1
|
Tsai MH, Ke HC, Lin WC, Nian FS, Huang CW, Cheng HY, Hsu CS, Granata T, Chang CH, Castellotti B, Lin SY, Doniselli FM, Lu CJ, Franceschetti S, Ragona F, Hou PS, Canafoglia L, Tung CY, Lee MH, Wang WJ, Tsai JW. Novel lissencephaly-associated NDEL1 variant reveals distinct roles of NDE1 and NDEL1 in nucleokinesis and human cortical malformations. Acta Neuropathol 2024; 147:13. [PMID: 38194050 PMCID: PMC10776482 DOI: 10.1007/s00401-023-02665-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 01/10/2024]
Abstract
The development of the cerebral cortex involves a series of dynamic events, including cell proliferation and migration, which rely on the motor protein dynein and its regulators NDE1 and NDEL1. While the loss of function in NDE1 leads to microcephaly-related malformations of cortical development (MCDs), NDEL1 variants have not been detected in MCD patients. Here, we identified two patients with pachygyria, with or without subcortical band heterotopia (SBH), carrying the same de novo somatic mosaic NDEL1 variant, p.Arg105Pro (p.R105P). Through single-cell RNA sequencing and spatial transcriptomic analysis, we observed complementary expression of Nde1/NDE1 and Ndel1/NDEL1 in neural progenitors and post-mitotic neurons, respectively. Ndel1 knockdown by in utero electroporation resulted in impaired neuronal migration, a phenotype that could not be rescued by p.R105P. Remarkably, p.R105P expression alone strongly disrupted neuronal migration, increased the length of the leading process, and impaired nucleus-centrosome coupling, suggesting a failure in nucleokinesis. Mechanistically, p.R105P disrupted NDEL1 binding to the dynein regulator LIS1. This study identifies the first lissencephaly-associated NDEL1 variant and sheds light on the distinct roles of NDE1 and NDEL1 in nucleokinesis and MCD pathogenesis.
Collapse
Affiliation(s)
- Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hao-Chen Ke
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Education, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wan-Cian Lin
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Faculty of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Fang-Shin Nian
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Wei Huang
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Advanced Therapeutics Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Haw-Yuan Cheng
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi-Sin Hsu
- Genomics Center for Clinical and Biotechnological Applications, Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tiziana Granata
- Department of Paediatric Neuroscience, European Reference Network EPIcare, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chien-Hui Chang
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Barbara Castellotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Shin-Yi Lin
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Fabio M Doniselli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cheng-Ju Lu
- Faculty of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Silvana Franceschetti
- Integrated Diagnostics for Epilepsy, Department of Diagnostic and Technology, European Reference Network EPIcare, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesca Ragona
- Department of Paediatric Neuroscience, European Reference Network EPIcare, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Pei-Shan Hou
- Institute of Anatomy and Cell Biology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Laura Canafoglia
- Integrated Diagnostics for Epilepsy, Department of Diagnostic and Technology, European Reference Network EPIcare, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chien-Yi Tung
- Advanced Therapeutics Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Mei-Hsuan Lee
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Advanced Therapeutics Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Won-Jing Wang
- Advanced Therapeutics Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biochemistry and Molecule Biology, College of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jin-Wu Tsai
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Advanced Therapeutics Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
2
|
Pang Y, Qu J, Zhang H, Cao Y, Ma X, Wang S, Wang J, Wu J, Zhang T. Nose-to-brain translocation and nervous system injury in response to indium tin oxide nanoparticles of long-term low-dose exposures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167314. [PMID: 37742979 DOI: 10.1016/j.scitotenv.2023.167314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Indium tin oxide (ITO) is a semiconductor nanomaterial with broad application in liquid crystal displays, solar cells, and electrochemical immune sensors. It is worth noting that, with the gradual increase in worker exposure opportunities, the exposure risk in occupational production cannot be ignored. At present, the toxicity of ITO mainly focuses on respiratory toxicity. ITO inhaled through the upper respiratory tract can cause pathological changes such as interstitial pneumonia and pulmonary fibrosis. Still, extrapulmonary toxicity after nanoscale ITO nanoparticle (ITO NPs) exposure, such as long-term effects on the central nervous system, should also be of concern. Therefore, we set up exposure dose experiments (0 mg·kg-1, 3.6 mg·kg-1, and 36 mg·kg-1) based on occupational exposure limits to treat C57BL/6 mice via nasal drops for 15 weeks. Moreover, we conducted a preliminary assessment of the neurotoxicity of ITO NPs (20-30 nm) in vivo. The results indicated that ITO NPs can cause diffuse inflammatory infiltrates in brain tissue, increased glial cell responsiveness, abnormal neuronal cell lineage transition, neuronal migration disorders, and neuronal apoptosis related to the oxidative stress induced by ITO NPs exposure. Hence, our findings provide useful information for the fuller risk assessment of ITO NPs after occupational exposure.
Collapse
Affiliation(s)
- Yanting Pang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jing Qu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Haopeng Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yuna Cao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xinmo Ma
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Shile Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jianli Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jingying Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
3
|
Nakazato R, Matsuda Y, Ijaz F, Ikegami K. Circadian oscillation in primary cilium length by clock genes regulates fibroblast cell migration. EMBO Rep 2023; 24:e56870. [PMID: 37971148 DOI: 10.15252/embr.202356870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 08/30/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023] Open
Abstract
Various mammalian cells have autonomous cellular clocks that are produced by the transcriptional cycle of clock genes. Cellular clocks provide circadian rhythms for cellular functions via transcriptional and cytoskeletal regulation. The vast majority of mammalian cells possess a primary cilium, an organelle protruding from the cell surface. Here, we investigated the little-known relationship between circadian rhythm and primary cilia. The length and number of primary cilia showed circadian dynamics both in vitro and in vivo. The circadian rhythm of primary cilium length was abolished by SR9011 and Bmal1 knockout. A centrosomal protein, pericentrin, transiently accumulates in centriolar satellites, the base of primary cilia at the shortest cilia phase, and induces elongation of primary cilia at the longest cilia phase in the circadian rhythm of primary cilia. In addition, rhythmic cell migration during wound healing depends on the length of primary cilia and affects the rate of wound healing. Our findings demonstrate that the circadian dynamics of primary cilium length by clock genes control fibroblast migration and could provide new insights into chronobiology.
