1
|
Differential requirements of IQUB for the assembly of radial spoke 1 and the motility of mouse cilia and flagella. Cell Rep 2022; 41:111683. [DOI: 10.1016/j.celrep.2022.111683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/31/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022] Open
|
2
|
Kushawaha PK, Pati Tripathi CD, Dube A. Leishmania donovani secretory protein nucleoside diphosphate kinase b localizes in its nucleus and prevents ATP mediated cytolysis of macrophages. Microb Pathog 2022; 166:105457. [DOI: 10.1016/j.micpath.2022.105457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 10/19/2022]
|
3
|
Liu S, Zhang J, Kherraf ZE, Sun S, Zhang X, Cazin C, Coutton C, Zouari R, Zhao S, Hu F, Fourati Ben Mustapha S, Arnoult C, Ray PF, Liu M. CFAP61 is required for sperm flagellum formation and male fertility in human and mouse. Development 2021; 148:273455. [PMID: 34792097 DOI: 10.1242/dev.199805] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/25/2021] [Indexed: 11/20/2022]
Abstract
Defects in the structure or motility of cilia and flagella may lead to severe diseases such as primary ciliary dyskinesia (PCD), a multisystemic disorder with heterogeneous manifestations affecting primarily respiratory and reproductive functions. We report that CFAP61 is a conserved component of the calmodulin- and radial spoke-associated complex (CSC) of cilia. We find that a CFAP61 splice variant, c.143+5G>A, causes exon skipping/intron retention in human, inducing a multiple morphological abnormalities of the flagella (MMAF) phenotype. We generated Cfap61 knockout mice that recapitulate the infertility phenotype of the human CFAP61 mutation, but without other symptoms usually observed in PCD. We find that CFAP61 interacts with the CSC, radial spoke stalk and head. During early stages of Cfap61-/- spermatid development, the assembly of radial spoke components is impaired. As spermiogenesis progresses, the axoneme in Cfap61-/- cells becomes unstable and scatters, and the distribution of intraflagellar transport proteins is disrupted. This study reveals an organ-specific mechanism of axoneme stabilization that is related to male infertility.
Collapse
Affiliation(s)
- Siyu Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Jintao Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Zine Eddine Kherraf
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, F-38000, France.,CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France
| | - Shuya Sun
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Caroline Cazin
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, F-38000, France.,CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France
| | - Charles Coutton
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, F-38000, France.,CHU de Grenoble, UM de Génétique Chromosomique, Grenoble, F-38000, France
| | - Raoudha Zouari
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, 1003 Tunis, Tunisia
| | - Shuqin Zhao
- State Key Laboratory of Reproductive Medicine, Animal Core Facility of Nanjing Medical University, Nanjing 211166, China
| | - Fan Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | | | - Christophe Arnoult
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, F-38000, France
| | - Pierre F Ray
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, F-38000, France.,CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
4
|
Woyda-Ploszczyca AM, Rybak AS. How can the commercial potential of microalgae from the Dunaliella genus be improved? The importance of nucleotide metabolism with a focus on nucleoside diphosphate kinase (NDPK). ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Pleuger C, Lehti MS, Dunleavy JE, Fietz D, O'Bryan MK. Haploid male germ cells-the Grand Central Station of protein transport. Hum Reprod Update 2020; 26:474-500. [PMID: 32318721 DOI: 10.1093/humupd/dmaa004] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/15/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The precise movement of proteins and vesicles is an essential ability for all eukaryotic cells. Nowhere is this more evident than during the remarkable transformation that occurs in spermiogenesis-the transformation of haploid round spermatids into sperm. These transformations are critically dependent upon both the microtubule and the actin cytoskeleton, and defects in these processes are thought to underpin a significant percentage of human male infertility. OBJECTIVE AND RATIONALE This review is aimed at summarising and synthesising the current state of knowledge around protein/vesicle transport during haploid male germ cell development and identifying knowledge gaps and challenges for future research. To achieve this, we summarise the key discoveries related to protein transport using the mouse as a model system. Where relevant, we anchored these insights to knowledge in the field of human spermiogenesis and the causality of human male infertility. SEARCH METHODS Relevant studies published in English were identified using PubMed using a range of search terms related to the core focus of the review-protein/vesicle transport, intra-flagellar transport, intra-manchette transport, Golgi, acrosome, manchette, axoneme, outer dense fibres and fibrous sheath. Searches were not restricted to a particular time frame or species although the emphasis within the review is on mammalian spermiogenesis. OUTCOMES Spermiogenesis is the final phase of sperm development. It results in the transformation of a round cell into a highly polarised sperm with the capacity for fertility. It is critically dependent on the cytoskeleton and its ability to transport protein complexes and vesicles over long distances and often between distinct cytoplasmic compartments. The development of the acrosome covering the sperm head, the sperm tail within the ciliary lobe, the manchette and its role in sperm head shaping and protein transport into the tail, and the assembly of mitochondria into the mid-piece of sperm, may all be viewed as a series of overlapping and interconnected train tracks. Defects in this redistribution network lead to male infertility characterised by abnormal sperm morphology (teratozoospermia) and/or abnormal sperm motility (asthenozoospermia) and are likely to be causal of, or contribute to, a significant percentage of human male infertility. WIDER IMPLICATIONS A greater understanding of the mechanisms of protein transport in spermiogenesis offers the potential to precisely diagnose cases of male infertility and to forecast implications for children conceived using gametes containing these mutations. The manipulation of these processes will offer opportunities for male-based contraceptive development. Further, as increasingly evidenced in the literature, we believe that the continuous and spatiotemporally restrained nature of spermiogenesis provides an outstanding model system to identify, and de-code, cytoskeletal elements and transport mechanisms of relevance to multiple tissues.
Collapse
Affiliation(s)
- Christiane Pleuger
- School of Biological Sciences, Monash University, Clayton 3800, Australia.,Institute for Veterinary Anatomy, Histology and Embryology, Justus-Liebig University Giessen, Giessen 35392, Germany.,Hessian Centre of Reproductive Medicine, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Mari S Lehti
- School of Biological Sciences, Monash University, Clayton 3800, Australia.,Institute of Biomedicine, University of Turku, Turku 20520, Finland
| | | | - Daniela Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus-Liebig University Giessen, Giessen 35392, Germany.,Hessian Centre of Reproductive Medicine, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Moira K O'Bryan
- School of Biological Sciences, Monash University, Clayton 3800, Australia
| |
Collapse
|
6
|
Lee L, Ostrowski LE. Motile cilia genetics and cell biology: big results from little mice. Cell Mol Life Sci 2020; 78:769-797. [PMID: 32915243 DOI: 10.1007/s00018-020-03633-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/11/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022]
Abstract
Our understanding of motile cilia and their role in disease has increased tremendously over the last two decades, with critical information and insight coming from the analysis of mouse models. Motile cilia form on specific epithelial cell types and typically beat in a coordinated, whip-like manner to facilitate the flow and clearance of fluids along the cell surface. Defects in formation and function of motile cilia result in primary ciliary dyskinesia (PCD), a genetically heterogeneous disorder with a well-characterized phenotype but no effective treatment. A number of model systems, ranging from unicellular eukaryotes to mammals, have provided information about the genetics, biochemistry, and structure of motile cilia. However, with remarkable resources available for genetic manipulation and developmental, pathological, and physiological analysis of phenotype, the mouse has risen to the forefront of understanding mammalian motile cilia and modeling PCD. This is evidenced by a large number of relevant mouse lines and an extensive body of genetic and phenotypic data. More recently, application of innovative cell biological techniques to these models has enabled substantial advancement in elucidating the molecular and cellular mechanisms underlying the biogenesis and function of mammalian motile cilia. In this article, we will review genetic and cell biological studies of motile cilia in mouse models and their contributions to our understanding of motile cilia and PCD pathogenesis.
Collapse
Affiliation(s)
- Lance Lee
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA. .,Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, Sioux Falls, SD, USA.
| | - Lawrence E Ostrowski
- Marsico Lung Institute/Cystic Fibrosis Center and Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
7
|
Poghosyan E, Iacovache I, Faltova L, Leitner A, Yang P, Diener DR, Aebersold R, Zuber B, Ishikawa T. The structure and symmetry of the radial spoke protein complex in Chlamydomonas flagella. J Cell Sci 2020; 133:jcs245233. [PMID: 32694165 DOI: 10.1242/jcs.245233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/25/2020] [Indexed: 12/27/2022] Open
Abstract
The radial spoke is a key element in a transducer apparatus controlling the motility of eukaryotic cilia. The transduction biomechanics is a long-standing question in cilia biology. The radial spoke has three regions - a spoke head, a bifurcated neck and a stalk. Although the neck and the stalk are asymmetric, twofold symmetry of the head has remained controversial. In this work we used single particle cryo-electron microscopy (cryo-EM) analysis to generate a 3D structure of the whole radial spoke at unprecedented resolution. We show the head region at 15 Å (1.5 nm) resolution and confirm twofold symmetry. Using distance constraints generated by cross-linking mass spectrometry, we locate two components, RSP2 and RSP4, at the head and neck regions. Our biophysical analysis of isolated RSP4, RSP9, and RSP10 affirmed their oligomeric state. Our results enable us to redefine the boundaries of the regions and propose a model of organization of the radial spoke component proteins.
