere disorganization with formation of actin aggregates. However, the actin aggregation was suppressed when tropomyosin was depleted in the tropomodulin mutant. Tropomyosin was mislocalized to the actin aggregates in the tropomodulin mutants, while sarcomere localization of tropomodulin was lost when tropomyosin was depleted. These results indicate that tropomodulin and tropomyosin are interdependent in the regulation of organized sarcomeric assembly of actin filaments in vivo.
Collapse
Affiliation(s)
- Shoichiro Ono
- Departments of Pathology and Cell Biology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.
| | - Mario Lewis
- Departments of Pathology and Cell Biology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Kanako Ono
- Departments of Pathology and Cell Biology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
6
|
Ben-David E, Boocock J, Guo L, Zdraljevic S, Bloom JS, Kruglyak L. Whole-organism eQTL mapping at cellular resolution with single-cell sequencing. eLife 2021; 10:e65857. [PMID: 33734084 PMCID: PMC8062134 DOI: 10.7554/elife.65857] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
Genetic regulation of gene expression underlies variation in disease risk and other complex traits. The effect of expression quantitative trait loci (eQTLs) varies across cell types; however, the complexity of mammalian tissues makes studying cell-type eQTLs highly challenging. We developed a novel approach in the model nematode Caenorhabditis elegans that uses single-cell RNA sequencing to map eQTLs at cellular resolution in a single one-pot experiment. We mapped eQTLs across cell types in an extremely large population of genetically distinct C. elegans individuals. We found cell-type-specific trans eQTL hotspots that affect the expression of core pathways in the relevant cell types. Finally, we found single-cell-specific eQTL effects in the nervous system, including an eQTL with opposite effects in two individual neurons. Our results show that eQTL effects can be specific down to the level of single cells.
Collapse
Affiliation(s)
- Eyal Ben-David
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University School of MedicineJerusalemIsrael
| | - James Boocock
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| | - Longhua Guo
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| | - Stefan Zdraljevic
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| | - Joshua S Bloom
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| | - Leonid Kruglyak
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
7
|
Ono S, Ono K. Two Caenorhabditis elegans calponin-related proteins have overlapping functions that maintain cytoskeletal integrity and are essential for reproduction. J Biol Chem 2020; 295:12014-12027. [PMID: 32554465 PMCID: PMC7443509 DOI: 10.1074/jbc.ra120.014133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/16/2020] [Indexed: 12/18/2022] Open
Abstract
Multicellular organisms have multiple genes encoding calponins and calponin-related proteins, some of which are known to regulate actin cytoskeletal dynamics and contractility. However, the functional similarities and differences among these proteins are largely unknown. In the nematode Caenorhabditis elegans, UNC-87 is a calponin-related protein with seven calponin-like (CLIK) motifs and is required for maintenance of contractile apparatuses in muscle cells. Here, we report that CLIK-1, another calponin-related protein that also contains seven CLIK motifs, functionally overlaps with UNC-87 in maintaining actin cytoskeletal integrity in vivo and has both common and different actin-regulatory activities in vitro We found that CLIK-1 is predominantly expressed in the body wall muscle and somatic gonad in which UNC-87 is also expressed. unc-87 mutation caused cytoskeletal defects in the body wall muscle and somatic gonad, whereas clik-1 depletion alone caused no detectable phenotypes. However, simultaneous clik-1 and unc-87 depletion caused sterility because of ovulation failure by severely affecting the contractile actin networks in the myoepithelial sheath of the somatic gonad. In vitro, UNC-87 bundled actin filaments, whereas CLIK-1 bound to actin filaments without bundling them and antagonized UNC-87-mediated filament bundling. We noticed that UNC-87 and CLIK-1 share common functions that inhibit cofilin binding and allow tropomyosin binding to actin filaments, suggesting that both proteins stabilize actin filaments. In conclusion, partially redundant functions of UNC-87 and CLIK-1 in ovulation are likely mediated by their common actin-regulatory activities, but their distinct actin-bundling activities suggest that they also have different biological functions.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Cell Biology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA.
| | - Kanako Ono
- Department of Pathology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Cell Biology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Regulation of Actin Dynamics in the C. elegans Somatic Gonad. J Dev Biol 2019; 7:jdb7010006. [PMID: 30897735 PMCID: PMC6473838 DOI: 10.3390/jdb7010006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 11/25/2022] Open
Abstract
The reproductive system of the hermaphroditic nematode C. elegans consists of a series of contractile cell types—including the gonadal sheath cells, the spermathecal cells and the spermatheca–uterine valve—that contract in a coordinated manner to regulate oocyte entry and exit of the fertilized embryo into the uterus. Contraction is driven by acto-myosin contraction and relies on the development and maintenance of specialized acto-myosin networks in each cell type. Study of this system has revealed insights into the regulation of acto-myosin network assembly and contractility in vivo.
Collapse
|
9
|
Watabe E, Ono S, Kuroyanagi H. Alternative splicing of the Caenorhabditis elegans lev-11 tropomyosin gene is regulated in a tissue-specific manner. Cytoskeleton (Hoboken) 2018; 75:427-436. [PMID: 30155988 DOI: 10.1002/cm.21489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/02/2018] [Accepted: 08/22/2018] [Indexed: 01/14/2023]
Abstract
Tropomyosin isoforms contribute to generation of functionally divergent actin filaments. In the nematode Caenorhabditis elegans, multiple isoforms are produced from lev-11, the single tropomyosin gene, by combination of two separate promoters and alternative pre-mRNA splicing. In this study, we report that alternative splicing of lev-11 is regulated in a tissue-specific manner so that a particular tropomyosin isoform is expressed in each tissue. Reverse-transcription polymerase chain reaction analysis of lev-11 mRNAs confirms five previously reported isoforms (LEV-11A, LEV-11C, LEV-11D, LEV-11E and LEV-11O) and identifies a new sixth isoform LEV-11T. Using transgenic alternative-splicing reporter minigenes, we find distinct patterns of preferential exon selections in the pharynx, body wall muscles, intestine and neurons. The body wall muscles preferentially process splicing to produce high-molecular-weight isoforms, LEV-11A, LEV-11D and LEV-11O. The pharynx specifically processes splicing to express a low-molecular-weight isoform LEV-11E, whereas the intestine and neurons process splicing to express another low-molecular-weight isoform LEV-11C. The splicing pattern of LEV-11T was not predominant in any of these tissues, suggesting that this is a minor isoform. Our results suggest that regulation of alternative splicing is an important mechanism to express proper tropomyosin isoforms in particular tissue and/or cell types in C. elegans.
Collapse
Affiliation(s)
- Eichi Watabe
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shoichiro Ono
- Department of Pathology, Department of Cell Biology, and Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
10
|
Wirshing ACE, Cram EJ. Spectrin regulates cell contractility through production and maintenance of actin bundles in the Caenorhabditis elegans spermatheca. Mol Biol Cell 2018; 29:2433-2449. [PMID: 30091661 PMCID: PMC6233056 DOI: 10.1091/mbc.e18-06-0347] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Disruption to the contractility of cells, including smooth muscle cells of the cardiovascular system and myoepithelial cells of the glandular epithelium, contributes to the pathophysiology of contractile tissue diseases, including asthma, hypertension, and primary Sjögren's syndrome. Cell contractility is determined by myosin activity and actomyosin network organization and is mediated by hundreds of protein-protein interactions, many directly involving actin. Here we use a candidate RNA interference screen of more than 100 Caenorhabditis elegans genes with predicted actin-binding and regulatory domains to identify genes that contribute to the contractility of the somatic gonad. We identify the spectrin cytoskeleton composed of SPC-1/α-spectrin, UNC-70/β-spectrin, and SMA-1/β heavy-spectrin as required for contractility and actin organization in the myoepithelial cells of the C. elegans spermatheca. We use imaging of fixed and live animals as well as tissue- and developmental-stage-specific disruption of the spectrin cytoskeleton to show that spectrin regulates the production of prominent central actin bundles and is required for maintenance of central actin bundles throughout successive rounds of stretch and contraction. We conclude that the spectrin cytoskeleton contributes to spermathecal contractility by promoting maintenance of the robust actomyosin bundles that drive contraction.
Collapse
Affiliation(s)
| | - Erin J Cram
- Department of Biology, Northeastern University, Boston, MA 02115
| |
Collapse
|
11
|
Barnes DE, Watabe E, Ono K, Kwak E, Kuroyanagi H, Ono S. Tropomyosin isoforms differentially affect muscle contractility in the head and body regions of the nematode Caenorhabditis elegans. Mol Biol Cell 2018; 29:1075-1088. [PMID: 29496965 PMCID: PMC5921574 DOI: 10.1091/mbc.e17-03-0152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 11/11/2022] Open
Abstract
Tropomyosin, one of the major actin filament-binding proteins, regulates actin-myosin interaction and actin-filament stability. Multicellular organisms express a number of tropomyosin isoforms, but understanding of isoform-specific tropomyosin functions is incomplete. The nematode Caenorhabditis elegans has a single tropomyosin gene, lev-11, which has been reported to express four isoforms by using two separate promoters and alternative splicing. Here, we report a fifth tropomyosin isoform, LEV-11O, which is produced by alternative splicing that includes a newly identified seventh exon, exon 7a. By visualizing specific splicing events in vivo, we find that exon 7a is predominantly selected in a subset of the body wall muscles in the head, while exon 7b, which is the alternative to exon 7a, is utilized in the rest of the body. Point mutations in exon 7a and exon 7b cause resistance to levamisole--induced muscle contraction specifically in the head and the main body, respectively. Overexpression of LEV-11O, but not LEV-11A, in the main body results in weak levamisole resistance. These results demonstrate that specific tropomyosin isoforms are expressed in the head and body regions of the muscles and contribute differentially to the regulation of muscle contractility.
