1
|
Ghigo A, Murabito A, Sala V, Pisano AR, Bertolini S, Gianotti A, Caci E, Montresor A, Premchandar A, Pirozzi F, Ren K, Sala AD, Mergiotti M, Richter W, de Poel E, Matthey M, Caldrer S, Cardone RA, Civiletti F, Costamagna A, Quinney NL, Butnarasu C, Visentin S, Ruggiero MR, Baroni S, Crich SG, Ramel D, Laffargue M, Tocchetti CG, Levi R, Conti M, Lu XY, Melotti P, Sorio C, De Rose V, Facchinetti F, Fanelli V, Wenzel D, Fleischmann BK, Mall MA, Beekman J, Laudanna C, Gentzsch M, Lukacs GL, Pedemonte N, Hirsch E. A PI3Kγ mimetic peptide triggers CFTR gating, bronchodilation, and reduced inflammation in obstructive airway diseases. Sci Transl Med 2022; 14:eabl6328. [PMID: 35353541 PMCID: PMC9869178 DOI: 10.1126/scitranslmed.abl6328] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cyclic adenosine 3',5'-monophosphate (cAMP)-elevating agents, such as β2-adrenergic receptor (β2-AR) agonists and phosphodiesterase (PDE) inhibitors, remain a mainstay in the treatment of obstructive respiratory diseases, conditions characterized by airway constriction, inflammation, and mucus hypersecretion. However, their clinical use is limited by unwanted side effects because of unrestricted cAMP elevation in the airways and in distant organs. Here, we identified the A-kinase anchoring protein phosphoinositide 3-kinase γ (PI3Kγ) as a critical regulator of a discrete cAMP signaling microdomain activated by β2-ARs in airway structural and inflammatory cells. Displacement of the PI3Kγ-anchored pool of protein kinase A (PKA) by an inhaled, cell-permeable, PI3Kγ mimetic peptide (PI3Kγ MP) inhibited a pool of subcortical PDE4B and PDE4D and safely increased cAMP in the lungs, leading to airway smooth muscle relaxation and reduced neutrophil infiltration in a murine model of asthma. In human bronchial epithelial cells, PI3Kγ MP induced unexpected cAMP and PKA elevations restricted to the vicinity of the cystic fibrosis transmembrane conductance regulator (CFTR), the ion channel controlling mucus hydration that is mutated in cystic fibrosis (CF). PI3Kγ MP promoted the phosphorylation of wild-type CFTR on serine-737, triggering channel gating, and rescued the function of F508del-CFTR, the most prevalent CF mutant, by enhancing the effects of existing CFTR modulators. These results unveil PI3Kγ as the regulator of a β2-AR/cAMP microdomain central to smooth muscle contraction, immune cell activation, and epithelial fluid secretion in the airways, suggesting the use of a PI3Kγ MP for compartment-restricted, therapeutic cAMP elevation in chronic obstructive respiratory diseases.
Collapse
Affiliation(s)
- Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy,Kither Biotech S.r.l.; 10126 Torino, Italy
| | - Alessandra Murabito
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy
| | - Valentina Sala
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy,Kither Biotech S.r.l.; 10126 Torino, Italy
| | - Anna Rita Pisano
- Chiesi Farmaceutici S.p.A., Corporate Pre-Clinical R&D; 43122 Parma, Italy
| | - Serena Bertolini
- Chiesi Farmaceutici S.p.A., Corporate Pre-Clinical R&D; 43122 Parma, Italy
| | - Ambra Gianotti
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini; 16147 Genova, Italy
| | - Emanuela Caci
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini; 16147 Genova, Italy
| | - Alessio Montresor
- Division of General Pathology, Department of Medicine, University of Verona School of Medicine; 37134 Verona, Italy,Cystic Fibrosis Translational Research Laboratory "Daniele Lissandrini," Department of Medicine, University of Verona School of Medicine; 37134 Verona, Italy
| | | | - Flora Pirozzi
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy,Department of Translational Medical Sciences, Federico II University; 80131 Naples, Italy
| | - Kai Ren
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy
| | - Angela Della Sala
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy
| | - Marco Mergiotti
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy
| | - Wito Richter
- Department of Biochemistry & Molecular Biology, University of South Alabama College of Medicine; AL 36688 Mobile, Alabama, USA
| | - Eyleen de Poel
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht; 3584 EA Utrecht, The Netherlands
| | - Michaela Matthey
- Department of Systems Physiology, Medical Faculty, Ruhr University Bochum; 44801 Bochum, Germany
| | - Sara Caldrer
- Division of General Pathology, Department of Medicine, University of Verona School of Medicine; 37134 Verona, Italy,Cystic Fibrosis Translational Research Laboratory "Daniele Lissandrini," Department of Medicine, University of Verona School of Medicine; 37134 Verona, Italy
| | - Rosa A. Cardone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari; 70126 Bari, Italy
| | - Federica Civiletti
- Department of Anesthesia and Critical Care Medicine, University of Torino, Azienda Ospedaliera Città della Salute e della Scienza di Torino; 10126 Torino, Italy
| | - Andrea Costamagna
- Department of Anesthesia and Critical Care Medicine, University of Torino, Azienda Ospedaliera Città della Salute e della Scienza di Torino; 10126 Torino, Italy
| | - Nancy L. Quinney
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina; NC 27599 Chapel Hill, North Carolina, USA
| | - Cosmin Butnarasu
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy
| | - Sonja Visentin
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy
| | - Maria Rosaria Ruggiero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy
| | - Simona Baroni
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy
| | - Simonetta Geninatti Crich
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy
| | - Damien Ramel
- Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University; 31432 Toulouse, France
| | - Muriel Laffargue
- Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University; 31432 Toulouse, France
| | - Carlo G. Tocchetti
- Department of Translational Medical Sciences, Federico II University; 80131 Naples, Italy,Interdepartmental Center of Clinical and Translational Research (CIRCET), Federico II University; 80131 Naples, Italy,Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University; 80131 Naples, Italy
| | - Renzo Levi
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy
| | - Marco Conti
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco; CA 94143 San Francisco, California, USA
| | - Xiao-Yun Lu
- School of life Science & Technology, Xi'an Jiaotong University; 710049 Xi'an Shaanxi, P.R.China
| | - Paola Melotti
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata di Verona; 37126 Verona, Italy
| | - Claudio Sorio
- Division of General Pathology, Department of Medicine, University of Verona School of Medicine; 37134 Verona, Italy,Cystic Fibrosis Translational Research Laboratory "Daniele Lissandrini," Department of Medicine, University of Verona School of Medicine; 37134 Verona, Italy
| | - Virginia De Rose
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy
| | | | - Vito Fanelli
- Department of Anesthesia and Critical Care Medicine, University of Torino, Azienda Ospedaliera Città della Salute e della Scienza di Torino; 10126 Torino, Italy
| | - Daniela Wenzel
- Department of Systems Physiology, Medical Faculty, Ruhr University Bochum; 44801 Bochum, Germany,Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn; 53127 Bonn, Germany
| | - Bernd K. Fleischmann
- Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn; 53127 Bonn, Germany
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin; 10117 Berlin, Germany,German Center for Lung Research (DZL), associated partner; 10117 Berlin, Germany
| | - Jeffrey Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht; 3584 EA Utrecht, The Netherlands
| | - Carlo Laudanna
- Division of General Pathology, Department of Medicine, University of Verona School of Medicine; 37134 Verona, Italy,Cystic Fibrosis Translational Research Laboratory "Daniele Lissandrini," Department of Medicine, University of Verona School of Medicine; 37134 Verona, Italy
| | - Martina Gentzsch
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina; NC 27599 Chapel Hill, North Carolina, USA,Department of Pediatric Pulmonology, University of North Carolina; NC 27599 Chapel Hill, North Carolina, USA
| | - Gergely L. Lukacs
- Department of Physiology, McGill University; H3G 1Y6 Montréal, Quebec, Canada
| | | | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino; 10126 Torino, Italy,Kither Biotech S.r.l.; 10126 Torino, Italy
| |
Collapse
|
2
|
Wang J, Yuan L, Xu X, Zhang Z, Ma Y, Hong L, Ma J. Rho-GEF Trio regulates osteosarcoma progression and osteogenic differentiation through Rac1 and RhoA. Cell Death Dis 2021; 12:1148. [PMID: 34893584 PMCID: PMC8664940 DOI: 10.1038/s41419-021-04448-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/23/2021] [Accepted: 12/02/2021] [Indexed: 11/08/2022]
Abstract
Osteosarcoma (OS) is the most common primary bone tumor. Its high mortality rate and metastasis rate seriously threaten human health. Currently, the treatment has reached a plateau, hence we urgently need to explore new therapeutic directions. In this paper, we found that Trio was highly expressed in osteosarcoma than normal tissues and promoted the proliferation, migration, and invasion of osteosarcoma cells. Furthermore, Trio inhibited osteosarcoma cells' osteogenic differentiation in vitro and accelerated the growth of osteosarcoma in vivo. Given Trio contains two GEF domains, which have been reported as the regulators of RhoGTPases, we further discovered that Trio could regulate osteosarcoma progression and osteogenic differentiation through activating RhoGTPases. In summary, all our preliminary results showed that Trio could be a potential target and prognostic marker of osteosarcoma.
Collapse
Affiliation(s)
- Junyi Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, 210029, Nanjing, China
| | - Lichan Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, 210029, Nanjing, China
| | - Xiaohong Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, 210029, Nanjing, China
| | - Zhongyin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, 210029, Nanjing, China
| | - Yuhuan Ma
- Nanjing Foreign Language School, 210008, Nanjing, Jiangsu, China
| | - Leilei Hong
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, 210029, Nanjing, China
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, 210029, Nanjing, China.
| |
Collapse
|
3
|
Pathway-Based Personalized Analysis of Pan-Cancer Transcriptomic Data. Biomedicines 2021; 9:biomedicines9111502. [PMID: 34829731 PMCID: PMC8615289 DOI: 10.3390/biomedicines9111502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/04/2021] [Accepted: 10/17/2021] [Indexed: 11/17/2022] Open
Abstract
The occurrence of cancer is closely related to the deregulation of certain pathways. Based on pathway deregulation scores (PDS) inferred by the Pathifier algorithm, we analyzed transcriptomic data of 13 different cancer types in The Cancer Genome Atlas database to identify cancer-specific deregulated pathways and prognostic pathways. The results showed that the individual-specific pathway deregulation scores can clearly distinguish different cancer types and their tumor-adjacent tissues. In addition, the cancer-specific deregulated pathways and prognostic pathways of different cancer types had high heterogeneity, and the identified cancer prognostic pathways have been reported to be closely related to the corresponding cancers. Furthermore, we also found that cancers with more deregulation pathways tend to be malignant and have worse prognoses. Finally, a Cox proportional Hazards model was constructed based on the prognostic pathways; this model successfully predicted survival and prognosis based on data from cancer samples. In addition, the performance of the breast cancer prognostic model was validated with an independent data set in the METABRIC database. Therefore, the prognostic pathways we identified have the potential to become targets for the treatment of cancer.
Collapse
|
4
|
Metz C, Oyanadel C, Jung J, Retamal C, Cancino J, Barra J, Venegas J, Du G, Soza A, González A. Phosphatidic acid-PKA signaling regulates p38 and ERK1/2 functions in ligand-independent EGFR endocytosis. Traffic 2021; 22:345-361. [PMID: 34431177 DOI: 10.1111/tra.12812] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/27/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022]
Abstract
Ligand-independent epidermal growth factor receptor (EGFR) endocytosis is inducible by a variety of stress conditions converging upon p38 kinase. A less known pathway involves phosphatidic acid (PA) signaling toward the activation of type 4 phosphodiesterases (PDE4) that decrease cAMP levels and protein kinase A (PKA) activity. This PA/PDE4/PKA pathway is triggered with propranolol used to inhibit PA hydrolysis and induces clathrin-dependent and clathrin-independent endocytosis, followed by reversible accumulation of EGFR in recycling endosomes. Here we give further evidence of this signaling pathway using biosensors of PA, cAMP, and PKA in live cells and then show that it activates p38 and ERK1/2 downstream the PKA inhibition. Clathrin-silencing and IN/SUR experiments involved the activity of p38 in the clathrin-dependent route, while ERK1/2 mediates clathrin-independent EGFR endocytosis. The PA/PDE4/PKA pathway selectively increases the EGFR endocytic rate without affecting LDLR and TfR constitute endocytosis. This selectiveness is probably because of EGFR phosphorylation, as detected in Th1046/1047 and Ser669 residues. The EGFR accumulates at perinuclear recycling endosomes colocalizing with TfR, fluorescent transferrin, and Rab11, while a small proportion distributes to Alix-endosomes. A non-selective recycling arrest includes LDLR and TfR in a reversible manner. The PA/PDE4/PKA pathway involving both p38 and ERK1/2 expands the possibilities of EGFR transmodulation and interference in cancer.
