1
|
Nie WF, Wang J. Actin-Related Protein 4 Interacts with PIE1 and Regulates Gene Expression in Arabidopsis. Genes (Basel) 2021; 12:genes12040520. [PMID: 33918349 PMCID: PMC8066076 DOI: 10.3390/genes12040520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
As essential structural components of ATP-dependent chromatin-remodeling complex, the nucleolus-localized actin-related proteins (ARPs) play critical roles in many biological processes. Among them, ARP4 is identified as an integral subunit of chromatin remodeling complex SWR1, which is conserved in yeast, humans and plants. It was shown that RNAi mediated knock-down of Arabidopsisthaliana ARP4 (AtARP4) could affect plant development, specifically, leading to early flowering. However, so far, little is known about how ARP4 functions in the SWR1 complex in plant. Here, we identified a loss-of-function mutant of AtARP4 with a single nucleotide change from glycine to arginine, which had significantly smaller leaf size. The results from the split luciferase complementation imaging (LCI) and yeast two hybrid (Y2H) assays confirmed its physical interaction with the scaffold and catalytic subunit of SWR1 complex, photoperiod-independent early flowering 1 (PIE1). Furthermore, mutation of AtARP4 caused altered transcription response of hundreds of genes, in which the number of up-regulated differentially expressed genes (DEGs) was much larger than those down-regulated. Although most DEGs in atarp4 are related to plant defense and response to hormones such as salicylic acid, overall, it has less overlapping with other swr1 mutants and the hta9 hta11 double-mutant. In conclusion, our results reveal that AtARP4 is important for plant growth and such an effect is likely attributed to its repression on gene expression, typically at defense-related loci, thus providing some evidence for the coordination of plant growth and defense, while the regulatory patterns and mechanisms are distinctive from other SWR1 complex components.
Collapse
|
2
|
Li T, Petreaca RC, Forsburg SL. Schizosaccharomyces pombe KAT5 contributes to resection and repair of a DNA double-strand break. Genetics 2021; 218:6173406. [PMID: 33723569 DOI: 10.1093/genetics/iyab042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/04/2021] [Indexed: 11/14/2022] Open
Abstract
Chromatin remodeling is essential for effective repair of a DNA double-strand break (DSB). KAT5 (Schizosaccharomyces pombe Mst1, human TIP60) is a MYST family histone acetyltransferase conserved from yeast to humans that coordinates various DNA damage response activities at a DNA DSB, including histone remodeling and activation of the DNA damage checkpoint. In S. pombe, mutations in mst1+ causes sensitivity to DNA damaging drugs. Here we show that Mst1 is recruited to DSBs. Mutation of mst1+ disrupts recruitment of repair proteins and delays resection. These defects are partially rescued by deletion of pku70, which has been previously shown to antagonize repair by homologous recombination (HR). These phenotypes of mst1 are similar to pht1-4KR, a nonacetylatable form of histone variant H2A.Z, which has been proposed to affect resection. Our data suggest that Mst1 functions to direct repair of DSBs toward HR pathways by modulating resection at the DSB.
Collapse
Affiliation(s)
- Tingting Li
- Program of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089-2910, USA
| | - Ruben C Petreaca
- Program of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089-2910, USA
- Department of Molecular Genetics, Ohio State University, Marion, OH 43302, USA
| | - Susan L Forsburg
- Program of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089-2910, USA
| |
Collapse
|
3
|
ACTL6A interacts with p53 in acute promyelocytic leukemia cell lines to affect differentiation via the Sox2/Notch1 signaling pathway. Cell Signal 2018; 53:390-399. [PMID: 30448346 DOI: 10.1016/j.cellsig.2018.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 11/21/2022]
Abstract
Actin-like 6A (ACTL6A), a component of BAF chromatin remodeling complexes, is important for cell differentiation. Nevertheless, its role and mechanism in acute promyelocytic leukemia (APL) has not been reported. To identify the genes that may participate in the development of APL, we analyzed data from an APL cDNA microarray (GSE12662) in the NCBI database, and found that ACTL6A was up-regulated in APL patients. Subsequently, we investigated the function and mechanisms of ACTL6A in myeloid cell development. The expression of ACTL6A was gradually decreased during granulocytic differentiation in all-trans retinoic acid-treated NB4 and HL-60 cells, and phorbol myristate acetate-treated HL-60 cells. We also found that knockdown of ACTL6A promoted differentiation in NB4 and HL-60 cells, and decreased the levels of Sox2 and Notch1. Mechanistically, ACTL6A interacted with and was co-localized with Sox2 and p53. Meanwhile, CBL0137, an activator of p53, decreased the expression of ACTL6A and promoted differentiation in NB4 and HL-60 cells. These findings suggest that the inhibition of ACTL6A promotes differentiation via the Sox2 and Notch1 signaling pathways. Furthermore, the differentiation promoted by inhibiting ACTL6A could be regulated by p53 via its physical interaction with ACTL6A.
Collapse
|
4
|
Jin ML, Kim YW, Jeong KW. BAF53A regulates androgen receptor-mediated gene expression and proliferation in LNCaP cells. Biochem Biophys Res Commun 2018; 505:618-623. [PMID: 30278885 DOI: 10.1016/j.bbrc.2018.09.149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 09/22/2018] [Indexed: 11/30/2022]
Abstract
The actin-like protein of the SWI/SNF complex, BAF53A, regulates gene expression by the gene-specific chromatin remodeling of target genes. However, the function of BAF53A in the androgen receptor pathway in prostate cancer cells remains unclear. Here, we demonstrated that BAF53A positively regulates the expression of endogenous AR target genes (e.g. PSA, TMPRSS2, FKBP5, and KLK2) in LNCaP cells. It functions as a coactivator in AR-mediated transcription by interacting with other nuclear receptor coactivators, such as p300 and FLII, and is associated with AR in the presence of dihydrotestosterone (DHT). The DHT-induced recruitment of BAF53A to the proximal and distal androgen response elements (AREs) of the PSA gene in the presence of BRG1 (but not BRM) was inhibited by an AR antagonist, suggesting the coactivator function of BAF53A in the SWI/SNF complex. Depletion of BAF53A in LNCaP cells resulted in a significant decrease in growth rate. Furthermore, the expression of BAF53A in prostate cancer tissue was significantly elevated, compared to that in normal prostate tissue, and correlated with the expression of AR, and BRG1, but not BRM. Therefore, our results suggested that BAF53A plays an important role in the expression of AR target genes in prostate cancer, and can be used clinically for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Ming Li Jin
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea
| | - Young Woong Kim
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea
| | - Kwang Won Jeong
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea.