Collapse
Affiliation(s)
- Dawn E. Barnes
- Department of Pathology, Department of Cell Biology, and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Eichi Watabe
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kanako Ono
- Department of Pathology, Department of Cell Biology, and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Euiyoung Kwak
- Department of Pathology, Department of Cell Biology, and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Shoichiro Ono
- Department of Pathology, Department of Cell Biology, and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| |
Collapse
|
12
|
Meyer-Rochow VB, Royuela M. Immunocytochemically determined regulatory proteins, troponin, calponin and caldesmon, may occur together in the musculature of a Gordian worm (Ecdysozoa, Cycloneuralia, Nematomorpha). ZOOMORPHOLOGY 2017. [DOI: 10.1007/s00435-017-0375-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Wirshing ACE, Cram EJ. Myosin activity drives actomyosin bundle formation and organization in contractile cells of the Caenorhabditis elegans spermatheca. Mol Biol Cell 2017; 28:1937-1949. [PMID: 28331075 PMCID: PMC5541844 DOI: 10.1091/mbc.e17-01-0029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/14/2017] [Accepted: 03/17/2017] [Indexed: 12/04/2022] Open
Abstract
The contractile myoepithelial cells of the Caenorhabditis elegans somatic gonad are stretched by oocyte entry and subsequently contract to expel the fertilized embryo into the uterus. Formation of aligned, parallel actomyosin bundles during the first ovulation is triggered by oocyte entry and regulated by myosin contractility. Stress fibers—contractile actomyosin bundles—are important for cellular force production and adaptation to physical stress and have been well studied within the context of cell migration. However, less is known about actomyosin bundle formation and organization in vivo and in specialized contractile cells, such as smooth muscle and myoepithelial cells. The Caenorhabditis elegans spermatheca is a bag-like organ of 24 myoepithelial cells that houses the sperm and is the site of fertilization. During ovulation, spermathecal cells are stretched by oocyte entry and then coordinately contract to expel the fertilized embryo into the uterus. Here we use four-dimensional confocal microscopy of live animals to observe changes to spermathecal actomyosin network organization during cell stretch and contraction. Oocyte entry is required to trigger cell contraction and concomitant production of parallel actomyosin bundles. Actomyosin bundle size, connectivity, spacing, and orientation are regulated by myosin activity. We conclude that myosin drives actomyosin bundle production and that myosin activity is tightly regulated during ovulation to produce an optimally organized actomyosin network in C. elegans spermathecae.
Collapse
Affiliation(s)
| | - Erin J Cram
- Department of Biology, Northeastern University, Boston, MA 02115
| |
Collapse
|
14
|
Barnes DE, Hwang H, Ono K, Lu H, Ono S. Molecular evolution of troponin I and a role of its N-terminal extension in nematode locomotion. Cytoskeleton (Hoboken) 2016; 73:117-30. [PMID: 26849746 DOI: 10.1002/cm.21281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/22/2016] [Accepted: 01/27/2016] [Indexed: 01/29/2023]
Abstract
The troponin complex, composed of troponin T (TnT), troponin I (TnI), and troponin C (TnC), is the major calcium-dependent regulator of muscle contraction, which is present widely in both vertebrates and invertebrates. Little is known about evolutionary aspects of troponin in the animal kingdom. Using a combination of data mining and functional analysis of TnI, we report evidence that an N-terminal extension of TnI is present in most of bilaterian animals as a functionally important domain. Troponin components have been reported in species in most of representative bilaterian phyla. Comparison of TnI sequences shows that the core domains are conserved in all examined TnIs, and that N- and C-terminal extensions are variable among isoforms and species. In particular, N-terminal extensions are present in all protostome TnIs and chordate cardiac TnIs but lost in a subset of chordate TnIs including vertebrate skeletal-muscle isoforms. Transgenic rescue experiments in Caenorhabditis elegans striated muscle show that the N-terminal extension of TnI (UNC-27) is required for coordinated worm locomotion but not in sarcomere assembly and single muscle-contractility kinetics. These results suggest that N-terminal extensions of TnIs are retained from a TnI ancestor as a functional domain.
Collapse
Affiliation(s)
- Dawn E Barnes
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, Georgia
| | - Hyundoo Hwang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia.,School of Engineering and Sciences, Technológico de Monterrey, Monterrey, Nuevo León, Mexico
| | - Kanako Ono
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, Georgia
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia.,Interdisciplinary Program of Bioengineering, Georgia Institute of Technology, Atlanta, Georgia.,The Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Shoichiro Ono
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, Georgia
| |
Collapse
|
15
|
Hegsted A, Wright FA, Votra S, Pruyne D. INF2- and FHOD-related formins promote ovulation in the somatic gonad of C. elegans. Cytoskeleton (Hoboken) 2016; 73:712-728. [PMID: 27770600 PMCID: PMC5148669 DOI: 10.1002/cm.21341] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/16/2016] [Accepted: 10/18/2016] [Indexed: 11/06/2022]
Abstract
Formins are regulators of actin filament dynamics. We demonstrate here that two formins, FHOD-1 and EXC-6, are important in the nematode Caenorhabditis elegans for ovulation, during which actomyosin contractions push a maturing oocyte from the gonad arm into a distensible bag-like organ, the spermatheca. EXC-6, a homolog of the disease-associated mammalian formin INF2, is highly expressed in the spermatheca, where it localizes to cell-cell junctions and to circumferential actin filament bundles. Loss of EXC-6 does not noticeably affect the organization the actin filament bundles, and causes only a very modest increase in the population of junction-associated actin filaments. Despite absence of a strong cytoskeletal phenotype, approximately half of ovulations in exc-6 mutants exhibit extreme defects, including failure of the oocyte to enter the spermatheca, or breakage of the oocyte as the distal spermatheca entrance constricts during ovulation. Loss of FHOD-1 alone has little effect, and we cannot detect FHOD-1 in the spermatheca. However, combined loss of these formins in double fhod-1;exc-6 mutants results in profound ovulation defects, with significant slowing of the entry of oocytes into the spermatheca, and failure of nearly 80% of ovulations. We suggest that EXC-6 plays a role directly in the spermatheca, perhaps by modulating the ability of the spermatheca wall to rapidly accommodate an incoming oocyte, while FHOD-1 may play an indirect role relating to its known importance in the growth and function of the egg-laying muscles. © 2016 The Authors. Cytoskeleton Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anna Hegsted
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, 13210
| | - Forrest A Wright
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York, 13210
| | - SarahBeth Votra
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, 13210
| | - David Pruyne
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, 13210
| |
Collapse
|
16
|
Sonobe H, Obinata T, Minokawa T, Haruta T, Kawamura Y, Wakatsuki S, Sato N. Characterization of paramyosin and thin filaments in the smooth muscle of acorn worm, a member of hemichordates. J Biochem 2016; 160:369-379. [DOI: 10.1093/jb/mvw047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/04/2016] [Indexed: 12/23/2022] Open
|
17
|
Cecchetelli AD, Hugunin J, Tannoury H, Cram EJ. CACN-1 is required in the Caenorhabditis elegans somatic gonad for proper oocyte development. Dev Biol 2016; 414:58-71. [PMID: 27046631 PMCID: PMC4875861 DOI: 10.1016/j.ydbio.2016.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/24/2016] [Accepted: 03/29/2016] [Indexed: 12/16/2022]
Abstract
CACN-1/Cactin is a conserved protein identified in a genome-wide screen for genes that regulate distal tip cell migration in the nematode Caenorhabditis elegans. In addition to possessing distal tip cells that migrate past their correct stopping point, animals depleted of cacn-1 are sterile. In this study, we show that CACN-1 is needed in the soma for proper germ line development and maturation. When CACN-1 is depleted, sheath cells are absent and/or abnormal. When sheath cells are absent, hermaphrodites produce sperm, but do not switch appropriately to oocyte production. When sheath cells are abnormal, some oocytes develop but are not successfully ovulated and undergo endomitotic reduplication (Emo). Our previous proteomic studies show that CACN-1 interacts with a network of splicing factors. Here, these interactors were screened using RNAi. Depletion of many of these factors led to missing or abnormal sheath cells and germ line defects, particularly absent and/or Emo oocytes. These results suggest CACN-1 is part of a protein network that influences somatic gonad development and function through alternative splicing or post-transcriptional gene regulation.