Collapse
Affiliation(s)
- Emiliya Poghosyan
- Paul Scherrer Institute, Department of Biology and Chemistry, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
- ETH Zurich, Department of Biology, Wolfgang-Pauli-Strasse 27, 8093 Zürich, Switzerland
| | - Ioan Iacovache
- University of Bern, Institute of Anatomy, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Lenka Faltova
- Paul Scherrer Institute, Department of Biology and Chemistry, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Alexander Leitner
- ETH Zurich, Department of Biology, Institute of Molecular Systems Biology, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Pinfen Yang
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Dennis R Diener
- Paul Scherrer Institute, Department of Biology and Chemistry, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Ruedi Aebersold
- ETH Zurich, Department of Biology, Institute of Molecular Systems Biology, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
- University of Zurich, Faculty of Science, Rämistrasse 71, 8006 Zürich, Switzerland
| | - Benoit Zuber
- University of Bern, Institute of Anatomy, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Takashi Ishikawa
- Paul Scherrer Institute, Department of Biology and Chemistry, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
- ETH Zurich, Department of Biology, Wolfgang-Pauli-Strasse 27, 8093 Zürich, Switzerland
| |
Collapse
|
8
|
Yoke H, Ueno H, Narita A, Sakai T, Horiuchi K, Shingyoji C, Hamada H, Shinohara K. Rsph4a is essential for the triplet radial spoke head assembly of the mouse motile cilia. PLoS Genet 2020; 16:e1008664. [PMID: 32203505 PMCID: PMC7147805 DOI: 10.1371/journal.pgen.1008664] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 04/10/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022] Open
Abstract
Motile cilia/flagella are essential for swimming and generating extracellular fluid flow in eukaryotes. Motile cilia harbor a 9+2 arrangement consisting of nine doublet microtubules with dynein arms at the periphery and a pair of singlet microtubules at the center (central pair). In the central system, the radial spoke has a T-shaped architecture and regulates the motility and motion pattern of cilia. Recent cryoelectron tomography data reveal three types of radial spokes (RS1, RS2, and RS3) in the 96 nm axoneme repeat unit; however, the molecular composition of the third radial spoke, RS3 is unknown. In human pathology, it is well known mutation of the radial spoke head-related genes causes primary ciliary dyskinesia (PCD) including respiratory defect and infertility. Here, we describe the role of the primary ciliary dyskinesia protein Rsph4a in the mouse motile cilia. Cryoelectron tomography reveals that the mouse trachea cilia harbor three types of radial spoke as with the other vertebrates and that all triplet spoke heads are lacking in the trachea cilia of Rsph4a-deficient mice. Furthermore, observation of ciliary movement and immunofluorescence analysis indicates that Rsph4a contributes to the generation of the planar beating of motile cilia by building the distal architecture of radial spokes in the trachea, the ependymal tissues, and the oviduct. Although detailed mechanism of RSs assembly remains unknown, our results suggest Rsph4a is a generic component of radial spoke heads, and could explain the severe phenotype of human PCD patients with RSPH4A mutation.
Collapse
Affiliation(s)
- Hiroshi Yoke
- Department of Biotechnology & Life Science, Tokyo University of Agriculture & Technology, Koganei, Tokyo, Japan
| | - Hironori Ueno
- Molecular Function & Life Sciences, Aichi University of Education, Kariya, Aichi, Japan
| | - Akihiro Narita
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Takafumi Sakai
- Department of Biotechnology & Life Science, Tokyo University of Agriculture & Technology, Koganei, Tokyo, Japan
| | - Kahoru Horiuchi
- Department of Biotechnology & Life Science, Tokyo University of Agriculture & Technology, Koganei, Tokyo, Japan
| | - Chikako Shingyoji
- Department of Biotechnology & Life Science, Tokyo University of Agriculture & Technology, Koganei, Tokyo, Japan
| | - Hiroshi Hamada
- Center for Biosystems Dynamics Research, RIKEN, Kobe, Japan
| | - Kyosuke Shinohara
- Department of Biotechnology & Life Science, Tokyo University of Agriculture & Technology, Koganei, Tokyo, Japan
- * E-mail:
| |
Collapse
|
9
|
Villalobo A, Berchtold MW. The Role of Calmodulin in Tumor Cell Migration, Invasiveness, and Metastasis. Int J Mol Sci 2020; 21:ijms21030765. [PMID: 31991573 PMCID: PMC7037201 DOI: 10.3390/ijms21030765] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Calmodulin (CaM) is the principal Ca2+ sensor protein in all eukaryotic cells, that upon binding to target proteins transduces signals encoded by global or subcellular-specific changes of Ca2+ concentration within the cell. The Ca2+/CaM complex as well as Ca2+-free CaM modulate the activity of a vast number of enzymes, channels, signaling, adaptor and structural proteins, and hence the functionality of implicated signaling pathways, which control multiple cellular functions. A basic and important cellular function controlled by CaM in various ways is cell motility. Here we discuss the role of CaM-dependent systems involved in cell migration, tumor cell invasiveness, and metastasis development. Emphasis is given to phosphorylation/dephosphorylation events catalyzed by myosin light-chain kinase, CaM-dependent kinase-II, as well as other CaM-dependent kinases, and the CaM-dependent phosphatase calcineurin. In addition, the role of the CaM-regulated small GTPases Rac1 and Cdc42 (cell division cycle protein 42) as well as CaM-binding adaptor/scaffold proteins such as Grb7 (growth factor receptor bound protein 7), IQGAP (IQ motif containing GTPase activating protein) and AKAP12 (A kinase anchoring protein 12) will be reviewed. CaM-regulated mechanisms in cancer cells responsible for their greater migratory capacity compared to non-malignant cells, invasion of adjacent normal tissues and their systemic dissemination will be discussed, including closely linked processes such as the epithelial–mesenchymal transition and the activation of metalloproteases. This review covers as well the role of CaM in establishing metastatic foci in distant organs. Finally, the use of CaM antagonists and other blocking techniques to downregulate CaM-dependent systems aimed at preventing cancer cell invasiveness and metastasis development will be outlined.
Collapse
Affiliation(s)
- Antonio Villalobo
- Cancer and Human Molecular Genetics Area—Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E-28046 Madrid, Spain
- Correspondence: (A.V.); (M.W.B.)
| | - Martin W. Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen, Denmark
- Correspondence: (A.V.); (M.W.B.)
| |
Collapse
|
10
|
Rare Human Diseases: Model Organisms in Deciphering the Molecular Basis of Primary Ciliary Dyskinesia. Cells 2019; 8:cells8121614. [PMID: 31835861 PMCID: PMC6952885 DOI: 10.3390/cells8121614] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a recessive heterogeneous disorder of motile cilia, affecting one per 15,000-30,000 individuals; however, the frequency of this disorder is likely underestimated. Even though more than 40 genes are currently associated with PCD, in the case of approximately 30% of patients, the genetic cause of the manifested PCD symptoms remains unknown. Because motile cilia are highly evolutionarily conserved organelles at both the proteomic and ultrastructural levels, analyses in the unicellular and multicellular model organisms can help not only to identify new proteins essential for cilia motility (and thus identify new putative PCD-causative genes), but also to elucidate the function of the proteins encoded by known PCD-causative genes. Consequently, studies involving model organisms can help us to understand the molecular mechanism(s) behind the phenotypic changes observed in the motile cilia of PCD affected patients. Here, we summarize the current state of the art in the genetics and biology of PCD and emphasize the impact of the studies conducted using model organisms on existing knowledge.
Collapse
|
11
|
NME5 frameshift variant in Alaskan Malamutes with primary ciliary dyskinesia. PLoS Genet 2019; 15:e1008378. [PMID: 31479451 PMCID: PMC6743793 DOI: 10.1371/journal.pgen.1008378] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/13/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a hereditary defect of motile cilia in humans and several domestic animal species. Typical clinical findings are chronic recurrent infections of the respiratory tract and fertility problems. We analyzed an Alaskan Malamute family, in which two out of six puppies were affected by PCD. The parents were unaffected suggesting autosomal recessive inheritance. Linkage and homozygosity mapping defined critical intervals comprising ~118 Mb. Whole genome sequencing of one case and comparison to 601 control genomes identified a disease associated frameshift variant, c.43delA, in the NME5 gene encoding a sparsely characterized protein associated with ciliary function. Nme5-/- knockout mice exhibit doming of the skull, hydrocephalus and sperm flagellar defects. The genotypes at NME5:c.43delA showed the expected co-segregation with the phenotype in the Alaskan Malamute family. An additional unrelated Alaskan Malamute with PCD and hydrocephalus that became available later in the study was also homozygous mutant at the NME5:c.43delA variant. The mutant allele was not present in more than 1000 control dogs from different breeds. Immunohistochemistry demonstrated absence of the NME5 protein from nasal epithelia of an affected dog. We therefore propose NME5:c.43delA as the most likely candidate causative variant for PCD in Alaskan Malamutes. These findings enable genetic testing to avoid the unintentional breeding of affected dogs in the future. Furthermore, the results of this study identify NME5 as a novel candidate gene for unsolved human PCD and/or hydrocephalus cases. Motile cilia are required for clearing mucous, infectious agents and inhaled dust from the airways. Primary ciliary dyskinesia (PCD) is a hereditary defect of motile cilia. Clinical findings may include recurrent airway infections, fertility problems, and sometimes hydrocephalus. We analyzed an Alaskan Malamute family, in which two out of six puppies were affected by an autosomal recessive form of PCD. Whole genome sequencing of an affected dog identified a one base pair deletion in the NME5 gene, c.43delA, leading to an early frame-shift and premature stop codon. Later in the study, we became aware of a previously published Alaskan Malamute with PCD involving respiratory infections and hydrocephalus. We observed perfect concordance of the NME5 genotypes with the PCD phenotype in all three affected Alaskan Malamutes and more than 1000 controls. The fact that the third case, which had no documented close relationship to the initial two cases, was homozygous for the same rare mutant NME5 allele, strongly supports our hypothesis that NME5:c.43delA causes the PCD phenotype. We confirmed absence of NME5 protein expression in nasal epithelium of an affected dog. Our results enable genetic testing in dogs and identify NME5 as novel candidate gene for unsolved human PCD cases.
Collapse
|
12
|
Sasaki K, Shiba K, Nakamura A, Kawano N, Satouh Y, Yamaguchi H, Morikawa M, Shibata D, Yanase R, Jokura K, Nomura M, Miyado M, Takada S, Ueno H, Nonaka S, Baba T, Ikawa M, Kikkawa M, Miyado K, Inaba K. Calaxin is required for cilia-driven determination of vertebrate laterality. Commun Biol 2019; 2:226. [PMID: 31240264 PMCID: PMC6586612 DOI: 10.1038/s42003-019-0462-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 05/14/2019] [Indexed: 12/24/2022] Open
Abstract
Calaxin is a Ca2+-binding dynein-associated protein that regulates flagellar and ciliary movement. In ascidians, calaxin plays essential roles in chemotaxis of sperm. However, nothing has been known for the function of calaxin in vertebrates. Here we show that the mice with a null mutation in Efcab1, which encodes calaxin, display typical phenotypes of primary ciliary dyskinesia, including hydrocephalus, situs inversus, and abnormal motility of trachea cilia and sperm flagella. Strikingly, both males and females are viable and fertile, indicating that calaxin is not essential for fertilization in mice. The 9 + 2 axonemal structures of epithelial multicilia and sperm flagella are normal, but the formation of 9 + 0 nodal cilia is significantly disrupted. Knockout of calaxin in zebrafish also causes situs inversus due to the irregular ciliary beating of Kupffer's vesicle cilia, although the 9 + 2 axonemal structure appears to remain normal.