| |
Collapse
|
5
|
Oliveira LC, Torres GA. Plant centromeres: genetics, epigenetics and evolution. Mol Biol Rep 2018; 45:1491-1497. [DOI: 10.1007/s11033-018-4284-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 07/26/2018] [Indexed: 12/20/2022]
|
6
|
Lee AY, Lyu SK, Kwon H. BAF53 is required for mitotic progression. Anim Cells Syst (Seoul) 2015. [DOI: 10.1080/19768354.2015.1101399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
7
|
Mohibi S, Srivastava S, Wang-France J, Mirza S, Zhao X, Band H, Band V. Alteration/Deficiency in Activation 3 (ADA3) Protein, a Cell Cycle Regulator, Associates with the Centromere through CENP-B and Regulates Chromosome Segregation. J Biol Chem 2015; 290:28299-28310. [PMID: 26429915 DOI: 10.1074/jbc.m115.685511] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Indexed: 02/01/2023] Open
Abstract
ADA3 (alteration/deficiency in activation 3) is a conserved component of several transcriptional co-activator and histone acetyltransferase (HAT) complexes. Recently, we generated Ada3 knock-out mice and demonstrated that deletion of Ada3 leads to early embryonic lethality. The use of Ada3(FL/FL) mouse embryonic fibroblasts with deletion of Ada3 using adenovirus Cre showed a critical role of ADA3 in cell cycle progression through mitosis. Here, we demonstrate an association of ADA3 with the higher order repeat region of the α-satellite region on human X chromosome centromeres that is consistent with its role in mitosis. Given the role of centromere proteins (CENPs) in mitosis, we next analyzed whether ADA3 associates with the centromere through CENPs. Both an in vivo proximity ligation assay and immunofluorescence studies confirmed the association of ADA3 with CENP-B protein, a highly conserved centromeric protein that binds to the 17-bp DNA sequences on α-satellite DNA. Deletional analysis showed that ADA3 directly associates with CENP-B through its N terminus, and a CENP-B binding-deficient mutant of ADA3 was incompetent in cell proliferation rescue. Notably, knockdown of ADA3 decreased binding of CENP-B onto the centromeres, suggesting that ADA3 is required for the loading of CENP-B onto the centromeres. Finally, we show that deletion of Ada3 from Ada3(FL/FL) mouse embryonic fibroblasts exhibited various chromosome segregation defects. Taken together, we demonstrate a novel ADA3 interaction with CENP-B-centromere that may account for its previously known function in mitosis. This study, together with its known function in maintaining genomic stability and its mislocalization in cancers, suggests an important role of ADA3 in mitosis.
Collapse
Affiliation(s)
| | | | | | - Sameer Mirza
- Department of Genetics, Cell Biology, and Anatomy
| | | | - Hamid Band
- Department of Genetics, Cell Biology, and Anatomy; Departments of Biochemistry and Molecular Biology, Pathology and Microbiology, and Pharmacology and Experimental Neuroscience, College of Medicine; Eppley Institute for Cancer and Allied Diseases; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, Nebraska 68198.
| | - Vimla Band
- Department of Genetics, Cell Biology, and Anatomy; Eppley Institute for Cancer and Allied Diseases; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, Nebraska 68198
| |
Collapse
|
8
|
Actin, actin-related proteins and profilin in diatoms: A comparative genomic analysis. Mar Genomics 2015; 23:133-42. [DOI: 10.1016/j.margen.2015.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 12/24/2022]
|
9
|
|
10
|
Oma Y, Harata M. Actin-related proteins localized in the nucleus: from discovery to novel roles in nuclear organization. Nucleus 2011; 2:38-46. [PMID: 21647298 PMCID: PMC3104808 DOI: 10.4161/nucl.2.1.14510] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/15/2010] [Accepted: 12/17/2010] [Indexed: 12/18/2022] Open
Abstract
The actin family consists of conventional actin and actin-related proteins (ARPs), and the members show moderate similarity and share the same basal structure. Following the finding of various ARPs in the cytoplasm in the 1990s, multiple subfamilies that are localized predominantly in the nucleus were identified. Consistent with these cytological observations, subsequent biochemical analyses revealed the involvement of the nuclear ARPs in ATP-dependent chromatin-remodeling and histone acetyltransferase complexes. In addition to their contribution to chromatin remodeling, recent studies have shown that nuclear ARPs have roles in the organization of the nucleus that are independent of the activity of the above-mentioned complexes. Therefore, nuclear ARPs are recognized as novel key regulators of genome function, and affect not only the remodeling of chromatin but also the spatial arrangement and dynamics of chromatin within the nucleus.
Collapse
Affiliation(s)
- Yukako Oma
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | | |
Collapse
|
11
|
Castano E, Philimonenko VV, Kahle M, Fukalová J, Kalendová A, Yildirim S, Dzijak R, Dingová-Krásna H, Hozák P. Actin complexes in the cell nucleus: new stones in an old field. Histochem Cell Biol 2010; 133:607-26. [PMID: 20443021 DOI: 10.1007/s00418-010-0701-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2010] [Indexed: 01/13/2023]
Abstract
Actin is a well-known protein that has shown a myriad of activities in the cytoplasm. However, recent findings of actin involvement in nuclear processes are overwhelming. Actin complexes in the nucleus range from very dynamic chromatin-remodeling complexes to structural elements of the matrix with single partners known as actin-binding proteins (ABPs). This review summarizes the recent findings of actin-containing complexes in the nucleus. Particular attention is given to key processes like chromatin remodeling, transcription, DNA replication, nucleocytoplasmic transport and to actin roles in nuclear architecture. Understanding the mechanisms involving ABPs will definitely lead us to the principles of the regulation of gene expression performed via concerting nuclear and cytoplasmic processes.
Collapse
Affiliation(s)
- E Castano
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Chen JQ, Li Y, Pan X, Lei BK, Chang C, Liu ZX, Lu H. The fission yeast inhibitor of growth (ING) protein Png1p functions in response to DNA damage. J Biol Chem 2010; 285:15786-93. [PMID: 20299455 DOI: 10.1074/jbc.m110.101832] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In budding yeast and human cells, ING (inhibitor of growth) tumor suppressor proteins play important roles in response to DNA damage by modulating chromatin structure through collaborating with histone acetyltransferase or histone deacetylase complexes. However, the biological functions of ING family proteins in fission yeast are poorly defined. Here, we report that Png1p, a fission yeast ING homolog protein, is required for cell growth under normal and DNA-damaged conditions. Png1p was further confirmed to regulate histone H4 acetylation through collaboration with the MYST family histone acetyltransferase 1 (Mst1). Additionally, both fission yeast PNG1 and MST1 can functionally complement their budding yeast correspondence homologs YNG2 and ESA1, respectively. These results suggest that ING proteins in fission yeast might also conserve function, similar to ING proteins in budding yeast and human cells. We also showed that decreased acetylation in Deltapng1 cells resulted in genome-wide down-regulation of 756 open reading frames, including the central DNA repair gene RAD22. Overexpression of RAD22 partially rescued the png1 mutant phenotype under both normal and DNA-damaged conditions. Furthermore, decreased expression of RAD22 in Deltapng1 cells was confirmed to be caused by decreased H4 acetylation at its promoter. Altogether, these results indicate that Png1p is required for histone H4 acetylation and functions upstream of RAD22 in the DNA damage response pathway.