Collapse
Affiliation(s)
| | - Julie Hugunin
- Department of Biology, Northeastern University, Boston, MA 02115, United States
| | - Hiba Tannoury
- Department of Biology, Northeastern University, Boston, MA 02115, United States
| | - Erin J Cram
- Department of Biology, Northeastern University, Boston, MA 02115, United States.
| |
Collapse
|
18
|
Ono K, Ono S. Two distinct myosin II populations coordinate ovulatory contraction of the myoepithelial sheath in the Caenorhabditis elegans somatic gonad. Mol Biol Cell 2016; 27:1131-42. [PMID: 26864628 PMCID: PMC4814220 DOI: 10.1091/mbc.e15-09-0648] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 02/05/2016] [Indexed: 01/13/2023] Open
Abstract
In the nematode somatic gonad, nonmuscle myosin and muscle myosin form distinct filaments and coordinate ovulatory contraction of the myoepithelial sheath. Nonmuscle myosin regulatory light chain is phosphoregulated, and its phosphorylation and dephosphorylation are critical for successful ovulation. The myoepithelial sheath in the somatic gonad of the nematode Caenorhabditis elegans has nonstriated contractile actomyosin networks that produce highly coordinated contractility for ovulation of mature oocytes. Two myosin heavy chains are expressed in the myoepithelial sheath, which are also expressed in the body-wall striated muscle. The troponin/tropomyosin system is also present and essential for ovulation. Therefore, although the myoepithelial sheath has smooth muscle–like contractile apparatuses, it has a striated muscle–like regulatory mechanism through troponin/tropomyosin. Here we report that the myoepithelial sheath has a distinct myosin population containing nonmuscle myosin II isoforms, which is regulated by phosphorylation and essential for ovulation. MLC-4, a nonmuscle myosin regulatory light chain, localizes to small punctate structures and does not colocalize with large, needle-like myosin filaments containing MYO-3, a striated-muscle myosin isoform. RNA interference of MLC-4, as well as of its upstream regulators, LET-502 (Rho-associated coiled-coil forming kinase) and MEL-11 (a myosin-binding subunit of myosin phosphatase), impairs ovulation. Expression of a phosphomimetic MLC-4 mutant mimicking a constitutively active state also impairs ovulation. A striated-muscle myosin (UNC-54) appears to provide partially compensatory contractility. Thus the results indicate that the two spatially distinct myosin II populations coordinately regulate ovulatory contraction of the myoepithelial sheath.
Collapse
Affiliation(s)
- Kanako Ono
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - Shoichiro Ono
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, GA 30322
| |
Collapse
|
19
|
Ono S. Regulation of structure and function of sarcomeric actin filaments in striated muscle of the nematode Caenorhabditis elegans. Anat Rec (Hoboken) 2015; 297:1548-59. [PMID: 25125169 DOI: 10.1002/ar.22965] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 02/26/2014] [Accepted: 02/26/2014] [Indexed: 02/01/2023]
Abstract
The nematode Caenorhabditis elegans has been used as a valuable system to study structure and function of striated muscle. The body wall muscle of C. elegans is obliquely striated muscle with highly organized sarcomeric assembly of actin, myosin, and other accessory proteins. Genetic and molecular biological studies in C. elegans have identified a number of genes encoding structural and regulatory components for the muscle contractile apparatuses, and many of them have counterparts in mammalian cardiac and skeletal muscles or striated muscles in other invertebrates. Applicability of genetics, cell biology, and biochemistry has made C. elegans an excellent system to study mechanisms of muscle contractility and assembly and maintenance of myofibrils. This review focuses on the regulatory mechanisms of structure and function of actin filaments in the C. elegans body wall muscle. Sarcomeric actin filaments in C. elegans muscle are associated with the troponin-tropomyosin system that regulates the actin-myosin interaction. Proteins that bind to the side and ends of actin filaments support ordered assembly of thin filaments. Furthermore, regulators of actin dynamics play important roles in initial assembly, growth, and maintenance of sarcomeres. The knowledge acquired in C. elegans can serve as bases to understand the basic mechanisms of muscle structure and function.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, Georgia; Department of Cell Biology, Emory University, Atlanta, Georgia
| |
Collapse
|
20
|
Ono K, Obinata T, Yamashiro S, Liu Z, Ono S. UNC-87 isoforms, Caenorhabditis elegans calponin-related proteins, interact with both actin and myosin and regulate actomyosin contractility. Mol Biol Cell 2015; 26:1687-98. [PMID: 25717181 PMCID: PMC4436780 DOI: 10.1091/mbc.e14-10-1483] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/18/2015] [Indexed: 12/12/2022] Open
Abstract
Two UNC-87 isoforms with seven calponin-like repeats are expressed widely in muscle and nonmuscle cells in Caenorhabditis elegans. They bind to actin and myosin and inhibit actomyosin motility in vitro. unc-87 mutation enhances contraction of nonstriated muscle in vivo, suggesting that UNC-87 isoforms are negative regulators of actomyosin contractility. Calponin-related proteins are widely distributed among eukaryotes and involved in signaling and cytoskeletal regulation. Calponin-like (CLIK) repeat is an actin-binding motif found in the C-termini of vertebrate calponins. Although CLIK repeats stabilize actin filaments, other functions of these actin-binding motifs are unknown. The Caenorhabditis elegans unc-87 gene encodes actin-binding proteins with seven CLIK repeats. UNC-87 stabilizes actin filaments and is essential for maintenance of sarcomeric actin filaments in striated muscle. Here we show that two UNC-87 isoforms, UNC-87A and UNC-87B, are expressed in muscle and nonmuscle cells in a tissue-specific manner by two independent promoters and exhibit quantitatively different effects on both actin and myosin. Both UNC-87A and UNC-87B have seven CLIK repeats, but UNC-87A has an extra N-terminal extension of ∼190 amino acids. Both UNC-87 isoforms bind to actin filaments and myosin to induce ATP-resistant actomyosin bundles and inhibit actomyosin motility. UNC-87A with an N-terminal extension binds to actin and myosin more strongly than UNC-87B. UNC-87B is associated with actin filaments in nonstriated muscle in the somatic gonad, and an unc-87 mutation causes its excessive contraction, which is dependent on myosin. These results strongly suggest that proteins with CLIK repeats function as a negative regulator of actomyosin contractility.
Collapse
Affiliation(s)
- Kanako Ono
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - Takashi Obinata
- Department of Biology, Faculty of Science, Chiba University, Chiba 263-8522, Japan
| | - Sawako Yamashiro
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - Zhongmei Liu
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - Shoichiro Ono
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, GA 30322
| |
Collapse
|
21
|
Baird NA, Douglas PM, Simic MS, Grant AR, Moresco JJ, Wolff SC, Yates JR, Manning G, Dillin A. HSF-1-mediated cytoskeletal integrity determines thermotolerance and life span. Science 2014; 346:360-3. [PMID: 25324391 DOI: 10.1126/science.1253168] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The conserved heat shock transcription factor-1 (HSF-1) is essential to cellular stress resistance and life-span determination. The canonical function of HSF-1 is to regulate a network of genes encoding molecular chaperones that protect proteins from damage caused by extrinsic environmental stress or intrinsic age-related deterioration. In Caenorhabditis elegans, we engineered a modified HSF-1 strain that increased stress resistance and longevity without enhanced chaperone induction. This health assurance acted through the regulation of the calcium-binding protein PAT-10. Loss of pat-10 caused a collapse of the actin cytoskeleton, stress resistance, and life span. Furthermore, overexpression of pat-10 increased actin filament stability, thermotolerance, and longevity, indicating that in addition to chaperone regulation, HSF-1 has a prominent role in cytoskeletal integrity, ensuring cellular function during stress and aging.
Collapse
Affiliation(s)
- Nathan A Baird
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Peter M Douglas
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Milos S Simic
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Ana R Grant
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | - Suzanne C Wolff
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - John R Yates
- Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Andrew Dillin
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
22
|
Obinata T, Amemiya S, Takai R, Ichikawa M, Toyoshima YY, Sato N. Sea lily muscle lacks a troponin-regulatory system, while it contains paramyosin. Zoolog Sci 2014; 31:122-8. [PMID: 24601773 DOI: 10.2108/zsj.31.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Troponin, a Ca(2+)-dependent regulator of striated muscle contraction, has been characterized in vertebrates, protochordates (amphioxus and ascidian), and many invertebrate animals that are categorized in protostomes, but it has not been detected in echinoderms, such as sea urchin and sea cucumber, members of subphylum Eleutherozoa. In this study, we examined the muscle of a species of isocrinid sea lilies, a member of subphylum Pelmatozoa, that constitute the most basal group of extant echinoderms to clarify whether troponin is lacking from the early evolution of echinoderms. Native thin filaments were released from the muscle homogenates in a relaxing buffer containing ATP and EGTA, a Ca(2+)-chelator, and were collected by ultra-centrifugation. Actin and tropomyosin, but not a troponin-like protein, were detected in the filament preparation. The filaments increased Mg(2+)-ATPase activity of rabbit skeletal muscle myosin irrespective of the presence or absence of Ca(2+). The results indicate that Ca(2+)-sensitive factor, troponin, is lacking in the thin filaments of sea lily muscle as in those of the other echinoderms, sea urchin and sea cucumber. On the other hand, a paramyosin-like protein that is absent from chordates was detected in sea lily muscle as in the muscles of the other echinoderms and invertebrate animals of protostomes.