Collapse
Affiliation(s)
- Claudia Metz
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Claudia Oyanadel
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Juan Jung
- Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudio Retamal
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Jorge Cancino
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Jonathan Barra
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Jaime Venegas
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Andrea Soza
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Alfonso González
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile.,Fundación Ciencia y Vida, Santiago, Chile
| |
Collapse
|
5
|
Hong S, Pawel GT, Pei R, Lu Y. Recent progress in developing fluorescent probes for imaging cell metabolites. Biomed Mater 2021; 16. [PMID: 33915523 DOI: 10.1088/1748-605x/abfd11] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/29/2021] [Indexed: 01/12/2023]
Abstract
Cellular metabolites play a crucial role in promoting and regulating cellular activities, but it has been difficult to monitor these cellular metabolites in living cells and in real time. Over the past decades, iterative development and improvements of fluorescent probes have been made, resulting in the effective monitoring of metabolites. In this review, we highlight recent progress in the use of fluorescent probes for tracking some key metabolites, such as adenosine triphosphate, cyclic adenosine monophosphate, cyclic guanosine 5'-monophosphate, Nicotinamide adenine dinucleotide (NADH), reactive oxygen species, sugar, carbon monoxide, and nitric oxide for both whole cell and subcellular imaging.
Collapse
Affiliation(s)
- Shanni Hong
- Department of Medical Imaging Technology, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, People's Republic of China.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America.,CAS Key Laboratory of Nano-Bio Interfaces, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Gregory T Pawel
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interfaces, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| |
Collapse
|
6
|
Integrin-Linked Kinase Links Integrin Activation to Invadopodia Function and Invasion via the p(T567)-Ezrin/NHERF1/NHE1 Pathway. Int J Mol Sci 2021; 22:ijms22042162. [PMID: 33671549 PMCID: PMC7926356 DOI: 10.3390/ijms22042162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor cell invasion depends largely on degradation of the extracellular matrix (ECM) by protease-rich structures called invadopodia, whose formation and activity requires the convergence of signaling pathways engaged in cell adhesion, actin assembly, membrane regulation and ECM proteolysis. It is known that β1-integrin stimulates invadopodia function through an invadopodial p(T567)-ezrin/NHERF1/NHE1 signal complex that regulates NHE1-driven invadopodia proteolytic activity and invasion. However, the link between β1-integrin and this signaling complex is unknown. In this study, in metastatic breast (MDA-MB-231) and prostate (PC-3) cancer cells, we report that integrin-linked kinase (ILK) integrates β1-integrin with this signaling complex to regulate invadopodia activity and invasion. Proximity ligation assay experiments demonstrate that, in invadopodia, ILK associates with β1-integrin, NHE1 and the scaffold proteins p(T567)-ezrin and NHERF1. Activation of β1-integrin increased both invasion and invadopodia activity, which were specifically blocked by inhibition of either NHE1 or ILK. We conclude that ILK integrates β1-integrin with the ECM proteolytic/invasion signal module to induce NHE1-driven invadopodial ECM proteolysis and cell invasion.
Collapse
|
7
|
Liu R, Wang J, Ukai M, Sewon K, Chen P, Suzuki Y, Wang H, Aihara K, Okada-Hatakeyama M, Chen L. Hunt for the tipping point during endocrine resistance process in breast cancer by dynamic network biomarkers. J Mol Cell Biol 2020; 11:649-664. [PMID: 30383247 PMCID: PMC7727267 DOI: 10.1093/jmcb/mjy059] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/29/2018] [Accepted: 10/31/2018] [Indexed: 02/07/2023] Open
Abstract
Acquired drug resistance is the major reason why patients fail to respond to cancer therapies. It is a challenging task to determine the tipping point of endocrine resistance and detect the associated molecules. Derived from new systems biology theory, the dynamic network biomarker (DNB) method is designed to quantitatively identify the tipping point of a drastic system transition and can theoretically identify DNB genes that play key roles in acquiring drug resistance. We analyzed time-course mRNA sequence data generated from the tamoxifen-treated estrogen receptor (ER)-positive MCF-7 cell line, and identified the tipping point of endocrine resistance with its leading molecules. The results show that there is interplay between gene mutations and DNB genes, in which the accumulated mutations eventually affect the DNB genes that subsequently cause the change of transcriptional landscape, enabling full-blown drug resistance. Survival analyses based on clinical datasets validated that the DNB genes were associated with the poor survival of breast cancer patients. The results provided the detection for the pre-resistance state or early signs of endocrine resistance. Our predictive method may greatly benefit the scheduling of treatments for complex diseases in which patients are exposed to considerably different drugs and may become drug resistant.
Collapse
Affiliation(s)
- Rui Liu
- School of Mathematics, South China University of Science and Technology, Guangzhou, China
| | - Jinzeng Wang
- School of Life Sciences and Technology, Tongji University, Shanghai, China.,National Research Center for Translational Medicine (Shanghai), Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Masao Ukai
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan.,Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Ki Sewon
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Pei Chen
- School of Mathematics, South China University of Science and Technology, Guangzhou, China.,Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Haiyun Wang
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Kazuyuki Aihara
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Mariko Okada-Hatakeyama
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan.,Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.,Laboratory of Cell Systems, Osaka University, Osaka, Japan
| | - Luonan Chen
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| |
Collapse
|
8
|
Ward C, Meehan J, Gray ME, Murray AF, Argyle DJ, Kunkler IH, Langdon SP. The impact of tumour pH on cancer progression: strategies for clinical intervention. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:71-100. [PMID: 36046070 PMCID: PMC9400736 DOI: 10.37349/etat.2020.00005] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of cellular pH is frequent in solid tumours and provides potential opportunities for therapeutic intervention. The acidic microenvironment within a tumour can promote migration, invasion and metastasis of cancer cells through a variety of mechanisms. Pathways associated with the control of intracellular pH that are under consideration for intervention include carbonic anhydrase IX, the monocarboxylate transporters (MCT, MCT1 and MCT4), the vacuolar-type H+-ATPase proton pump, and the sodium-hydrogen exchanger 1. This review will describe progress in the development of inhibitors to these targets.
Collapse
Affiliation(s)
- Carol Ward
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU Edinburgh, UK
| | - James Meehan
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU Edinburgh, UK
| | - Mark E Gray
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG Midlothian, UK
| | - Alan F Murray
- School of Engineering, Institute for Integrated Micro and Nano Systems, EH9 3JL Edinburgh, UK
| | - David J Argyle
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG Midlothian, UK
| | - Ian H Kunkler
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU Edinburgh, UK
| | - Simon P Langdon
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU Edinburgh, UK
| |
Collapse
|
9
|
Sin WC, Tam N, Moniz D, Lee C, Church J. Na/H exchanger NHE1 acts upstream of rho GTPases to promote neurite outgrowth. J Cell Commun Signal 2020; 14:325-333. [PMID: 32144636 DOI: 10.1007/s12079-020-00556-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/28/2020] [Indexed: 02/05/2023] Open
Abstract
Na+/H+ exchanger NHE1, a major determinant of intracellular pH (pHi) in mammalian central neurons, promotes neurite outgrowth under both basal and netrin-1-stimulated conditions. The small GTP binding proteins and their effectors have a dominant role in netrin-1-stimulated neurite outgrowth. Since NHE1 has been shown previously to work downstream of the Rho GTPases-mediated polarized membrane protrusion in non-neuronal cells, we examined whether NHE1 has a similar relationship with Cdc42, Rac1 and RhoA in neuronal morphogenesis. Interestingly, our results suggest the possibility that NHE1 acting upstream of Rho GTPases to promote neurite outgrowth induced by netrin-1. First, we found that netrin-1-induced increases in the activities of Rho GTPases using FRET (Forster Resonance Energy Transfer) analyses in individual growth cones; furthermore, their increased activities were abolished by cariporide, a specific NHE1 inhibitor. Second, NHE1 inhibition had no effect on neurite retraction induced by L-α-Lysophosphatidic acid (LPA), a potent RhoA activator. The regulation of Rho GTPases by NHE1 was further evidenced by reduced Rac1, Cdc42 and RhoA activities in NHE1-null neurons. Taken together, our findings suggest that NHE1-dependent neuronal morphogenesis involves the activation of Rho-family of small GTPases.
Collapse
Affiliation(s)
- Wun Chey Sin
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada.
| | - Nicola Tam
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - David Moniz
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Connie Lee
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - John Church
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Ma Z, Yuan D, Cheng X, Tuo B, Liu X, Li T. Function of ion transporters in maintaining acid-base homeostasis of the mammary gland and the pathophysiological role in breast cancer. Am J Physiol Regul Integr Comp Physiol 2019; 318:R98-R111. [PMID: 31553634 DOI: 10.1152/ajpregu.00202.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The incidence of breast cancer is increasing year by year, and the pathogenesis is still unclear. Studies have shown that the high metabolism of solid tumors leads to an increase in hypoxia, glycolysis, production of lactic acid and carbonic acid, and extracellular acidification; a harsh microenvironment; and ultimately to tumor cell death. Approximately 50% of locally advanced breast cancers exhibit hypoxia and/or local hypoxia, and acid-base regulatory proteins play an important role in regulating milk secretion and maintaining mammary gland physiological function. Therefore, ion transporters have gradually become a hot topic in mammary gland and breast cancer research. This review focuses on the research progress of ion transporters in mammary glands and breast cancer. We hope to provide new targets for the treatment and prognosis of breast cancer.
Collapse
Affiliation(s)
- Zhiyuan Ma
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dumin Yuan
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China
| | - Xiaoming Cheng
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
11
|
Shi D, Wu F, Mu S, Hu B, Zhong B, Gao F, Qing X, Liu J, Zhang Z, Shao Z. LncRNA AFAP1-AS1 promotes tumorigenesis and epithelial-mesenchymal transition of osteosarcoma through RhoC/ROCK1/p38MAPK/Twist1 signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:375. [PMID: 31443665 PMCID: PMC6708246 DOI: 10.1186/s13046-019-1363-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023]
Abstract
Background An increasing number of studies have demonstrated that long non-coding RNAs (lncRNAs) play pivotal roles in cancer onset and development. LncRNA AFAP1-AS1 has been validated to be abnormally upregulated and play oncogenic roles in various malignant tumors. The biological role and mechanism of AFAP1-AS1 in OS (osteosarcoma) remains unclear. Methods Quantitative reverse transcription PCR (qRT-PCR) is applied to examine AFAP1-AS1 expression in OS tissues and OS cell lines. The function of AFAP1-AS1 in OS cells is investigated via in-vitro and in-vivo assays. Western bolt and rescue experiments are applied to detect the expression changes of key molecules including epithelial-mesenchymal transition markers and identify the underlying molecular mechanism. RNA immunoprecipitation is performed to reveal the interaction between AFAP1-AS1 and RhoC. Results AFAP1-AS1 expression is upregulated in human OS tissues and cell lines. AFAP1-AS1 knockdown induces OS cell apoptosis and cell cycle G0/G1 arrest, suppresses OS cells growth, migration, invasion, vasculogenic mimicry formation and epithelial-mesenchymal transition (EMT), and affects actin filament integrity. AFAP1-AS1 knockdown suppresses OS tumor formation and growth in nude mice. AFAP1-AS1 knockdown elicits a signaling inhibition including decreased levels of RhoC, ROCK1, p38MAPK and Twist1. Moreover, AFAP1-AS1 interacts with RhoC. Overexpression of RhoC can partly reverse AFAP1-AS1 downregulation-induced cell EMT inhibition. Conclusions AFAP1-AS1 is overexpressed in osteosarcoma and plays an oncogenic role in osteosarcoma through RhoC/ROCK1/p38MAPK/Twist1 signaling pathway, in which RhoC acts as the interaction target of AFAP1-AS1. Our findings indicated a novel molecular mechanism underlying the tumorigenesis and progression of osteosarcoma. AFAP1-AS1 could serve as a promising therapeutic target in OS treatment. Electronic supplementary material The online version of this article (10.1186/s13046-019-1363-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deyao Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Fashuai Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Shidai Mu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Binwu Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Binlong Zhong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Feng Gao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Jianxiang Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Zhicai Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China.
| |
Collapse
|
12
|
Structural and Functional Changes in the Na +/H + Exchanger Isoform 1, Induced by Erk1/2 Phosphorylation. Int J Mol Sci 2019; 20:ijms20102378. [PMID: 31091671 PMCID: PMC6566726 DOI: 10.3390/ijms20102378] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/15/2022] Open
Abstract
The human Na+/H+ exchanger isoform 1 (NHE1) is a plasma membrane transport protein that plays an important role in pH regulation in mammalian cells. Because of the generation of protons by intermediary metabolism as well as the negative membrane potential, protons accumulate within the cytosol. Extracellular signal-regulated kinase (ERK)-mediated regulation of NHE1 is important in several human pathologies including in the myocardium in heart disease, as well as in breast cancer as a trigger for growth and metastasis. NHE1 has a N-terminal, a 500 amino acid membrane domain, and a C-terminal 315 amino acid cytosolic domain. The C-terminal domain regulates the membrane domain and its effects on transport are modified by protein binding and phosphorylation. Here, we discuss the physiological regulation of NHE1 by ERK, with an emphasis on the critical effects on structure and function. ERK binds directly to the cytosolic domain at specific binding domains. ERK also phosphorylates NHE1 directly at multiple sites, which enhance NHE1 activity with subsequent downstream physiological effects. The NHE1 cytosolic regulatory tail possesses both ordered and disordered regions, and the disordered regions are stabilized by ERK-mediated phosphorylation at a phosphorylation motif. Overall, ERK pathway mediated phosphorylation modulates the NHE1 tail, and affects the activity, structure, and function of this membrane protein.