Collapse
Affiliation(s)
- Ryota Nakazato
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuki Matsuda
- Hiroshima University School of Medicine, Hiroshima, Japan
| | - Faryal Ijaz
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Koji Ikegami
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Japan
| |
Collapse
|
4
|
Torisawa T, Kimura A. Sequential accumulation of dynein and its regulatory proteins at the spindle region in the Caenorhabditis elegans embryo. Sci Rep 2022; 12:11740. [PMID: 35817834 PMCID: PMC9273622 DOI: 10.1038/s41598-022-15042-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/16/2022] [Indexed: 11/09/2022] Open
Abstract
Cytoplasmic dynein is responsible for various cellular processes during the cell cycle. The mechanism by which its activity is regulated spatially and temporarily inside the cell remains elusive. There are various regulatory proteins of dynein, including dynactin, NDEL1/NUD-2, and LIS1. Characterizing the spatiotemporal localization of regulatory proteins in vivo will aid understanding of the cellular regulation of dynein. Here, we focused on spindle formation in the Caenorhabditis elegans early embryo, wherein dynein and its regulatory proteins translocated from the cytoplasm to the spindle region upon nuclear envelope breakdown (NEBD). We found that (i) a limited set of dynein regulatory proteins accumulated in the spindle region, (ii) the spatial localization patterns were distinct among the regulators, and (iii) the regulatory proteins did not accumulate in the spindle region simultaneously but sequentially. Furthermore, the accumulation of NUD-2 was unique among the regulators. NUD-2 started to accumulate before NEBD (pre-NEBD accumulation), and exhibited the highest enrichment compared to the cytoplasmic concentration. Using a protein injection approach, we revealed that the C-terminal helix of NUD-2 was responsible for pre-NEBD accumulation. These findings suggest a fine temporal control of the subcellular localization of regulatory proteins.
Collapse
Affiliation(s)
- Takayuki Torisawa
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan.,Department of Genetics, The Graduate University for Advanced Studies, Sokendai, Mishima, Japan
| | - Akatsuki Kimura
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan. .,Department of Genetics, The Graduate University for Advanced Studies, Sokendai, Mishima, Japan.
| |
Collapse
|
5
|
Vineethakumari C, Lüders J. Microtubule Anchoring: Attaching Dynamic Polymers to Cellular Structures. Front Cell Dev Biol 2022; 10:867870. [PMID: 35309944 PMCID: PMC8927778 DOI: 10.3389/fcell.2022.867870] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/11/2022] [Indexed: 01/01/2023] Open
Abstract
Microtubules are dynamic, filamentous polymers composed of α- and β-tubulin. Arrays of microtubules that have a specific polarity and distribution mediate essential processes such as intracellular transport and mitotic chromosome segregation. Microtubule arrays are generated with the help of microtubule organizing centers (MTOC). MTOCs typically combine two principal activities, the de novo formation of microtubules, termed nucleation, and the immobilization of one of the two ends of microtubules, termed anchoring. Nucleation is mediated by the γ-tubulin ring complex (γTuRC), which, in cooperation with its recruitment and activation factors, provides a template for α- and β-tubulin assembly, facilitating formation of microtubule polymer. In contrast, the molecules and mechanisms that anchor newly formed microtubules at MTOCs are less well characterized. Here we discuss the mechanistic challenges underlying microtubule anchoring, how this is linked with the molecular activities of known and proposed anchoring factors, and what consequences defective microtubule anchoring has at the cellular and organismal level.
Collapse
|
6
|
Xiang X, Qiu R. Cargo-Mediated Activation of Cytoplasmic Dynein in vivo. Front Cell Dev Biol 2020; 8:598952. [PMID: 33195284 PMCID: PMC7649786 DOI: 10.3389/fcell.2020.598952] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Cytoplasmic dynein-1 is a minus-end-directed microtubule motor that transports a variety of cargoes including early endosomes, late endosomes and other organelles. In many cell types, dynein accumulates at the microtubule plus end, where it interacts with its cargo to be moved toward the minus end. Dynein binds to its various cargoes via the dynactin complex and specific cargo adapters. Dynactin and some of the coiled-coil-domain-containing cargo adapters not only link dynein to cargo but also activate dynein motility, which implies that dynein is activated by its cellular cargo. Structural studies indicate that a dynein dimer switches between the autoinhibited phi state and an open state; and the binding of dynactin and a cargo adapter to the dynein tails causes the dynein motor domains to have a parallel configuration, allowing dynein to walk processively along a microtubule. Recently, the dynein regulator LIS1 has been shown to be required for dynein activation in vivo, and its mechanism of action involves preventing dynein from switching back to the autoinhibited state. In this review, we will discuss our current understanding of dynein activation and point out the gaps of knowledge on the spatial regulation of dynein in live cells. In addition, we will emphasize the importance of studying a complete set of dynein regulators for a better understanding of dynein regulation in vivo.
Collapse
Affiliation(s)
- Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD, United States
| | | |
Collapse
|
7
|
Principal Postulates of Centrosomal Biology. Version 2020. Cells 2020; 9:cells9102156. [PMID: 32987651 PMCID: PMC7598677 DOI: 10.3390/cells9102156] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
The centrosome, which consists of two centrioles surrounded by pericentriolar material, is a unique structure that has retained its main features in organisms of various taxonomic groups from unicellular algae to mammals over one billion years of evolution. In addition to the most noticeable function of organizing the microtubule system in mitosis and interphase, the centrosome performs many other cell functions. In particular, centrioles are the basis for the formation of sensitive primary cilia and motile cilia and flagella. Another principal function of centrosomes is the concentration in one place of regulatory proteins responsible for the cell's progression along the cell cycle. Despite the existing exceptions, the functioning of the centrosome is subject to general principles, which are discussed in this review.
Collapse
|
8
|
Alfieri M, Iaconis D, Tammaro R, Perone L, Calì G, Nitsch L, Dougherty GW, Ragnini-Wilson A, Franco B. The centrosomal/basal body protein OFD1 is required for microtubule organization and cell cycle progression. Tissue Cell 2020; 64:101369. [PMID: 32473706 DOI: 10.1016/j.tice.2020.101369] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/28/2022]
Abstract
Oral-Facial-Digital type I (OFD1) is a rare inherited form of renal cystic disease associated with ciliary dysfunction. This disorder is due to mutations in the OFD1 gene that encodes a protein localized to centrosomes and basal bodies in different cell types. Immunofluorescence analysis demonstrated that OFD1 displays a dynamic distribution during cell cycle. High-content microscopy analysis of Ofd1-depleted fibroblasts revealed impaired cell cycle progression. Immunofluorescence analysis and cell proliferation assays also indicated the presence of a variety of defects such as centrosome accumulation, nuclear abnormalities and aneuploidy. In addition, Ofd1-depleted cells displayed an abnormal microtubule network that may underlie these defects. All together our results suggest that OFD1 contributes to the function of the microtubule organizing center (MTOC) in the cell, controlling cell cycle progression both in vitro and in vivo.