Collapse
Affiliation(s)
- Jian-Qiang Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Tanaka K, Li Chang H, Kagami A, Watanabe Y. CENP-C Functions as a Scaffold for Effectors with Essential Kinetochore Functions in Mitosis and Meiosis. Dev Cell 2009; 17:334-43. [DOI: 10.1016/j.devcel.2009.08.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 06/30/2009] [Accepted: 08/10/2009] [Indexed: 01/21/2023]
|
14
|
Meagher RB, Kandasamy MK, McKinney EC, Roy E. Chapter 5. Nuclear actin-related proteins in epigenetic control. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 277:157-215. [PMID: 19766970 PMCID: PMC2800988 DOI: 10.1016/s1937-6448(09)77005-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The nuclear actin-related proteins (ARPs) share overall structure and low-level sequence homology with conventional actin. They are indispensable subunits of macromolecular machines that control chromatin remodeling and modification leading to dynamic changes in DNA structure, transcription, and DNA repair. Cellular, genetic, and biochemical studies suggest that the nuclear ARPs are essential to the epigenetic control of the cell cycle and cell proliferation in all eukaryotes, while in plants and animals they also exert epigenetic controls over most stages of multicellular development including organ initiation, the switch to reproductive development, and senescence and programmed cell death. A theme emerging from plants and animals is that in addition to their role in controlling the general compaction of DNA and gene silencing, isoforms of nuclear ARP-containing chromatin complexes have evolved to exert dynamic epigenetic control over gene expression and different phases of multicellular development. Herein, we explore this theme by examining nuclear ARP phylogeny, activities of ARP-containing chromatin remodeling complexes that lead to epigenetic control, expanding developmental roles assigned to several animal and plant ARP-containing complexes, the evidence that thousands of ARP complex isoforms may have evolved in concert with multicellular development, and ARPs in human disease.
Collapse
Affiliation(s)
- Richard B Meagher
- Department of Genetics, Davison Life Sciences Building, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
15
|
Chromatin Central: towards the comparative proteome by accurate mapping of the yeast proteomic environment. Genome Biol 2008; 9:R167. [PMID: 19040720 PMCID: PMC2614481 DOI: 10.1186/gb-2008-9-11-r167] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 10/21/2008] [Accepted: 11/28/2008] [Indexed: 01/01/2023] Open
Abstract
High resolution mapping of the proteomic environment and proteomic hyperlinks in fission and budding yeast reveals that divergent hyperlinks are due to gene duplications. Background Understanding the design logic of living systems requires the understanding and comparison of proteomes. Proteomes define the commonalities between organisms more precisely than genomic sequences. Because uncertainties remain regarding the accuracy of proteomic data, several issues need to be resolved before comparative proteomics can be fruitful. Results The Saccharomyces cerevisiae proteome presents the highest quality proteomic data available. To evaluate the accuracy of these data, we intensively mapped a proteomic environment, termed 'Chromatin Central', which encompasses eight protein complexes, including the major histone acetyltransferases and deacetylases, interconnected by twelve proteomic hyperlinks. Using sequential tagging and a new method to eliminate background, we confirmed existing data but also uncovered new subunits and three new complexes, including ASTRA, which we suggest is a widely conserved aspect of telomeric maintenance, and two new variations of Rpd3 histone deacetylase complexes. We also examined the same environment in fission yeast and found a very similar architecture based on a scaffold of orthologues comprising about two-thirds of all proteins involved, whereas the remaining one-third is less constrained. Notably, most of the divergent hyperlinks were found to be due to gene duplications, hence providing a mechanism for the fixation of gene duplications in evolution. Conclusions We define several prerequisites for comparative proteomics and apply them to examine a proteomic environment in unprecedented detail. We suggest that high resolution mapping of proteomic environments will deliver the highest quality data for comparative proteomics.
Collapse
|
16
|
Monahan BJ, Villén J, Marguerat S, Bähler J, Gygi SP, Winston F. Fission yeast SWI/SNF and RSC complexes show compositional and functional differences from budding yeast. Nat Struct Mol Biol 2008; 15:873-80. [PMID: 18622392 PMCID: PMC2559950 DOI: 10.1038/nsmb.1452] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 05/27/2008] [Indexed: 11/26/2022]
Abstract
SWI/SNF chromatin-remodeling complexes have crucial roles in transcription and other chromatin-related processes. The analysis of the two members of this class in Saccharomyces cerevisiae, SWI/SNF and RSC, has heavily contributed to our understanding of these complexes. To understand the in vivo functions of SWI/SNF and RSC in an evolutionarily distant organism, we have characterized these complexes in Schizosaccharomyces pombe. Although core components are conserved between the two yeasts, the compositions of S. pombe SWI/SNF and RSC differ from their S. cerevisiae counterparts and in some ways are more similar to metazoan complexes. Furthermore, several of the conserved proteins, including actin-like proteins, are markedly different between the two yeasts with respect to their requirement for viability. Finally, phenotypic and microarray analyses identified widespread requirements for SWI/SNF and RSC on transcription including strong evidence that SWI/SNF directly represses iron-transport genes.
Collapse
Affiliation(s)
- Brendon J Monahan
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
The centromere is the region of the chromosome where the kinetochore forms. Kinetochores are the attachment sites for spindle microtubules that separate duplicated chromosomes in mitosis and meiosis. Kinetochore formation depends on a special chromatin structure containing the histone H3 variant CENP-A. The epigenetic mechanisms that maintain CENP-A chromatin throughout the cell cycle have been studied extensively but little is known about the mechanism that targets CENP-A to naked centromeric DNA templates. In a recent report published in Science, such de novo centromere assembly of CENP-A is shown to be dependent on heterochromatin and the RNA interference pathway.