Collapse
|
13
|
Grun D, Adhikary G, Eckert RL. NRP-1 interacts with GIPC1 and SYX to activate p38 MAPK signaling and cancer stem cell survival. Mol Carcinog 2019; 58:488-499. [PMID: 30456845 PMCID: PMC6417965 DOI: 10.1002/mc.22943] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 01/13/2023]
Abstract
Epidermal cancer stem cells (ECS cells) comprise a limited population of cells that form aggressive, rapidly growing, and highly vascularized tumors. VEGF-A/NRP-1 signaling is a key driver of the ECS cell phenotype and aggressive tumor formation. However, relatively less is known regarding the downstream events following VEGF-A/NRP-1 interaction. In the present study, we show that VEGF-A/NRP-1, GIPC1, and Syx interact to increase RhoA-dependent p38 MAPK activity to enhance ECS cell spheroid formation, invasion, migration, and angiogenic potential. Inhibition or knockdown of NRP-1, GIPC1 or Syx attenuates RhoA and p38 activity to reduce the ECS cell phenotype, and NRP-1 knockout, or pharmacologic inhibition of VEGF-A/NRP-1 interaction or RhoA activity, reduces p38 MAPK activity and tumor growth. Moreover, expression of wild-type or constitutively-active RhoA, or p38, in NRP1-knockout cells, restores p38 activity and the ECS cell phenotype. These findings suggest that NRP-1 forms a complex with GIPC1 and Syx to activate RhoA/ROCK-dependent p38 activity to enhance the ECS cell phenotype and tumor formation.
Collapse
Affiliation(s)
- Daniel Grun
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Richard L Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Reproductive Biology, University of Maryland School of Medicine, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
14
|
Interrogating cyclic AMP signaling using optical approaches. Cell Calcium 2017; 64:47-56. [PMID: 28274483 DOI: 10.1016/j.ceca.2017.02.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 02/20/2017] [Indexed: 11/23/2022]
Abstract
Optical reporters for cAMP represent a fundamental advancement in our ability to investigate the dynamics of cAMP signaling. These fluorescent sensors can measure changes in cAMP in single cells or in microdomains within cells as opposed to whole populations of cells required for other methods of measuring cAMP. The first optical cAMP reporters were FRET-based sensors utilizing dissociation of purified regulatory and catalytic subunits of PKA, introduced by Roger Tsien in the early 1990s. The utility of these sensors was vastly improved by creating genetically encoded versions that could be introduced into cells with transfection, the first of which was published in the year 2000. Subsequently, improved sensors have been developed using different cAMP binding platforms, optimized fluorescent proteins, and targeting motifs that localize to specific microdomains. The most common sensors in use today are FRET-based sensors designed around an Epac backbone. These rely on the significant conformational changes in Epac when it binds cAMP, altering the signal between FRET pairs flanking Epac. Several other strategies for optically interrogating cAMP have been developed, including fluorescent translocation reporters, dimerization-dependent FP based biosensors, BRET (bioluminescence resonance energy transfer)-based sensors, non-FRET single wavelength reporters, and sensors based on bacterial cAMP-binding domains. Other newly described mammalian cAMP-binding proteins such as Popdc and CRIS may someday be exploited in sensor design. With the proliferation of engineered fluorescent proteins and the abundance of cAMP binding targets in nature, the field of optical reporters for cAMP should continue to see rapid refinement in the coming years.
Collapse
|
15
|
Amith SR, Fliegel L. Na +/H + exchanger-mediated hydrogen ion extrusion as a carcinogenic signal in triple-negative breast cancer etiopathogenesis and prospects for its inhibition in therapeutics. Semin Cancer Biol 2017; 43:35-41. [PMID: 28104391 DOI: 10.1016/j.semcancer.2017.01.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/17/2022]
Abstract
Breast cancer is the leading cause of cancer-related death in women in Europe and North America, and metastasis is the primary cause of fatality in patients with breast cancer. While some breast cancers are quite treatable, the triple-negative breast cancers are more metastatic and resistant to chemotherapy. There is clearly an urgent need for better treatments for this form of the disease. Breast cancer is characterized by genetically complex intra-tumour heterogeneity, particularly within the triple-negative clinical subtype. This complicates treatment options, so the development of specifically targeted chemotherapy for less treatable forms is critical. Dysregulation of pH homeostasis is a common factor in breast tumour cells. This occurs in concert with a metabolic switch to aerobic glycolysis that occurs at the onset of oncogenic transformation. The Na+/H+ exchanger isoform 1 (NHE1) is the major pH regulatory protein involved in the increased proton extrusion of breast cancer cells. Its increased activity results in intracellular alkalinisation and extracellular acidification that drives cancer progression. The acidification of the extracellular tumour microenvironment also contributes to the development of chemotherapy resistance. In this review, we outline the role of H+ as a carcinogenic signal and the role and regulation of NHE1 as a trigger for metastasis. We review recent evidence supporting the use of pharmacological inhibitors of NHE1 as a viable treatment option for triple-negative breast cancer.
Collapse
Affiliation(s)
- Schammim Ray Amith
- Biomedical Science, School of Life Sciences, Keele University, 103B Huxley Building, Keele, Staffordshire, ST5 5BG, United Kingdom.
| | - Larry Fliegel
- Department of Biochemistry, University of Alberta, 347 Medical Sciences Building, Edmonton, Alberta, T6G 2H7, Canada.
| |
Collapse
|
16
|
Walker J, Undem C, Yun X, Lade J, Jiang H, Shimoda LA. Role of Rho kinase and Na+/H+ exchange in hypoxia-induced pulmonary arterial smooth muscle cell proliferation and migration. Physiol Rep 2016; 4:4/6/e12702. [PMID: 27009277 PMCID: PMC4814889 DOI: 10.14814/phy2.12702] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/17/2016] [Indexed: 12/21/2022] Open
Abstract
Abnormal proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) are hallmark characteristics of vascular remodeling in pulmonary hypertension induced by chronic hypoxia. In this study, we investigated the role of the Na+/H+ exchanger (NHE) and alterations in intracellular pH (pHi) homeostasis in meditating increased proliferation and migration in PASMCs isolated from resistance‐sized pulmonary arteries from chronically hypoxic rats or from normoxic rats that were exposed to hypoxia ex vivo (1% or 4% O2, 24–96 h). We found that PASMCs exposed to either in vivo or ex vivo hypoxia exhibited greater proliferative and migratory capacity, elevated pHi, and enhanced NHE activity. The NHE inhibitor, ethyl isopropyl amiloride (EIPA), normalized pHi in hypoxic PASMCs and reduced migration by 73% and 45% in cells exposed to in vivo and in vitro hypoxia, respectively. Similarly, EIPA reduced proliferation by 97% and 78% in cells exposed to in vivo and in vitro hypoxia, respectively. We previously demonstrated that NHE isoform 1 (NHE1) is the predominant isoform expressed in PASMCs. The development of hypoxia‐induced pulmonary hypertension and alterations in PASMC pHi homeostasis were prevented in mice deficient for NHE1. We found that short‐term (24 h) ex vivo hypoxic exposure did not alter the expression of NHE1, so we tested the role of Rho kinase (ROCK) as a possible means of increasing NHE activity. In the presence of the ROCK inhibitor, Y‐27632, we found that pHi and NHE activity were normalized and migration and proliferation were reduced in PASMCs exposed to either in vivo (by 68% for migration and 22% for proliferation) or ex vivo (by 43% for migration and 17% for proliferation) hypoxia. From these results, we conclude that during hypoxia, activation of ROCK enhances NHE activity and promotes PASMC migration and proliferation.
Collapse
Affiliation(s)
- Jasmine Walker
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Clark Undem
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Xin Yun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Julie Lade
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Haiyang Jiang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
17
|
Jiang H, Chen C, Sun Q, Wu J, Qiu L, Gao C, Liu W, Yang J, Jun N, Dong J. The role of semaphorin 4D in tumor development and angiogenesis in human breast cancer. Onco Targets Ther 2016; 9:5737-5750. [PMID: 27729799 PMCID: PMC5045906 DOI: 10.2147/ott.s114708] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background Semaphorin 4D (Sema4D) is highly expressed in certain types of tumors and functions in the regulation of tumor angiogenesis and growth. However, it is still not clear regarding the roles of Sema4D in breast cancer. This study was designed to explore the effects of Sema4D on proliferation, cell cycle progression, apoptosis, invasion, migration, tumor growth, and angiogenesis in breast cancer. Materials and methods The expression level of Sema4D was investigated in MCF10A, 184A1, HCC1937, MDA-MB-468, MDA-MB-231, Hs578T, BT474, MCF-7, and T47D breast cancer cell lines by Western blotting analysis. Sema4D downregulation or overexpression was established by infection with lentiviruses-encoding Sema4D short hairpin RNA (shRNA) or Sema4D. To evaluate the effects of Sema4D on cell proliferation, cell cycle progression, apoptosis, invasion, and migration of MDA-MB-231 and MDA-MB-468 cells, methods including MTT assay, flow cytometry, wound healing assay, and transwell experiments were applied. BALB/c nude mice were injected with MDA-MB-231 cells, which were respectively infected with lentiviruses-encoding Sema4D, Sema4D shRNA, and GFP, followed by tumor angiogenesis assay. Results Sema4D was expressed at higher levels in breast cancer cell lines compared with the normal human breast epithelial cell lines, especially in MDA-MB-231 and MDA-MB-468 cells. Cell proliferation ability was remarkably inhibited in Sema4D downregulated condition, whereas the proportions of cells in the G0/G1 phase and apoptosis increased in MDA-MB-231 and MDA-MB-468 cells. In addition, the invasion and migration abilities of these cells were obviously reduced. Xenograft growth as well as angiogenesis was inhibited when infected with lentiviruses-encoding Sema4D shRNA in vivo. Conclusion Downregulation of Sema4D had notable influence on cell proliferation ability, invasion, migration, and apoptosis of both MDA-MB-231 and MDA-MB-468 cells. Furthermore, infection with lentiviruses-encoding Sema4D shRNA obviously inhibited tumor growth and angiogenesis in BALB/c nude mice. Our results showed that Sema4D may represent a novel therapeutic target for human breast cancer.
Collapse
Affiliation(s)
- Hongchao Jiang
- Department of Oncology, The Affiliated Children's Hospital of Kunming Medical University; Department of Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Provincial Tumor Hospital
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences
| | - Qiangming Sun
- Molecular Epidemiology Joint Laboratory, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College
| | - Jing Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences
| | - Lijuan Qiu
- Molecular Epidemiology Joint Laboratory, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College
| | - Change Gao
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Weiqing Liu
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Jun Yang
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Nie Jun
- Department of Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Provincial Tumor Hospital
| | - Jian Dong
- Department of Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Provincial Tumor Hospital
| |
Collapse
|
18
|
Li B, Liu W, Zhuang M, Li N, Wu S, Pan S, Hua J. Overexpression of CD61 promotes hUC-MSC differentiation into male germ-like cells. Cell Prolif 2016; 49:36-47. [PMID: 26840189 PMCID: PMC6496844 DOI: 10.1111/cpr.12236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/06/2015] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Previous studies have shown that germ-like cells can be induced from human umbilical cord mesenchymal stem cell (hUC-MSCs) in vitro. However, induction efficiency was low and a stable system had not been built. CD61, also called integrin-β3, plays a significant role in cell differentiation, in that CD61-positive-cell-derived pluripotent stem cells easily differentiate into primordial germ-like cells (PGC). Here, we have explored whether overexpression of CD61 would promote hUC-MSC differentiation into PGC and male germ-like cells. MATERIALS AND METHODS hUC-MSCs were cultured and transduced using pCD61-CAGG-TRIP-pur (oCD61) and pTRIP-CAGG plasmid (Control), and hUC-MSCs overexpressed CD61 were induced by bone morphogenetic protein 4 (BMP4, 12.5 ng/ml), to differentiate into PGC and male germ cells. Quantitative real-time PCR (RT-qPCR), western blotting and immunofluorescence staining were used to examine PGC- and germ cell-specific markers. RESULTS High expression levels of PGC-specific markers were detected in oCD61 hUC-MSCs compared to controls. After BMP4 induction, expression levels of male germ cell markers such as Acrosin (ACR), Prm1 and meiotic markers including Stra8, Scp3 in oCD61 were significantly higher than those of the Control group. CONCLUSIONS Under induction of BMP4, CD61-overexpressing hUC-MSCs, which had turned into PGC-like cells, could be further differentiated into male germ-like cells. Thus, a simple and efficient approach to study male germ cell development by using hUC-MSCs has been established.