Collapse
Affiliation(s)
- Keita Sasaki
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, 415-0025 Japan
| | - Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, 415-0025 Japan
| | - Akihiro Nakamura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, 415-0025 Japan
- Department of Reproductive Biology, National Center for Child Health and Development, Tokyo, 157-8535 Japan
| | - Natsuko Kawano
- Department of Life Science, School of Agriculture, Meiji University, Kanagawa, 214-8574 Japan
| | - Yuhkoh Satouh
- Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871 Japan
| | - Hiroshi Yamaguchi
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Motohiro Morikawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Daisuke Shibata
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, 415-0025 Japan
| | - Ryuji Yanase
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, 415-0025 Japan
| | - Kei Jokura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, 415-0025 Japan
| | - Mami Nomura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, 415-0025 Japan
| | - Mami Miyado
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, 157-8535 Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, 157-8535 Japan
| | - Hironori Ueno
- Molecular Function & Life Sciences, Aichi University of Education, Aichi, 448-8542 Japan
| | - Shigenori Nonaka
- Spatiotemporal Regulations Group, Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, 444-8585 Japan
- Laboratory for Spatiotemporal Regulations, National Institute for Basic Biology, Okazaki, 444-8585 Japan
| | - Tadashi Baba
- Faculty of Life and Environmental Sciences, and Life Science Center for Survival Dynamics Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, 305-8577 Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871 Japan
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Kenji Miyado
- Department of Reproductive Biology, National Center for Child Health and Development, Tokyo, 157-8535 Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, 415-0025 Japan
| |
Collapse
|
13
|
Zhu X, Poghosyan E, Rezabkova L, Mehall B, Sakakibara H, Hirono M, Kamiya R, Ishikawa T, Yang P. The roles of a flagellar HSP40 ensuring rhythmic beating. Mol Biol Cell 2018; 30:228-241. [PMID: 30427757 PMCID: PMC6589562 DOI: 10.1091/mbc.e18-01-0047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
HSP40s are regarded as cochaperones, perpetually shuttling client polypeptides to HSP70s for refolding. However, many HSP40s that are central for disparate processes diverge from this paradigm. To elucidate the noncanonical mechanisms, we investigated HSP40 in the radial spoke (RS) complex in flagella. Disruption of the gene by the MRC1 transposon in Chlamydomonas resulted in jerky flagella. Traditional electron microscopy, cryo-electron tomography, and sub-tomogram analysis revealed RSs of various altered morphologies that, unexpectedly, differed between the two RS species. This indicates that HSP40 locks the RS into a functionally rigid conformation, facilitating its interactions with the adjacent central pair apparatus for transducing locally varied mechanical feedback, which permits rhythmic beating. Missing HSP40, like missing RSs, could be restored in a tip-to-base direction when HSP40 mutants fused with a HSP40 donor cell. However, without concomitant de novo RS assembly, the repair was exceedingly slow, suggesting HSP40/RS-coupled intraflagellar trafficking and assembly. Biochemical analysis and modeling uncovered spoke HSP40’s cochaperone traits. On the basis of our data, we propose that HSP40 accompanies its client RS precursor when traveling to the flagellar tip. Upon arrival, both refold in concert to assemble into the mature configuration. HSP40’s roles in chaperoning and structural maintenance shed new light on its versatility and flagellar biology.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Emiliya Poghosyan
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Lenka Rezabkova
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Bridget Mehall
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Hitoshi Sakakibara
- National Institute of Information and Communications Technology (NICT), Advanced ICT Research Institute, Hyogo 651-2492, Japan
| | - Masafumi Hirono
- Department of Frontier Bioscience, Hosei University, Tokyo 184-8584, Japan
| | - Ritsu Kamiya
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| | - Takashi Ishikawa
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Pinfen Yang
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| |
Collapse
|
14
|
Zhu X, Poghosyan E, Gopal R, Liu Y, Ciruelas KS, Maizy Y, Diener DR, King SM, Ishikawa T, Yang P. General and specific promotion of flagellar assembly by a flagellar nucleoside diphosphate kinase. Mol Biol Cell 2017; 28:3029-3042. [PMID: 28877983 PMCID: PMC5662260 DOI: 10.1091/mbc.e17-03-0156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022] Open
Abstract
NDK5 promotes assembly of motile cilia and flagella with its structure and protein phosphorylation–related reactions instead of the canonical NDK activity. The novel mechanisms and dominant-negative effect of mutated functional NDK5 reveal the remarkable versatility of a molecular platform that is used in diverse cellular processes. Nucleoside diphosphate kinases (NDKs) play a central role in diverse cellular processes using the canonical NDK activity or alternative mechanisms that remain poorly defined. Our study of dimeric NDK5 in a flagellar motility control complex, the radial spoke (RS), has revealed new modalities. The flagella in Chlamydomonas ndk5 mutant were paralyzed, albeit only deficient in three RS subunits. RS morphology appeared severely changed in averaged cryo-electron tomograms, suggesting that NDK5 is crucial for the intact spokehead formation as well as RS structural stability. Intriguingly, ndk5’s flagella were also short, resembling those of an allelic spoke-less mutant. All ndk5’s phenotypes were rescued by expressions of NDK5 or a mutated NDK5 lacking the canonical kinase activity. Importantly, the mutated NDK5 that appeared fully functional in ndk5 cells elicited a dominant-negative effect in wild-type cells, causing paralyzed short flagella with hypophosphorylated, less abundant, but intact RSs, and accumulated hypophosphorylated NDK5 in the cell body. We propose that NDK5 dimer is an RS structural subunit with an additional mechanism that uses cross-talk between the two NDK monomers to accelerate phosphorylation-related assembly of RSs and entire flagella.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Emiliya Poghosyan
- Biomolecular Research Laboratory, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Radhika Gopal
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Yi Liu
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Kristine S Ciruelas
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Yousif Maizy
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Dennis R Diener
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Stephen M King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305
| | - Takashi Ishikawa
- Biomolecular Research Laboratory, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Pinfen Yang
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| |
Collapse
|
15
|
Viswanadha R, Sale WS, Porter ME. Ciliary Motility: Regulation of Axonemal Dynein Motors. Cold Spring Harb Perspect Biol 2017; 9:9/8/a018325. [PMID: 28765157 DOI: 10.1101/cshperspect.a018325] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ciliary motility is crucial for the development and health of many organisms. Motility depends on the coordinated activity of multiple dynein motors arranged in a precise pattern on the outer doublet microtubules. Although significant progress has been made in elucidating the composition and organization of the dyneins, a comprehensive understanding of dynein regulation is lacking. Here, we focus on two conserved signaling complexes located at the base of the radial spokes. These include the I1/f inner dynein arm associated with radial spoke 1 and the calmodulin- and spoke-associated complex and the nexin-dynein regulatory complex associated with radial spoke 2. Current research is focused on understanding how these two axonemal hubs coordinate and regulate the dynein motors and ciliary motility.
Collapse
Affiliation(s)
- Rasagnya Viswanadha
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Winfield S Sale
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Mary E Porter
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
16
|
Zhu X, Liu Y, Yang P. Radial Spokes-A Snapshot of the Motility Regulation, Assembly, and Evolution of Cilia and Flagella. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028126. [PMID: 27940518 DOI: 10.1101/cshperspect.a028126] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Propulsive forces generated by cilia and flagella are used in events that are critical for the thriving of diverse eukaryotic organisms in their environments. Despite distinctive strokes and regulations, the majority of them adopt the 9+2 axoneme that is believed to exist in the last eukaryotic common ancestor. Only a few outliers have opted for a simpler format that forsakes the signature radial spokes and the central pair apparatus, although both are unnecessary for force generation or rhythmicity. Extensive evidence has shown that they operate as an integral system for motility control. Recent studies have made remarkable progress on the radial spoke. This review will trace how the new structural, compositional, and evolutional insights pose significant implications on flagella biology and, conversely, ciliopathy.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- The Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201
| | - Yi Liu
- The Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201
| | - Pinfen Yang
- The Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201
| |
Collapse
|
17
|
Calcium-Dependent Signalling Processes in Chlamydomonas. CHLAMYDOMONAS: MOLECULAR GENETICS AND PHYSIOLOGY 2017. [DOI: 10.1007/978-3-319-66365-4_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Peng H, Yang T, Whitaker BD, Shangguan L, Fang J. Calcium/calmodulin alleviates substrate inhibition in a strawberry UDP-glucosyltransferase involved in fruit anthocyanin biosynthesis. BMC PLANT BIOLOGY 2016; 16:197. [PMID: 27609111 PMCID: PMC5017016 DOI: 10.1186/s12870-016-0888-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/01/2016] [Indexed: 05/06/2023]
Abstract
BACKGROUND UDP-glucosyltransferase (UGT) is a key enzyme for anthocyanin biosynthesis, which by catalyzing glycosylation of anthocyanidins increases their solubility and accumulation in plants. Previously we showed that pre-harvest spray of CaCl2 enhanced anthocyanin accumulation in strawberry fruit by stimulating the expression of anthocyanin structural genes including a fruit specific FvUGT1. RESULTS To further understand the regulation of anthocyanin biosynthesis, we conducted kinetic analysis of recombinant FvUGT1 on glycosylation of pelargonidin, the major anthocyanidin in strawberry fruit. At the fixed pelargonidin concentration, FvUGT1 catalyzed the sugar transfer from UDP-glucose basically following Michaelis-Menten kinetics. By contrast, at the fixed UDP-glucose concentration, pelargonidin over 150 μM exhibited marked partial substrate inhibition in an uncompetitive mode. These results suggest that the sugar acceptor at high concentration inhibits FvUGT1 activity by binding to another site in addition to the catalytic site. Furthermore, calcium/calmodulin specifically bound FvUGT1 at a site partially overlapping with the interdomain linker, and significantly relieved the substrate inhibition. In the presence of 0.1 and 0.5 μM calmodulin, V max was increased by 71.4 and 327 %, respectively. CONCLUSIONS FvUGT1 activity is inhibited by anthocyanidin, the sugar acceptor substrate, and calcium/calmodulin binding to FvUGT1 enhances anthocyanin accumulation via alleviation of this substrate inhibition.