Collapse
Affiliation(s)
- Mariaevelina Alfieri
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | - Daniela Iaconis
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | - Roberta Tammaro
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | - Lucia Perone
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | - Gaetano Calì
- National Research Council - Institute of Experimental Endocrinology and Oncology, Naples, Italy
| | - Lucio Nitsch
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Gerard W Dougherty
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Department of General Pediatrics, University Hospital Muenster, 48149, Muenster, Germany
| | | | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Medical Genetics, Department of Translational Medicine, University of Naples "Federico II", Via Sergio Pansini, 80131, Naples, Italy.
| |
Collapse
|
9
|
Monzon AM, Carraro M, Chiricosta L, Reggiani F, Han J, Ozturk K, Wang Y, Miller M, Bromberg Y, Capriotti E, Savojardo C, Babbi G, Martelli PL, Casadio R, Katsonis P, Lichtarge O, Carter H, Kousi M, Katsanis N, Andreoletti G, Moult J, Brenner SE, Ferrari C, Leonardi E, Tosatto SCE. Performance of computational methods for the evaluation of pericentriolar material 1 missense variants in CAGI-5. Hum Mutat 2019; 40:1474-1485. [PMID: 31260570 PMCID: PMC7354699 DOI: 10.1002/humu.23856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/30/2019] [Accepted: 06/23/2019] [Indexed: 12/11/2022]
Abstract
The CAGI-5 pericentriolar material 1 (PCM1) challenge aimed to predict the effect of 38 transgenic human missense mutations in the PCM1 protein implicated in schizophrenia. Participants were provided with 16 benign variants (negative controls), 10 hypomorphic, and 12 loss of function variants. Six groups participated and were asked to predict the probability of effect and standard deviation associated to each mutation. Here, we present the challenge assessment. Prediction performance was evaluated using different measures to conclude in a final ranking which highlights the strengths and weaknesses of each group. The results show a great variety of predictions where some methods performed significantly better than others. Benign variants played an important role as negative controls, highlighting predictors biased to identify disease phenotypes. The best predictor, Bromberg lab, used a neural-network-based method able to discriminate between neutral and non-neutral single nucleotide polymorphisms. The CAGI-5 PCM1 challenge allowed us to evaluate the state of the art techniques for interpreting the effect of novel variants for a difficult target protein.
Collapse
Affiliation(s)
| | - Marco Carraro
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Luigi Chiricosta
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Francesco Reggiani
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Department of Information Engineering, University of Padua, Padua, Italy
| | - James Han
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Kivilcim Ozturk
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Yanran Wang
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey
| | - Maximilian Miller
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey
| | - Yana Bromberg
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey
- Institute for Advanced Study, Technical University of Munich (TUM), Munich, Germany
| | - Emidio Capriotti
- Department of Pharmacy and Biotechnology, BioFolD Unit, University of Bologna, Bologna, Italy
| | - Castrense Savojardo
- Department of Pharmacy and Biotechnology, Biocomputing Group, University of Bologna, Bologna, Italy
| | - Giulia Babbi
- Department of Pharmacy and Biotechnology, Biocomputing Group, University of Bologna, Bologna, Italy
| | - Pier L Martelli
- Department of Pharmacy and Biotechnology, Biocomputing Group, University of Bologna, Bologna, Italy
| | - Rita Casadio
- Department of Pharmacy and Biotechnology, Biocomputing Group, University of Bologna, Bologna, Italy
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Hannah Carter
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Maria Kousi
- MIT Computer Science and Artificial Intelligence Laboratory (CSAIL), Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina
| | - Gaia Andreoletti
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - John Moult
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| | - Steven E Brenner
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Carlo Ferrari
- Department of Information Engineering, University of Padua, Padua, Italy
| | | | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California
| |
Collapse
|
10
|
Zhang W, Xing L, Xu L, Jin X, Du Y, Feng X, Liu S, Liu Q. Nudel involvement in the high-glucose-induced epithelial-mesenchymal transition of tubular epithelial cells. Am J Physiol Renal Physiol 2018; 316:F186-F194. [PMID: 30539652 DOI: 10.1152/ajprenal.00218.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nudel is a newly discovered factor related to cell migration. The tubular epithelial-mesenchymal transition (EMT) includes four steps: the loss of the adhesive properties of epithelial cells, the acquisition of a mesenchymal cell phenotype, the destruction of the tubular basal membrane, and the migration into the renal interstitium. The purpose of this study was to investigate the role of Nudel in the high-glucose-induced EMT of tubular epithelial cells. Human renal proximal tubular epithelial cells (HKCs) were treated with Nudel shRNA to clarify the role and mechanism of Nudel in tubular EMT induced by high glucose. We found that Nudel was expressed at a high level in high-glucose-stimulated HKCs, and the expression of Nudel was associated with the activation of signal transducer and activator of transcription 3. After transfection with Nudel shRNA, we detected the expression levels of E-cadherin, α-smooth muscle actin (α-SMA), and the Wiskott-Aldrich syndrome family of proteins (including WASP, N-WASP, WAVE1, WAVE2, and WAVE3) via assay. Cell migration was analyzed by the scratching method. The results showed that high glucose downregulated E-cadherin expression, upregulated α-SMA expression, and promoted the migration of HKCs. The expression levels of N-WASP, WAVE1, and WAVE2 were also elevated in HKCs treated with high glucose. All changes induced by high glucose were ameliorated by Nudel depletion. We conclude that Nudel participates in the transition and the migration of tubular epithelial cells via the regulation of WASP family proteins.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province , Shijiazhuang, Hebei , China
| | - Lingling Xing
- Department of Nephrology, The Second Affiliated Hospital of Hebei Medical University , Shijiazhuang, Hebei , China
| | - Lu Xu
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province , Shijiazhuang, Hebei , China
| | - Xiaoxue Jin
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province , Shijiazhuang, Hebei , China
| | - Yunxia Du
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province , Shijiazhuang, Hebei , China
| | - Xiaojuan Feng
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province , Shijiazhuang, Hebei , China
| | - Shuxia Liu
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province , Shijiazhuang, Hebei , China
| | - Qingjuan Liu
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province , Shijiazhuang, Hebei , China
| |
Collapse
|
11
|
Visweshwaran SP, Thomason PA, Guerois R, Vacher S, Denisov EV, Tashireva LA, Lomakina ME, Lazennec-Schurdevin C, Lakisic G, Lilla S, Molinie N, Henriot V, Mechulam Y, Alexandrova AY, Cherdyntseva NV, Bièche I, Schmitt E, Insall RH, Gautreau A. The trimeric coiled-coil HSBP1 protein promotes WASH complex assembly at centrosomes. EMBO J 2018; 37:e97706. [PMID: 29844016 PMCID: PMC6028030 DOI: 10.15252/embj.201797706] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 12/11/2022] Open
Abstract
The Arp2/3 complex generates branched actin networks that exert pushing forces onto different cellular membranes. WASH complexes activate Arp2/3 complexes at the surface of endosomes and thereby fission transport intermediates containing endocytosed receptors, such as α5β1 integrins. How WASH complexes are assembled in the cell is unknown. Here, we identify the small coiled-coil protein HSBP1 as a factor that specifically promotes the assembly of a ternary complex composed of CCDC53, WASH, and FAM21 by dissociating the CCDC53 homotrimeric precursor. HSBP1 operates at the centrosome, which concentrates the building blocks. HSBP1 depletion in human cancer cell lines and in Dictyostelium amoebae phenocopies WASH depletion, suggesting a critical role of the ternary WASH complex for WASH functions. HSBP1 is required for the development of focal adhesions and of cell polarity. These defects impair the migration and invasion of tumor cells. Overexpression of HSBP1 in breast tumors is associated with increased levels of WASH complexes and with poor prognosis for patients.