Collapse
Affiliation(s)
- Bo Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weishuai Liu
- Department of Pathology, Yangling Demonstration Zone Hospital, Yangling, Shaanxi, 712100, China
| | - Mengru Zhuang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Siyu Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shaohui Pan
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
19
|
Amith SR, Wilkinson JM, Baksh S, Fliegel L. The Na⁺/H⁺ exchanger (NHE1) as a novel co-adjuvant target in paclitaxel therapy of triple-negative breast cancer cells. Oncotarget 2015; 6:1262-75. [PMID: 25514463 PMCID: PMC4359231 DOI: 10.18632/oncotarget.2860] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/25/2014] [Indexed: 02/04/2023] Open
Abstract
Dysregulation of Na+ /H+ exchanger isoform one (NHE1) activity is a hallmark of cells undergoing tumorigenesis and metastasis, the leading cause of patient mortality. The acidic tumor microenvironment is thought to facilitate the development of resistance to chemotherapy drugs and to promote extracellular matrix remodeling leading to metastasis. Here, we investigated NHE1 as a co-adjuvant target in paclitaxel chemotherapy of metastatic breast cancer. We generated a stable NHE1-knockout of the highly invasive, triple-negative, MDA-MB-231 breast cancer cells. The NHE1-knockout cells proliferated comparably to parental cells, but had markedly lower rates of migration and invasion in vitro. In vivo xenograft tumor growth in athymic nude mice was also dramatically decreased compared to parental MDA-MB-231 cells. Loss of NHE1 expression also increased the susceptibility of knockout cells to paclitaxel-mediated cell death. NHE1 inhibition, in combination with paclitaxel, resulted in a dramatic decrease in viability, and migratory and invasive potential of triple-negative breast cancer cells, but not in hormone receptor-positive, luminal MCF7 cells. Our data suggest that NHE1 is critical in triple-negative breast cancer metastasis, and its chemical inhibition boosts the efficacy of paclitaxel in vitro, highlighting NHE1 as a novel, potential co-adjuvant target in breast cancer chemotherapy.
Collapse
Affiliation(s)
- Schammim Ray Amith
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Shairaz Baksh
- Department of Pediatrics, Biochemistry and Oncology, Alberta Inflammatory Bowel Disease Consortium, University of Alberta, Edmonton, Alberta, Canada
| | - Larry Fliegel
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
20
|
Technical innovation in adjuvant radiotherapy: Evolution and evaluation of new treatments for today and tomorrow. Breast 2015; 24 Suppl 2:S114-9. [PMID: 26429399 DOI: 10.1016/j.breast.2015.07.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent innovations in breast cancer radiotherapy include intensity modulated radiotherapy, brachytherapy and intraoperative radiotherapy and current trials are seeking to evaluate their value in optimizing local control while maintaining cosmetic effects. Future clinical dividends in local control and survival may come from the identification of molecular signatures of breast cancer radiosensitivity, the development of predictive signatures and identification of immunohistochemical markers of risk of local recurrence. The importance of tumour heterogeneity is being increasingly recognized as an important factor in determining radiotherapy response and an improved understanding of the biology of the tumour microenvironment may identify targets that allow enhanced radiosensitisation or reversal of radioresistance when inhibited. This review describes recent developments in these areas.
Collapse
|
21
|
Mangia A, Caldarola L, Dell'Endice S, Scarpi E, Saragoni L, Monti M, Santini D, Brunetti O, Simone G, Silvestris N. The potential predictive role of nuclear NHERF1 expression in advanced gastric cancer patients treated with epirubicin/oxaliplatin/capecitabine first line chemotherapy. Cancer Biol Ther 2015; 16:1140-7. [PMID: 26126066 DOI: 10.1080/15384047.2015.1056414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cellular resistance in advanced gastric cancer (GC) might be related to function of multidrug resistance (MDR) proteins. The adaptor protein NHERF1 (Na(+)/H(+) exchanger regulatory factor) is an important player in cancer progression for a number of solid malignancies, even if its role to develop drug resistance remains uncertain. Herein, we aimed to analyze the potential association between NHERF1 expression and P-gp, sorcin and HIF-1α MDR-related proteins in advanced GC patients treated with epirubicin/oxaliplatin/capecitabine (EOX) chemotherapy regimen, and its relation to response. Total number of 28 untreated patients were included into the study. Expression and subcellular localization of all proteins were assessed by immunohistochemistry on formalin-fixed paraffin embedded tumor samples. We did not found significant association between NHERF1 expression and the MDR-related proteins. A trend was observed between positive cytoplasmic NHERF1 (cNHERF1) expression and negative nuclear HIF-1α (nHIF-1α) expression (68.8% versus 31.3% respectively, P = 0.054). However, cytoplasmic P-gp (cP-gp) expression was positively correlated with both cHIF-1α and sorcin expression (P = 0.011; P = 0.002, respectively). Interestingly, nuclear NHERF1 (nNHERF1) staining was statistically associated with clinical response. In detail, 66.7% of patients with high nNHERF1 expression had a disease control rate, while 84.6% of subjects with negative nuclear expression of the protein showed progressive disease (P = 0.009). Multivariate analysis confirmed a significant correlation between nNHERF1 and clinical response (OR 0.06, P = 0.019). These results suggest that nuclear NHERF1 could be related to resistance to the EOX regimen in advanced GC patients, identifying this marker as a possible independent predictive factor.
Collapse
Key Words
- Cl, confidence interval
- DCR, disease control rate
- NHERF1/EBP50
- OR, odds ratio
- PD, progression disease
- cHIF-1α, cytoplasmic HIF-1α
- cNHERF1, cytoplasmic NHERF1
- cP-gp, cytoplasmic P-gp
- cSR1, cytoplasmic SR1
- chemotherapy
- gastric cancer
- immunohistochemistry
- mP-gp, membranous P-gp
- multi-drug resistance
- nHIF-1α, nuclear HIF-1α
- nNHERF1, nuclear NHERF1
- predictive factor
Collapse
Affiliation(s)
- Anita Mangia
- a Functional Biomorphology Laboratory ; National Cancer Research Centre ; Istituto Tumori "Giovanni Paolo II"; Bari , Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhao R, Liu K, Huang Z, Wang J, Pan Y, Huang Y, Deng X, Liu J, Qin C, Cheng G, Hua L, Li J, Yin C. Genetic Variants in Caveolin-1 and RhoA/ROCK1 Are Associated with Clear Cell Renal Cell Carcinoma Risk in a Chinese Population. PLoS One 2015; 10:e0128771. [PMID: 26066055 PMCID: PMC4467078 DOI: 10.1371/journal.pone.0128771] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 04/30/2015] [Indexed: 11/29/2022] Open
Abstract
Background The RhoA/ROCK pathway and Caveolin-1 (Cav-1) participate in the process of tumorigenesis in numerous types of cancer. Up-regulation of RhoA/ROCK and Cav-1 expression is considered to be associated with the development and progression of clear cell renal cell carcinoma (ccRCC). We investigated the association between genetic variations of RhoA/ROCK and Cav-1 and the risk of ccRCC in the Chinese population. Methods Between May 2004 and March 2014, a total of 1,248 clear cell renal cell carcinoma cases and 1,440 cancer-free controls were enrolled in this hospital-based case-control study. Nine SNPs in RhoA/ROCK and Cav-1 were genotyped using the TaqMan assay. Result We found two SNPs (Cav-1 rs1049334 and ROCK1 rs35996865) were significantly associated with the increasing risk of ccRCC (P = 0.002 and P < 0.001 respectively). The analysis of combined risk alleles revealed that patients with 2–4 risk alleles showed a more remarkable growth of ccRCC risk than the patients with 0–1 risk alleles(OR = 1.66, 95%CI = 1.31–2.11, P < 0.001). Younger subjects (P = 0.001, OR = 1.83, 95%CI = 1.30–2.57), higher weight subjects (P = 0.001, OR = 1.76, 95%CI = 1.25–2.47), female subjects (P = 0.007, OR = 1.75, 95% CI = 1.17–2.62), nonsmokers (P < 0.001, OR = 1.67, 95%CI = 1.26–2.23), drinkers (P = 0.025, OR = 1.75, 95% CI = 1.07–2.85), subjects with hypertension (P = 0.025, OR = 1.75, 95% CI = 1.07–2.85) and diabetes (P = 0.026, OR = 4.31, 95% CI = 1.19–15.62) showed a stronger association between the combined risk alleles and the risk of ccRCC by using the stratification analysis. Furthermore, we observed higher Cav-1 mRNA levels in the presence of the rs1049334 A allele in normal renal tissues. Conclusion Our results indicate that the two SNPs (Cav-1 rs1049334 and ROCK1 rs35996865) and genotypes with a combination of 2–4 risk alleles were associated with the risk of ccRCC. The functional SNP rs1049334 may affect the risk of ccRCC by altering the expression of Cav-1 and the relevance between the risk effects and the functional impact of this polymorphism needs further validation.
Collapse
Affiliation(s)
- Ruizhe Zhao
- State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Kang Liu
- State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhengkai Huang
- State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jun Wang
- State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yongsheng Pan
- State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuan Huang
- State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaheng Deng
- State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jinliang Liu
- State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chao Qin
- State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Gong Cheng
- State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lixin Hua
- State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- * E-mail: (LH); (JL)
| | - Jie Li
- State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- * E-mail: (LH); (JL)
| | - Changjun Yin
- State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
23
|
Huetsch J, Shimoda LA. Na(+)/H(+) exchange and hypoxic pulmonary hypertension. Pulm Circ 2015; 5:228-43. [PMID: 26064449 DOI: 10.1086/680213] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/22/2014] [Indexed: 12/24/2022] Open
Abstract
Intracellular pH (pHi) homeostasis is key to the functioning of vascular smooth muscle cells, including pulmonary artery smooth muscle cells (PASMCs). Sodium-hydrogen exchange (NHE) is an important contributor to pHi control in PASMCs. In this review, we examine the role of NHE in PASMC function, in both physiologic and pathologic conditions. In particular, we focus on the contribution of NHE to the PASMC response to hypoxia, considering both acute hypoxic pulmonary vasoconstriction and the development of pulmonary vascular remodeling and pulmonary hypertension in response to chronic hypoxia. Hypoxic pulmonary hypertension remains a disease with limited therapeutic options. Thus, this review explores past efforts at disrupting NHE signaling and discusses the therapeutic potential that such efforts may have in the field of pulmonary hypertension.
Collapse
Affiliation(s)
- John Huetsch
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA
| |
Collapse
|
24
|
Zhang J, Dong J, Yang Z, Ma X, Zhang J, Li M, Chen Y, Ding Y, Li K, Zhang Z. Expression of ezrin, CD44, and VEGF in giant cell tumor of bone and its significance. World J Surg Oncol 2015; 13:168. [PMID: 25929323 PMCID: PMC4434870 DOI: 10.1186/s12957-015-0579-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/08/2015] [Indexed: 11/23/2022] Open
Abstract
Background This research aimed to study the role of ezrin, CD44, and VEGF in invasion, metastasis, recurrence, and prognosis of giant cell tumor of bone (GCTB) and its association with the clinical and pathological features of GCTB. Methods Expression status of ezrin, CD44, and VEGF in 80 GCTB tissues and its adjacent noncancerous tissue samples were measured with immunohistochemical and Elivison staining. Their correlation with the clinical and pathologic factors was statistically analyzed by chi-square test. Results The expression status of ezrin, CD44, and VEGF were significantly higher in GCTB tissue samples than in its adjacent noncancerous tissue samples and in GCTB at Campanacci stage III than in Campanacci stages I and II (P < 0.05). No significant difference was found in age and sex of the patients and locations of the tumor (P > 0.05). Survival analysis showed that the expression status of ezrin, CD44, VEGF, and Campanacci clinical stages of GCTB were positively associated with the survival rate of GCTB patients and negatively associated with ezrin and Campanacci stages of GCTB, indicating that ezrin, CD44, VEGF, and Campanacci clinical stages of GCTB are the independent factors for GCTB. Conclusions Ezrin, CD44, and VEGF are over-expressed in GCTB tissue and its adjacent noncancerous tissue samples and may play an important role in the occurrence, invasion, metastasis, and recurrence of GCTB. Measurement of ezrin, CD44, and VEGF expression status may contribute to the judgment of prognosis of GCTB patients.