Collapse
Affiliation(s)
- Mickaël Durand-Dubief
- Karolinska Institutet, Department of Biosciences and Medical Nutrition/School of Life Sciences, University College Sodertorn, Sweden
| | | |
Collapse
|
18
|
Gubbels MJ, Lehmann M, Muthalagi M, Jerome ME, Brooks CF, Szatanek T, Flynn J, Parrot B, Radke J, Striepen B, White MW. Forward genetic analysis of the apicomplexan cell division cycle in Toxoplasma gondii. PLoS Pathog 2008; 4:e36. [PMID: 18282098 PMCID: PMC2242837 DOI: 10.1371/journal.ppat.0040036] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 01/07/2008] [Indexed: 11/18/2022] Open
Abstract
Apicomplexa are obligate intracellular pathogens that have fine-tuned their proliferative strategies to match a large variety of host cells. A critical aspect of this adaptation is a flexible cell cycle that remains poorly understood at the mechanistic level. Here we describe a forward genetic dissection of the apicomplexan cell cycle using the Toxoplasma model. By high-throughput screening, we have isolated 165 temperature sensitive parasite growth mutants. Phenotypic analysis of these mutants suggests regulated progression through the parasite cell cycle with defined phases and checkpoints. These analyses also highlight the critical importance of the peculiar intranuclear spindle as the physical hub of cell cycle regulation. To link these phenotypes to parasite genes, we have developed a robust complementation system based on a genomic cosmid library. Using this approach, we have so far complemented 22 temperature sensitive mutants and identified 18 candidate loci, eight of which were independently confirmed using a set of sequenced and arrayed cosmids. For three of these loci we have identified the mutant allele. The genes identified include regulators of spindle formation, nuclear trafficking, and protein degradation. The genetic approach described here should be widely applicable to numerous essential aspects of parasite biology.
Collapse
Affiliation(s)
- Marc-Jan Gubbels
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Margaret Lehmann
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - Mani Muthalagi
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Maria E Jerome
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - Carrie F Brooks
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - Tomasz Szatanek
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Jayme Flynn
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Ben Parrot
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Josh Radke
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - Boris Striepen
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- * To whom correspondence should be addressed. E-mail: (BS); (MWW)
| | - Michael W White
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
- * To whom correspondence should be addressed. E-mail: (BS); (MWW)
| |
Collapse
|
19
|
Gómez EB, Nugent RL, Laria S, Forsburg SL. Schizosaccharomyces pombe histone acetyltransferase Mst1 (KAT5) is an essential protein required for damage response and chromosome segregation. Genetics 2008; 179:757-71. [PMID: 18505873 PMCID: PMC2429872 DOI: 10.1534/genetics.107.085779] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 04/03/2008] [Indexed: 01/11/2023] Open
Abstract
Schizosaccharomyces pombe Mst1 is a member of the MYST family of histone acetyltransferases and is the likely ortholog of Saccharomyces cerevisiae Esa1 and human Tip60 (KAT5). We have isolated a temperature-sensitive allele of this essential gene. mst1 cells show a pleiotropic phenotype at the restrictive temperature. They are sensitive to a variety of DNA-damaging agents and to the spindle poison thiabendazole. mst1 has an increased frequency of Rad22 repair foci, suggesting endogenous damage. Two-hybrid results show that Mst1 interacts with a number of proteins involved in chromosome integrity and centromere function, including the methyltransferase Skb1, the recombination mediator Rad22 (Sc Rad52), the chromatin assembly factor Hip1 (Sc Hir1), and the Msc1 protein related to a family of histone demethylases. mst1 mutant sensitivity to hydroxyurea suggests a defect in recovery following HU arrest. We conclude that Mst1 plays essential roles in maintenance of genome stability and recovery from DNA damage.
Collapse
Affiliation(s)
- Eliana B Gómez
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 90089-2910, USA
| | | | | | | |
Collapse
|
20
|
Abstract
The centromere is the DNA region that ensures genetic stability and is therefore of vital importance. Paradoxically, centromere proteins and centromeric structural domains are conserved despite that fact that centromere DNA sequences are highly variable and are not conserved. Remarkably, heritable states at the centromere can be propagated independent of the underlying centromeric DNA sequences. This review describes the epigenetic mechanisms governing centromere behavior, i.e., the mechanisms that control centromere assembly and propagation. A centromeric histone variant, CenH3, and histone modifications play key roles at centromeric chromatin. Histone modifications and RNA interference are important in assembly of pericentric heterochromatin structures. The molecular machinery that is directly involved in epigenetic control of centromeres is shared with regulation of gene expression. Nucleosome remodeling factors, histone chaperones, histone-modifying enzymes, transcription factors, and even RNA polymerase II itself control epigenetic states at centromeres.
Collapse
Affiliation(s)
- Karl Ekwall
- Karolinska Institutet, Department of Biosciences/School of Life Sciences, University College Södertörn, 141 89 Huddinge, Sweden.
| |
Collapse
|
21
|
Aoyama N, Oka A, Kitayama K, Kurumizaka H, Harata M. The actin-related protein hArp8 accumulates on the mitotic chromosomes and functions in chromosome alignment. Exp Cell Res 2007; 314:859-68. [PMID: 18163988 DOI: 10.1016/j.yexcr.2007.11.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 10/30/2007] [Accepted: 11/21/2007] [Indexed: 11/19/2022]
Abstract
The actin family consists of conventional actin and various actin-related proteins (Arps). Some of these Arps are localized in the nucleus, and a fraction of each of these nuclear Arps is functionally involved in chromatin remodeling and histone acetyltransferase complexes. On the other hand, in mitotic cells, the localization and function of the nuclear Arps are largely unknown. Human Arp8 (hArp8), an ortholog of yeast nuclear Arp8, was recently found to be associated with the hINO80-chromatin remodeling complex along with hArp5. Here we report that hArp8, but not hArp5, accumulates on mitotic chromosomes. This is the first example where a member of the actin family is found to be associated with mitotic chromosomes. Expression of truncated hArp8 proteins and depletion of endogenous hArp8 by RNA interference caused misalignment of mitotic chromosomes, suggesting that chromosome-associated hArp8 has a role in chromosome behavior. In contrast, depletion of hIno80 and hArp5 did not cause misalignment of chromosomes, suggesting that the role of hArp8 at mitotic chromosomes is independent of the activity of hINO80 complexes. These findings provide the first insight into a novel function of actin family members in mitosis.