Collapse
Affiliation(s)
- Sai P Visweshwaran
- Ecole Polytechnique, CNRS UMR7654, Université Paris-Saclay, Palaiseau, France
| | | | - Raphael Guerois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sophie Vacher
- Pharmacogenomics Unit, Department of Genetics, Institut Curie, Paris, France
| | - Evgeny V Denisov
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
- Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
| | - Lubov A Tashireva
- Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - Maria E Lomakina
- Institute of Carcinogenesis, N.N. Blokhin Cancer Research Center, Moscow, Russia
| | | | - Goran Lakisic
- Ecole Polytechnique, CNRS UMR7654, Université Paris-Saclay, Palaiseau, France
| | - Sergio Lilla
- Beatson Institute for Cancer Research, Bearsden, UK
| | - Nicolas Molinie
- Ecole Polytechnique, CNRS UMR7654, Université Paris-Saclay, Palaiseau, France
| | - Veronique Henriot
- Ecole Polytechnique, CNRS UMR7654, Université Paris-Saclay, Palaiseau, France
| | - Yves Mechulam
- Ecole Polytechnique, CNRS UMR7654, Université Paris-Saclay, Palaiseau, France
| | | | - Nadezhda V Cherdyntseva
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - Ivan Bièche
- Pharmacogenomics Unit, Department of Genetics, Institut Curie, Paris, France
| | - Emmanuelle Schmitt
- Ecole Polytechnique, CNRS UMR7654, Université Paris-Saclay, Palaiseau, France
| | | | - Alexis Gautreau
- Ecole Polytechnique, CNRS UMR7654, Université Paris-Saclay, Palaiseau, France
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
12
|
Microtubule-Organizing Centers: Towards a Minimal Parts List. Trends Cell Biol 2017; 28:176-187. [PMID: 29173799 DOI: 10.1016/j.tcb.2017.10.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 12/17/2022]
Abstract
Despite decades of molecular analysis of the centrosome, an important microtubule-organizing center (MTOC) of animal cells, the molecular basis of microtubule organization remains obscure. A major challenge is the sheer complexity of the interplay of the hundreds of proteins that constitute the centrosome. However, this complexity owes not only to the centrosome's role as a MTOC but also to the requirements of its duplication cycle and to various other functions such as the formation of cilia, the integration of various signaling pathways, and the organization of actin filaments. Thus, rather than using the parts lists to reconstruct the centrosome, we propose to identify the subset of proteins minimally needed to assemble a MTOC and to study this process at non-centrosomal sites.
Collapse
|
13
|
Werner S, Pimenta-Marques A, Bettencourt-Dias M. Maintaining centrosomes and cilia. J Cell Sci 2017; 130:3789-3800. [DOI: 10.1242/jcs.203505] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT
Centrosomes and cilia are present in organisms from all branches of the eukaryotic tree of life. These structures are composed of microtubules and various other proteins, and are required for a plethora of cell processes such as structuring the cytoskeleton, sensing the environment, and motility. Deregulation of centrosome and cilium components leads to a wide range of diseases, some of which are incompatible with life. Centrosomes and cilia are thought to be very stable and can persist over long periods of time. However, these structures can disappear in certain developmental stages and diseases. Moreover, some centrosome and cilia components are quite dynamic. While a large body of knowledge has been produced regarding the biogenesis of these structures, little is known about how they are maintained. In this Review, we propose the existence of specific centrosome and cilia maintenance programs, which are regulated during development and homeostasis, and when deregulated can lead to disease.
Collapse
Affiliation(s)
- Sascha Werner
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Ana Pimenta-Marques
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Mónica Bettencourt-Dias
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| |
Collapse
|
14
|
The effect of Diosmin on the blood proteome in a rat model of venous thrombosis. Int J Biol Macromol 2017; 104:778-787. [PMID: 28606843 DOI: 10.1016/j.ijbiomac.2017.06.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/31/2017] [Accepted: 06/07/2017] [Indexed: 12/20/2022]
Abstract
Diosmin is the aglycone moiety of diosmetin (3',5,7 trihydroxy-4'methoxy radicals flavonoids), a naturally occurring flavone glycoside, whose antithrombotic effect was studied in rats. This study was designed to find the protein changes of venous thrombosis in Wistar rats comparing conditions with and without Diosmin treatment by two-dimensional gel electrophoresis (2-DE), and investigate the effect of a crucial protein known as CEP350 on human vascular endothelial cell growth. Through prior chromatographic purification with macroporous absorption resin (AB-8) and polyamide, Diosmin was isolated from Galium verum L. by solvent extraction, then purified to 98% purity using HPLC. Wistar rats were divided into control group, model group, and prevention group. And their venous thrombosis tissue segments were dissected and prepared for histopathological examination and detection of plasma protein C (PC). Next, proteomic analysis was performed with the samples. Low-abundance proteins of the three groups were separated by two-dimensional gel electrophoresis (2-DE). 2-DE analysis revealed that 191 protein spots were differentially expressed among those three groups. For protein identification, we selected six spots to use matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) detection, and then do the homology search in NCBI database. Considering characteristics of these proteins, we proposed CEP350 is related to spindle assembly. Furthermore, we used Lipofectamine 2000 to transfect HUVECs with CEP350 siRNA and evaluated the extent of silencing using real time-polymerase chain reaction (RT-PCR). Cells were stained for immunofluorescence with tubulin-tracker red, and structural changes were analyzed using laser scanning confocal microscope. We concluded that CEP350 depletion decreased microtubule stability. Dosmin could modulate the assemble of spindle from unevenly distributing and protect body from varicose veins by regulating CEP350.
Collapse
|
15
|
Regulation of spindle integrity and mitotic fidelity by BCCIP. Oncogene 2017; 36:4750-4766. [PMID: 28394342 PMCID: PMC5561484 DOI: 10.1038/onc.2017.92] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/11/2017] [Accepted: 02/26/2017] [Indexed: 12/11/2022]
Abstract
Centrosomes together with the mitotic spindle ensure the faithful distribution of chromosomes between daughter cells, and spindle orientation is a major determinant of cell fate during tissue regeneration. Spindle defects are not only an impetus of chromosome instability but are also a cause of developmental disorders involving defective asymmetric cell division. In this work, we demonstrate BCCIP, especially BCCIPα, as a previously unidentified component of the mitotic spindle pole and the centrosome. We demonstrate that BCCIP localizes proximal to the mother centriole and participates in microtubule organization and then redistributes to the spindle pole to ensure faithful spindle architecture. We find that BCCIP depletion leads to morphological defects, disoriented mitotic spindles, chromosome congression defects and delayed mitotic progression. Our study identifies BCCIP as a novel factor critical for microtubule regulation and explicates a mechanism utilized by BCCIP in tumor suppression.