Collapse
Affiliation(s)
- Takashi Obinata
- 1 Department of Biology, Faculty of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba 262-8522, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Ono K, Ono S. Two actin-interacting protein 1 isoforms function redundantly in the somatic gonad and are essential for reproduction in Caenorhabditis elegans. Cytoskeleton (Hoboken) 2013; 71:36-45. [PMID: 24130131 DOI: 10.1002/cm.21152] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/17/2013] [Accepted: 10/10/2013] [Indexed: 11/11/2022]
Abstract
The somatic gonad of the nematode Caenorhabditis elegans exhibits highly regulated contractility during ovulation, which is essential for successful reproduction. Nonstriated actin filament networks in the myoepithelial sheath at the proximal ovary provide contractile forces to push a mature oocyte for ovulation, but the mechanism of assembly and regulation of the contractile actin networks is poorly understood. Here, we show that actin-interacting protein 1 (AIP1) is essential for the assembly of the contractile actin networks in the myoepithelial sheath. AIP1 promotes disassembly of actin filaments in the presence of actin depolymerizing factor (ADF)/cofilin. C. elegans has two AIP1 genes, unc-78 and aipl-1. Mutation or RNA interference of a single AIP1 isoform causes only minor impacts on reproduction. However, simultaneous depletion of the two AIP1 isoforms causes sterility. AIP1-depleted animals show very weak contractility of the myoepithelial sheath and fail to ovulate a mature oocyte, which results in accumulation of endomitotic oocytes in the ovary. Depletion of AIP1 prevents assembly of actin networks and causes abnormal aggregation of actin as well as ADF/cofilin in the myoepithelial sheath. These results indicate that two AIP1 isoforms have redundant roles in assembly of the contractile apparatuses necessary for C. elegans reproduction.
Collapse
Affiliation(s)
- Kanako Ono
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, Georgia
| | | |
Collapse
|
24
|
Filamin and phospholipase C-ε are required for calcium signaling in the Caenorhabditis elegans spermatheca. PLoS Genet 2013; 9:e1003510. [PMID: 23671426 PMCID: PMC3650001 DOI: 10.1371/journal.pgen.1003510] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 03/30/2013] [Indexed: 12/05/2022] Open
Abstract
The Caenorhabditis elegans spermatheca is a myoepithelial tube that stores sperm and undergoes cycles of stretching and constriction as oocytes enter, are fertilized, and exit into the uterus. FLN-1/filamin, a stretch-sensitive structural and signaling scaffold, and PLC-1/phospholipase C-ε, an enzyme that generates the second messenger IP3, are required for embryos to exit normally after fertilization. Using GCaMP, a genetically encoded calcium indicator, we show that entry of an oocyte into the spermatheca initiates a distinctive series of IP3-dependent calcium oscillations that propagate across the tissue via gap junctions and lead to constriction of the spermatheca. PLC-1 is required for the calcium release mechanism triggered by oocyte entry, and FLN-1 is required for timely initiation of the calcium oscillations. INX-12, a gap junction subunit, coordinates propagation of the calcium transients across the spermatheca. Gain-of-function mutations in ITR-1/IP3R, an IP3-dependent calcium channel, and loss-of-function mutations in LFE-2, a negative regulator of IP3 signaling, increase calcium release and suppress the exit defect in filamin-deficient animals. We further demonstrate that a regulatory cassette consisting of MEL-11/myosin phosphatase and NMY-1/non-muscle myosin is required for coordinated contraction of the spermatheca. In summary, this study answers long-standing questions concerning calcium signaling dynamics in the C. elegans spermatheca and suggests FLN-1 is needed in response to oocyte entry to trigger calcium release and coordinated contraction of the spermathecal tissue. During organism development and normal physiological function cells sense, integrate, and respond to a variety of cues or signals including biochemical and mechanical stimuli. In this study we used Caenorhabditis elegans, a small transparent worm, to study filamin (FLN-1), a structural protein that may act as a molecular strain gauge. The C. elegans spermatheca is a contractile tube that is stretched during normal function, making it an ideal candidate for study of how cells respond to stretch. Oocytes are ovulated into the spermatheca, fertilized, and then pushed into the uterus by constriction of the spermatheca. The ability of the spermatheca to constrict depends on inositol 1,4,5-triphosphate (IP3), a signaling molecule produced by the enzyme phospholipase C (PLC-1) that triggers calcium release within cells. In animals with mutated FLN-1 or PLC-1 the spermathecal cells fail to constrict. Using genetic analysis and a calcium-sensitive fluorescent protein, we show that FLN-1 functions with PLC-1 to regulate IP3 production, calcium release, and contraction of the spermatheca. Filamin may function to sense stretch caused by entering oocytes and to trigger constriction. These findings establish a link between filamin and calcium signaling that may apply to similar signaling pathways in other systems.
Collapse
|
25
|
Tan JACH, Jones MGK, Fosu-Nyarko J. Gene silencing in root lesion nematodes (Pratylenchus spp.) significantly reduces reproduction in a plant host. Exp Parasitol 2013; 133:166-78. [PMID: 23201220 DOI: 10.1016/j.exppara.2012.11.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 09/21/2012] [Accepted: 11/15/2012] [Indexed: 11/28/2022]
Abstract
Root lesion nematodes (RLNs, Pratylenchus species) are a group of economically important migratory endoparasitic plant pathogens that attack host roots of major crops such as wheat and sugarcane, and can reduce crop yields by 7-15%. Pratylenchus thornei and Pratylenchus zeae were treated with double stranded RNA (dsRNA) to study gene silencing, (RNA interference, RNAi), as a potential strategy for their control. Mixed stages of nematodes of both species ingested dsRNA when incubated in a basic soaking solution in the presence of the neurostimulant octopamine. Incubation for up to 16 h in soaking solutions containing 10-50 mM octopamine, 0.1-1.0 mg/mL FITC, and 0.5-6 mM spermidine did not affect vitality. Spermidine phosphate salt hexahydrate rather than spermidine or spermidine trihydrochloride increased uptake of FITC by nematodes, and this resulted in more effective gene silencing. Silencing pat-10 and unc-87 genes of P. thornei and P. zeae resulted in paralysis and uncoordinated movements in both species, although to a higher degree in P. thornei. There was also a greater reduction in transcript of both genes in P. thornei indicating that it may be more susceptible to RNAi. For P. thornei treated with dsRNA of pat-10 and unc-87 there was a significant reduction (77-81%) in nematode reproduction on carrot mini discs over a 5 week period. The results show that RLNs are clearly amenable to gene silencing, and that in planta delivery of dsRNA to target genes in these nematodes should confer host resistance. Moreover, for the two genes, dsRNA derived from either nematode species silenced the corresponding gene in both species. This implies cross-species control of nematodes via RNAi is possible.
Collapse
Affiliation(s)
- Jo-Anne C H Tan
- Plant Biotechnology Research Group, School of Biological Sciences and Biotechnology, WA State Agricultural Biotechnology Centre, Murdoch University, Perth, WA 6150, Australia
| | | | | |
Collapse
|
26
|
Control of oocyte growth and meiotic maturation in Caenorhabditis elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:277-320. [PMID: 22872481 DOI: 10.1007/978-1-4614-4015-4_10] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In sexually reproducing animals, oocytes arrest at diplotene or diakinesis and resume meiosis (meiotic maturation) in response to hormones. Chromosome segregation errors in female meiosis I are the leading cause of human birth defects, and age-related changes in the hormonal environment of the ovary are a suggested cause. Caenorhabditis elegans is emerging as a genetic paradigm for studying hormonal control of meiotic maturation. The meiotic maturation processes in C. elegans and mammals share a number of biological and molecular similarities. Major sperm protein (MSP) and luteinizing hormone (LH), though unrelated in sequence, both trigger meiotic resumption using somatic Gα(s)-adenylate cyclase pathways and soma-germline gap-junctional communication. At a molecular level, the oocyte responses apparently involve the control of conserved protein kinase pathways and post-transcriptional gene regulation in the oocyte. At a cellular level, the responses include cortical cytoskeletal rearrangement, nuclear envelope breakdown, assembly of the acentriolar meiotic spindle, chromosome segregation, and likely changes important for fertilization and the oocyte-to-embryo transition. This chapter focuses on signaling mechanisms required for oocyte growth and meiotic maturation in C. elegans and discusses how these mechanisms coordinate the completion of meiosis and the oocyte-to-embryo transition.
Collapse
|
27
|
Calvert MEK, Wright GD, Leong FY, Chiam KH, Chen Y, Jedd G, Balasubramanian MK. Myosin concentration underlies cell size-dependent scalability of actomyosin ring constriction. ACTA ACUST UNITED AC 2012; 195:799-813. [PMID: 22123864 PMCID: PMC3257563 DOI: 10.1083/jcb.201101055] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The rate of actomyosin ring constriction in cells of different sizes correlates with myosin motor concentration in Neurospora crassa cells, leading to increased division rates in larger cells during cytokinesis. In eukaryotes, cytokinesis is accomplished by an actomyosin-based contractile ring. Although in Caenorhabditis elegans embryos larger cells divide at a faster rate than smaller cells, it remains unknown whether a similar mode of scalability operates in other cells. We investigated cytokinesis in the filamentous fungus Neurospora crassa, which exhibits a wide range of hyphal circumferences. We found that N. crassa cells divide using an actomyosin ring and larger rings constricted faster than smaller rings. However, unlike in C. elegans, the total amount of myosin remained constant throughout constriction, and there was a size-dependent increase in the starting concentration of myosin in the ring. We predict that the increased number of ring-associated myosin motors in larger rings leads to the increased constriction rate. Accordingly, reduction or inhibition of ring-associated myosin slows down the rate of constriction. Because the mechanical characteristics of contractile rings are conserved, we predict that these findings will be relevant to actomyosin ring constriction in other cell types.