Collapse
Affiliation(s)
- Hui Peng
- Agricultural Research Service of U.S. Department of Agriculture, From the Food Quality Laboratory, Beltsville Agricultural Research Center, Beltsville, MD 20705 USA
- Horticulture & Landscape College, Hunan Agricultural University, Changsha, Hunan 410128 China
| | - Tianbao Yang
- Agricultural Research Service of U.S. Department of Agriculture, From the Food Quality Laboratory, Beltsville Agricultural Research Center, Beltsville, MD 20705 USA
| | - Bruce D. Whitaker
- Agricultural Research Service of U.S. Department of Agriculture, From the Food Quality Laboratory, Beltsville Agricultural Research Center, Beltsville, MD 20705 USA
| | - Lingfei Shangguan
- Agricultural Research Service of U.S. Department of Agriculture, From the Food Quality Laboratory, Beltsville Agricultural Research Center, Beltsville, MD 20705 USA
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| |
Collapse
|
19
|
Yeste M, Fernández-Novell JM, Ramió-Lluch L, Estrada E, Rocha LG, Cebrián-Pérez JA, Muiño-Blanco T, Concha II, Ramírez A, Rodríguez-Gil JE. Intracellular calcium movements of boar spermatozoa during 'in vitro' capacitation and subsequent acrosome exocytosis follow a multiple-storage place, extracellular calcium-dependent model. Andrology 2015; 3:729-47. [PMID: 26097097 DOI: 10.1111/andr.12054] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/20/2015] [Accepted: 04/25/2015] [Indexed: 01/12/2023]
Abstract
This work analysed intracellular calcium stores of boar spermatozoa subjected to 'in vitro' capacitation (IVC) and subsequent progesterone-induced acrosome exocytosis (IVAE). Intracellular calcium was analysed through two calcium markers with different physico-chemical properties, Fluo-3 and Rhod-5N. Indicative parameters of IVC and IVAE were also evaluated. Fluo-3 was located at both the midpiece and the whole head. Rhod-5N was present at the sperm head. This distribution did not change in any of the assayed conditions. Induction of IVC was concomitant with an increase in both head and midpiece Ca(2+) signals. Additionally, while IVC induction was concurrent with a significant (p < 0.05) increase in sperm membrane permeability, no significant changes were observed in O2 consumption and ATP levels. Incubation of boar spermatozoa in the absence of calcium showed a loss of both Ca(2+) labellings concomitantly with the sperm's inability to achieve IVC. The absence of extracellular calcium also induced a severe decrease in the percentage of spermatozoa exhibiting high mitochondrial membrane potential (hMMP). The IVAE was accompanied by a fast increase in both Ca(2+) signalling in control spermatozoa. These peaks were either not detected or much lessened in the absence of calcium. Remarkably, Fluo-3 marking at the midpiece increased after progesterone addition to sperm cells incubated in a medium without Ca(2+) . The simultaneous addition of progesterone with the calcium chelant EGTA inhibited IVAE, and this was accompanied by a significant (p < 0.05) decrease in the intensity of progesterone Ca(2+) -induced peak, O2 consumption and ATP levels. Our results suggest that boar spermatozoa present different calcium deposits with a dynamic equilibrium among them and with the extracellular environment. Additionally, the modulation role of the intracellular calcium in spermatozoa function seems to rely on its precise localization in boar spermatozoa.
Collapse
Affiliation(s)
- M Yeste
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra (Cerdanyola del Vallès), Spain.,Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - J M Fernández-Novell
- Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain
| | - L Ramió-Lluch
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - E Estrada
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - L G Rocha
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - J A Cebrián-Pérez
- Department of Biochemistry and Molecular and Cell Biology, IUCA, School of Veterinary Medicine, University of Zaragoza-IUCA, Zaragoza, Spain
| | - T Muiño-Blanco
- Department of Biochemistry and Molecular and Cell Biology, IUCA, School of Veterinary Medicine, University of Zaragoza-IUCA, Zaragoza, Spain
| | - I I Concha
- Institute of Biochemistry and Microbiology and Institute of Animal Science, Universidad Austral de Chile, Valdivia, Chile
| | - A Ramírez
- Institute of Biochemistry and Microbiology and Institute of Animal Science, Universidad Austral de Chile, Valdivia, Chile
| | - J E Rodríguez-Gil
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| |
Collapse
|
20
|
Ishikawa T. Cryo-electron tomography of motile cilia and flagella. Cilia 2015; 4:3. [PMID: 25646146 PMCID: PMC4313461 DOI: 10.1186/s13630-014-0012-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/23/2014] [Indexed: 11/13/2022] Open
Abstract
Cryo-electron tomography has been a valuable tool in the analysis of 3D structures of cilia at molecular and cellular levels. It opened a way to reconstruct 3D conformations of proteins in cilia at 3-nm resolution, revealed networks of a number of component proteins in cilia, and has even allowed the study of component dynamics. In particular, we have identified the locations and conformations of all the regular inner and outer dyneins, as well as various regulators such as radial spokes. Since the mid 2000s, cryo-electron tomography has provided us with new knowledge, concepts, and questions in the area of cilia research. Now, after nearly 10 years of application of this technique, we are turning a corner and are at the stage to discuss the next steps. We expect further development of this technique for specimen preparation, data acquisition, and analysis. While combining this tool with other methodologies has already made cryo-electron tomography more biologically significant, we need to continue this cooperation using recently developed biotechnology and cell biology approaches. In this review, we will provide an up-to-date overview of the biological insights obtained by cryo-electron tomography and will discuss future possibilities of this technique in the context of cilia research.
Collapse
Affiliation(s)
- Takashi Ishikawa
- Group of Electron Microscopy of Complex Cellular System, Laboratory of Biomolecular Research, Paul Scherrer Institute, OFLG/010, 5232 Villigen PSI, Switzerland
| |
Collapse
|
21
|
Pigino G, Ishikawa T. Axonemal radial spokes: 3D structure, function and assembly. BIOARCHITECTURE 2014; 2:50-58. [PMID: 22754630 PMCID: PMC3383722 DOI: 10.4161/bioa.20394] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The radial spoke (RS) is a complex of at least 23 proteins that works as a mechanochemical transducer between the central‐pair apparatus and the peripheral microtubule doublets in eukaryotic flagella and motile cilia. The RS contributes to the regulation of the activity of dynein motors, and thus to flagellar motility. Despite numerous biochemical, physiological and structural studies, the mechanism of the function of the radial spoke remains unclear. Detailed knowledge of the 3D structure of the RS protein complex is needed in order to understand how RS regulates dynein activity. Here we review the most important findings on the structure of the RS, including results of our recent cryo‐electron tomographic analysis of the RS protein complex.
Collapse
|
22
|
Oda T, Yanagisawa H, Yagi T, Kikkawa M. Mechanosignaling between central apparatus and radial spokes controls axonemal dynein activity. ACTA ACUST UNITED AC 2014; 204:807-19. [PMID: 24590175 PMCID: PMC3941055 DOI: 10.1083/jcb.201312014] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nonspecific intermolecular collision between the central pair apparatus and radial spokes underlies a mechanosensing mechanism that regulates dynein activity in Chlamydomonas flagella. Cilia/flagella are conserved organelles that generate fluid flow in eukaryotes. The bending motion of flagella requires concerted activity of dynein motors. Although it has been reported that the central pair apparatus (CP) and radial spokes (RSs) are important for flagellar motility, the molecular mechanism underlying CP- and RS-mediated dynein regulation has not been identified. In this paper, we identified nonspecific intermolecular collision between CP and RS as one of the regulatory mechanisms for flagellar motility. By combining cryoelectron tomography and motility analyses of Chlamydomonasreinhardtii flagella, we show that binding of streptavidin to RS heads paralyzed flagella. Moreover, the motility defect in a CP projection mutant could be rescued by the addition of exogenous protein tags on RS heads. Genetic experiments demonstrated that outer dynein arms are the major downstream effectors of CP- and RS-mediated regulation of flagellar motility. These results suggest that mechanosignaling between CP and RS regulates dynein activity in eukaryotic flagella.
Collapse
Affiliation(s)
- Toshiyuki Oda
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
23
|
Pereira CA, Reigada C, Sayé M, Digirolamo FA, Miranda MR. Cytosolic Trypanosoma cruzi nucleoside diphosphate kinase generates large granules that depend on its quaternary structure. Exp Parasitol 2014; 142:43-50. [PMID: 24768953 DOI: 10.1016/j.exppara.2014.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/28/2014] [Accepted: 04/17/2014] [Indexed: 10/25/2022]
Abstract
Nucleoside diphosphate kinase (NDPK) is a key enzyme in the control of cellular concentrations of nucleoside triphosphates, and has been shown to play important roles in many cellular processes. In this work we investigated the subcellular localization of the canonical NDPK1 from Trypanosoma cruzi (TcNDPK1), the etiological agent Chagas's Disease, and evaluated the effect of adding an additional weak protein-protein interaction domain from the green fluorescent protein (GFP). Immunofluorescence microscopy revealed that the enzyme from wild-type and TcNDPK1 overexpressing parasites has a cytosolic distribution, being the signal more intense around the nucleus. However, when TcNDPK1 was fused with dimeric GFP it relocalizes in non-membrane bounded granules also located adjacent to the nucleus. In addition, these granular structures were dependent on the quaternary structure of TcNDPK1 and GFP since mutations in residues involved in their oligomerization dramatically decrease the amount of granules. This phenomenon seems to be specific for TcNDPK1 since other cytosolic hexameric enzyme from T. cruzi, such as the NADP(+)-linked glutamate dehydrogenase, was not affected by the fusion with GFP. In addition, in parasites without GFP fusions granules could be observed in a subpopulation of epimastigotes under metacyclogenesis and metacyclic trypomastigotes. Organization into higher protein arrangements appears to be a singular feature of canonical NDPKs; however the physiological function of such structures requires further investigation.