Collapse
Affiliation(s)
- Naoki Aoyama
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi 1-1, Aoba-ku, Sendai 981-8555, Japan
| | | | | | | | | |
Collapse
|
22
|
Gcn5p plays an important role in centromere kinetochore function in budding yeast. Mol Cell Biol 2007; 28:988-96. [PMID: 18039853 DOI: 10.1128/mcb.01366-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We report that the histone acetyltransferase Gcn5p is involved in cell cycle progression, whereas its absence induces several mitotic defects, including inefficient nuclear division, chromosome loss, delayed G(2) progression, and spindle elongation. The fidelity of chromosome segregation is finely regulated by the close interplay between the centromere and the kinetochore, a protein complex hierarchically assembled in the centromeric DNA region, while disruption of GCN5 in mutants of inner components results in sick phenotype. These synthetic interactions involving the ADA complex lay the genetic basis for the critical role of Gcn5p in kinetochore assembly and function. We found that Gcn5p is, in fact, physically linked to the centromere, where it affects the structure of the variant centromeric nucleosome. Our findings offer a key insight into a Gcn5p-dependent epigenetic regulation at centromere/kinetochore in mitosis.
Collapse
|
23
|
Lee K, Kang MJ, Kwon SJ, Kwon YK, Kim KW, Lim JH, Kwon H. Expansion of chromosome territories with chromatin decompaction in BAF53-depleted interphase cells. Mol Biol Cell 2007; 18:4013-23. [PMID: 17652455 PMCID: PMC1995741 DOI: 10.1091/mbc.e07-05-0437] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Chromosomes are compartmentalized into discrete chromosome territories during interphase in mammalian cells. A chromosome territory is generated by the tendency of chromatin to occupy the smallest shell volume, which is determined by the polymeric properties and interactions of the internal meshwork of the chromatin fiber. Here, we show that BAF53 knockdown by small interfering RNA interference led to the expansion of chromosome territories. This was accompanied by a reduction in chromatin compaction, an increase in the micrococcal nuclease sensitivity of the chromatin, and an alteration in H3-K9 and H3-K79 dimethylation. Interestingly, the BAF53 knockdown cells suffer a cell cycle defect. Despite the significant irregularity and decompaction of the polynucleosomes isolated from the BAF53 knockdown cells, the chromatin loading of H1 and core histones remained unaltered, as did the nucleosome spacing. The histone hyperacetylation and down-regulation of BRG-1, mBrm, and Tip49, the catalytic components of the SWI/SNF complex and the TIP60 complex, respectively, did not expand chromosome territories. These results indicate that BAF53 contributes to the polymeric properties and/or the internal meshwork interactions of the chromatin fiber probably via a novel mechanism.
Collapse
Affiliation(s)
- Kiwon Lee
- *Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yongin 449-791, Korea
| | - Mi Jin Kang
- *Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yongin 449-791, Korea
| | - Su Jin Kwon
- *Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yongin 449-791, Korea
| | - Yunhee Kim Kwon
- Department of Biology, Kyunghee University, Seoul 130-701, Korea
| | - Ki Woo Kim
- National Instrumentation Center for Environmental Management, Seoul National University, Seoul 151-921, Korea; and
| | - Jae-Hwan Lim
- Department of Biology, Andong National University, Andong 760-749, Korea
| | - Hyockman Kwon
- *Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yongin 449-791, Korea
| |
Collapse
|
24
|
Nicolas E, Yamada T, Cam HP, Fitzgerald PC, Kobayashi R, Grewal SIS. Distinct roles of HDAC complexes in promoter silencing, antisense suppression and DNA damage protection. Nat Struct Mol Biol 2007; 14:372-80. [PMID: 17450151 DOI: 10.1038/nsmb1239] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 03/23/2007] [Indexed: 12/21/2022]
Abstract
Histone acetylation is important in regulating DNA accessibility. Multifunctional Sin3 proteins bind histone deacetylases (HDACs) to assemble silencing complexes that selectively target chromatin. We show that, in fission yeast, an essential HDAC, Clr6, exists in two distinct Sin3 core complexes. Complex I contains an essential Sin3 homolog, Pst1, and other factors, and predominantly targets gene promoters. Complex II contains a nonessential Sin3 homolog, Pst2, and several conserved proteins. It preferentially targets transcribed chromosomal regions and centromere cores. Defects in complex II abrogate global protective functions of chromatin, causing increased accessibility of DNA to genotoxic agents and widespread antisense transcripts that are processed by the exosome. Notably, the two Clr6 complexes differentially repress forward and reverse centromeric repeat transcripts, suggesting that these complexes regulate transcription in heterochromatin and euchromatin in similar manners, including suppression of spurious transcripts from cryptic start sites.
Collapse
Affiliation(s)
- Estelle Nicolas
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, US National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
25
|
Ogiwara H, Ui A, Kawashima S, Kugou K, Onoda F, Iwahashi H, Harata M, Ohta K, Enomoto T, Seki M. Actin-related protein Arp4 functions in kinetochore assembly. Nucleic Acids Res 2007; 35:3109-17. [PMID: 17452364 PMCID: PMC1888834 DOI: 10.1093/nar/gkm161] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The actin-related proteins (Arps) comprise a conserved protein family. Arp4p is found in large multisubunits of the INO80 and SWR1 chromatin remodeling complexes and in the NuA4 histone acetyltransferase complex. Here we show that arp4 (arp4S23A/D159A) temperature-sensitive cells are defective in G2/M phase function. arp4 mutants are sensitive to the microtubule depolymerizing agent benomyl and arrest at G2/M phase at restrictive temperature. Arp4p is associated with centromeric and telomeric regions throughout cell cycle. Ino80p, Esa1p and Swr1p, components of the INO80, NuA4 and SWR1 complexes, respectively, also associate with centromeres. The association of many kinetochore components including Cse4p, a component of the centromere nucleosome, Mtw1p and Ctf3p is partially impaired in arp4 cells, suggesting that the G2/M arrest of arp4 mutant cells is due to a defect in formation of the chromosomal segregation apparatus.