Collapse
Affiliation(s)
- Meredith E K Calvert
- Temasek Life Sciences Laboratory, The National University of Singapore, Singapore 117604.
| | | | | | | | | | | | | |
Collapse
|
28
|
Obinata T, Sato N. Comparative studies on troponin, a Ca²⁺-dependent regulator of muscle contraction, in striated and smooth muscles of protochordates. Methods 2011; 56:3-10. [PMID: 22027345 DOI: 10.1016/j.ymeth.2011.09.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 09/30/2011] [Accepted: 09/30/2011] [Indexed: 11/17/2022] Open
Abstract
Troponin is well known as a Ca(2+)-dependent regulator of striated muscle contraction and it has been generally accepted that troponin functions as an inhibitor of muscle contraction or actin-myosin interaction at low Ca(2+) concentrations, and Ca(2+) at higher concentrations removes the inhibitory action of troponin. Recently, however, troponin became detectable in non-striated muscles of several invertebrates and in addition, unique troponin that functions as a Ca(2+)-dependent activator of muscle contraction has been detected in protochordate animals, although troponin in vertebrate striated muscle is known as an inhibitor of the contraction in the absence of a Ca(2+). Further studies on troponin in invertebrate muscle, especially in non-striated muscle, would provide new insight into the evolution of regulatory systems for muscle contraction and diverse function of troponin and related proteins. The methodology used for preparation and characterization of functional properties of protochordate striated and smooth muscles will be helpful for further studies of troponin in other invertebrate animals.
Collapse
Affiliation(s)
- Takashi Obinata
- Department of Biology, Faculty of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | | |
Collapse
|
29
|
Obinata T, Ono K, Ono S. Detection of a troponin I-like protein in non-striated muscle of the tardigrades (water bears). BIOARCHITECTURE 2011; 1:96-102. [PMID: 21866271 DOI: 10.4161/bioa.1.2.16251] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 04/29/2011] [Indexed: 12/29/2022]
Abstract
Tardigrades, also known as water bears, have somatic muscle fibers that are responsible for movement of their body and legs. These muscle fibers contain thin and thick filaments in a non-striated pattern. However, the regulatory mechanism of muscle contraction in tardigrades is unknown. In the absence of extensive molecular and genomic information, we detected a protein of 31 kDa in whole lysates of tardigrades that cross-reacted with the antibody raised against nematode troponin I (TnI). TnI is a component of the troponin complex that regulates actin-myosin interaction in a Ca(2+)-dependent and actin-linked manner. This TnI-like protein was co-extracted with actin in a buffer containing ATP and EGTA, which is known to induce relaxation of a troponin-regulated contractile system. The TnI-like protein was specifically expressed in the somatic muscle fibers in adult animals and partially co-localized with actin filaments in a non-striated manner. Interestingly, the pharyngeal muscle did not express this protein. These observations suggest that the non-striated somatic muscle of tardigrades has an actin-linked and troponin-regulated system for muscle contraction.
Collapse
Affiliation(s)
- Takashi Obinata
- Department of Biology; Faculty of Science; Chiba University; Chiba, Japan
| | | | | |
Collapse
|
30
|
Dennisson JG, Tando Y, Sato N, Ogasawara M, Kubokawa K, Obinata T. Functional Characteristics of Amphioxus Troponin in Regulation of Muscle Contraction. Zoolog Sci 2010; 27:461-9. [DOI: 10.2108/zsj.27.461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
González-Miguel J, Rosario L, Rota-Nodari E, Morchón R, Simón F. Identification of immunoreactive proteins of Dirofilaria immitis and D. repens recognized by sera from patients with pulmonary and subcutaneous dirofilariosis. Parasitol Int 2010; 59:248-56. [DOI: 10.1016/j.parint.2010.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 02/16/2010] [Accepted: 02/23/2010] [Indexed: 11/15/2022]
|
32
|
Obinata T, Ono K, Ono S. Troponin I controls ovulatory contraction of non-striated actomyosin networks in the C. elegans somatic gonad. J Cell Sci 2010; 123:1557-66. [PMID: 20388732 DOI: 10.1242/jcs.065060] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The myoepithelial sheath of the Caenorhabditis elegans somatic gonad has non-striated actomyosin networks that provide contractile forces during ovulation, a process in which a mature oocyte is expelled from the ovary. Troponin T and troponin C are known regulators of contraction of the myoepithelial sheath. These are two of the three components of the troponin complex that is generally considered as a striated-muscle-specific regulator of actomyosin contraction. Here, we report identification of troponin I as the third component of the troponin complex that regulates ovulatory contraction of the myoepithelial sheath. C. elegans has four genes encoding troponin-I isoforms. We found that tni-1 and unc-27 (also known as tni-2) encode two major troponin-I isoforms in the myoepithelial sheath. Combination of RNA interference and mutation of tni-1 and unc-27 resulted in loss of the troponin-I protein in the gonad and caused sterility due to defective contraction of the myoepithelial sheath. Troponin-I-depleted gonads were hypercontracted, which is consistent with the function of troponin I as an inhibitor of actomyosin contraction. Troponin I was associated with non-striated actin networks in a tropomyosin-dependent manner. Our results demonstrate that troponin I regulates contraction of non-striated actomyosin networks and is an essential cytoskeletal component of the C. elegans reproductive system.
Collapse
Affiliation(s)
- Takashi Obinata
- Department of Health and Nutrition, Teikyo-Heisei University, Tokyo 170-8445, Japan
| | | | | |
Collapse
|
33
|
Strübing U, Lucius R, Hoerauf A, Pfarr KM. Mitochondrial genes for heme-dependent respiratory chain complexes are up-regulated after depletion of Wolbachia from filarial nematodes. Int J Parasitol 2010; 40:1193-202. [PMID: 20362581 DOI: 10.1016/j.ijpara.2010.03.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 03/24/2010] [Accepted: 03/25/2010] [Indexed: 11/28/2022]
Abstract
The filarial nematodes Brugia malayi, Wuchereria bancrofti and Onchocerca volvulus cause elephantiasis or dermatitis and blindness resulting in severe morbidity. Annually, 1.3 billion people are at risk of infection. Targeting the essential Wolbachia endobacteria of filarial nematodes with doxycycline has proven to be an effective therapy resulting in a block in embryogenesis, worm development and macrofilaricidal effects. However, doxycycline is contraindicated for a large portion of the at risk population. To identify new targets for anti-wolbachial therapy, understanding the molecular basis of the Wolbachia-filaria symbiosis is required. Using the B. malayi microarray we identified differentially expressed genes in the rodent filaria Litomosoides sigmodontis after depletion of Wolbachia which might have a role in symbiosis. The microarray data were filtered for regulated genes with a false discovery rate <5% and a > or = 2-fold-change. Most of the genes were differentially expressed at day 36 of tetracycline treatment, when 99.8% of Wolbachia were depleted. Several classes of genes were affected, including genes for translation, transcription, folding/sorting of proteins, motility, structure and metabolic and signalling pathways. Quantitative PCR validated 60% of the genes found to be regulated in the microarray. A nuclear encoded heme-binding protein of the globin family was up-regulated upon loss of Wolbachia. Interestingly, mitochondrial encoded subunits of respiratory chain complexes containing heme and riboflavin were also up-regulated. No change in the expression of these genes was seen in tetracycline treated Wolbachia-free Acanthocheilonema viteae. As Wolbachia synthesise heme and filaria do not, we hypothesise that without the endosymbionts no functional heme-containing enzymes can be formed, leading to loss of energy metabolism which then results in up-regulation of the mitochondrial encoded subunits in an attempt to correct the deviation from homeostasis. Our results support targeting the Wolbachia heme synthesis pathway for the discovery of new anti-filarial drugs.
Collapse
Affiliation(s)
- Uta Strübing
- Institute for Medical Microbiology, Immunology and Parasitology, University Clinic Bonn, Sigmund-Freud-Str. 25, D-53105 Bonn, Germany
| | | | | | | |
Collapse
|
34
|
Dangi A, Vedi S, Nag JK, Paithankar S, Singh MP, Kar SK, Dube A, Misra-Bhattacharya S. Tetracycline treatment targeting Wolbachia affects expression of an array of proteins in Brugia malayi parasite. Proteomics 2009; 9:4192-208. [PMID: 19722191 DOI: 10.1002/pmic.200800324] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Wolbachia is an intracellular endosymbiont of Brugia malayi parasite whose presence is essential for the survival of the parasite. Treatment of B. malayi-infected jirds with tetracycline eliminates Wolbachia, which affects parasite survival and fitness. In the present study we have tried to identify parasite proteins that are affected when Wolbachia is targeted by tetracycline. For this Wolbachia depleted parasites (B. malayi) were obtained by tetracycline treatment of infected Mongolian jirds (Meriones unguiculatus) and their protein profile after 2-DE separation was compared with that of untreated parasites harboring Wolbachia. Approximately 100 protein spots could be visualized followed by CBB staining of 2-D gel and included for comparative analysis. Of these, 54 showed differential expressions, while two new protein spots emerged (of 90.3 and 64.4 kDa). These proteins were subjected to further analysis by MALDI-TOF for their identification using Brugia coding sequence database composed of both genomic and EST sequences. Our study unravels two crucial findings: (i) the parasite or Wolbachia proteins, which disappeared/down-regulated appear be essential for parasite survival and may be used as drug targets and (ii) tetracycline treatment interferes with the regulatory machinery vital for parasites cellular integrity and defense and thus could possibly be a molecular mechanism for the killing of filarial parasite. This is the first proteomic study substantiating the wolbachial genome integrity with its nematode host and providing functional genomic data of human lymphatic filarial parasite B. malayi.