Collapse
|
16
|
Dong C, Xu H, Zhang R, Tanaka N, Takeichi M, Meng W. CAMSAP3 accumulates in the pericentrosomal area and accompanies microtubule release from the centrosome via katanin. J Cell Sci 2017; 130:1709-1715. [PMID: 28386021 DOI: 10.1242/jcs.198010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/17/2017] [Indexed: 11/20/2022] Open
Abstract
The epithelium has an apico-basal axis polarity that plays an important role in absorption, excretion and other physiological functions. In epithelial cells, a substantial number of non-centrosomal microtubules (MTs) are scattered in the cytoplasm with an apico-basal polarity and reorientate as epithelial cells perform different functions. Several previous studies have found that non-centrosomal MTs are nucleated at the centrosome, and then released and translocated elsewhere. However, the detailed process and molecular mechanism remain largely unknown. In this study, we found that Nezha, also called calmodulin-regulated spectrin-associated protein 3 (CAMSAP3), a non-centrosomal MT minus-end protein, accumulates in the pericentrosomal area and accompanies the release of MTs from the centrosome; whereas depletion of CAMSAP3 prevented MT release and instead caused focusing of MTs at centrosomes. Further studies demonstrated that CAMSAP3 precisely coordinates with dynein and katanin to regulate the MT detachment process. In conclusion, our results indicate that CAMSAP3 is a key molecule for generation of non-centrosomal MTs.
Collapse
Affiliation(s)
- Congcong Dong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honglin Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nobutoshi Tanaka
- RIKEN Center for Developmental Biology, 2-2-3 Chuo-ku, Kobe 650-0047, Japan
| | - Masatoshi Takeichi
- RIKEN Center for Developmental Biology, 2-2-3 Chuo-ku, Kobe 650-0047, Japan
| | - Wenxiang Meng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Bradshaw NJ, Hayashi MAF. NDE1 and NDEL1 from genes to (mal)functions: parallel but distinct roles impacting on neurodevelopmental disorders and psychiatric illness. Cell Mol Life Sci 2017; 74:1191-1210. [PMID: 27742926 PMCID: PMC11107680 DOI: 10.1007/s00018-016-2395-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/13/2016] [Accepted: 10/06/2016] [Indexed: 01/01/2023]
Abstract
NDE1 (Nuclear Distribution Element 1, also known as NudE) and NDEL1 (NDE-Like 1, also known as NudEL) are the mammalian homologues of the fungus nudE gene, with important and at least partially overlapping roles for brain development. While a large number of studies describe the various properties and functions of these proteins, many do not directly compare the similarities and differences between NDE1 and NDEL1. Although sharing a high degree structural similarity and multiple common cellular roles, each protein presents several distinct features that justify their parallel but also unique functions. Notably both proteins have key binding partners in dynein, LIS1 and DISC1, which impact on neurodevelopmental and psychiatric illnesses. Both are implicated in schizophrenia through genetic and functional evidence, with NDE1 also strongly implicated in microcephaly, as well as other neurodevelopmental and psychiatric conditions through copy number variation, while NDEL1 possesses an oligopeptidase activity with a unique potential as a biomarker in schizophrenia. In this review, we aim to give a comprehensive overview of the various cellular roles of these proteins in a "bottom-up" manner, from their biochemistry and protein-protein interactions on the molecular level, up to the consequences for neuronal differentiation, and ultimately to their importance for correct cortical development, with direct consequences for the pathophysiology of neurodevelopmental and mental illness.
Collapse
Affiliation(s)
- Nicholas J Bradshaw
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany.
| | - Mirian A F Hayashi
- Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, Brazil
| |
Collapse
|
18
|
Hong JH, Kwak Y, Woo Y, Park C, Lee SA, Lee H, Park SJ, Suh Y, Suh BK, Goo BS, Mun DJ, Sanada K, Nguyen MD, Park SK. Regulation of the actin cytoskeleton by the Ndel1-Tara complex is critical for cell migration. Sci Rep 2016; 6:31827. [PMID: 27546710 PMCID: PMC4992831 DOI: 10.1038/srep31827] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/27/2016] [Indexed: 11/16/2022] Open
Abstract
Nuclear distribution element-like 1 (Ndel1) plays pivotal roles in diverse biological processes and is implicated in the pathogenesis of multiple neurodevelopmental disorders. Ndel1 function by regulating microtubules and intermediate filaments; however, its functional link with the actin cytoskeleton is largely unknown. Here, we show that Ndel1 interacts with TRIO-associated repeat on actin (Tara), an actin-bundling protein, to regulate cell movement. In vitro wound healing and Boyden chamber assays revealed that Ndel1- or Tara-deficient cells were defective in cell migration. Moreover, Tara overexpression induced the accumulation of Ndel1 at the cell periphery and resulted in prominent co-localization with F-actin. This redistribution of Ndel1 was abolished by deletion of the Ndel1-interacting domain of Tara, suggesting that the altered peripheral localization of Ndel1 requires a physical interaction with Tara. Furthermore, co-expression of Ndel1 and Tara in SH-SY5Y cells caused a synergistic increase in F-actin levels and filopodia formation, suggesting that Tara facilitates cell movement by sequestering Ndel1 at peripheral structures to regulate actin remodeling. Thus, we demonstrated that Ndel1 interacts with Tara to regulate cell movement. These findings reveal a novel role of the Ndel1-Tara complex in actin reorganization during cell movement.
Collapse
Affiliation(s)
- Ji-Ho Hong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Yongdo Kwak
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Youngsik Woo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Cana Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Seol-Ae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Haeryun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Sung Jin Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Yeongjun Suh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Bo Kyoung Suh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Bon Seong Goo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Dong Jin Mun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Kamon Sanada
- Molecular Genetics Research Laboratory, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Minh Dang Nguyen
- Hotchkiss Brain Institute, Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, University of Calgary, Calgary T2N 4N1, Canada
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| |
Collapse
|
19
|
Inaba H, Goto H, Kasahara K, Kumamoto K, Yonemura S, Inoko A, Yamano S, Wanibuchi H, He D, Goshima N, Kiyono T, Hirotsune S, Inagaki M. Ndel1 suppresses ciliogenesis in proliferating cells by regulating the trichoplein-Aurora A pathway. J Cell Biol 2016; 212:409-23. [PMID: 26880200 PMCID: PMC4754717 DOI: 10.1083/jcb.201507046] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ndel1, a protein located at the subdistal appendage of mother centriole, functions as an upstream regulator of the trichoplein–Aurora A pathway that suppresses ciliogenesis in proliferating cells. Primary cilia protrude from the surface of quiescent cells and disassemble at cell cycle reentry. We previously showed that ciliary reassembly is suppressed by trichoplein-mediated Aurora A activation pathway in growing cells. Here, we report that Ndel1, a well-known modulator of dynein activity, localizes at the subdistal appendage of the mother centriole, which nucleates a primary cilium. In the presence of serum, Ndel1 depletion reduces trichoplein at the mother centriole and induces unscheduled primary cilia formation, which is reverted by forced trichoplein expression or coknockdown of KCTD17 (an E3 ligase component protein for trichoplein). Serum starvation induced transient Ndel1 degradation, subsequent to the disappearance of trichoplein at the mother centriole. Forced expression of Ndel1 suppressed trichoplein degradation and axonemal microtubule extension during ciliogenesis, similar to trichoplein induction or KCTD17 knockdown. Most importantly, the proportion of ciliated and quiescent cells was increased in the kidney tubular epithelia of newborn Ndel1-hypomorphic mice. Thus, Ndel1 acts as a novel upstream regulator of the trichoplein–Aurora A pathway to inhibit primary cilia assembly.