Collapse
Affiliation(s)
- Hideaki Ogiwara
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan, Genetic System Regulation Laboratory, RIKEN, Wako, Saitama 351-0198, Japan, The Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama, Saitama 338-8570, Japan, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 981-8555, Japan and Tohoku University 21st Century COE Program “Comprehensive Research and Education Center for Planning of Drug development and Clinical Evaluation”, Sendai, Miyagi 980-8578, Japan
| | - Ayako Ui
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan, Genetic System Regulation Laboratory, RIKEN, Wako, Saitama 351-0198, Japan, The Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama, Saitama 338-8570, Japan, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 981-8555, Japan and Tohoku University 21st Century COE Program “Comprehensive Research and Education Center for Planning of Drug development and Clinical Evaluation”, Sendai, Miyagi 980-8578, Japan
| | - Satoshi Kawashima
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan, Genetic System Regulation Laboratory, RIKEN, Wako, Saitama 351-0198, Japan, The Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama, Saitama 338-8570, Japan, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 981-8555, Japan and Tohoku University 21st Century COE Program “Comprehensive Research and Education Center for Planning of Drug development and Clinical Evaluation”, Sendai, Miyagi 980-8578, Japan
| | - Kazuto Kugou
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan, Genetic System Regulation Laboratory, RIKEN, Wako, Saitama 351-0198, Japan, The Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama, Saitama 338-8570, Japan, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 981-8555, Japan and Tohoku University 21st Century COE Program “Comprehensive Research and Education Center for Planning of Drug development and Clinical Evaluation”, Sendai, Miyagi 980-8578, Japan
| | - Fumitoshi Onoda
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan, Genetic System Regulation Laboratory, RIKEN, Wako, Saitama 351-0198, Japan, The Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama, Saitama 338-8570, Japan, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 981-8555, Japan and Tohoku University 21st Century COE Program “Comprehensive Research and Education Center for Planning of Drug development and Clinical Evaluation”, Sendai, Miyagi 980-8578, Japan
| | - Hitoshi Iwahashi
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan, Genetic System Regulation Laboratory, RIKEN, Wako, Saitama 351-0198, Japan, The Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama, Saitama 338-8570, Japan, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 981-8555, Japan and Tohoku University 21st Century COE Program “Comprehensive Research and Education Center for Planning of Drug development and Clinical Evaluation”, Sendai, Miyagi 980-8578, Japan
| | - Masahiko Harata
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan, Genetic System Regulation Laboratory, RIKEN, Wako, Saitama 351-0198, Japan, The Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama, Saitama 338-8570, Japan, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 981-8555, Japan and Tohoku University 21st Century COE Program “Comprehensive Research and Education Center for Planning of Drug development and Clinical Evaluation”, Sendai, Miyagi 980-8578, Japan
| | - Kunihiro Ohta
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan, Genetic System Regulation Laboratory, RIKEN, Wako, Saitama 351-0198, Japan, The Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama, Saitama 338-8570, Japan, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 981-8555, Japan and Tohoku University 21st Century COE Program “Comprehensive Research and Education Center for Planning of Drug development and Clinical Evaluation”, Sendai, Miyagi 980-8578, Japan
| | - Takemi Enomoto
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan, Genetic System Regulation Laboratory, RIKEN, Wako, Saitama 351-0198, Japan, The Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama, Saitama 338-8570, Japan, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 981-8555, Japan and Tohoku University 21st Century COE Program “Comprehensive Research and Education Center for Planning of Drug development and Clinical Evaluation”, Sendai, Miyagi 980-8578, Japan
| | - Masayuki Seki
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan, Genetic System Regulation Laboratory, RIKEN, Wako, Saitama 351-0198, Japan, The Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama, Saitama 338-8570, Japan, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 981-8555, Japan and Tohoku University 21st Century COE Program “Comprehensive Research and Education Center for Planning of Drug development and Clinical Evaluation”, Sendai, Miyagi 980-8578, Japan
- *To whom correspondence should be addressed. +81-22-795-6875+81-22-795-6873
| |
Collapse
|
26
|
Murakami H, Goto DB, Toda T, Chen ES, Grewal SI, Martienssen RA, Yanagida M. Ribonuclease activity of Dis3 is required for mitotic progression and provides a possible link between heterochromatin and kinetochore function. PLoS One 2007; 2:e317. [PMID: 17380189 PMCID: PMC1820850 DOI: 10.1371/journal.pone.0000317] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 03/05/2007] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Cellular RNA metabolism has a broad range of functional aspects in cell growth and division, but its role in chromosome segregation during mitosis is only poorly understood. The Dis3 ribonuclease is a key component of the RNA-processing exosome complex. Previous isolation of the dis3-54 cold-sensitive mutant of fission yeast Schizosaccharomyces pombe suggested that Dis3 is also required for correct chromosome segregation. METHODOLOGY/PRINCIPAL FINDINGS We show here that the progression of mitosis is arrested in dis3-54, and that segregation of the chromosomes is blocked by activation of the mitotic checkpoint control. This block is dependent on the Mad2 checkpoint protein. Double mutant and inhibitor analyses revealed that Dis3 is required for correct kinetochore formation and function, and that this activity is monitored by the Mad2 checkpoint. Dis3 is a member of the highly conserved RNase II family and is known to be an essential subunit of the exosome complex. The dis3-54 mutation was found to alter the RNaseII domain of Dis3, which caused a reduction in ribonuclease activity in vitro. This was associated with loss of silencing of an ura4(+) reporter gene inserted into the outer repeats (otr) and central core (cnt and imr) regions of the centromere. On the other hand, centromeric siRNA maturation and formation of the RITS RNAi effector complex was normal in the dis3-54 mutant. Micrococcal nuclease assay also suggested the overall chromatin structure of the centromere was not affected in dis3-54 mutant. CONCLUSIONS/SIGNIFICANCE RNase activity of Dis3, a core subunit of exosome, was found to be required for proper kinetochore formation and establishment of kinetochore-microtubule interactions. Moreover, Dis3 was suggested to contribute to kinetochore formation through an involvement in heterochromatic silencing at both outer centromeric repeats and within the central core region. This activity is likely monitored by the mitotic checkpoint, and distinct from that of RNAi-mediated heterochromatin formation directly targeting outer centromeric repeats.
Collapse
Affiliation(s)
- Hiroaki Murakami
- CREST Research Program, Japan Science and Technology Corporation, Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, Japan
| | - Derek B. Goto
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Takashi Toda
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London, United Kingdom
| | - Ee Sin Chen
- Laboratory of Molecular Cell Biology, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shiv I. Grewal
- Laboratory of Molecular Cell Biology, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert A. Martienssen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Mitsuhiro Yanagida
- CREST Research Program, Japan Science and Technology Corporation, Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
27
|
La Carbona S, Le Goff C, Le Goff X. Fission yeast cytoskeletons and cell polarity factors: connecting at the cortex. Biol Cell 2007; 98:619-31. [PMID: 17042740 DOI: 10.1042/bc20060048] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cell polarity is a fundamental property of cells from unicellular to multicellular organisms. Most of the time, it is essential so that the cells can achieve their function. The fission yeast Schizosaccharomyces pombe is a powerful genetic model organism for studying the molecular mechanisms of the cell polarity process. Indeed, S. pombe cells are rod-shaped and cell growth is restricted at the poles. The accurate localization of the cell growth machinery at the cell cortex, which involves the actin cytoskeleton, depends on cell polarity pathways that are temporally and spatially regulated. The importance of interphase microtubules and cell polarity factors acting at the cortex of cell ends in this process has been shown. Here, we review recent advances in knowledge of molecular pathways leading to the establishment of a cellular axis in fission yeast. We also describe the role of cortical proteins and mitotic cytoskeletal rearrangements that control the symmetry of cell division.