Collapse
Affiliation(s)
- Anil Dangi
- Division of Parasitology, Central Drug Research Institute, Chattar Manzil Palace, Lucknow (U.P.), India
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Hill RC, Haag ES. A sensitized genetic background reveals evolution near the terminus of the Caenorhabditis germline sex determination pathway. Evol Dev 2009; 11:333-42. [PMID: 19601967 DOI: 10.1111/j.1525-142x.2009.00340.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Caenorhabditis elegans and Caenorhabditis briggsae are both self-fertile hermaphroditic nematodes that evolved independently from male/female ancestors. In C. elegans, FEM-1, FEM-2, and FEM-3 specify male fates by promoting proteolysis of the male-repressing transcription factor, TRA-1. Phenotypes of tra-1 and fem mutants are consistent with this simple linear model in the soma, but not in the germline. While both XX and XO tra-1(lf) mutants have functional male somas, they produce both sperm and oocytes. Further, all three tra-1; fem double mutants retain the expected male soma, but make only oocytes (the germline fem phenotype). Thus, a poorly characterized tra-1 activity is important for sustained male spermatogenesis, and the fem genes affect germline sexual fate independently of their role in regulating TRA-1. C. briggsae tra-1 mutants are phenotypically identical to their C. elegans counterparts, while the fem mutants differ in the germline: XX and XO C. elegans fem mutants are true females, but in C. briggsae they are self-fertile hermaphrodites. To further explore how C. briggsae hermaphrodites regulate germline sex, we analyzed Cb-tra-1/Cb-fem interactions. Cb-tra-1 is fully epistatic to Cb-fem-2 in the germline, unlike the orthologous C. elegans combination. In contrast, Cb-fem-3 shifts the Cb-tra-1(lf) germline phenotype to that of a nearly normal hermaphrodite in the context of a male somatic gonad. This suggests that Cb-fem-3 is epistatic to Cb-tra-1(lf) (as in C. elegans), and that the normal control of C. briggsae XX spermatogenesis targets Cb-tra-1-independent factors downstream of Cb-fem-3. The effect of Cb-fem-3(lf) on Cb-tra-1(lf) is not mediated by change in the expression of Cb-fog-3, a likely direct germline target of Cb-tra-1. As Cb-fem-2 and Cb-fem-3 have identical single mutant phenotypes, Cb-tra-1 provides a sensitized background that reveals differences in how they promote male germline development. These results represent another way in which C. briggsae germline sex determination is incongruent with that of the outwardly similar C. elegans.
Collapse
Affiliation(s)
- Robin Cook Hill
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
36
|
Dubreuil G, Magliano M, Dubrana MP, Lozano J, Lecomte P, Favery B, Abad P, Rosso MN. Tobacco rattle virus mediates gene silencing in a plant parasitic root-knot nematode. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:4041-50. [PMID: 19625337 DOI: 10.1093/jxb/erp237] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Root-knot nematodes (RKNs) are sedentary biotrophic parasites that induce the differentiation of root cells into feeding cells that provide the nematodes with the nutrients necessary for their development. The development of new control methods against RKNs relies greatly on the functional analysis of genes that are crucial for the development of the pathogen or the success of parasitism. In the absence of genetic transformation, RNA interference (RNAi) allows for phenotype analysis of nematode development and nematode establishment in its host after sequence-specific knock-down of the targeted genes. Strategies used to induce RNAi in RKNs are so far restricted to small-scale analyses. In the search for a new RNAi strategy amenable to large-scale screenings the possibility of using RNA viruses to produce the RNAi triggers in plants was tested. Tobacco rattle virus (TRV) was tested as a means to introduce double-stranded RNA (dsRNA) triggers into the feeding cells and to mediate RKN gene silencing. It was demonstrated that virus-inoculated plants can produce dsRNA and siRNA silencing triggers for delivery to the feeding nematodes. Interestingly, the knock-down of the targeted genes was observed in the progeny of the feeding nematodes, suggesting that continuous ingestion of dsRNA triggers could be used for the functional analysis of genes involved in early development. However, the heterogeneity in RNAi efficiency between TRV-inoculated plants appears as a limitation to the use of TRV-mediated silencing for the high-throughput functional analysis of the targeted nematode genes.
Collapse
Affiliation(s)
- G Dubreuil
- INRA-UNSA-CNRS, UMR 1064, Interactions Plantes-Microorganismes et Santé Végétale, 400, route des Chappes, BP 167, F-06903 Sophia Antipolis, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Irles P, Bellés X, Piulachs MD. Identifying genes related to choriogenesis in insect panoistic ovaries by Suppression Subtractive Hybridization. BMC Genomics 2009; 10:206. [PMID: 19405973 PMCID: PMC2683872 DOI: 10.1186/1471-2164-10-206] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2008] [Accepted: 04/30/2009] [Indexed: 12/13/2022] Open
Abstract
Background Insect ovarioles are classified into two categories: panoistic and meroistic, the later having apparently evolved from an ancestral panoistic type. Molecular data on oogenesis is practically restricted to meroistic ovaries. If we aim at studying the evolutionary transition from panoistic to meroistic, data on panoistic ovaries should be gathered. To this end, we planned the construction of a Suppression Subtractive Hybridization (SSH) library to identify genes involved in panoistic choriogenesis, using the cockroach Blattella germanica as model. Results We constructed a post-vitellogenic ovary library by SSH to isolate genes involved in choriogenesis in B. germanica. The tester library was prepared with an ovary pool from 6- to 7-day-old females, whereas the driver library was prepared with an ovary pool from 3- to 4-day-old females. From the SSH library, we obtained 258 high quality sequences which clustered into 34 unique sequences grouped in 19 contigs and 15 singlets. The sequences were compared against non-redundant NCBI databases using BLAST. We found that 44% of the unique sequences had homologous sequences in known genes of other organisms, whereas 56% had no significant similarity to any of the databases entries. A Gene Ontology analysis was carried out, classifying the 34 sequences into different functional categories. Seven of these gene sequences, representative of different categories and processes, were chosen to perform expression studies during the first gonadotrophic cycle by real-time PCR. Results showed that they were mainly expressed during post-vitellogenesis, which validates the SSH technique. In two of them corresponding to novel genes, we demonstrated that they are specifically expressed in the cytoplasm of follicular cells in basal oocytes at the time of choriogenesis. Conclusion The SSH approach has proven to be useful in identifying ovarian genes expressed after vitellogenesis in B. germanica. For most of the genes, functions related to choriogenesis are postulated. The relatively high percentage of novel genes obtained and the practical absence of chorion genes typical of meroistic ovaries suggest that mechanisms regulating chorion formation in panoistic ovaries are significantly different from those of meroistic ones.
Collapse
Affiliation(s)
- Paula Irles
- Institut de Biologia Evolutiva (UPF-CSIC), Passeig Marítim de la Barceloneta, Barcelona, Spain.
| | | | | |
Collapse
|
38
|
Hooper SL, Hobbs KH, Thuma JB. Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle. Prog Neurobiol 2008; 86:72-127. [PMID: 18616971 PMCID: PMC2650078 DOI: 10.1016/j.pneurobio.2008.06.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 05/08/2008] [Accepted: 06/12/2008] [Indexed: 11/26/2022]
Abstract
This is the second in a series of canonical reviews on invertebrate muscle. We cover here thin and thick filament structure, the molecular basis of force generation and its regulation, and two special properties of some invertebrate muscle, catch and asynchronous muscle. Invertebrate thin filaments resemble vertebrate thin filaments, although helix structure and tropomyosin arrangement show small differences. Invertebrate thick filaments, alternatively, are very different from vertebrate striated thick filaments and show great variation within invertebrates. Part of this diversity stems from variation in paramyosin content, which is greatly increased in very large diameter invertebrate thick filaments. Other of it arises from relatively small changes in filament backbone structure, which results in filaments with grossly similar myosin head placements (rotating crowns of heads every 14.5 nm) but large changes in detail (distances between heads in azimuthal registration varying from three to thousands of crowns). The lever arm basis of force generation is common to both vertebrates and invertebrates, and in some invertebrates this process is understood on the near atomic level. Invertebrate actomyosin is both thin (tropomyosin:troponin) and thick (primarily via direct Ca(++) binding to myosin) filament regulated, and most invertebrate muscles are dually regulated. These mechanisms are well understood on the molecular level, but the behavioral utility of dual regulation is less so. The phosphorylation state of the thick filament associated giant protein, twitchin, has been recently shown to be the molecular basis of catch. The molecular basis of the stretch activation underlying asynchronous muscle activity, however, remains unresolved.