Collapse
Affiliation(s)
- Claudio A Pereira
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
| | - Chantal Reigada
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
| | - Melisa Sayé
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
| | - Fabio A Digirolamo
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
| | - Mariana R Miranda
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina.
| |
Collapse
|
24
|
Lee L. Riding the wave of ependymal cilia: genetic susceptibility to hydrocephalus in primary ciliary dyskinesia. J Neurosci Res 2013; 91:1117-32. [PMID: 23686703 DOI: 10.1002/jnr.23238] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/22/2013] [Accepted: 03/20/2013] [Indexed: 12/17/2022]
Abstract
Congenital hydrocephalus is a relatively common and debilitating birth defect with several known physiological causes. Dysfunction of motile cilia on the ependymal cells that line the ventricular surface of the brain can result in hydrocephalus by hindering the proper flow of cerebrospinal fluid. As a result, hydrocephalus can be associated with primary ciliary dyskinesia, a rare pediatric syndrome resulting from defects in ciliary and flagellar motility. Although the prevalence of hydrocephalus in primary ciliary dyskinesia patients is low, it is a common hallmark of the disease in mouse models, suggesting that distinct genetic mechanisms underlie the differences in the development and physiology of human and mouse brains. Mouse models of primary ciliary dyskinesia reveal strain-specific differences in the appearance and severity of hydrocephalus, indicating the presence of genetic modifiers segregating in inbred strains. These models may provide valuable insight into the genetic mechanisms that regulate susceptibility to hydrocephalus under the conditions of ependymal ciliary dysfunction.
Collapse
Affiliation(s)
- Lance Lee
- Sanford Children's Health Research Center, Sanford Research USD, Sioux Falls, South Dakota, USA.
| |
Collapse
|
25
|
Abstract
Axonemal dyneins are highly complex molecular motors that power the beating of cilia/flagella. In addition to the motor subunits, these enzymes contain components that allow for assembly at the correct axonemal location and also enable the motor to respond to a broad array of signals including phosphorylation, Ca(2+), redox changes, and mechanical activation. The green alga Chlamydomonas reinhardtii has become the premier system in which to analyze these motors, as it allows for classical/molecular genetic approaches to be combined with biochemical fractionation, and physiological measurements to gain an integrated view of dynein function. Furthermore, Chlamydomonas provides the opportunity to study axonemal dyneins in the cytoplasm prior to their transport into the cilium/flagellum, thus allowing the nature of the assembly process to be defined. In this chapter, I describe methods used in my laboratory to prepare and fractionate cytoplasmic extracts and to localize axonemal dynein components within the flagellum at both the light microscope level and by biochemical and genetic approaches. Finally, I also detail how to assess dynein-driven flagella motility by measuring beat frequency and propulsive force of both intact cells and reactivated cell models.
Collapse
|
26
|
Sivadas P, Dienes JM, St Maurice M, Meek WD, Yang P. A flagellar A-kinase anchoring protein with two amphipathic helices forms a structural scaffold in the radial spoke complex. ACTA ACUST UNITED AC 2013; 199:639-51. [PMID: 23148234 PMCID: PMC3494852 DOI: 10.1083/jcb.201111042] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amphipathic helices in the A-kinase anchoring protein RSP3 bind to spoke proteins involved in the assembly and modulation of the flagellar radial spoke complex, expanding the repertoire of these versatile helical protein motifs. A-kinase anchoring proteins (AKAPs) contain an amphipathic helix (AH) that binds the dimerization and docking (D/D) domain, RIIa, in cAMP-dependent protein kinase A (PKA). Many AKAPs were discovered solely based on the AH–RIIa interaction in vitro. An RIIa or a similar Dpy-30 domain is also present in numerous diverged molecules that are implicated in critical processes as diverse as flagellar beating, membrane trafficking, histone methylation, and stem cell differentiation, yet these molecules remain poorly characterized. Here we demonstrate that an AKAP, RSP3, forms a dimeric structural scaffold in the flagellar radial spoke complex, anchoring through two distinct AHs, the RIIa and Dpy-30 domains, in four non-PKA spoke proteins involved in the assembly and modulation of the complex. Interestingly, one AH can bind both RIIa and Dpy-30 domains in vitro. Thus, AHs and D/D domains constitute a versatile yet potentially promiscuous system for localizing various effector mechanisms. These results greatly expand the current concept about anchoring mechanisms and AKAPs.
Collapse
Affiliation(s)
- Priyanka Sivadas
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | | | | | | | | |
Collapse
|
27
|
DiPetrillo CG, Smith EF. Methods for analysis of calcium/calmodulin signaling in cilia and flagella. Methods Enzymol 2013; 524:37-57. [PMID: 23498733 DOI: 10.1016/b978-0-12-397945-2.00003-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The axonemal microtubules of cilia/flagella act as a scaffold for assembly of the protein complexes that ultimately regulate dynein activity to control the size and shape of ciliary bends. Despite our general understanding of the contribution of microtubule sliding to ciliary and flagellar motility, many questions regarding the regulation of dynein remain unanswered. For example, we know that the second messenger calcium plays an important role in modulating dynein activity in response to extracellular cues, but it remains unclear how calcium-binding proteins anchored to the axoneme contribute to this regulation. Recent work has focused on determining the identity and specific functions of these axonemal calcium-binding proteins. Here, we review our current knowledge of calcium-mediated motility and highlight key experiments that have substantially aided our understanding of calcium signaling within the axoneme.
Collapse
Affiliation(s)
- Christen G DiPetrillo
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
28
|
Mizuno N, Taschner M, Engel BD, Lorentzen E. Structural studies of ciliary components. J Mol Biol 2012; 422:163-80. [PMID: 22683354 PMCID: PMC3426769 DOI: 10.1016/j.jmb.2012.05.040] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/23/2012] [Accepted: 05/24/2012] [Indexed: 11/24/2022]
Abstract
Cilia are organelles found on most eukaryotic cells, where they serve important functions in motility, sensory reception, and signaling. Recent advances in electron tomography have facilitated a number of ultrastructural studies of ciliary components that have significantly improved our knowledge of cilium architecture. These studies have produced nanometer-resolution structures of axonemal dynein complexes, microtubule doublets and triplets, basal bodies, radial spokes, and nexin complexes. In addition to these electron tomography studies, several recently published crystal structures provide insights into the architecture and mechanism of dynein as well as the centriolar protein SAS-6, important for establishing the 9-fold symmetry of centrioles. Ciliary assembly requires intraflagellar transport (IFT), a process that moves macromolecules between the tip of the cilium and the cell body. IFT relies on a large 20-subunit protein complex that is thought to mediate the contacts between ciliary motor and cargo proteins. Structural investigations of IFT complexes are starting to emerge, including the first three-dimensional models of IFT material in situ, revealing how IFT particles organize into larger train-like arrays, and the high-resolution structure of the IFT25/27 subcomplex. In this review, we cover recent advances in the structural and mechanistic understanding of ciliary components and IFT complexes.
Collapse
Key Words
- 2d, two‐dimensional
- 3d, three‐dimensional
- dic, differential interference contrast
- drc, dynein regulatory complex
- em, electron microscopy
- et, electron tomography
- ida, inner dynein arm
- ift, intraflagellar transport
- mt, microtubule
- mtbd, microtubule binding domain
- oda, outer dynein arm
- rs, radial spoke
- rsp, radial spoke protein
- cilium
- intraflagellar transport
- electron tomography
- ift complex
- flagellum
Collapse
Affiliation(s)
- Naoko Mizuno
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Michael Taschner
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Benjamin D. Engel
- Department of Molecular Structural Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Esben Lorentzen
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| |
Collapse
|
29
|
The DPY-30 domain and its flanking sequence mediate the assembly and modulation of flagellar radial spoke complexes. Mol Cell Biol 2012; 32:4012-24. [PMID: 22851692 DOI: 10.1128/mcb.06602-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RIIa is known as the dimerization and docking (D/D) domain of the cyclic AMP (cAMP)-dependent protein kinase. However, numerous molecules, including radial spoke protein 2 (RSP2) in Chlamydomonas flagella, also contain an RIIa or a similar DPY-30 domain. To elucidate new roles of D/D domain-containing proteins, we investigated a panel of RSP2 mutants. An RSP2 mutant had paralyzed flagella defective in RSP2 and multiple subunits near the spokehead. New transgenic strains lacking only the DPY-30 domain in RSP2 were also paralyzed. In contrast, motility was restored in strains that lacked only RSP2's calmodulin-binding C-terminal region. These cells swam normally in dim light but could not maintain typical swimming trajectories under bright illumination. In both deletion transgenic strains, the subunits near the spokehead were restored, but their firm attachment to the spokestalk required the DPY-30 domain. We postulate that the DPY-30-helix dimer is a conserved two-prong linker, required for normal motility, organizing duplicated subunits in the radial spoke stalk and formation of a symmetrical spokehead. Further, the dispensable calmodulin-binding region appears to fine-tune the spokehead for regulation of "steering" motility in the green algae. Thus, in general, D/D domains may function to localize molecular modules for both the assembly and modulation of macromolecular complexes.