Collapse
Affiliation(s)
- Hironori Inaba
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Hidemasa Goto
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan Department of Cellular Oncology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Kousuke Kasahara
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan Department of Oncology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Kanako Kumamoto
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Shigenobu Yonemura
- Center for Life Science Technologies (Ultrastructural Research Team), Institute of Physical and Chemical Research, Kobe 650-0047, Japan
| | - Akihito Inoko
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Shotaro Yamano
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Dongwei He
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Naoki Goshima
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Tohru Kiyono
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Shinji Hirotsune
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Masaki Inagaki
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan Department of Cellular Oncology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| |
Collapse
|
20
|
Muroyama A, Seldin L, Lechler T. Divergent regulation of functionally distinct γ-tubulin complexes during differentiation. J Cell Biol 2016; 213:679-92. [PMID: 27298324 PMCID: PMC4915192 DOI: 10.1083/jcb.201601099] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/29/2016] [Indexed: 11/22/2022] Open
Abstract
Differentiation induces the formation of noncentrosomal microtubule arrays in diverse tissues. The formation of these arrays requires loss of microtubule-organizing activity (MTOC) at the centrosome, but the mechanisms regulating this transition remain largely unexplored. Here, we use the robust loss of centrosomal MTOC activity in the epidermis to identify two pools of γ-tubulin that are biochemically and functionally distinct and differentially regulated. Nucleation-competent CDK5RAP2-γ-tubulin complexes were maintained at centrosomes upon initial epidermal differentiation. In contrast, Nedd1-γ-tubulin complexes did not promote nucleation but were required for anchoring of microtubules, a previously uncharacterized activity for this complex. Cell cycle exit specifically triggered loss of Nedd1-γ-tubulin complexes, providing a mechanistic link connecting MTOC activity and differentiation. Collectively, our studies demonstrate that distinct γ-tubulin complexes regulate different microtubule behaviors at the centrosome and show that differential regulation of these complexes drives loss of centrosomal MTOC activity.
Collapse
Affiliation(s)
- Andrew Muroyama
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710 Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | - Lindsey Seldin
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710 Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | - Terry Lechler
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710 Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
21
|
Choi YS, Lee B, Hansen KF, Aten S, Horning P, Wheaton KL, Impey S, Hoyt KR, Obrietan K. Status epilepticus stimulates NDEL1 expression via the CREB/CRE pathway in the adult mouse brain. Neuroscience 2016; 331:1-12. [PMID: 27298008 DOI: 10.1016/j.neuroscience.2016.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 06/04/2016] [Accepted: 06/06/2016] [Indexed: 11/27/2022]
Abstract
Nuclear distribution element-like 1 (NDEL1/NUDEL) is a mammalian homolog of the Aspergillus nidulans nuclear distribution molecule NudE. NDEL1 plays a critical role in neuronal migration, neurite outgrowth and neuronal positioning during brain development; however within the adult central nervous system, limited information is available regarding NDEL1 expression and functions. Here, the goal was to examine inducible NDEL1 expression in the adult mouse forebrain. Immunolabeling revealed NDEL1 within the forebrain, including the cortex and hippocampus, as well as the midbrain and hypothalamus. Expression was principally localized to perikarya. Using a combination of immunolabeling and RNA seq profiling, we detected a marked and long-lasting upregulation of NDEL1 expression within the hippocampus following a pilocarpine-evoked repetitive seizure paradigm. Chromatin immunoprecipitation (ChIP) analysis identified a cAMP response element-binding protein (CREB) binding site within the CpG island proximal to the NDEL1 gene, and in vivo transgenic repression of CREB led to a marked downregulation of seizure-evoked NDEL1 expression. Together these data indicate that NDEL1 is inducibly expressed in the adult nervous system, and that signaling via the CREB/CRE transcriptional pathway is likely involved. The role of NDEL1 in neuronal migration and neurite outgrowth during development raises the interesting prospect that inducible NDEL1 in the mature nervous system could contribute to the well-characterized structural and functional plasticity resulting from repetitive seizure activity.
Collapse
Affiliation(s)
- Yun-Sik Choi
- Department of Pharmaceutical Science & Technology, Catholic University of Daegu, Gyeongbuk, Republic of Korea
| | - Boyoung Lee
- Center for Cognition and Sociality, Institute for Basic Science, Seoul, Republic of Korea
| | - Katelin F Hansen
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Sydney Aten
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Paul Horning
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Kelin L Wheaton
- Division of Pharmacology, Ohio State University, Columbus, OH, USA
| | - Soren Impey
- Oregon Health and Science University, Portland, OR, USA
| | - Kari R Hoyt
- Division of Pharmacology, Ohio State University, Columbus, OH, USA
| | - Karl Obrietan
- Department of Neuroscience, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
22
|
Sternemalm J, Geimer S, Frikstad KAM, Schink KO, Stokke T, Patzke S. CSPP-L Associates with the Desmosome of Polarized Epithelial Cells and Is Required for Normal Spheroid Formation. PLoS One 2015; 10:e0134789. [PMID: 26241740 PMCID: PMC4524657 DOI: 10.1371/journal.pone.0134789] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/14/2015] [Indexed: 11/20/2022] Open
Abstract
Deleterious mutations of the Centrosome/Spindle Pole associated Protein 1 gene, CSPP1, are causative for Joubert-syndrome and Joubert-related developmental disorders. These disorders are defined by a characteristic mal-development of the brain, but frequently involve renal and hepatic cyst formation. CSPP-L, the large protein isoform of CSPP1 localizes to microtubule ends of the mitotic mid-spindle and the ciliary axoneme, and is required for ciliogenesis. We here report the microtubule independent but Desmoplakin dependent localization of CSPP-L to Desmosomes in apical-basal polarized epithelial cells. Importantly, siRNA conferred depletion of CSPP-L or Desmoplakin promoted multi-lumen spheroid formation in 3D-cultures of non-ciliated human colon carcinoma Caco-2 cells. Multi-lumen spheroids of CSPP1 siRNA transfectants showed disrupted apical cell junction localization of the cytoskeleton organizing RhoGEF ECT2. Our results hence identify a novel, non-ciliary role for CSPP-L in epithelial morphogenesis.