Collapse
Affiliation(s)
- Scott L. Hooper
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| | - Kevin H. Hobbs
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| | - Jeffrey B. Thuma
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| |
Collapse
|
39
|
Ono K, Yamashiro S, Ono S. Essential role of ADF/cofilin for assembly of contractile actin networks in the C. elegans somatic gonad. J Cell Sci 2008; 121:2662-70. [PMID: 18653537 DOI: 10.1242/jcs.034215] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The somatic gonad of the nematode Caenorhabditis elegans contains a myoepithelial sheath, which surrounds oocytes and provides contractile forces during ovulation. Contractile apparatuses of the myoepithelial-sheath cells are non-striated and similar to those of smooth muscle. We report the identification of a specific isoform of actin depolymerizing factor (ADF)/cofilin as an essential factor for assembly of contractile actin networks in the gonadal myoepithelial sheath. Two ADF/cofilin isoforms, UNC-60A and UNC-60B, are expressed from the unc-60 gene by alternative splicing. RNA interference of UNC-60A caused disorganization of the actin networks in the myoepithelial sheath. UNC-60B, which is known to function in the body-wall muscle, was not necessary or sufficient for actin organization in the myoepithelial sheath. However, mutant forms of UNC-60B with reduced actin-filament-severing activity rescued the UNC-60A-depletion phenotype. UNC-60A has a much weaker filament-severing activity than UNC-60B, suggesting that an ADF/cofilin with weak severing activity is optimal for assembly of actin networks in the myoepithelial sheath. By contrast, strong actin-filament-severing activity of UNC-60B was required for assembly of striated myofibrils in the body-wall muscle. Our results suggest that an optimal level of actin-filament-severing activity of ADF/cofilin is required for assembly of actin networks in the somatic gonad.
Collapse
Affiliation(s)
- Kanako Ono
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
40
|
Gunning P, O'Neill G, Hardeman E. Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol Rev 2008; 88:1-35. [PMID: 18195081 DOI: 10.1152/physrev.00001.2007] [Citation(s) in RCA: 373] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tropomyosins are rodlike coiled coil dimers that form continuous polymers along the major groove of most actin filaments. In striated muscle, tropomyosin regulates the actin-myosin interaction and, hence, contraction of muscle. Tropomyosin also contributes to most, if not all, functions of the actin cytoskeleton, and its role is essential for the viability of a wide range of organisms. The ability of tropomyosin to contribute to the many functions of the actin cytoskeleton is related to the temporal and spatial regulation of expression of tropomyosin isoforms. Qualitative and quantitative changes in tropomyosin isoform expression accompany morphogenesis in a range of cell types. The isoforms are segregated to different intracellular pools of actin filaments and confer different properties to these filaments. Mutations in tropomyosins are directly involved in cardiac and skeletal muscle diseases. Alterations in tropomyosin expression directly contribute to the growth and spread of cancer. The functional specificity of tropomyosins is related to the collaborative interactions of the isoforms with different actin binding proteins such as cofilin, gelsolin, Arp 2/3, myosin, caldesmon, and tropomodulin. It is proposed that local changes in signaling activity may be sufficient to drive the assembly of isoform-specific complexes at different intracellular sites.
Collapse
Affiliation(s)
- Peter Gunning
- Oncology Research Unit, The Children's Hospital at Westmead, and Muscle Development Unit, Children's Medical Research Institute, Westmead; New South Wales, Australia.
| | | | | |
Collapse
|
41
|
Ono K, Yu R, Ono S. Structural components of the nonstriated contractile apparatuses in the Caenorhabditis elegans gonadal myoepithelial sheath and their essential roles for ovulation. Dev Dyn 2007; 236:1093-105. [PMID: 17326220 PMCID: PMC1994093 DOI: 10.1002/dvdy.21091] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ovulation in the nematode Caenorhabditis elegans is regulated by complex signal transduction pathways and cell-cell interactions. Myoepithelial sheath cells of the proximal ovary are smooth muscle-like cells that provide contractile forces to push a mature oocyte into the spermatheca for fertilization. Although several genes that regulate sheath contraction have been characterized, basic components of the contractile apparatuses of the myoepithelial sheath have not been extensively studied. We identified major structural proteins of the contractile apparatuses of the myoepithelial sheath and characterized their nonstriated arrangement. Of interest, integrin and perlecan were found only at the dense bodies, whereas they localized to both dense bodies and M-lines in the striated body wall muscle. RNA interference of most of the myofibrillar components impaired ovulation in a soma-specific manner. Our results provide basic information that helps understanding the mechanism of sheath contraction during ovulation and establishing a new model to study morphogenesis of nonstriated muscle.
Collapse
Affiliation(s)
| | | | - Shoichiro Ono
- Correspondence to: Shoichiro Ono, Department of Pathology, Emory University, 615 Michael Street, Whitehead Research Building, Room 105N, Atlanta, GA 30322. E-mail:
| |
Collapse
|
42
|
Chirgwin SR, Coleman SU, Klei TR. Brugia pahangi: in vivo tissue migration of early L3 alters gene expression. Exp Parasitol 2007; 118:89-95. [PMID: 17706647 DOI: 10.1016/j.exppara.2007.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 05/18/2007] [Accepted: 06/25/2007] [Indexed: 11/28/2022]
Abstract
Events occurring during early filarial nematode migrations are central to parasite establishment but rarely studied. Brugia pahangi larvae injected intradermal (ID) into the hind limb of the gerbil (Meriones unguiculatus) can be recovered from the popliteal lymph node (POP) at 3 days post-infection (DPI). They have been designated migrating larvae (IDL3). Alternatively, L3 recovered at 3DPI from the peritoneal cavity (IPL3) do not migrate. Subtracted cDNA libraries using IDL3 and IPL3 revealed distinct gene profiles between IDL3 and IPL3. Troponin-c was significantly upregulated in IDL3, while Cathepsin L was significantly increased in IPL3. Differences in mRNA levels were also observed with these and other genes between IDL3, IPL3 and L3 isolated from mosquitoes (VL3). These data suggest that migratory activity, exposure to potentially different host environments and/or host location may be important external factors in influencing larval gene expression.
Collapse
Affiliation(s)
- Sharon R Chirgwin
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | | | | |
Collapse
|
43
|
Yang KT, Lin CY, Huang HL, Liou JS, Chien CY, Wu CP, Huang CW, Ou BR, Chen CF, Lee YP, Lin EC, Tang PC, Lee WC, Ding ST, Cheng WTK, Huang MC. Expressed transcripts associated with high rates of egg production in chicken ovarian follicles. Mol Cell Probes 2007; 22:47-54. [PMID: 17692502 DOI: 10.1016/j.mcp.2007.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 04/06/2007] [Accepted: 06/12/2007] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to characterize differentially expressed transcripts associated with varying rates of egg production in Taiwan country chickens. Ovarian follicles were isolated from two strains of chicken which showed low (B) or high (L2) rates of egg production, then processed for RNA extraction and cDNA library construction. Three thousand and eight forty clones were randomly selected from the cDNA library and amplified by PCR, then used in microarray analysis. Differentially expressed transcripts (P<0.05, log(2)> or = 1.75) were sequenced, and aligned using GenBank. This analysis revealed 20 non-redundant sequences which corresponded to known transcripts. Eight transcripts were expressed at a higher level in ovarian tissue prepared from chicken strain B, and 12 transcripts were expressed at a higher level in L2 birds. These differential patterns of expression were confirmed by semi-quantitative RT-PCR. We show that transcripts of cyclin B2 (cycB2), ferritin heavy polypeptide 1 (FTH1), Gag-Pol polyprotein, thymosin beta4 (TB4) and elongation factor 1 alpha1 (EEF1A1) were enriched in B strain ovarian follicles. In contrast, thioredoxin (TXN), acetyl-CoA dehydrogenase long chain (ACADL), inhibitor of growth family member 4 (ING4) and annexin II (ANXA2) were expressed in at higher levels in the L2 strain. We suggest that our approach may lead to the isolation of effective molecular markers that can be used in selection programs in Taiwan country chickens.
Collapse
Affiliation(s)
- K T Yang
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Xu X, Guo H, Wycuff DL, Lee M. Role of phosphatidylinositol-4-phosphate 5' kinase (ppk-1) in ovulation of Caenorhabditis elegans. Exp Cell Res 2007; 313:2465-75. [PMID: 17475243 PMCID: PMC1950138 DOI: 10.1016/j.yexcr.2007.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 03/15/2007] [Accepted: 03/19/2007] [Indexed: 11/21/2022]
Abstract
During Caenorhabditis elegans ovulation, the somatic gonad integrates signals from germ cells and propels a mature oocyte into the spermatheca for fertilization. Previous work suggests that phosphoinositide signaling plays important roles in C. elegans fertility. To fully understand inositol-1,4,5-trisphosphate (IP(3)) signaling in ovulation, we have examined the function of phosphatidylinositol-4-phosphate 5' kinase (PIP5K) in C. elegans. Our results show that the C. elegans PIP5K homolog, ppk-1, is essential for ovulation in C. elegans; ppk-1 is mainly expressed in somatic gonad, and depletion of ppk-1 expression causes defective ovulation, reduced gonad sheath contractility, and sterility. Increased IP(3) signaling compensates for ppk-1 (RNAi)-induced sterility, suggesting that ppk-1 is linked to IP(3) signaling. These results demonstrate that ppk-1 plays an essential role in IP(3) signaling and cytoskeleton organization in somatic gonad.