Collapse
|
30
|
Gupta A, Diener DR, Sivadas P, Rosenbaum JL, Yang P. The versatile molecular complex component LC8 promotes several distinct steps of flagellar assembly. ACTA ACUST UNITED AC 2012; 198:115-26. [PMID: 22753897 PMCID: PMC3392930 DOI: 10.1083/jcb.201111041] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
LC8 is present in various molecular complexes. However, its role in these complexes remains unclear. We discovered that although LC8 is a subunit of the radial spoke (RS) complex in Chlamydomonas flagella, it was undetectable in the RS precursor that is converted into the mature RS at the tip of elongating axonemes. Interestingly, LC8 dimers bound in tandem to the N-terminal region of a spoke phosphoprotein, RS protein 3 (RSP3), that docks RSs to axonemes. LC8 enhanced the binding of RSP3 N-terminal fragments to purified axonemes. Likewise, the N-terminal fragments extracted from axonemes contained LC8 and putative spoke-docking proteins. Lastly, perturbations of RSP3's LC8-binding sites resulted in asynchronous flagella with hypophosphorylated RSP3 and defective associations between LC8, RSs, and axonemes. We propose that at the tip of flagella, an array of LC8 dimers binds to RSP3 in RS precursors, triggering phosphorylation, stalk base formation, and axoneme targeting. These multiple effects shed new light on fundamental questions about LC8-containing complexes and axoneme assembly.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | | | | | | | | |
Collapse
|
31
|
O'Toole ET, Giddings TH, Porter ME, Ostrowski LE. Computer-assisted image analysis of human cilia and Chlamydomonas flagella reveals both similarities and differences in axoneme structure. Cytoskeleton (Hoboken) 2012; 69:577-90. [PMID: 22573610 DOI: 10.1002/cm.21035] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 01/11/2023]
Abstract
In the past decade, investigations from several different fields have revealed the critical role of cilia in human health and disease. Because of the highly conserved nature of the basic axonemal structure, many different model systems have proven useful for the study of ciliopathies, especially the unicellular, biflagellate green alga Chlamydomonas reinhardtii. Although the basic axonemal structure of cilia and flagella is highly conserved, these organelles often perform specialized functions unique to the cell or tissue in which they are found. These differences in function are likely reflected in differences in structural organization. In this work, we directly compare the structure of isolated axonemes from human cilia and Chlamydomonas flagella to identify similarities and differences that potentially play key roles in determining their functionality. Using transmission electron microscopy and 2D image averaging techniques, our analysis has confirmed the overall structural similarity between these two species, but also revealed clear differences in the structure of the outer dynein arms, the central pair projections, and the radial spokes. We also show how the application of 2D image averaging can clarify the underlying structural defects associated with primary ciliary dyskinesia (PCD). Overall, our results document the remarkable similarity between these two structures separated evolutionarily by over a billion years, while highlighting several significant differences, and demonstrate the potential of 2D image averaging to improve the diagnosis and understanding of PCD.
Collapse
Affiliation(s)
- Eileen T O'Toole
- Boulder Laboratory for 3D Electron Microscopy of Cells, Department of MCD Biology, University of Colorado, Boulder, Colorado, USA
| | | | | | | |
Collapse
|
32
|
King SM. Integrated control of axonemal dynein AAA(+) motors. J Struct Biol 2012; 179:222-8. [PMID: 22406539 DOI: 10.1016/j.jsb.2012.02.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 02/13/2012] [Accepted: 02/16/2012] [Indexed: 11/17/2022]
Abstract
Axonemal dyneins are AAA(+) enzymes that convert ATP hydrolysis to mechanical work. This leads to the sliding of doublet microtubules with respect to each other and ultimately the generation of ciliary/flagellar beating. However, in order for useful work to be generated, the action of individual dynein motors must be precisely controlled. In addition, cells modulate the motility of these organelles through a variety of second messenger systems and these signals too must be integrated by the dynein motors to yield an appropriate output. This review describes the current status of efforts to understand dynein control mechanisms and their connectivity focusing mainly on studies of the outer dynein arm from axonemes of the unicellular biflagellate green alga Chlamydomonas.
Collapse
Affiliation(s)
- Stephen M King
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3305, USA.
| |
Collapse
|
33
|
Lin J, Heuser T, Carbajal-González BI, Song K, Nicastro D. The structural heterogeneity of radial spokes in cilia and flagella is conserved. Cytoskeleton (Hoboken) 2012; 69:88-100. [PMID: 22170736 DOI: 10.1002/cm.21000] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 01/05/2023]
Abstract
Radial spokes (RSs) are ubiquitous components of motile cilia and flagella and play an essential role in transmitting signals that regulate the activity of the dynein motors, and thus ciliary and flagellar motility. In some organisms, the 96 nm axonemal repeat unit contains only a pair of spokes, RS1 and RS2, while most organisms have spoke triplets with an additional spoke RS3. The spoke pairs in Chlamydomonas flagella have been well characterized, while spoke triplets have received less attention. Here, we used cryoelectron tomography and subtomogram averaging to visualize the three-dimensional structure of spoke triplets in Strongylocentrotus purpuratus (sea urchin) sperm flagella in unprecedented detail. Only small differences were observed between RS1 and RS2, but the structure of RS3 was surprisingly unique and structurally different from the other two spokes. We observed novel doublet specific features that connect RS2, RS3, and the nexin-dynein regulatory complex, three key ciliary and flagellar structures. The distribution of these doublet specific structures suggests that they could be important for establishing the asymmetry of dynein activity required for the oscillatory movement of cilia and flagella. Surprisingly, a comparison with other organisms demonstrated both that this considerable RS heterogeneity is conserved and that organisms with RS pairs contain the basal part of RS3. This conserved RS heterogeneity may also reflect functional differences between the spokes and their involvement in regulating ciliary and flagellar motility.
Collapse
Affiliation(s)
- Jianfeng Lin
- Department of Biology, Rosenstiel Center, MS029, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | | | | | | | |
Collapse
|
34
|
Barber CF, Heuser T, Carbajal-González BI, Botchkarev VV, Nicastro D. Three-dimensional structure of the radial spokes reveals heterogeneity and interactions with dyneins in Chlamydomonas flagella. Mol Biol Cell 2011; 23:111-20. [PMID: 22072792 PMCID: PMC3248890 DOI: 10.1091/mbc.e11-08-0692] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cryo–electron tomography of Chlamydomonas flagella reveals previously uncharacterized features of the radial spokes, including structural heterogeneity and direct interactions with dyneins and between the spoke heads. A “radial spoke 3 stand-in” occupies what would be the site of a third spoke in organisms with spoke triplets. Radial spokes (RSs) play an essential role in the regulation of axonemal dynein activity and thus of ciliary and flagellar motility. However, few details are known about the complexes involved. Using cryo–electron tomography and subtomogram averaging, we visualized the three-dimensional structure of the radial spokes in Chlamydomonas flagella in unprecedented detail. Unlike many other species, Chlamydomonas has only two spokes per axonemal repeat, RS1 and RS2. Our data revealed previously uncharacterized features, including two-pronged spoke bases that facilitate docking to the doublet microtubules, and that inner dyneins connect directly to the spokes. Structures of wild type and the headless spoke mutant pf17 were compared to define the morphology and boundaries of the head, including a direct RS1-to-RS2 interaction. Although the overall structures of the spokes are very similar, we also observed some differences, corroborating recent findings about heterogeneity in the docking of RS1 and RS2. In place of a third radial spoke we found an uncharacterized, shorter electron density named “radial spoke 3 stand-in,” which structurally bears no resemblance to RS1 and RS2 and is unaltered in the pf17 mutant. These findings demonstrate that radial spokes are heterogeneous in structure and may play functionally distinct roles in axoneme regulation.
Collapse
Affiliation(s)
- Cynthia F Barber
- Biology Department, Rosenstiel Center, Brandeis University, Waltham, MA 02454, USA
| | | | | | | | | |
Collapse
|
35
|
Pigino G, Bui KH, Maheshwari A, Lupetti P, Diener D, Ishikawa T. Cryoelectron tomography of radial spokes in cilia and flagella. ACTA ACUST UNITED AC 2011; 195:673-87. [PMID: 22065640 PMCID: PMC3257535 DOI: 10.1083/jcb.201106125] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cryo-EM tomography of wild-type and mutant cilia and flagella from Tetrahymena and Chlamydomonas reveals new information on the substructure of radial spokes. Radial spokes (RSs) are ubiquitous components in the 9 + 2 axoneme thought to be mechanochemical transducers involved in local control of dynein-driven microtubule sliding. They are composed of >23 polypeptides, whose interactions and placement must be deciphered to understand RS function. In this paper, we show the detailed three-dimensional (3D) structure of RS in situ in Chlamydomonas reinhardtii flagella and Tetrahymena thermophila cilia that we obtained using cryoelectron tomography (cryo-ET). We clarify similarities and differences between the three spoke species, RS1, RS2, and RS3, in T. thermophila and in C. reinhardtii and show that part of RS3 is conserved in C. reinhardtii, which only has two species of complete RSs. By analyzing C. reinhardtii mutants, we identified the specific location of subsets of RS proteins (RSPs). Our 3D reconstructions show a twofold symmetry, suggesting that fully assembled RSs are produced by dimerization. Based on our cryo-ET data, we propose models of subdomain organization within the RS as well as interactions between RSPs and with other axonemal components.
Collapse
Affiliation(s)
- Gaia Pigino
- Biomolecular Research Laboratory, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | | | | | | | | | | |
Collapse
|
36
|
DiPetrillo CG, Smith EF. The Pcdp1 complex coordinates the activity of dynein isoforms to produce wild-type ciliary motility. Mol Biol Cell 2011; 22:4527-38. [PMID: 21998195 PMCID: PMC3226472 DOI: 10.1091/mbc.e11-08-0739] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Generating the complex waveforms characteristic of beating cilia requires the coordinated activity of multiple dynein isoforms anchored to the axoneme. We previously identified a complex associated with the C1d projection of the central apparatus that includes primary ciliary dyskinesia protein 1 (Pcdp1). Reduced expression of complex members results in severe motility defects, indicating that C1d is essential for wild-type ciliary beating. To define a mechanism for Pcdp1/C1d regulation of motility, we took a functional and structural approach combined with mutants lacking C1d and distinct subsets of dynein arms. Unlike mutants completely lacking the central apparatus, dynein-driven microtubule sliding velocities are wild type in C1d- defective mutants. However, coordination of dynein activity among microtubule doublets is severely disrupted. Remarkably, mutations in either outer or inner dynein arm restore motility to mutants lacking C1d, although waveforms and beat frequency differ depending on which isoform is mutated. These results define a unique role for C1d in coordinating the activity of specific dynein isoforms to control ciliary motility.