Collapse
Affiliation(s)
- Jing Zhang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan, 650118, People's Republic of China.
| | - Jian Dong
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan, 650118, People's Republic of China.
| | - Zuozhang Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan, 650118, People's Republic of China.
| | - Xiang Ma
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan, 650118, People's Republic of China.
| | - Jinlei Zhang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan, 650118, People's Republic of China.
| | - Mei Li
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan, 650118, People's Republic of China.
| | - Yun Chen
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan, 650118, People's Republic of China.
| | - Yingying Ding
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, 650118, People's Republic China.
| | - Kun Li
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, 650118, People's Republic China.
| | - Zhiping Zhang
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, 650118, People's Republic China.
| |
Collapse
|
25
|
Wallert MA, Hammes D, Nguyen T, Kiefer L, Berthelsen N, Kern A, Anderson-Tiege K, Shabb JB, Muhonen WW, Grove BD, Provost JJ. RhoA Kinase (Rock) and p90 Ribosomal S6 Kinase (p90Rsk) phosphorylation of the sodium hydrogen exchanger (NHE1) is required for lysophosphatidic acid-induced transport, cytoskeletal organization and migration. Cell Signal 2015; 27:498-509. [PMID: 25578862 DOI: 10.1016/j.cellsig.2015.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 01/03/2015] [Indexed: 12/28/2022]
Abstract
The sodium hydrogen exchanger isoform one (NHE1) plays a critical role coordinating asymmetric events at the leading edge of migrating cells and is regulated by a number of phosphorylation events influencing both the ion transport and cytoskeletal anchoring required for directed migration. Lysophosphatidic acid (LPA) activation of RhoA kinase (Rock) and the Ras-ERK growth factor pathway induces cytoskeletal reorganization, activates NHE1 and induces an increase in cell motility. We report that both Rock I and II stoichiometrically phosphorylate NHE1 at threonine 653 in vitro using mass spectrometry and reconstituted kinase assays. In fibroblasts expressing NHE1 alanine mutants for either Rock (T653A) or ribosomal S6 kinase (Rsk; S703A) we show that each site is partially responsible for the LPA-induced increase in transport activity while NHE1 phosphorylation by either Rock or Rsk at their respective site is sufficient for LPA stimulated stress fiber formation and migration. Furthermore, mutation of either T653 or S703 leads to a higher basal pH level and a significantly higher proliferation rate. Our results identify the direct phosphorylation of NHE1 by Rock and suggest that both RhoA and Ras pathways mediate NHE1-dependent ion transport and migration in fibroblasts.
Collapse
Affiliation(s)
- Mark A Wallert
- Minnesota State University Moorhead, Department of Biosciences, Moorhead, MN, USA
| | - Daniel Hammes
- Minnesota State University Moorhead, Department of Biosciences, Moorhead, MN, USA
| | - Tony Nguyen
- Minnesota State University Moorhead, Department of Biosciences, Moorhead, MN, USA
| | - Lea Kiefer
- University of San Diego, Department of Chemistry and Biochemistry, San Diego, CA, USA
| | - Nick Berthelsen
- Minnesota State University Moorhead, Department of Biosciences, Moorhead, MN, USA
| | - Andrew Kern
- Minnesota State University Moorhead, Department of Biosciences, Moorhead, MN, USA
| | | | - John B Shabb
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, USA
| | - Wallace W Muhonen
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, USA
| | - Bryon D Grove
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, USA
| | - Joseph J Provost
- University of San Diego, Department of Chemistry and Biochemistry, San Diego, CA, USA.
| |
Collapse
|
26
|
Kong SC, Giannuzzo A, Gianuzzo A, Novak I, Pedersen SF. Acid-base transport in pancreatic cancer: molecular mechanisms and clinical potential. Biochem Cell Biol 2014; 92:449-59. [PMID: 25372771 DOI: 10.1139/bcb-2014-0078] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Solid tumors are characterized by a microenvironment that is highly acidic, while intracellular pH (pHi) is normal or even elevated. This is the result of elevated metabolic rates in the highly proliferative cancer cells, in conjunction with often greatly increased rates of net cellular acid extrusion. Studies in various cancers have suggested that while the acid extrusion mechanisms employed are generally the same as those in healthy cells, the specific transporters upregulated vary with the cancer type. The main such transporters include Na(+)/H(+) exchangers, various HCO3(-) transporters, H(+) pumps, and lactate-H(+) cotransporters. The mechanisms leading to their dysregulation in cancer are incompletely understood but include changes in transporter expression levels, trafficking and membrane localization, and posttranslational modifications. In turn, accumulating evidence has revealed that in addition to supporting their elevated metabolic rate, their increased acid efflux capacity endows the cancer cells with increased capacity for invasiveness, proliferation, and chemotherapy resistance. The pancreatic duct exhibits an enormous capacity for acid-base transport, rendering pHi dysregulation a potentially very important topic in pancreatic ductal adenocarcinoma (PDAC). PDAC - accounting for about 90% of all pancreatic cancers - has one of the highest cancer mortality rates known, and new diagnostic and treatment options are highly needed. However, very little is known about whether pH regulation is altered in PDAC and, if so, the possible role of this in cancer development. Here, we review current models for pancreatic acid-base transport and pH homeostasis and summarize current views on acid-base dysregulation in cancer, focusing where possible on the few studies to date in PDAC. Finally, we present new data-mining analyses of acid-base transporter expression changes in PDAC and discuss essential directions for future work.
Collapse
Affiliation(s)
- Su Chii Kong
- a Section for Cell and Developmental Biology, Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
27
|
Watnick RS, Rodriguez RK, Wang S, Blois AL, Rangarajan A, Ince T, Weinberg RA. Thrombospondin-1 repression is mediated via distinct mechanisms in fibroblasts and epithelial cells. Oncogene 2014; 34:2823-35. [PMID: 25109329 DOI: 10.1038/onc.2014.228] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 06/03/2014] [Accepted: 06/21/2014] [Indexed: 12/27/2022]
Abstract
Tumor-associated angiogenesis is postulated to be regulated by the balance between pro- and anti-angiogenic factors. We demonstrate here that the critical step in establishing the angiogenic capability of human tumor cells is the repression of a key secreted anti-angiogenic factor, thrombospondin-1 (Tsp-1). This repression is essential for tumor formation by mammary epithelial cells and kidney cells engineered to express SV40 early region proteins, hTERT, and H-RasV12. In transformed epithelial cells, a signaling pathway leading from Ras to Tsp-1 repression induces the sequential activation of PI3 kinase, Rho and ROCK, leading to activation of Myc through phosphorylation, thereby enabling Myc to repress Tsp-1 transcription. In transformed fibroblasts, however, the repression of Tsp-1 can be achieved by an alternative mechanism involving inactivation of both p53 and pRb. We thus describe novel mechanisms by which the activation of oncogenes in epithelial cells and the inactivation of tumor suppressors in fibroblasts permits angiogenesis and, in turn, tumor formation.
Collapse
Affiliation(s)
- R S Watnick
- 1] Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA [2] Department of Surgery, Harvard Medical School, Boston, MA, USA [3] Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - R K Rodriguez
- 1] Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA [2] Department of Surgery, Harvard Medical School, Boston, MA, USA [3] Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - S Wang
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | - A L Blois
- 1] Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA [2] Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - A Rangarajan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - T Ince
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - R A Weinberg
- 1] Whitehead Institute for Biomedical Research, Cambridge, MA, USA [2] Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
28
|
Bocanegra V, Gil Lorenzo AF, Cacciamani V, Benardón ME, Costantino VV, Vallés PG. RhoA and MAPK signal transduction pathways regulate NHE1-dependent proximal tubule cell apoptosis after mechanical stretch. Am J Physiol Renal Physiol 2014; 307:F881-9. [PMID: 25080524 DOI: 10.1152/ajprenal.00232.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanical deformation after congenital ureteral obstruction is traduced into biochemical signals leading to tubular atrophy due to epithelial cell apoptosis. We investigated whether Na(+)/H(+) exchanger 1 (NHE1) could be responsible for HK-2 cell apoptosis induction in response to mechanical stretch through its ability to function as a control point of RhoA and MAPK signaling pathways. When mechanical stretch was applied to HK-2 cells, cell apoptosis was associated with diminished NHE1 expression and RhoA activation. The RhoA signaling pathway was confirmed to be upstream from the MAPK cascade when HK-2 cells were transfected with the active RhoA-V14 mutant, showing higher ERK1/2 expression and decreased p38 activation associated with NHE1 downregulation. NHE1 participation in apoptosis induction was confirmed by specific small interfering RNA NHE1 showing caspase-3 activation and decreased Bcl-2 expression. The decreased NHE1 expression was correlated with abnormal NHE1 activity addressed by intracellular pH measurements. These results demonstrate that mitochondrial proximal tubule cell apoptosis in response to mechanical stretch is orchestrated by signaling pathways initiated by the small GTPase RhoA and followed by the opposing effects of ERK1/2 and p38 MAPK phosphorylation, regulating NHE1 decreased expression and activity.
Collapse
Affiliation(s)
- Victoria Bocanegra
- Instituto de Medicina y Biología Experimental de Cuyo-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; and
| | - Andrea Fernanda Gil Lorenzo
- Instituto de Medicina y Biología Experimental de Cuyo-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; and
| | - Valeria Cacciamani
- Área de Fisiología Patológica, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María Eugenia Benardón
- Área de Fisiología Patológica, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Valeria Victoria Costantino
- Instituto de Medicina y Biología Experimental de Cuyo-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; and
| | - Patricia G Vallés
- Instituto de Medicina y Biología Experimental de Cuyo-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; and Área de Fisiología Patológica, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
29
|
Motawea HKB, Blazek AD, Zirwas MJ, Pleister AP, Ahmed AAE, McConnell BK, Chotani MA. Delocalization of Endogenous A-kinase Antagonizes Rap1-Rho-α 2C-Adrenoceptor Signaling in Human Microvascular Smooth Muscle Cells. JOURNAL OF CYTOLOGY & MOLECULAR BIOLOGY 2014; 1:1000002. [PMID: 24701590 PMCID: PMC3970818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The second messenger cyclic AMP (cAMP) plays a vital role in the physiology of the cardiovascular system, including vasodilation of large blood vessels. This study focused on cAMP signaling in peripheral blood vessels, specifically in human vascular smooth muscle (microVSM) cells explanted from skin punch biopsy arterioles (also known as resistance vessels) of healthy volunteers. Using these human microVSM we recently demonstrated cAMP activation of exchange protein activated by cAMP (Epac), the Ras-related small GTPase Rap1A, and RhoA-ROCK-F-actin signaling in human microVSM to increase expression and cell surface translocation of functional α2C-adrenoceptors (α2C-ARs) that mediate vasoconstriction. Protein-protein association with the actin-binding protein filamin-2 and phosphorylation of filamin-2 Ser2113 by cAMP-Rap1A-Rho-ROCK signaling were necessary for receptor translocation in these cells. Although cAMP activated A-kinase in these cells, these effects were independent of A-kinase, and suggested compartmentalized A-kinase local signaling facilitated by A-kinase anchoring proteins (AKAPs). In this study we globally disrupted A-kinase-AKAP interactions by the anchoring inhibitor decoy peptide Ht31 and examined the effect on α2C-AR expression, translocation, and function in quiescent microVSM treated with the adenylyl cyclase activator and cAMP elevating agent forskolin. The results show that Ht31, but not the control peptide Ht31-P, reduced forskolin-stimulated Ser133 phosphorylation of A-kinase substrate CREB, reduced α2C-AR mRNA levels, reduced cell surface translocated receptors, and attenuated agonist-triggered receptor functional responses. Together, the results suggest that compartmentalized cAMP signaling elicits a selective cellular response in microVSM, which may have relevance to arteriole physiological function and responses.
Collapse
Affiliation(s)
- Hanaa K. B. Motawea
- Center for Cardiovascular & Pulmonary Research, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Faculty of Pharmacy, Department of Pharmacology & Toxicology, Helwan University, Helwan, Egypt
| | - Alisa D. Blazek
- Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio, USA
| | - Matthew J. Zirwas
- Internal Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Adam P. Pleister
- Internal Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Amany A. E. Ahmed
- Faculty of Pharmacy, Department of Pharmacology & Toxicology, Helwan University, Helwan, Egypt
| | - Bradley K. McConnell
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Texas Medical Center, Houston, Texas, USA
| | - Maqsood A. Chotani
- Center for Cardiovascular & Pulmonary Research, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio, USA
- Department of Pediatrics, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
30
|
Sedlakova O, Svastova E, Takacova M, Kopacek J, Pastorek J, Pastorekova S. Carbonic anhydrase IX, a hypoxia-induced catalytic component of the pH regulating machinery in tumors. Front Physiol 2014; 4:400. [PMID: 24409151 PMCID: PMC3884196 DOI: 10.3389/fphys.2013.00400] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/19/2013] [Indexed: 12/19/2022] Open
Abstract
Acidic tissue microenvironment contributes to tumor progression via multiple effects including the activation of angiogenic factors and proteases, reduced cell-cell adhesion, increased migration and invasion, etc. In addition, intratumoral acidosis can influence the uptake of anticancer drugs and modulate the response of tumors to conventional therapy. Acidification of the tumor microenvironment often develops due to hypoxia-triggered oncogenic metabolism, which leads to the extensive production of lactate, protons, and carbon dioxide. In order to avoid intracellular accumulation of the acidic metabolic products, which is incompatible with the survival and proliferation, tumor cells activate molecular machinery that regulates pH by driving transmembrane inside-out and outside-in ion fluxes. Carbonic anhydrase IX (CA IX) is a hypoxia-induced catalytic component of the bicarbonate import arm of this machinery. Through its catalytic activity, CA IX directly participates in many acidosis-induced features of tumor phenotype as demonstrated by manipulating its expression and/or by in vitro mutagenesis. CA IX can function as a survival factor protecting tumor cells from hypoxia and acidosis, as a pro-migratory factor facilitating cell movement and invasion, as a signaling molecule transducing extracellular signals to intracellular pathways (including major signaling and metabolic cascades) and converting intracellular signals to extracellular effects on adhesion, proteolysis, and other processes. These functional implications of CA IX in cancer are supported by numerous clinical studies demonstrating the association of CA IX with various clinical correlates and markers of aggressive tumor behavior. Although our understanding of the many faces of CA IX is still incomplete, existing knowledge supports the view that CA IX is a biologically and clinically relevant molecule, exploitable in anticancer strategies aimed at targeting adaptive responses to hypoxia and/or acidosis.