Collapse
Affiliation(s)
- Johan Sternemalm
- Department of Radiation Biology, Division of Cancer Medicine, Surgery and Transplantation, Institute for Cancer Research, Oslo University Hospitals-Norwegian Radium Hospital, Oslo, Norway
| | - Stefan Geimer
- Cell Biology/Electron Microscopy, University of Bayreuth, Bayreuth, Germany
| | - Kari-Anne M Frikstad
- Department of Radiation Biology, Division of Cancer Medicine, Surgery and Transplantation, Institute for Cancer Research, Oslo University Hospitals-Norwegian Radium Hospital, Oslo, Norway
| | - Kay O Schink
- Department of Molecular Cell Biology, Division of Cancer Medicine, Surgery and Transplantation, Institute for Cancer Research, Oslo University Hospitals-Norwegian Radium Hospital, Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Trond Stokke
- Department of Radiation Biology, Division of Cancer Medicine, Surgery and Transplantation, Institute for Cancer Research, Oslo University Hospitals-Norwegian Radium Hospital, Oslo, Norway
| | - Sebastian Patzke
- Department of Radiation Biology, Division of Cancer Medicine, Surgery and Transplantation, Institute for Cancer Research, Oslo University Hospitals-Norwegian Radium Hospital, Oslo, Norway
| |
Collapse
|
23
|
Gaume X, Tassin AM, Ugrinova I, Mongelard F, Monier K, Bouvet P. Centrosomal nucleolin is required for microtubule network organization. Cell Cycle 2015; 14:902-19. [PMID: 25590348 PMCID: PMC4614815 DOI: 10.1080/15384101.2014.1000197] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 12/22/2022] Open
Abstract
Nucleolin is a pleiotropic protein involved in a variety of cellular processes. Although multipolar spindle formation has been observed after nucleolin depletion, the roles of nucleolin in centrosome regulation and functions have not been addressed. Here we report using immunofluorescence and biochemically purified centrosomes that nucleolin co-localized only with one of the centrioles during interphase which was further identified as the mature centriole. Upon nucleolin depletion, cells exhibited an amplification of immature centriole markers surrounded by irregular pericentrin staining; these structures were exempt from maturation markers and unable to nucleate microtubules. Furthermore, the microtubule network was disorganized in these cells, exhibiting frequent non-centrosomal microtubules. At the mature centriole a reduced kinetics in the centrosomal microtubule nucleation phase was observed in live silenced cells, as well as a perturbation of microtubule anchoring. Immunoprecipitation experiments showed that nucleolin belongs to protein complexes containing 2 key centrosomal proteins, γ-tubulin and ninein, involved in microtubule nucleation and anchoring steps. Altogether, our study uncovered a new role for nucleolin in restricting microtubule nucleation and anchoring at centrosomes in interphase cells.
Collapse
Affiliation(s)
- Xavier Gaume
- Université de Lyon; Ecole Normale Supérieure de Lyon; CNRS USR 3010; Laboratoire Joliot-Curie; Lyon, France
| | - Anne-Marie Tassin
- Institute for Integrative Biology of the Cell (I2BC); CEA, CNRS, Université Paris Sud; Gif sur Yvette, France
| | - Iva Ugrinova
- Institute of Molecular Biology “Acad. Roumen Tsanev”; Bulgarian Academy of Sciences; Sofia, Bulgaria
| | - Fabien Mongelard
- Université de Lyon; Ecole Normale Supérieure de Lyon; CNRS USR 3010; Laboratoire Joliot-Curie; Lyon, France
| | - Karine Monier
- Université de Lyon; Ecole Normale Supérieure de Lyon; CNRS USR 3010; Laboratoire Joliot-Curie; Lyon, France
| | - Philippe Bouvet
- Université de Lyon; Ecole Normale Supérieure de Lyon; CNRS USR 3010; Laboratoire Joliot-Curie; Lyon, France
| |
Collapse
|
24
|
Sumigray KD, Lechler T. Control of cortical microtubule organization and desmosome stability by centrosomal proteins. BIOARCHITECTURE 2014; 1:221-224. [PMID: 22754612 PMCID: PMC3384573 DOI: 10.4161/bioa.18403] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In many tissues microtubules reorganize into non-centrosomal arrays in differentiated cells. In the epidermis, proliferative basal cells have a radial array of microtubules organized around a centrosome, while differentiated cells have cortical microtubules. The desmosomal protein desmoplakin is required for the microtubules to organize around the cell cortex. Furthermore, the centrosomal and/or microtubule-associated proteins ninein, Lis1, Ndel1, and CLIP170 are recruited to the cell cortex, where they have been implicated in the cortical organization of microtubules. Recently, it has been shown that in Lis1-null epidermis, microtubules are disorganized in the differentiated layers of the epidermis. Furthermore, Lis1-null mice die perinatally due to dehydration. This is due, in part, to the unexpected desmosome phenotype observed in Lis1-null skin. Upon loss of Lis1, desmosomal proteins become less stable. Here, we propose that Lis1 may regulate desmosomal stability through its binding partners Nde1/Ndel1 and dynein.