Collapse
|
37
|
Petroutsos D, Busch A, Janßen I, Trompelt K, Bergner SV, Weinl S, Holtkamp M, Karst U, Kudla J, Hippler M. The chloroplast calcium sensor CAS is required for photoacclimation in Chlamydomonas reinhardtii. THE PLANT CELL 2011; 23:2950-63. [PMID: 21856795 PMCID: PMC3180803 DOI: 10.1105/tpc.111.087973] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 07/12/2011] [Accepted: 08/01/2011] [Indexed: 05/19/2023]
Abstract
The plant-specific calcium binding protein CAS (calcium sensor) has been localized in chloroplast thylakoid membranes of vascular plants and green algae. To elucidate the function of CAS in Chlamydomonas reinhardtii, we generated and analyzed eight independent CAS knockdown C. reinhardtii lines (cas-kd). Upon transfer to high-light (HL) growth conditions, cas-kd lines were unable to properly induce the expression of LHCSR3 protein that is crucial for nonphotochemical quenching. Prolonged exposure to HL revealed a severe light sensitivity of cas-kd lines and caused diminished activity and recovery of photosystem II (PSII). Remarkably, the induction of LHCSR3, the growth of cas-kd lines under HL, and the performance of PSII were fully rescued by increasing the calcium concentration in the growth media. Moreover, perturbing cellular Ca(2+) homeostasis by application of the calmodulin antagonist W7 or the G-protein activator mastoparan impaired the induction of LHCSR3 expression in a concentration-dependent manner. Our findings demonstrate that CAS and Ca(2+) are critically involved in the regulation of the HL response and particularly in the control of LHCSR3 expression.
Collapse
Affiliation(s)
- Dimitris Petroutsos
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany
| | - Andreas Busch
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany
| | - Ingrid Janßen
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany
| | - Kerstin Trompelt
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany
| | - Sonja Verena Bergner
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany
| | - Stefan Weinl
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany
| | - Michael Holtkamp
- Institute of Inorganic and Analytical Chemistry, University of Münster, 48149 Muenster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, 48149 Muenster, Germany
| | - Jörg Kudla
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany
- Address correspondence to
| |
Collapse
|
38
|
Dymek EE, Heuser T, Nicastro D, Smith EF. The CSC is required for complete radial spoke assembly and wild-type ciliary motility. Mol Biol Cell 2011; 22:2520-31. [PMID: 21613541 PMCID: PMC3135477 DOI: 10.1091/mbc.e11-03-0271] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Structural and functional analyses of artificial micro RNA (amiRNA) mutants reveal that the CSC plays a role not only in generating wild-type motility, but also in assembly of at least a subset of radial spokes. This study also produced the unexpected finding that, contrary to current belief, the radial spokes may not be homogeneous. The ubiquitous calcium binding protein, calmodulin (CaM), plays a major role in regulating the motility of all eukaryotic cilia and flagella. We previously identified a CaM and Spoke associated Complex (CSC) and provided evidence that this complex mediates regulatory signals between the radial spokes and dynein arms. We have now used an artificial microRNA (amiRNA) approach to reduce expression of two CSC subunits in Chlamydomonas. For all amiRNA mutants, the entire CSC is lacking or severely reduced in flagella. Structural studies of mutant axonemes revealed that assembly of radial spoke 2 is defective. Furthermore, analysis of both flagellar beating and microtubule sliding in vitro demonstrates that the CSC plays a critical role in modulating dynein activity. Our results not only indicate that the CSC is required for spoke assembly and wild-type motility, but also provide evidence for heterogeneity among the radial spokes.
Collapse
Affiliation(s)
- Erin E Dymek
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
39
|
Inaba K. Sperm flagella: comparative and phylogenetic perspectives of protein components. Mol Hum Reprod 2011; 17:524-38. [PMID: 21586547 DOI: 10.1093/molehr/gar034] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sperm motility is necessary for the transport of male DNA to eggs in species with both external and internal fertilization. Flagella comprise several proteins for generating and regulating motility. Central cytoskeletal structures called axonemes have been well conserved through evolution. In mammalian sperm flagella, two accessory structures (outer dense fiber and the fibrous sheath) surround the axoneme. The axonemal bend movement is based on the active sliding of axonemal doublet microtubules by the molecular motor dynein, which is divided into outer and inner arm dyneins according to positioning on the doublet microtubule. Outer and inner arm dyneins play different roles in the production and regulation of flagellar motility. Several regulatory mechanisms are known for both dyneins, which are important in motility activation and chemotaxis at fertilization. Although dynein itself has certain properties that contribute to the formation and propagation of flagellar bending, other axonemal structures-specifically, the radial spoke/central pair apparatus-have essential roles in the regulation of flagellar bending. Recent genetic and proteomic studies have explored several new components of axonemes and shed light on the generation and regulation of sperm motility during fertilization.
Collapse
Affiliation(s)
- Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan.
| |
Collapse
|
40
|
Wirschell M, Yamamoto R, Alford L, Gokhale A, Gaillard A, Sale WS. Regulation of ciliary motility: conserved protein kinases and phosphatases are targeted and anchored in the ciliary axoneme. Arch Biochem Biophys 2011; 510:93-100. [PMID: 21513695 DOI: 10.1016/j.abb.2011.04.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 12/31/2022]
Abstract
Recent evidence has revealed that the dynein motors and highly conserved signaling proteins are localized within the ciliary 9+2 axoneme. One key mechanism for regulation of motility is phosphorylation. Here, we review diverse evidence, from multiple experimental organisms, that ciliary motility is regulated by phosphorylation/dephosphorylation of the dynein arms through kinases and phosphatases that are anchored immediately adjacent to their axonemal substrates.
Collapse
Affiliation(s)
- Maureen Wirschell
- Emory University School of Medicine, Department of Cell Biology, Atlanta, GA 30322, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Pereira CA, Bouvier LA, Cámara MDLM, Miranda MR. Singular features of trypanosomatids' phosphotransferases involved in cell energy management. Enzyme Res 2011; 2011:576483. [PMID: 21603267 PMCID: PMC3092577 DOI: 10.4061/2011/576483] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 01/23/2011] [Accepted: 02/08/2011] [Indexed: 01/15/2023] Open
Abstract
Trypanosomatids are responsible for economically important veterinary affections and severe human diseases. In Africa, Trypanosoma brucei causes sleeping sickness or African trypanosomiasis, while in America, Trypanosoma cruzi is the etiological agent of Chagas disease. These parasites have complex life cycles which involve a wide variety of environments with very different compositions, physicochemical properties, and availability of metabolites. As the environment changes there is a need to maintain the nucleoside homeostasis, requiring a quick and regulated response. Most of the enzymes required for energy management are phosphotransferases. These enzymes present a nitrogenous group or a phosphate as acceptors, and the most clear examples are arginine kinase, nucleoside diphosphate kinase, and adenylate kinase. Trypanosoma and Leishmania have the largest number of phosphotransferase isoforms ever found in a single cell; some of them are absent in mammals, suggesting that these enzymes are required in many cellular compartments associated to different biological processes. The presence of such number of phosphotransferases support the hypothesis of the existence of an intracellular enzymatic phosphotransfer network that communicates the spatially separated intracellular ATP consumption and production processes. All these unique features make phosphotransferases a promising start point for rational drug design for the treatment of human trypanosomiasis.
Collapse
Affiliation(s)
- Claudio A Pereira
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas "Alfredo Lanari", Universidad de Buenos Aires and CONICET, Combatientes de Malvinas 3150, 1427 Buenos Aires, Argentina
| | | | | | | |
Collapse
|
42
|
Kohno T, Wakabayashi KI, Diener DR, Rosenbaum JL, Kamiya R. Subunit interactions within the Chlamydomonas flagellar spokehead. Cytoskeleton (Hoboken) 2011; 68:237-46. [PMID: 21391306 DOI: 10.1002/cm.20507] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 02/08/2011] [Indexed: 11/10/2022]
Abstract
The radial spoke (RS)/central pair (CP) system in cilia and flagella plays an essential role in the regulation of force generation by dynein, the motor protein that drives cilia/flagella movements. Mechanical and mechanochemicl interactions between the CP and the distal part of the RS, the spokehead, should be crucial for this control; however, the details of interaction are totally unknown. As an initial step toward an understanding of the RS-CP interaction, we examined the protein-protein interactions between the five spokehead proteins (radial spoke protein (RSP)1, RSP4, RSP6, RSP9, and RSP10) and three spoke stalk proteins (RSP2, RSP5, and RSP23), all expressed as recombinant proteins. Three of them were shown to have physiological activities by electroporation-mediated protein delivery into mutants deficient in the respective proteins. Glutathione S-transferase pulldown assays in vitro detected interactions in 10 out of 64 pairs of recombinants. In addition, chemical crosslinking of axonemes using five reagents detected seven kinds of interactions between the RS subunits in situ. Finally, in the mixture of the recombinant spokehead subunits, RSP1, RSP4, RSP6, and RSP9 formed a 7-10S complex as detected by sucrose density gradient centrifugation. It may represent a partial assembly of the spokehead. From these results, we propose a model of interactions taking place between the spokehead subunits.
Collapse
Affiliation(s)
- Takahiro Kohno
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
43
|
Miranda MR, Camara MDLM, Bouvier LA, Pereira CA. TcNDPK2, a Trypanosoma cruzi microtubule-associated nucleoside diphosphate kinase. Mol Biochem Parasitol 2011; 177:152-5. [PMID: 21354216 DOI: 10.1016/j.molbiopara.2011.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 02/11/2011] [Accepted: 02/16/2011] [Indexed: 11/25/2022]
Abstract
Nucleoside diphosphate kinases (NDPKs) are enzymes required to preserve the intracellular nucleoside phosphate equilibrium. Trypanosoma cruzi has four putative nucleoside diphosphate kinases with unidentified biological roles and subcellular localization. TcNDPK2 has an N-terminal domain (DM10) with unknown function, which defines a subgroup of NDPKs distributed in a wide variety of organisms. Digitonin extraction demonstrated that this isoform is distributed in detergent soluble and insoluble fractions. Fluorescence microscopy showed that TcNDPK2 alone or fused to GFP was localized in cytoskeleton and flagella. TcNDPK2 was also detected by Western blot in purified polymerized tubulin and flagellar samples. In parasites expressing DM10 fused with GFP, the fluorescence was localized in cytoskeleton and flagellum with an identical pattern to TcNDPK2. This constitutes the first report that could give insights on the role of DM10 domains in NDPKs and also the identification of the first T. cruzi peptide that contains a microtubule association domain.