Collapse
Affiliation(s)
- Olga Sedlakova
- Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences Bratislava, Slovakia
| | - Eliska Svastova
- Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences Bratislava, Slovakia
| | - Martina Takacova
- Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences Bratislava, Slovakia
| | - Juraj Kopacek
- Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences Bratislava, Slovakia
| | - Jaromir Pastorek
- Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences Bratislava, Slovakia
| | - Silvia Pastorekova
- Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences Bratislava, Slovakia
| |
Collapse
|
31
|
Greco MR, Antelmi E, Busco G, Guerra L, Rubino R, Casavola V, Reshkin SJ, Cardone RA. Protease activity at invadopodial focal digestive areas is dependent on NHE1-driven acidic pHe. Oncol Rep 2013; 31:940-6. [PMID: 24337203 DOI: 10.3892/or.2013.2923] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/29/2013] [Indexed: 11/05/2022] Open
Abstract
Degradation of the extracellular matrix (ECM) is a critical step of tumor cell invasion and requires protease-dependent proteolysis focalized at the invadopodia where the proteolysis of the ECM occurs. Most of the extracellular proteases belong to serine- or metallo-proteases and the invadopodia is where protease activity is regulated. While recent data looking at global protease activity in the growth medium reported that their activity and role in invasion is dependent on Na+/H+ exchanger 1 (NHE1)-driven extracellular acidification, there is no data on this aspect at the invadopodia, and an open question remains whether this acid extracellular pH (pHe) activation of proteases in tumor cells occurs preferentially at invadopodia. We previously reported that the NHE1 is expressed in breast cancer invadopodia and that the NHE1‑dependent acidification of the peri-invadopodial space is critical for ECM proteolysis. In the present study, using, for the first time, in situ zymography analysis, we demonstrated a concordance between NHE1 activity, extracellular acidification and protease activity at invadopodia to finely regulate ECM digestion. We demonstrated that: (i) ECM proteolysis taking place at invadopodia is driven by acidification of the peri-invadopodia microenvironment; (ii) that the proteases have a functional pHe optimum that is acidic; (iii) more than one protease is functioning to digest the ECM at these invadopodial sites of ECM proteolysis; and (iv) lowering pHe or inhibiting the NHE1 increases protease secretion while blocking protease activity changes NHE1 expression at the invadopodia.
Collapse
Affiliation(s)
- Maria Raffaella Greco
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, I-70126 Bari, Italy
| | - Ester Antelmi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, I-70126 Bari, Italy
| | - Giovanni Busco
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, I-70126 Bari, Italy
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, I-70126 Bari, Italy
| | - Rosa Rubino
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, I-70126 Bari, Italy
| | - Valeria Casavola
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, I-70126 Bari, Italy
| | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, I-70126 Bari, Italy
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, I-70126 Bari, Italy
| |
Collapse
|
32
|
Dulong C, Fang YJ, Gest C, Zhou MH, Patte-Mensah C, Mensah-Nyagan AG, Vannier JP, Lu H, Soria C, Cazin L, Mei YA, Varin R, Li H. The small GTPase RhoA regulates the expression and function of the sodium channel Nav1.5 in breast cancer cells. Int J Oncol 2013; 44:539-47. [PMID: 24337141 DOI: 10.3892/ijo.2013.2214] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/06/2013] [Indexed: 11/05/2022] Open
Abstract
Voltage-gated Na+ channels (VGSCs) are highly expressed in several types of carcinomas including breast, prostate and lung cancers as well as in mesothelioma and cervical cancers. Although the VGSCs activity is considered crucial for the potentiation of cancer cell migration and invasion, the mechanisms responsible for their functional expression and regulation in cancer cells remain unclear. In the present study, the role of the small GTPase RhoA in the regulation of expression and function of the Nav1.5 channel in the breast cancer cell lines MDA-MB 231 and MCF-7 was investigated. RhoA silencing significantly reduced both Nav1.5 channel expression and sodium current indicating that RhoA exerts a stimulatory effect on the synthesis of an active form of Nav1.5 channel in cancer cells. The inhibition of Nav1.5 expression dramatically reduced both cell invasion and proliferation. In addition, a decrease of RhoA protein levels induced by Nav1.5 silencing was observed. Altogether, these findings revealed: i) the key role of the small GTPase RhoA in upregulation of Nav1.5 channel expression and tumor aggressiveness, and ii) the existence of a positive feedback of Nav1.5 channels on RhoA protein levels.
Collapse
Affiliation(s)
- C Dulong
- MERCI, EA 3829, Faculté de Médecine et de Pharmacie, Université de Rouen, Rouen, France
| | - Y J Fang
- Center for Brain Science Research, School of Life Science, Fudan University, P.R. China
| | - C Gest
- MERCI, EA 3829, Faculté de Médecine et de Pharmacie, Université de Rouen, Rouen, France
| | - M H Zhou
- Center for Brain Science Research, School of Life Science, Fudan University, P.R. China
| | - C Patte-Mensah
- Unité de Physiopathologie et Médecine Translationnelle, Faculté de Médecine, Strasbourg, France
| | - A G Mensah-Nyagan
- Unité de Physiopathologie et Médecine Translationnelle, Faculté de Médecine, Strasbourg, France
| | - J P Vannier
- MERCI, EA 3829, Faculté de Médecine et de Pharmacie, Université de Rouen, Rouen, France
| | - H Lu
- INSERM UMR-S 728, l'Institut Hématologie, Université Paris 7 Diderot, France
| | - C Soria
- MERCI, EA 3829, Faculté de Médecine et de Pharmacie, Université de Rouen, Rouen, France
| | - L Cazin
- MERCI, EA 3829, Faculté de Médecine et de Pharmacie, Université de Rouen, Rouen, France
| | - Y A Mei
- Center for Brain Science Research, School of Life Science, Fudan University, P.R. China
| | - R Varin
- MERCI, EA 3829, Faculté de Médecine et de Pharmacie, Université de Rouen, Rouen, France
| | - H Li
- MERCI, EA 3829, Faculté de Médecine et de Pharmacie, Université de Rouen, Rouen, France
| |
Collapse
|
33
|
Stock C, Ludwig FT, Hanley PJ, Schwab A. Roles of ion transport in control of cell motility. Compr Physiol 2013; 3:59-119. [PMID: 23720281 DOI: 10.1002/cphy.c110056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell motility is an essential feature of life. It is essential for reproduction, propagation, embryonic development, and healing processes such as wound closure and a successful immune defense. If out of control, cell motility can become life-threatening as, for example, in metastasis or autoimmune diseases. Regardless of whether ciliary/flagellar or amoeboid movement, controlled motility always requires a concerted action of ion channels and transporters, cytoskeletal elements, and signaling cascades. Ion transport across the plasma membrane contributes to cell motility by affecting the membrane potential and voltage-sensitive ion channels, by inducing local volume changes with the help of aquaporins and by modulating cytosolic Ca(2+) and H(+) concentrations. Voltage-sensitive ion channels serve as voltage detectors in electric fields thus enabling galvanotaxis; local swelling facilitates the outgrowth of protrusions at the leading edge while local shrinkage accompanies the retraction of the cell rear; the cytosolic Ca(2+) concentration exerts its main effect on cytoskeletal dynamics via motor proteins such as myosin or dynein; and both, the intracellular and the extracellular H(+) concentration modulate cell migration and adhesion by tuning the activity of enzymes and signaling molecules in the cytosol as well as the activation state of adhesion molecules at the cell surface. In addition to the actual process of ion transport, both, channels and transporters contribute to cell migration by being part of focal adhesion complexes and/or physically interacting with components of the cytoskeleton. The present article provides an overview of how the numerous ion-transport mechanisms contribute to the various modes of cell motility.
Collapse
Affiliation(s)
- Christian Stock
- Institute of Physiology II, University of Münster, Münster, Germany.
| | | | | | | |
Collapse
|
34
|
Nuclear NHERF1 expression as a prognostic marker in breast cancer. Cell Death Dis 2013; 4:e904. [PMID: 24201803 PMCID: PMC3847317 DOI: 10.1038/cddis.2013.439] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/03/2013] [Accepted: 10/03/2013] [Indexed: 01/27/2023]
Abstract
Our purpose was to investigate whether Na+/H+ exchanger regulatory factor 1 (NHERF1) expression could be linked to prognosis in invasive breast carcinomas. NHERF1, an ezrin-radixin-moesin (ERM) binding phosphoprotein 50, is involved in the linkage of integral membrane proteins to the cytoskeleton. It is therefore believed to have an important role in cell signaling associated with changes in cell cytoarchitecture. NHERF1 expression is observed in various types of cancer and is related to tumor aggressiveness. To date the most extensive analyses of the influence of NHERF1 in cancer development have been performed on breast cancer. However, the underlying mechanism and its prognostic significance are still undefined. NHERF1 expression was studied by immunohistochemistry (IHC) in a cohort of 222 breast carcinoma patients. Association of cytoplasmic and nuclear NHERF1 expression with survival was analyzed. Disease-free survival (DFS) and overall survival (OS) were determined based on the Kaplan–Meier method. Cytoplasmic NHERF1 expression was associated with negative progesterone receptor (PgR) (P=0.017) and positive HER2 expression (P=0.023). NHERF1 also showed a nuclear localization and this correlated with small tumor size (P=0.026) and positive estrogen receptor (ER) expression (P=0.010). Multivariate analysis identified large tumor size (P=0.011) and nuclear NHERF1 expression (P=0.049) to be independent prognostic variables for DFS. Moreover, the nuclear NHERF1(−)/ER(−) immunophenotype (27%) was statistically associated with large tumor size (P=0.0276), high histological grade (P=0.0411), PgR-negative tumors (P<0.0001) and high proliferative activity (P=0.0027). These patients had worse DFS compared with patients with nuclear NHERF1(+)/ER(+) tumors (75.4% versus 92.6% P=0.010). These results show that the loss of nuclear NHERF1 expression is associated with reduced survival, and the link between nuclear NHERF1 and ER expression may serve as a prognostic marker for the routine clinical management of breast cancer patients.
Collapse
|
35
|
Antelmi E, Cardone RA, Greco MR, Rubino R, Di Sole F, Martino NA, Casavola V, Carcangiu M, Moro L, Reshkin SJ. ß1 integrin binding phosphorylates ezrin at T567 to activate a lipid raft signalsome driving invadopodia activity and invasion. PLoS One 2013; 8:e75113. [PMID: 24086451 PMCID: PMC3782503 DOI: 10.1371/journal.pone.0075113] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 08/09/2013] [Indexed: 01/11/2023] Open
Abstract
Extracellular matrix (ECM) degradation is a critical process in tumor cell invasion and requires matrix degrading protrusions called invadopodia. The Na+/H+ exchanger (NHE1) has recently been shown to be fundamental in the regulation of invadopodia actin cytoskeleton dynamics and activity. However, the structural link between the invadopodia cytoskeleton and NHE1 is still unknown. A candidate could be ezrin, a linker between the NHE1 and the actin cytoskeleton known to play a pivotal role in invasion and metastasis. However, the mechanistic basis for its role remains unknown. Here, we demonstrate that ezrin phosphorylated at T567 is highly overexpressed in the membrane of human breast tumors and positively associated with invasive growth and HER2 overexpression. Further, in the metastatic cell line, MDA-MB-231, p-ezrin was almost exclusively expressed in invadopodia lipid rafts where it co-localized in a functional complex with NHE1, EGFR, ß1-integrin and phosphorylated-NHERF1. Manipulation by mutation of ezrins T567 phosphorylation state and/or PIP2 binding capacity or of NHE1s binding to ezrin or PIP2 demonstrated that p-ezrin expression and binding to PIP2 are required for invadopodia-mediated ECM degradation and invasion and identified NHE1 as the membrane protein that p-ezrin regulates to induce invadopodia formation and activity.