Collapse
Affiliation(s)
- Stéphanie La Carbona
- CNRS UMR6061 Génétique et Développement, Université de Rennes 1, IFR140 Génétique Fonctionnelle, Agronomie et Santé, Faculté de Médecine, 2 Av. du Prof. Léon Bernard, 35043 Rennes Cedex, France
| | | | | |
Collapse
|
28
|
Steinboeck F, Krupanska L, Bogusch A, Kaufmann A, Heidenreich E. Novel Regulatory Properties of Saccharomyces cerevisiae Arp4. ACTA ACUST UNITED AC 2006; 139:741-51. [PMID: 16672275 DOI: 10.1093/jb/mvj080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
ARP4, an essential gene of Saccharomyces cerevisiae, codes for a nuclear actin-related protein. Arp4 is a subunit of several chromatin-modifying complexes and is known to be involved in the transcriptional regulation in yeast. We used a mutant strain with a single amino acid substitution (G161D) in the conserved actin fold domain to investigate the influence of Arp4 on stress and nitrogen catabolite repression genes. The deficiency of functional Arp4 caused a highly increased sensitivity towards nitrogen starvation and to the macrolide antibiotic rapamycin. We show the changes of mRNA levels of selected genes under these conditions. The upregulation of stress genes as a consequence of treatment with rapamycin was largely Msn2p/Msn4p-dependent. The sensitivity towards rapamycin indicates a participation of Arp4 in the regulation of the TOR pathway. Consistently, arp4G161D cells exhibited an affected cell cycle. Long-term cultivation, which leads to a G1 arrest in wild-type cells, provoked arrest in G2/M (more than 60%) in the mutant strain. The same effect was observed upon treatment with rapamycin, indicating an unexpected relationship of Arp4 to TOR-mediated cell cycle arrest.
Collapse
Affiliation(s)
- Ferdinand Steinboeck
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, A-1090 Vienna, Austria.
| | | | | | | | | |
Collapse
|
29
|
Sigala B, Edwards M, Puri T, Tsaneva IR. Relocalization of human chromatin remodeling cofactor TIP48 in mitosis. Exp Cell Res 2005; 310:357-69. [PMID: 16157330 DOI: 10.1016/j.yexcr.2005.07.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 07/23/2005] [Accepted: 07/29/2005] [Indexed: 11/19/2022]
Abstract
TIP48 is a highly conserved eukaryotic AAA+ protein which is an essential cofactor for several complexes involved in chromatin acetylation and remodeling, transcriptional and developmental regulation and nucleolar organization and trafficking. We show that TIP48 abundance in HeLa cells did not change during the cell cycle, nor did its distribution in various biochemical fractions. However, we observed distinct changes in the subcellular localization of TIP48 during M phase using immunofluorescence microscopy. Our studies demonstrate that in interphase cells TIP48 was found mainly in the nucleus and exhibited a distinct localization in the nuclear periphery. As the cells entered mitosis, TIP48 was excluded from the condensing chromosomes but showed association with the mitotic apparatus. During anaphase, some TIP48 was detected in the centrosome colocalizing with tubulin but the strongest staining appeared in the mitotic equator associated with the midzone central spindle. Accumulation of TIP48 in the midzone and the midbody was observed in late telophase and cytokinesis. This redeployment of TIP48 during anaphase and cytokinesis was independent of microtubule assembly. The relocation of endogenous TIP48 to the midzone/midbody under physiological conditions suggests a novel and distinct function for TIP48 in mitosis and possible involvement in the exit of mitosis.
Collapse
Affiliation(s)
- Barbara Sigala
- Department of Biochemistry and Molecular Biology, University College London, London WC1E 6BT, UK
| | | | | | | |
Collapse
|
30
|
Deal RB, Kandasamy MK, McKinney EC, Meagher RB. The nuclear actin-related protein ARP6 is a pleiotropic developmental regulator required for the maintenance of FLOWERING LOCUS C expression and repression of flowering in Arabidopsis. THE PLANT CELL 2005; 17:2633-46. [PMID: 16141450 PMCID: PMC1242262 DOI: 10.1105/tpc.105.035196] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Actin-related proteins (ARPs) are found in the nuclei of all eukaryotic cells, but their functions are generally understood only in the context of their presence in various yeast and animal chromatin-modifying complexes. Arabidopsis thaliana ARP6 is a clear homolog of other eukaryotic ARP6s, including Saccharomyces cerevisiae ARP6, which was identified as a component of the SWR1 chromatin remodeling complex. We examined the subcellular localization, expression patterns, and loss-of-function phenotypes for this protein and found that Arabidopsis ARP6 is localized to the nucleus during interphase but dispersed away from the chromosomes during cell division. ARP6 expression was observed in all vegetative tissues as well as in a subset of reproductive tissues. Null mutations in ARP6 caused numerous defects, including altered development of the leaf, inflorescence, and flower as well as reduced female fertility and early flowering in both long- and short-day photoperiods. The early flowering of arp6 mutants was associated with reduced expression of the central floral repressor gene FLOWERING LOCUS C (FLC) as well as MADS AFFECTING FLOWERING 4 (MAF4) and MAF5. In addition, arp6 mutations suppress the FLC-mediated late flowering of a FRIGIDA-expressing line, indicating that ARP6 is required for the activation of FLC expression to levels that inhibit flowering. These results indicate that ARP6 acts in the nucleus to regulate plant development, and we propose that it does so through modulation of chromatin structure and the control of gene expression.