Collapse
Affiliation(s)
- Xiaojian Xu
- Department of Biology, Baylor University, One Bear Place 97388, Waco, TX 76798
| | - Haisu Guo
- Department of Biology, Baylor University, One Bear Place 97388, Waco, TX 76798
| | - Diane L. Wycuff
- Molecular Bioscience Center, Baylor University, One Bear Place 97046, Waco, TX 76798
| | - Myeongwoo Lee
- Department of Biology, Baylor University, One Bear Place 97388, Waco, TX 76798
- *All correspondence should be addressed to: Myeongwoo Lee, Ph.D., Tel) 254-710-2135, Fax) 254-710-2969, Email)
| |
Collapse
|
45
|
Kagawa H, Takaya T, Ruksana R, Anokye-Danso F, Amin MZ, Terami H. C. elegans model for studying tropomyosin and troponin regulations of muscle contraction and animal behavior. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 592:153-61. [PMID: 17278363 DOI: 10.1007/978-4-431-38453-3_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- Hiroaki Kagawa
- Division of Bioscience, Graduate School of Science and Technology, Okayama University, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Yu R, Ono S. Dual roles of tropomyosin as an F-actin stabilizer and a regulator of muscle contraction in Caenorhabditis elegans body wall muscle. ACTA ACUST UNITED AC 2006; 63:659-72. [PMID: 16937397 PMCID: PMC1705952 DOI: 10.1002/cm.20152] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Tropomyosin is a well-characterized regulator of muscle contraction. It also stabilizes actin filaments in a variety of muscle and non-muscle cells. Although these two functions of tropomyosin could have different impacts on actin cytoskeletal organization, their functional relationship has not been studied in the same experimental system. Here, we investigated how tropomyosin stabilizes actin filaments and how this function is influenced by muscle contraction in Caenorhabditis elegans body wall muscle. We confirmed the antagonistic role of tropomyosin against UNC-60B, a muscle-specific ADF/cofilin isoform, in actin filament organization using multiple UNC-60B mutant alleles. Tropomyosin was also antagonistic to UNC-78 (AIP1) in vivo and protected actin filaments from disassembly by UNC-60B and UNC-78 in vitro, suggesting that tropomyosin protects actin filaments from the ADF/cofilin-AIP1 actin disassembly system in muscle cells. A mutation in the myosin heavy chain caused greater reduction in contractility than tropomyosin depletion. However, the myosin mutation showed much weaker suppression of the phenotypes of ADF/cofilin or AIP1 mutants than tropomyosin depletion. These results suggest that muscle contraction has only minor influence on the tropomyosin's protective role against ADF/cofilin and AIP1, and that the two functions of tropomyosin in actin stability and muscle contraction are independent of each other.
Collapse
Affiliation(s)
- Robinson Yu
- Department of Pathology, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
47
|
Hashmi S, Zhang J, Oksov Y, Ji Q, Lustigman S. The Caenorhabditis elegans CPI-2a cystatin-like inhibitor has an essential regulatory role during oogenesis and fertilization. J Biol Chem 2006; 281:28415-29. [PMID: 16857685 DOI: 10.1074/jbc.m600254200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the present study, we characterized a sterile cpi-2a(ok1256) deletion mutant in Caenorhabditis elegans and showed that CPI-2a has an essential regulatory role during oogenesis and fertilization. We have also shown that the CPI2a inhibitor and both Ce-CPL-1 and Ce-CPZ-1 enzymes are present in the myoepithelial sheath surrounding germ cells, oocytes, and embryos as well as in the yolk granules within normal oocytes. Staining of mutant worms with anti-yolk protein antibodies has indicted that the proteins are not present in the mature oocytes. Moreover, green fluorescent protein expression was absence or reduced in cpi-2a/yp170:gfp mutant oocytes, although it was expressed in one of the successfully developed embryos. Based on these results, we hypothesize that the sterility in cpi-2a(ok1256) mutant worms is potentially caused by two possible mechanisms: 1) defects in the uptake and/or processing of yolk proteins by the growing oocytes and 2) indirect induction of defects in cell-cell signaling that is critical for promoting germ line development, oocyte maturation, ovulation, and fertilization. A defect in any of these processes would have detrimental effects on the development of normal embryos and consequently normal production of progenies as we observed in cpi-2a mutant worms. This is the first study that demonstrates the expression of cysteine proteases and their endogenous inhibitor in the gonadal sheath cells surrounding germ cells and oocytes, which indirectly have established their potential involvement in proteolytic processing of molecules within the gonadal sheath cells, such as components of the extracellular matrix or the cytoskeletal proteins, which are essential for proper cell-cell signaling activities of the gonadal sheath cells during normal maturation and ovulation processes.
Collapse
Affiliation(s)
- Sarwar Hashmi
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York 10021, USA.
| | | | | | | | | |
Collapse
|
48
|
Ono K, Yu R, Mohri K, Ono S. Caenorhabditis elegans kettin, a large immunoglobulin-like repeat protein, binds to filamentous actin and provides mechanical stability to the contractile apparatuses in body wall muscle. Mol Biol Cell 2006; 17:2722-34. [PMID: 16597697 PMCID: PMC1474806 DOI: 10.1091/mbc.e06-02-0114] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Kettin is a large actin-binding protein with immunoglobulin-like (Ig) repeats, which is associated with the thin filaments in arthropod muscles. Here, we report identification and functional characterization of kettin in the nematode Caenorhabditis elegans. We found that one of the monoclonal antibodies that were raised against C. elegans muscle proteins specifically reacts with kettin (Ce-kettin). We determined the entire cDNA sequence of Ce-kettin that encodes a protein of 472 kDa with 31 Ig repeats. Arthropod kettins are splice variants of much larger connectin/titin-related proteins. However, the gene for Ce-kettin is independent of other connectin/titin-related genes. Ce-kettin localizes to the thin filaments near the dense bodies in both striated and nonstriated muscles. The C-terminal four Ig repeats and the adjacent non-Ig region synergistically bind to actin filaments in vitro. RNA interference of Ce-kettin caused weak disorganization of the actin filaments in body wall muscle. This phenotype was suppressed by inhibiting muscle contraction by a myosin mutation, but it was enhanced by tetramisole-induced hypercontraction. Furthermore, Ce-kettin was involved in organizing the cytoplasmic portion of the dense bodies in cooperation with alpha-actinin. These results suggest that kettin is an important regulator of myofibrillar organization and provides mechanical stability to the myofibrils during contraction.
Collapse
Affiliation(s)
- Kanako Ono
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Robinson Yu
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Kurato Mohri
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, GA 30322
| |
Collapse
|
49
|
Mohri K, Ono K, Yu R, Yamashiro S, Ono S. Enhancement of actin-depolymerizing factor/cofilin-dependent actin disassembly by actin-interacting protein 1 is required for organized actin filament assembly in the Caenorhabditis elegans body wall muscle. Mol Biol Cell 2006; 17:2190-9. [PMID: 16525019 PMCID: PMC1446098 DOI: 10.1091/mbc.e05-11-1016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Regulated disassembly of actin filaments is involved in several cellular processes that require dynamic rearrangement of the actin cytoskeleton. Actin-interacting protein (AIP) 1 specifically enhances disassembly of actin-depolymerizing factor (ADF)/cofilin-bound actin filaments. In vitro, AIP1 actively disassembles filaments, caps barbed ends, and binds to the side of filaments. However, how AIP1 functions in the cellular actin cytoskeletal dynamics is not understood. We compared biochemical and in vivo activities of mutant UNC-78 proteins and found that impaired activity of mutant UNC-78 proteins to enhance disassembly of ADF/cofilin-bound actin filaments is associated with inability to regulate striated organization of actin filaments in muscle cells. Six functionally important residues are present in the N-terminal beta-propeller, whereas one residue is located in the C-terminal beta-propeller, suggesting the presence of two separate sites for interaction with ADF/cofilin and actin. In vitro, these mutant UNC-78 proteins exhibited variable alterations in actin disassembly and/or barbed end-capping activities, suggesting that both activities are important for its in vivo function. These results indicate that the actin-regulating activity of AIP1 in cooperation with ADF/cofilin is essential for its in vivo function to regulate actin filament organization in muscle cells.
Collapse
Affiliation(s)
- Kurato Mohri
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
50
|
Corrigan C, Subramanian R, Miller MA. Eph and NMDA receptors control Ca2+/calmodulin-dependent protein kinase II activation during C. elegans oocyte meiotic maturation. Development 2005; 132:5225-37. [PMID: 16267094 DOI: 10.1242/dev.02083] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fertilization in the female reproductive tract depends on intercellular signaling mechanisms that coordinate sperm presence with oocyte meiotic progression. To achieve this coordination in Caenorhabditis elegans, sperm release an extracellular signal, the major sperm protein (MSP), to induce oocyte meiotic maturation and ovulation. MSP binds to multiple receptors, including the VAB-1 Eph receptor protein-tyrosine kinase on oocyte and ovarian sheath cell surfaces. Canonical VAB-1 ligands called ephrins negatively regulate oocyte maturation and MPK-1 mitogen-activated protein kinase (MAPK) activation. Here, we show that MSP and VAB-1 regulate the signaling properties of two Ca2+ channels that are encoded by the NMR-1 N-methyl D-aspartate type glutamate receptor subunit and ITR-1 inositol 1,4,5-triphosphate receptor. Ephrin/VAB-1 signaling acts upstream of ITR-1 to inhibit meiotic resumption, while NMR-1 prevents signaling by the UNC-43 Ca2+/calmodulin-dependent protein kinase II (CaMKII). MSP binding to VAB-1 stimulates NMR-1-dependent UNC-43 activation, and UNC-43 acts redundantly in oocytes to promote oocyte maturation and MAPK activation. Our results support a model in which VAB-1 switches from a negative regulator into a redundant positive regulator of oocyte maturation upon binding to MSP. NMR-1 mediates this switch by controlling UNC-43 CaMKII activation at the oocyte cortex.
Collapse
Affiliation(s)
- Chad Corrigan
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|