Collapse
Affiliation(s)
- Ester Antelmi
- Department of Bioscience, Biotechnology and Biopharmacologics, University of Bari, Bari, Italy
- Department of Pathology, Anatomic Pathology A Unit, Istituto Nazionale Tumori, Milan, Italy
| | - Rosa A. Cardone
- Department of Bioscience, Biotechnology and Biopharmacologics, University of Bari, Bari, Italy
| | - Maria R. Greco
- Department of Bioscience, Biotechnology and Biopharmacologics, University of Bari, Bari, Italy
| | - Rosa Rubino
- Department of Bioscience, Biotechnology and Biopharmacologics, University of Bari, Bari, Italy
| | - Francesca Di Sole
- Department of Medicine, University of Maryland School of Medicine and the Medical Service, Department of Veterans Affairs Medical Center, Baltimore, Maryland, United States of America
| | - Nicola A. Martino
- Department of Animal Production, Faculty of Biotechnological Sciences, University of Bari, Bari, Italy
| | - Valeria Casavola
- Department of Bioscience, Biotechnology and Biopharmacologics, University of Bari, Bari, Italy
| | - MariaLuisa Carcangiu
- Department of Pathology, Anatomic Pathology A Unit, Istituto Nazionale Tumori, Milan, Italy
| | - Loredana Moro
- Institute of Biomembranes and Bioenergetics (IBBE), CNR, Bari, Italy
| | - Stephan J. Reshkin
- Department of Bioscience, Biotechnology and Biopharmacologics, University of Bari, Bari, Italy
- * E-mail:
| |
Collapse
|
36
|
Provost JJ, Wallert MA. Inside out: targeting NHE1 as an intracellular and extracellular regulator of cancer progression. Chem Biol Drug Des 2013; 81:85-101. [PMID: 23253131 DOI: 10.1111/cbdd.12035] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The sodium hydrogen exchanger isoform one is a critical regulator of intracellular pH, serves as an anchor for the formation of cytoplasmic signaling complexes, and modulates cytoskeletal organization. There is a growing interest in the potential for sodium hydrogen exchanger isoform one as a therapeutic target against cancer. Sodium hydrogen exchanger isoform one transport drives formation of membrane protrusions essential for cell migration and contributes to the establishment of a tumor microenvironment that leads to the rearrangement of the extracellular matrix further supporting tumor progression. Here, we focus on the potential impact that an inexpensive, $100 genome would have in identifying prospective therapeutic targets to treat tumors based upon changes in gene expression and variation of sodium hydrogen exchanger isoform one regulators. In particular, we will focus on the ezrin, radixin, moesin family proteins, calcineurin B homologous proteins, Ras/Raf/MEK/ERK signaling, and phosphoinositide signaling as they relate to the regulation of sodium hydrogen exchanger isoform one in cancer progression.
Collapse
Affiliation(s)
- Joseph J Provost
- Center for Biopharmaceutical Research and Production, North Dakota State University, Fargo, ND 58102, USA.
| | | |
Collapse
|
37
|
Daniel C, Bell C, Burton C, Harguindey S, Reshkin SJ, Rauch C. The role of proton dynamics in the development and maintenance of multidrug resistance in cancer. Biochim Biophys Acta Mol Basis Dis 2013; 1832:606-17. [DOI: 10.1016/j.bbadis.2013.01.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/15/2013] [Accepted: 01/24/2013] [Indexed: 12/27/2022]
|
38
|
MiR-126 suppresses colon cancer cell proliferation and invasion via inhibiting RhoA/ROCK signaling pathway. Mol Cell Biochem 2013; 380:107-19. [PMID: 23615712 DOI: 10.1007/s11010-013-1664-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/17/2013] [Indexed: 12/19/2022]
Abstract
Recent data strongly suggests the profound role of miRNAs in cancer progression. Here, we showed miR-126 expression was much lower in HCT116, SW620 and HT-29 colon cancer cells with highly metastatic potential and miR-126 downregulation was more frequent in colorectal cancers with metastasis. Restored miR-126 expression inhibited HT-29 cell growth, cell-cycle progression and invasion. Mechanically, microarray results combined with bioinformatic and experimental analysis demonstrated miR-126 exerted cancer suppressor role via inhibiting RhoA/ROCK signaling pathway. These results suggest miR-126 function as a potential tumor suppressor in colon cancer progression and miR-126/RhoA/ROCK may be a novel candidate for developing rational therapeutic strategies.
Collapse
|
39
|
Veland IR, Montjean R, Eley L, Pedersen LB, Schwab A, Goodship J, Kristiansen K, Pedersen SF, Saunier S, Christensen ST. Inversin/Nephrocystin-2 is required for fibroblast polarity and directional cell migration. PLoS One 2013; 8:e60193. [PMID: 23593172 PMCID: PMC3620528 DOI: 10.1371/journal.pone.0060193] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/22/2013] [Indexed: 12/30/2022] Open
Abstract
Inversin is a ciliary protein that critically regulates developmental processes and tissue homeostasis in vertebrates, partly through the degradation of Dishevelled (Dvl) proteins to coordinate Wnt signaling in planar cell polarity (PCP). Here, we investigated the role of Inversin in coordinating cell migration, which highly depends on polarity processes at the single-cell level, including the spatial and temporal organization of the cytoskeleton as well as expression and cellular localization of proteins in leading edge formation of migrating cells. Using cultures of mouse embryonic fibroblasts (MEFs) derived from inv(-/-) and inv(+/+) animals, we confirmed that both inv(-/-) and inv(+/+) MEFs form primary cilia, and that Inversin localizes to the primary cilium in inv(+/+) MEFs. In wound healing assays, inv(-/-) MEFs were severely compromised in their migratory ability and exhibited cytoskeletal rearrangements, including distorted lamellipodia formation and cilia orientation. Transcriptome analysis revealed dysregulation of Wnt signaling and of pathways regulating actin organization and focal adhesions in inv(-/-) MEFs as compared to inv(+/+) MEFs. Further, Dvl-1 and Dvl-3 localized to MEF primary cilia, and β-catenin/Wnt signaling was elevated in inv(-/-) MEFs, which moreover showed reduced ciliary localization of Dvl-3. Finally, inv(-/-) MEFs displayed dramatically altered activity and localization of RhoA, Rac1, and Cdc42 GTPases, and aberrant expression and targeting of the Na(+)/H(+) exchanger NHE1 and ezrin/radixin/moesin (ERM) proteins to the edge of cells facing the wound. Phosphorylation of β-catenin at the ciliary base and formation of well-defined lamellipodia with localization and activation of ERM to the leading edge of migrating cells were restored in inv(-/-) MEFs expressing Inv-GFP. Collectively, our findings point to the significance of Inversin in controlling cell migration processes, at least in part through transcriptional regulation of genes involved in Wnt signaling and pathways that control cytoskeletal organization and ion transport.
Collapse
Affiliation(s)
- Iben R. Veland
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rodrick Montjean
- Inserm U-983, Imagine Institut, Paris Descartes-Sorbonne Paris Cité University, Necker Hospital, Paris, France
| | - Lorraine Eley
- Institute of Human Genetics, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lotte B. Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Albrecht Schwab
- Institute of Physiology II, Münster University, Münster, Germany
| | - Judith Goodship
- Institute of Human Genetics, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Stine F. Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sophie Saunier
- Inserm U-983, Imagine Institut, Paris Descartes-Sorbonne Paris Cité University, Necker Hospital, Paris, France
| | | |
Collapse
|
40
|
Abstract
The pH gradient in normal cells is tightly controlled by the activity of various pH-regulatory membrane proteins including the isoform protein of the Na(+)/H(+) exchanger (NHE1). NHE1 is constitutively active in a neoplastic microenvironment, dysregulating pH homeostasis and altering the survival, differentiation, and proliferation of cancer cells, thereby causing them to become tumorigenic. Cytoplasmic alkalinization in breast cancer cells occurs as a result of increased NHE1 activity and, while much is known about the pathophysiologic role of NHE1 in tumor progression with regard to ion flux, the regulation of its activity on a molecular level is only recently becoming evident. The membrane domain of NHE1 is sufficient for ion exchange. However, its activity is regulated through the phosphorylation of key amino acids in the cytosolic domain as well as by its interaction with other intracellular proteins and lipids. Here, we review the importance of these regulatory sites and what role they may play in the disrupted functionality of NHE1 in breast cancer metastasis.
Collapse
Affiliation(s)
- Schammim R Amith
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
41
|
Schwab A, Fabian A, Hanley PJ, Stock C. Role of ion channels and transporters in cell migration. Physiol Rev 2013; 92:1865-913. [PMID: 23073633 DOI: 10.1152/physrev.00018.2011] [Citation(s) in RCA: 328] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell motility is central to tissue homeostasis in health and disease, and there is hardly any cell in the body that is not motile at a given point in its life cycle. Important physiological processes intimately related to the ability of the respective cells to migrate include embryogenesis, immune defense, angiogenesis, and wound healing. On the other side, migration is associated with life-threatening pathologies such as tumor metastases and atherosclerosis. Research from the last ≈ 15 years revealed that ion channels and transporters are indispensable components of the cellular migration apparatus. After presenting general principles by which transport proteins affect cell migration, we will discuss systematically the role of channels and transporters involved in cell migration.
Collapse
|
42
|
Metodiev M, Alldridge L. Phosphoproteomics: A possible route to novel biomarkers of breast cancer. Proteomics Clin Appl 2012; 2:181-94. [PMID: 21136824 DOI: 10.1002/prca.200780011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Proteomics is rapidly transforming the way that cancer and other pathologies are investigated. The ability to identify hundreds of proteins and to compare their abundance in different clinical samples presents a unique opportunity for direct identification of novel disease markers. Furthermore, recent advances allow us to analyse and compare PTMs. This gives an additional dimension for defining a new class of protein biomarker based not only on abundance and expression but also on the occurrence of covalent modifications specific to a disease state or therapy response. Such modifications are often a consequence of the activation/inactivation of a particular disease related pathway. In this review we evaluate the available information on breast cancer related protein-phosphorylation events, illustrating the rationale for investigating this PTM as a target for breast cancer research with eventual clinical relevance. We present a critical survey of the published experimental strategies to study protein phosphorylation on a system wide scale and highlight recent specific advances in breast cancer phosphoproteomics. Finally we discuss the feasibility of establishing novel biomarkers for breast cancer based on the detection of patterns of specific protein phosphorylation events.
Collapse
Affiliation(s)
- Metodi Metodiev
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, UK
| | | |
Collapse
|
43
|
Mangia A, Saponaro C, Malfettone A, Bisceglie D, Bellizzi A, Asselti M, Popescu O, Reshkin SJ, Paradiso A, Simone G. Involvement of nuclear NHERF1 in colorectal cancer progression. Oncol Rep 2012; 28:889-94. [PMID: 22766563 DOI: 10.3892/or.2012.1895] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 12/19/2011] [Indexed: 01/11/2023] Open
Abstract
NHERF1 (Na+/H+ exchanger regulatory factor 1) is expressed in the luminal membrane of many epithelia, and associated with proteins involved in tumor progression. Alterations of NHERF1 expression in different sites of metastatic colorectal cancer (mCRC) suggest a dynamic role of this protein in colon carcinogenesis. We focused on the observation of the altered expression of NHERF1 from non-neoplastic tissues to metastatic sites by immunohistochemistry. Moreover, we studied, by immunofluorescence, the colocalization between NHERF1 and the epidermal growth factor receptor (EGFR), whose overexpression is implicated in CRC progression. NHERF1 showed a different localization and expression in the examined sites. The distant non-neoplastic tissues showed NHERF1 mostly expressed at the apical membrane, while in surrounding non-neoplastic tissue decreased the apical membrane and increased cytoplasmic immunoreactivity. In adenomas a shift from apical membrane to cytoplasmic localization and nuclear expression were observed. Cytoplasmic staining in the tumor, and metastatic sites was stronger than surrounding non-neoplastic tissue. Furthermore, nuclear NHERF1 expression was noted in 80% of all samples and surprisingly, it appeared already in adenoma lesions, suggesting that NHERF1 represents an early marker of pre-morphological triggering of colorectal carcinogenesis. Then, in few tumors a positive direct correlation between membrane NHERF1 and EGFR expression was evidenced by their colocalization. Nuclear NHERF1 expression, present in the early stages of carcinogenesis and related with poor prognosis, may contribute to the onset of malignant phenotype. Specifically, we hypothesize the direct involvement of nuclear NHERF1 in both carcinogenesis and progression and its role as a potential colorectal cancer marker.