Collapse
Affiliation(s)
- Roger B Deal
- Department of Genetics, Davison Life Sciences Complex, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
31
|
Gómez EB, Espinosa JM, Forsburg SL. Schizosaccharomyces pombe mst2+ encodes a MYST family histone acetyltransferase that negatively regulates telomere silencing. Mol Cell Biol 2005; 25:8887-903. [PMID: 16199868 PMCID: PMC1265769 DOI: 10.1128/mcb.25.20.8887-8903.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 03/23/2005] [Accepted: 07/21/2005] [Indexed: 11/20/2022] Open
Abstract
Histone acetylation and deacetylation are associated with transcriptional activity and the formation of constitutively silent heterochromatin. Increasingly, histone acetylation is also implicated in other chromosome transactions, including replication and segregation. We have cloned the only Schizosaccharomyces pombe MYST family histone acetyltransferase genes, mst1(+) and mst2(+). Mst1p, but not Mst2p, is essential for viability. Both proteins are localized to the nucleus and bound to chromatin throughout the cell cycle. Deltamst2 genetically interacts with mutants that affect heterochromatin, cohesion, and telomere structure. Mst2p is a negative regulator of silencing at the telomere but does not affect silencing in the centromere or mating type region. We generated a census of proteins and histone modifications at wild-type telomeres. A histone acetylation gradient at the telomeres is lost in Deltamst2 cells without affecting the distribution of Taz1p, Swi6p, Rad21p, or Sir2p. We propose that the increased telomeric silencing is caused by histone hypoacetylation and/or an increase in the ratio of methylated to acetylated histones. Although telomere length is normal, meiosis is aberrant in Deltamst2 diploid homozygote mutants, suggesting that telomeric histone acetylation contributes to normal meiotic progression.
Collapse
Affiliation(s)
- Eliana B Gómez
- Molecular & Computational Biology Section, University of Southern California, Los Angeles, 90089-2910, USA
| | | | | |
Collapse
|
32
|
Muller J, Oma Y, Vallar L, Friederich E, Poch O, Winsor B. Sequence and comparative genomic analysis of actin-related proteins. Mol Biol Cell 2005; 16:5736-48. [PMID: 16195354 PMCID: PMC1289417 DOI: 10.1091/mbc.e05-06-0508] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Actin-related proteins (ARPs) are key players in cytoskeleton activities and nuclear functions. Two complexes, ARP2/3 and ARP1/11, also known as dynactin, are implicated in actin dynamics and in microtubule-based trafficking, respectively. ARP4 to ARP9 are components of many chromatin-modulating complexes. Conventional actins and ARPs codefine a large family of homologous proteins, the actin superfamily, with a tertiary structure known as the actin fold. Because ARPs and actin share high sequence conservation, clear family definition requires distinct features to easily and systematically identify each subfamily. In this study we performed an in depth sequence and comparative genomic analysis of ARP subfamilies. A high-quality multiple alignment of approximately 700 complete protein sequences homologous to actin, including 148 ARP sequences, allowed us to extend the ARP classification to new organisms. Sequence alignments revealed conserved residues, motifs, and inserted sequence signatures to define each ARP subfamily. These discriminative characteristics allowed us to develop ARPAnno (http://bips.u-strasbg.fr/ARPAnno), a new web server dedicated to the annotation of ARP sequences. Analyses of sequence conservation among actins and ARPs highlight part of the actin fold and suggest interactions between ARPs and actin-binding proteins. Finally, analysis of ARP distribution across eukaryotic phyla emphasizes the central importance of nuclear ARPs, particularly the multifunctional ARP4.
Collapse
Affiliation(s)
- Jean Muller
- Laboratoire de Biologie et Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 163, 67404 Illkirch Cedex, France.
| | | | | | | | | | | |
Collapse
|
33
|
Current awareness on yeast. Yeast 2005; 22:745-52. [PMID: 16106592 DOI: 10.1002/yea.1165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
34
|
Saitoh S, Ishii K, Kobayashi Y, Takahashi K. Spindle checkpoint signaling requires the mis6 kinetochore subcomplex, which interacts with mad2 and mitotic spindles. Mol Biol Cell 2005; 16:3666-77. [PMID: 15930132 PMCID: PMC1182306 DOI: 10.1091/mbc.e05-01-0014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The spindle checkpoint coordinates cell cycle progression and chromosome segregation by inhibiting anaphase promoting complex/cyclosome until all kinetochores interact with the spindle properly. During early mitosis, the spindle checkpoint proteins, such as Mad2 and Bub1, accumulate at kinetochores that do not associate with the spindle. Here, we assess the requirement of various kinetochore components for the accumulation of Mad2 and Bub1 on the kinetochore in fission yeast and show that the necessity of the Mis6-complex and the Nuf2-complex is an evolutionarily conserved feature in the loading of Mad2 onto the kinetochore. Furthermore, we demonstrated that Nuf2 is required for maintaining the Mis6-complex on the kinetochore during mitosis. The Mis6-complex physically interacts with Mad2 under the condition that the Mad2-dependent checkpoint is activated. Ectopically expressed N-terminal fragments of Mis6 localize along the mitotic spindle, highlighting the potential binding ability of Mis6 not only to the centromeric chromatin but also to the spindle microtubules. We propose that the Mis6-complex, in collaboration with the Nuf2-complex, monitors the spindle-kinetochore attachment state and acts as a platform for Mad2 to accumulate at unattached kinetochores.
Collapse
Affiliation(s)
- Shigeaki Saitoh
- Division of Cell Biology, Institute of Life Science, Kurume University, Fukuoka 839-0864, Japan
| | | | | | | |
Collapse
|
35
|
Walfridsson J, Bjerling P, Thalen M, Yoo EJ, Park SD, Ekwall K. The CHD remodeling factor Hrp1 stimulates CENP-A loading to centromeres. Nucleic Acids Res 2005; 33:2868-79. [PMID: 15908586 PMCID: PMC1133792 DOI: 10.1093/nar/gki579] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Centromeres of fission yeast are arranged with a central core DNA sequence flanked by repeated sequences. The centromere-associated histone H3 variant Cnp1 (SpCENP-A) binds exclusively to central core DNA, while the heterochromatin proteins and cohesins bind the surrounding outer repeats. CHD (chromo-helicase/ATPase DNA binding) chromatin remodeling factors were recently shown to affect chromatin assembly in vitro. Here, we report that the CHD protein Hrp1 plays a key role at fission yeast centromeres. The hrp1Δ mutant disrupts silencing of the outer repeats and central core regions of the centromere and displays chromosome segregation defects characteristic for dysfunction of both regions. Importantly, Hrp1 is required to maintain high levels of Cnp1 and low levels of histone H3 and H4 acetylation at the central core region. Hrp1 interacts directly with the centromere in early S-phase when centromeres are replicated, suggesting that Hrp1 plays a direct role in chromatin assembly during DNA replication.
Collapse
Affiliation(s)
| | | | | | - Eung-Jae Yoo
- School of Biological Sciences, Seoul National UniversitySeoul 151-742, Korea
| | - Sang Dai Park
- School of Biological Sciences, Seoul National UniversitySeoul 151-742, Korea
| | - Karl Ekwall
- To whom correspondence should be addressed. Tel: +46 8 6084713; Fax: +46 8 6084510;
| |
Collapse
|