Collapse
Affiliation(s)
- Mariana R Miranda
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
44
|
King SM. Sensing the mechanical state of the axoneme and integration of Ca2+ signaling by outer arm dynein. Cytoskeleton (Hoboken) 2010; 67:207-13. [PMID: 20186692 DOI: 10.1002/cm.20445] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Axonemal dyneins have been demonstrated to monitor the mechanical state of the axoneme and must also alter activity in response to various signaling pathways. The central pair/radial spoke systems are clearly involved in controlling inner dynein arm function; however, the mechanisms by which the outer dynein arm transduces regulatory signals appear quite distinct at the molecular level. In Chlamydomonas, these regulatory components include thioredoxins involved in response to redox changes, molecules that tether the gamma heavy-chain motor unit to the A-tubule of the outer doublet and a Ca(2+)-binding protein that controls the structure of the gamma heavy-chain N-terminal domain. Together, these studies now suggest that the gamma heavy chain acts as a key regulatory node for controlling outer arm function in response to alterations in curvature and ligand binding. Furthermore, they allow us to propose a testable molecular mechanism by which altered Ca(2+) levels might lead to a change in ciliary waveform by controlling whether one heavy chain of outer arm dynein acts as a microtubule translocase or as an ATP-dependent brake that limits the amount of interdoublet sliding.
Collapse
Affiliation(s)
- Stephen M King
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut 06030-3305, USA.
| |
Collapse
|
45
|
Kabututu ZP, Thayer M, Melehani JH, Hill KL. CMF70 is a subunit of the dynein regulatory complex. J Cell Sci 2010; 123:3587-95. [PMID: 20876659 PMCID: PMC2951471 DOI: 10.1242/jcs.073817] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2010] [Indexed: 11/20/2022] Open
Abstract
Flagellar motility drives propulsion of several important pathogens and is essential for human development and physiology. Motility of the eukaryotic flagellum requires coordinate regulation of thousands of dynein motors arrayed along the axoneme, but the proteins underlying dynein regulation are largely unknown. The dynein regulatory complex, DRC, is recognized as a focal point of axonemal dynein regulation, but only a single DRC subunit, trypanin/PF2, is currently known. The component of motile flagella 70 protein, CMF70, is broadly and uniquely conserved among organisms with motile flagella, suggesting a role in axonemal motility. Here we demonstrate that CMF70 is part of the DRC from Trypanosoma brucei. CMF70 is located along the flagellum, co-sediments with trypanin in sucrose gradients and co-immunoprecipitates with trypanin. RNAi knockdown of CMF70 causes motility defects in a wild-type background and suppresses flagellar paralysis in cells with central pair defects, thus meeting the functional definition of a DRC subunit. Trypanin and CMF70 are mutually conserved in at least five of six extant eukaryotic clades, indicating that the DRC was probably present in the last common eukaryotic ancestor. We have identified only the second known subunit of this ubiquitous dynein regulatory system, highlighting the utility of combined genomic and functional analyses for identifying novel subunits of axonemal sub-complexes.
Collapse
Affiliation(s)
- Zakayi P. Kabututu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Michelle Thayer
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Jason H. Melehani
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Kent L. Hill
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
46
|
DiPetrillo CG, Smith EF. Pcdp1 is a central apparatus protein that binds Ca(2+)-calmodulin and regulates ciliary motility. ACTA ACUST UNITED AC 2010; 189:601-12. [PMID: 20421426 PMCID: PMC2867295 DOI: 10.1083/jcb.200912009] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A complex that localizes to the C1d central pair projection of cilia controls flagellar waveform and beat frequency in response to calcium. For all motile eukaryotic cilia and flagella, beating is regulated by changes in intraciliary calcium concentration. Although the mechanism for calcium regulation is not understood, numerous studies have shown that calmodulin (CaM) is a key axonemal calcium sensor. Using anti-CaM antibodies and Chlamydomonas reinhardtii axonemal extracts, we precipitated a complex that includes four polypeptides and that specifically interacts with CaM in high [Ca2+]. One of the complex members, FAP221, is an orthologue of mammalian Pcdp1 (primary ciliary dyskinesia protein 1). Both FAP221 and mammalian Pcdp1 specifically bind CaM in high [Ca2+]. Reduced expression of Pcdp1 complex members in C. reinhardtii results in failure of the C1d central pair projection to assemble and significant impairment of motility including uncoordinated bends, severely reduced beat frequency, and altered waveforms. These combined results reveal that the central pair Pcdp1 (FAP221) complex is essential for control of ciliary motility.
Collapse
|
47
|
Wei M, Sivadas P, Owen HA, Mitchell DR, Yang P. Chlamydomonas mutants display reversible deficiencies in flagellar beating and axonemal assembly. Cytoskeleton (Hoboken) 2010; 67:71-80. [PMID: 20169531 PMCID: PMC2835312 DOI: 10.1002/cm.20422] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 10/14/2009] [Indexed: 11/12/2022]
Abstract
Axonemal complexes in flagella are largely prepackaged in the cell body. As such, one mutation often results in the absence of the co-assembled components and permanent motility deficiencies. For example, a Chlamydomonas mutant defective in RSP4 in the radial spoke (RS), which is critical for bend propagation, has paralyzed flagella that also lack the paralogue RSP6 and three additional RS proteins. Intriguingly, recent studies showed that several mutant strains contain a mixed population of swimmers and paralyzed cells despite their identical genetic background. Here we report a cause underlying these variations. Two new mutants lacking RSP6 swim processively and other components appear normally assembled in early log phase indicating that, unlike RSP4, this paralogue is dispensable. However, swimmers cannot maintain the typical helical trajectory and reactivated cell models tend to spin. Interestingly the motile fraction and the spokehead content dwindle during stationary phase. These results suggest that (1) intact RS is critical for maintaining the rhythm of oscillatory beating and thus the helical trajectory; (2) assembly of the axonemal complex with subtle defects is less efficient and the inefficiency is accentuated in compromised conditions, leading to reversible dyskinesia. Consistently, several organisms only possess one RSP4/6 gene. Gene duplication in Chlamydomonas enhances RS assembly to maintain optimal motility in various environments.
Collapse
Affiliation(s)
- Mei Wei
- Department of Biological Sciences, Marquette University, 530 N. 15 St. Milwaukee, WI 53233
| | - Priyanka Sivadas
- Department of Biological Sciences, Marquette University, 530 N. 15 St. Milwaukee, WI 53233
| | - Heather A. Owen
- Department of Biological Sciences, University of Wisconsin-Milwaukee, 3209 N. Maryland Ave, Milwaukee, WI 53211
| | - David R. Mitchell
- Department of Cell and Developmental Biology, Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210
| | - Pinfen Yang
- Department of Biological Sciences, Marquette University, 530 N. 15 St. Milwaukee, WI 53233
| |
Collapse
|
48
|
DiPetrillo C, Smith E. Calcium regulation of ciliary motility analysis of axonemal calcium-binding proteins. Methods Cell Biol 2009; 92:163-80. [PMID: 20409805 DOI: 10.1016/s0091-679x(08)92011-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Substantial data have contributed to a model in which the axonemal microtubules act as a scaffold for the assembly of molecules that form a signal transduction pathway that ultimately regulates dynein. We have also known for some time that for virtually all motile cilia and flagella, the second messenger, calcium, impacts upon these signaling pathways to modulate beating in response to extracellular cues. Yet we are only beginning to identify the axonemal proteins that bind this second messenger and determine their role in regulating dynein-driven microtubule sliding to alter the size and shape of ciliary bends. Here, we review our current understanding of calcium regulation of motility, emphasizing recent advances in the detection and characterization of calcium-binding proteins anchored to the axoneme.
Collapse
Affiliation(s)
- Christen DiPetrillo
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | | |
Collapse
|
49
|
Abstract
The 9+2 axoneme that mediates the highly controlled oscillatory beating of cilia and flagella is an elaborate supramolecular complex. Proteomics and genomics have revealed more than 400 distinct polypeptides that presumably are built into axonemal subcomplexes for specific tasks. However, only a handful of proteins can be assigned to the most prominent structural modules visible by electron microscopy. Much less is known about the function and mechanism of individual molecules and complexes. Isolation of intact complexes will hasten discoveries and open the door to a wide range of analyses as showcased by axonemal dynein motors. However, many axonemal components, such as the radial spoke complex, either are not extracted by conditions that solubilize axonemal dynein or at best are only partially released. This chapter discusses strategies and methods to circumvent this problem in order to characterize radial spokes. With appropriate modifications, the lessons learned from the radial spoke complex may be applicable to other axonemal complexes.
Collapse
|
50
|
Portman N, Gull K. The paraflagellar rod of kinetoplastid parasites: from structure to components and function. Int J Parasitol 2009; 40:135-48. [PMID: 19879876 PMCID: PMC2813431 DOI: 10.1016/j.ijpara.2009.10.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 10/13/2009] [Accepted: 10/16/2009] [Indexed: 01/06/2023]
Abstract
The role of the eukaryotic flagellum in cell motility is well established but its importance in many other aspects of cell biology, from cell signalling to developmental regulation, is becoming increasingly apparent. In addition to this diversity of function the core structure of the flagellum, which has been inherited from the earliest ancestor of all eukaryotes, is embellished with a range of extra-axonemal structures in many organisms. One of the best studied of these structures is the paraflagellar rod of kinetoplastid protozoa in which the morphological characteristics have been well defined and some of the major protein constituents have been identified. Here we discuss recent advances in the identification of further molecular components of the paraflagellar rod, how these impact on our understanding of its function and regulation and the implications for therapeutic intervention in a number of devastating human pathologies.
Collapse
Affiliation(s)
- Neil Portman
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX13RE, UK
| | | |
Collapse
|