Collapse
Affiliation(s)
- Anita Mangia
- Functional Biomorphology Laboratory, Department of Pathology, National Cancer Centre, Bari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Monterisi S, Favia M, Guerra L, Cardone RA, Marzulli D, Reshkin SJ, Casavola V, Zaccolo M. CFTR regulation in human airway epithelial cells requires integrity of the actin cytoskeleton and compartmentalized cAMP and PKA activity. J Cell Sci 2012; 125:1106-17. [PMID: 22302988 DOI: 10.1242/jcs.089086] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) mutation ΔF508CFTR still causes regulatory defects when rescued to the apical membrane, suggesting that the intracellular milieu might affect its ability to respond to cAMP regulation. We recently reported that overexpression of the Na(+)/H(+) exchanger regulatory factor NHERF1 in the cystic fibrosis (CF) airway cell line CFBE41o-rescues the functional expression of ΔF508CFTR by promoting F-actin organization and formation of the NHERF1-ezrin-actin complex. Here, using real-time FRET reporters of both PKA activity and cAMP levels, we find that lack of an organized subcortical cytoskeleton in CFBE41o-cells causes both defective accumulation of cAMP in the subcortical compartment and excessive cytosolic accumulation of cAMP. This results in reduced subcortical levels and increased cytosolic levels of PKA activity. NHERF1 overexpression in CFBE41o-cells restores chloride secretion, subcortical cAMP compartmentalization and local PKA activity, indicating that regulation of ΔF508CFTR function requires not only stable expression of the mutant CFTR at the cell surface but also depends on both generation of local cAMP signals of adequate amplitude and activation of PKA in proximity of its target. Moreover, we found that the knockdown of wild-type CFTR in the non-CF 16HBE14o-cells results in both altered cytoskeletal organization and loss of cAMP compartmentalization, whereas stable overexpression of wt CFTR in CF cells restores cytoskeleton organization and re-establishes the compartmentalization of cAMP at the plasma membrane. This suggests that the presence of CFTR on the plasma membrane influences the cytoskeletal organizational state and, consequently, cAMP distribution. Our data show that a sufficiently high concentration of cAMP in the subcortical compartment is required to achieve PKA-mediated regulation of CFTR activity.
Collapse
Affiliation(s)
- Stefania Monterisi
- Department of General and Environmental Physiology, University of Bari, Bari, 70125, Italy
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Yamamura S, Saini S, Majid S, Hirata H, Ueno K, Deng G, Dahiya R. MicroRNA-34a modulates c-Myc transcriptional complexes to suppress malignancy in human prostate cancer cells. PLoS One 2012; 7:e29722. [PMID: 22235332 PMCID: PMC3250472 DOI: 10.1371/journal.pone.0029722] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 12/03/2011] [Indexed: 12/19/2022] Open
Abstract
MicroRNA-34a (miR-34a), a potent mediator of tumor suppressor p53, has been reported to function as a tumor suppressor and miR-34a was found to be downregulated in prostate cancer tissues. We studied the functional effects of miR-34a on c-Myc transcriptional complexes in PC-3 prostate cancer cells. Transfection of miR-34a into PC-3 cells strongly inhibited in vitro cell proliferation, cell invasion and promoted apoptosis. Transfection of miR-34a into PC-3 cells also significantly inhibited in vivo xenograft tumor growth in nude mice. miR-34a downregulated expression of c-Myc oncogene by targeting its 3′ UTR as shown by luciferase reporter assays. miR-34a was found to repress RhoA, a regulator of cell migration and invasion, by suppressing c-Myc–Skp2–Miz1 transcriptional complex that activates RhoA. Overexpression of c-Myc reversed miR-34a suppression of RhoA expression, suggesting that miR-34a inhibits invasion by suppressing RhoA through c-Myc. miR-34a was also found to repress c-Myc-pTEFB transcription elongation complex, indicating one of the mechanisms by which miR-34a has profound effects on cellular function. This is the first report to document that miR-34a suppresses assembly and function of the c-Myc–Skp2–Miz1 complex that activates RhoA and the c-Myc-pTEFB complex that elongates transcription of various genes, suggesting a novel role of miR-34a in the regulation of transcription by c-Myc complex.
Collapse
Affiliation(s)
- Soichiro Yamamura
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California, United States of America
| | - Sharanjot Saini
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California, United States of America
| | - Shahana Majid
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California, United States of America
| | - Hiroshi Hirata
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California, United States of America
| | - Koji Ueno
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California, United States of America
| | - Guoren Deng
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California, United States of America
| | - Rajvir Dahiya
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
46
|
Yamamura S, Saini S, Majid S, Hirata H, Ueno K, Chang I, Tanaka Y, Gupta A, Dahiya R. MicroRNA-34a suppresses malignant transformation by targeting c-Myc transcriptional complexes in human renal cell carcinoma. Carcinogenesis 2011; 33:294-300. [PMID: 22159222 DOI: 10.1093/carcin/bgr286] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We investigated the functional effects of microRNA-34a (miR-34a) on c-Myc transcriptional complexes in renal cell carcinoma. miR-34a down-regulated expression of multiple oncogenes including c-Myc by targeting its 3' untranslated region, which was revealed by luciferase reporter assays. miR-34a was also found to repress RhoA expression by suppressing the c-Myc-Skp2-Miz1 transcriptional complex that activates RhoA. Overexpression of c-Myc reversed miR-34a suppression of RhoA expression and inhibition of cell invasion, suggesting that miR-34a inhibits invasion by suppressing RhoA through c-Myc. miR-34a was also found to repress the c-Myc-P-TEFb transcription elongation complex, indicating one of the mechanisms by which miR-34a has profound effects on cellular functions. Our results demonstrate that miR-34a suppresses assembly and function of the c-Myc complex that activates or elongates transcription, indicating a novel role of miR-34a in the regulation of transcription by c-Myc.
Collapse
Affiliation(s)
- Soichiro Yamamura
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California, San Francisco, CA 94121, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Magalhaes MAO, Larson DR, Mader CC, Bravo-Cordero JJ, Gil-Henn H, Oser M, Chen X, Koleske AJ, Condeelis J. Cortactin phosphorylation regulates cell invasion through a pH-dependent pathway. ACTA ACUST UNITED AC 2011; 195:903-20. [PMID: 22105349 PMCID: PMC3257566 DOI: 10.1083/jcb.201103045] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Invadopodia are invasive protrusions with proteolytic activity uniquely found in tumor cells. Cortactin phosphorylation is a key step during invadopodia maturation, regulating Nck1 binding and cofilin activity. The precise mechanism of cortactin-dependent cofilin regulation and the roles of this pathway in invadopodia maturation and cell invasion are not fully understood. We provide evidence that cortactin-cofilin binding is regulated by local pH changes at invadopodia that are mediated by the sodium-hydrogen exchanger NHE1. Furthermore, cortactin tyrosine phosphorylation mediates the recruitment of NHE1 to the invadopodium compartment, where it locally increases the pH to cause the release of cofilin from cortactin. We show that this mechanism involving cortactin phosphorylation, local pH increase, and cofilin activation regulates the dynamic cycles of invadopodium protrusion and retraction and is essential for cell invasion in 3D. Together, these findings identify a novel pH-dependent regulation of cell invasion.
Collapse
Affiliation(s)
- Marco A O Magalhaes
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ditte P, Dequiedt F, Svastova E, Hulikova A, Ohradanova-Repic A, Zatovicova M, Csaderova L, Kopacek J, Supuran CT, Pastorekova S, Pastorek J. Phosphorylation of carbonic anhydrase IX controls its ability to mediate extracellular acidification in hypoxic tumors. Cancer Res 2011; 71:7558-67. [PMID: 22037869 DOI: 10.1158/0008-5472.can-11-2520] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the hypoxic regions of a tumor, carbonic anhydrase IX (CA IX) is an important transmembrane component of the pH regulatory machinery that participates in bicarbonate transport. Because tumor pH has implications for growth, invasion, and therapy, determining the basis for the contributions of CA IX to the hypoxic tumor microenvironment could lead to new fundamental and practical insights. Here, we report that Thr443 phosphorylation at the intracellular domain of CA IX by protein kinase A (PKA) is critical for its activation in hypoxic cells, with the fullest activity of CA IX also requiring dephosphorylation of Ser448. PKA is activated by cAMP, which is elevated by hypoxia, and we found that attenuating PKA in cells disrupted CA IX-mediated extracellular acidification. Moreover, following hypoxia induction, CA IX colocalized with the sodium-bicarbonate cotransporter and other PKA substrates in the leading edge membranes of migrating tumor cells, in support of the concept that bicarbonate metabolism is spatially regulated at cell surface sites with high local ion transport and pH control. Using chimeric CA IX proteins containing heterologous catalytic domains derived from related CA enzymes, we showed that CA IX activity was modulated chiefly by the intracellular domain where Thr443 is located. Our findings indicate that CA IX is a pivotal mediator of the hypoxia-cAMP-PKA axis, which regulates pH in the hypoxic tumor microenvironment.
Collapse
Affiliation(s)
- Peter Ditte
- Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Mao L, Yuan L, Slakey LM, Jones FE, Burow ME, Hill SM. Inhibition of breast cancer cell invasion by melatonin is mediated through regulation of the p38 mitogen-activated protein kinase signaling pathway. Breast Cancer Res 2010; 12:R107. [PMID: 21167057 PMCID: PMC3046452 DOI: 10.1186/bcr2794] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 10/16/2010] [Accepted: 12/17/2010] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION The pineal gland hormone, melatonin, has been shown by numerous studies to inhibit the proliferation of estrogen receptor α (ERα)-positive breast cancer cell lines. Here, we investigated the role of melatonin in the regulation of breast cancer cell invasion. METHODS Three invasive MCF-7 breast cancer cell clones - MCF-7/6, MCF-7/Her2.1, and MCF-7/CXCR4 cells - were employed in these studies. All three cell lines exhibited elevated phosphorylation of the ERK1/2 and p38 mitogen-activated protein kinase (MAPK) as determined by Western blot analysis. The effect of melatonin on the invasive potential of these human breast cancer cells was examined by matrigel invasion chamber assays. The expression and proteinase activity of two matrix metalloproteinases (MMPs), MMP-2 and MMP-9, were analyzed by Western blot analysis and gelatin zymography, respectively. RESULTS Melatonin (10-9 M) significantly suppressed the invasive potential of MCF-7/6 and MCF-7/Her2.1 cells as measured by matrigel invasion chamber assays, and significantly repressed the proteinase activity of MMP-2 and MMP-9. In MCF-7/CXCR4 cells, melatonin significantly inhibited stromal-derived factor-1 (SDF-1/CXCL12) induced cell invasion and activity of MMP-9. Elevated expression of the MT1 melatonin receptor further enhanced, while luzindole, an MT1/MT2 antagonist, abrogated melatonin's anti-invasive effect, suggesting that melatonin's effect on invasion is mediated, principally, through the MT1 receptor. Furthermore, melatonin repressed the phosphorylation of p38 MAPK in MCF-7/Her2.1 cells and blocked stromal-derived factor-1 (SDF-1) induced p38 phosphorylation in MCF-7/CXCR4 cells. SB230580, a p38 inhibitor, was able to mimic, while transfection of the cells with a constitutively-active MKK6b construct blocked melatonin's effect on cell invasion, suggesting that the anti-invasive action of melatonin is mediated through the p38 pathway. CONCLUSIONS Melatonin exerts an inhibitory effect on breast cancer cell invasion through down-regulation of the p38 pathway, and inhibition of MMP-2 and MMP-9 expression and activity.
Collapse
Affiliation(s)
- Lulu Mao
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Shankar J, Messenberg A, Chan J, Underhill TM, Foster LJ, Nabi IR. Pseudopodial actin dynamics control epithelial-mesenchymal transition in metastatic cancer cells. Cancer Res 2010; 70:3780-90. [PMID: 20388789 DOI: 10.1158/0008-5472.can-09-4439] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A key cellular process associated with the invasive or metastatic program in many cancers is the transformation of epithelial cells toward a mesenchymal state, a process called epithelial to mesenchymal transition or EMT. Actin-dependent protrusion of cell pseudopodia is a critical element of mesenchymal cell migration and therefore of cancer metastasis. However, whether EMT occurs in human cancers and, in particular, whether it is a prerequisite for tumor cell invasion and metastasis, remains a subject of debate. Microarray and proteomic analysis of actin-rich pseudopodia from six metastatic human tumor cell lines identified 384 mRNAs and 64 proteins common to the pseudopodia of six metastatic human tumor cell lines of various cancer origins leading to the characterization of 19 common pseudopod-specific proteins. Four of these (AHNAK, septin-9, eIF4E, and S100A11) are shown to be essential for pseudopod protrusion and tumor cell migration and invasion. Knockdown of each of these proteins in metastatic cells resulted in reduced actin cytoskeleton dynamics and induction of mesenchymal-epithelial transition (MET) that could be prevented by the stabilization of the actin cytoskeleton. Actin-dependent pseudopodial protrusion and tumor cell migration are therefore determinants of EMT. Protein regulators of pseudopodial actin dynamics may represent unique molecular targets to induce MET and thereby inhibit the metastatic potential of tumor cells.
Collapse
Affiliation(s)
- Jay Shankar
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|