Collapse
|
25
|
Wang W, Wu T, Kirschner MW. The master cell cycle regulator APC-Cdc20 regulates ciliary length and disassembly of the primary cilium. eLife 2014; 3:e03083. [PMID: 25139956 PMCID: PMC4135350 DOI: 10.7554/elife.03083] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The primary cilium has an important role in signaling; defects in structure are associated with a variety of human diseases. Much of the most basic biology of this organelle is poorly understood, even basic mechanisms, such as control of growth and resorption. We show that the activity of the anaphase-promoting complex (APC), an E3 that regulates the onset of anaphase, destabilizes axonemal microtubules in the primary cilium. Furthermore, the metaphase APC co-activator, Cdc20, is specifically recruited to the basal body of primary cilia. Inhibition of APC-Cdc20 activity increases the ciliary length, while overexpression of Cdc20 suppresses cilium formation. APC-Cdc20 activity is required for the timely resorption of the cilium after serum stimulation. In addition, APC regulates the stability of axonemal microtubules through targeting Nek1, the ciliary kinase, for proteolysis. These data demonstrate a novel function of APC beyond cell cycle control and implicate critical role of ubiquitin-mediated proteolysis in ciliary disassembly. DOI:http://dx.doi.org/10.7554/eLife.03083.001 The majority of cells in the human body have small hair-like structures that project from the cell surface. These structures, known as primary cilia, are involved in sensing light and touch, and they are also required for an organism to develop normally. Defects in cilia result in a wide range of human diseases that are collectively known as ciliopathies. These include polycystic kidney disease and Bardet–Biedl syndrome. Ciliary disorders can also affect almost every organ in the body leading to blindness, obesity, diabetes, and cancer. Cilia are dynamic structures that are dis-assembled when cells start to divide and are then re-assembled when cells are quiescent. The anaphase promoting complex (APC) has a critical role during cell division and targets key proteins that need to be degraded at specific times during this process. APC is localized in the basal body, which is found at the bottom of cilia, and it works together with a number of proteins which assist its function. Wang et al. now report that a complex formed by APC and its co-activator protein Cdc20 has two functions at the basal body: it is needed to maintain the optimal length of the cilia in quiescent cells and to shorten the cilia when cells exit from quiescent stage. Wang et al. also investigated the role of Nek1, an enzyme that is localised in the basal body. It was found that reducing the level of Nek1 in quiescent cells resulted in the formation of defective cilia, suggesting that this enzyme controls the stability and integrity of cilia. Moreover, when cells undergo division, the APC-Cdc20 complex targets the Nek1 enzyme, causing it to be degraded and allowing the cilia to be disassembled. A detailed understanding of how cells maintain the length of cilia could lead to the development of new approaches for the treatment of human ciliopathies. DOI:http://dx.doi.org/10.7554/eLife.03083.002
Collapse
Affiliation(s)
- Weiping Wang
- Department of Systems Biology, Harvard Medical School, Boston, United States
| | - Tao Wu
- Department of Systems Biology, Harvard Medical School, Boston, United States
| | - Marc W Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, United States
| |
Collapse
|
26
|
Bradshaw NJ, Hennah W, Soares DC. NDE1 and NDEL1: twin neurodevelopmental proteins with similar 'nature' but different 'nurture'. Biomol Concepts 2013; 4:447-64. [PMID: 24093049 PMCID: PMC3787581 DOI: 10.1515/bmc-2013-0023] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Nuclear distribution element 1 (NDE1, also known as NudE) and NDE-like 1 (NDEL1, also known as Nudel) are paralogous proteins essential for mitosis and neurodevelopment that have been implicated in psychiatric and neurodevelopmental disorders. The two proteins possess high sequence similarity and have been shown to physically interact with one another. Numerous lines of experimental evidence in vivo and in cell culture have demonstrated that these proteins share common functions, although instances of differing functions between the two have recently emerged. We review the key aspects of NDE1 and NDEL1 in terms of recent advances in structure elucidation and cellular function, with an emphasis on their differing mechanisms of post-translational modification. Based on a review of the literature and bioinformatics assessment, we advance the concept that the twin proteins NDE1 and NDEL1, while sharing a similar 'nature' in terms of their structure and basic functions, appear to be different in their 'nurture', the manner in which they are regulated both in terms of expression and of post-translational modification within the cell. These differences are likely to be of significant importance in understanding the specific roles of NDE1 and NDEL1 in neurodevelopment and disease.
Collapse
Affiliation(s)
- Nicholas J. Bradshaw
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, University Medical School, Moorenstrasse 5, D-40225, Düsseldorf, Germany
| | - William Hennah
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland; and National Institute for, Health and Welfare, Department of Mental Health and Substance, Abuse Services, Helsinki, Finland
| | - Dinesh C. Soares
- MRC Institute of Genetics and Molecular Medicine (MRC IGMM), University of Edinburgh, Western General, Hospital, Crewe Road South, Edinburgh EH4 2XU, UK
| |
Collapse
|
27
|
Zhapparova ON, Fokin AI, Vorobyeva NE, Bryantseva SA, Nadezhdina ES. Ste20-like protein kinase SLK (LOSK) regulates microtubule organization by targeting dynactin to the centrosome. Mol Biol Cell 2013; 24:3205-14. [PMID: 23985322 PMCID: PMC3806656 DOI: 10.1091/mbc.e13-03-0137] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The protein kinase SLK (LOSK) phosphorylates the 1A isoform of the p150Glued subunit of dynactin and targets it to the centrosome, where it maintains microtubule radial organization. In addition, dynactin phosphorylation is involved in Golgi reorientation in polarized cells. The microtubule- and centrosome-associated Ste20-like kinase (SLK; long Ste20-like kinase [LOSK]) regulates cytoskeleton organization and cell polarization and spreading. Its inhibition causes microtubule disorganization and release of centrosomal dynactin. The major function of dynactin is minus end–directed transport along microtubules in a complex with dynein motor. In addition, dynactin is required for maintenance of the microtubule radial array in interphase cells, and depletion of its centrosomal pool entails microtubule disorganization. Here we demonstrate that SLK (LOSK) phosphorylates the p150Glued subunit of dynactin and thus targets it to the centrosome, where it maintains microtubule radial organization. We show that phosphorylation is required only for centrosomal localization of p150Glued and does not affect its microtubule-organizing properties: artificial targeting of nonphosphorylatable p150Glued to the centrosome restores microtubule radial array in cells with inhibited SLK (LOSK). The phosphorylation site is located in a microtubule-binding region that is variable for two isoforms (1A and 1B) of p150Glued expressed in cultured fibroblast-like cells (isoform 1B lacks 20 amino acids in the basic microtubule-binding domain). The fact that SLK (LOSK) phosphorylates only a minor isoform 1A of p150Glued suggests that transport and microtubule-organizing functions of dynactin are distinctly divided between the two isoforms. We also show that dynactin phosphorylation is involved in Golgi reorientation in polarized cells.
Collapse
Affiliation(s)
- Olga N Zhapparova
- A. N. Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia Institute of Protein Research, Russian Academy of Sciences, Moscow 117334, Russia
| | | | | | | | | |
Collapse
|
28
|
Evsyukova I, Plestant C, Anton ES. Integrative mechanisms of oriented neuronal migration in the developing brain. Annu Rev Cell Dev Biol 2013; 29:299-353. [PMID: 23937349 DOI: 10.1146/annurev-cellbio-101512-122400] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The emergence of functional neuronal connectivity in the developing cerebral cortex depends on neuronal migration. This process enables appropriate positioning of neurons and the emergence of neuronal identity so that the correct patterns of functional synaptic connectivity between the right types and numbers of neurons can emerge. Delineating the complexities of neuronal migration is critical to our understanding of normal cerebral cortical formation and neurodevelopmental disorders resulting from neuronal migration defects. For the most part, the integrated cell biological basis of the complex behavior of oriented neuronal migration within the developing mammalian cerebral cortex remains an enigma. This review aims to analyze the integrative mechanisms that enable neurons to sense environmental guidance cues and translate them into oriented patterns of migration toward defined areas of the cerebral cortex. We discuss how signals emanating from different domains of neurons get integrated to control distinct aspects of migratory behavior and how different types of cortical neurons coordinate their migratory activities within the developing cerebral cortex to produce functionally critical laminar organization.
Collapse
Affiliation(s)
- Irina Evsyukova
- Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599;
| | | | | |
Collapse
|
29
|
Sipe CW, Liu L, Lee J, Grimsley-Myers C, Lu X. Lis1 mediates planar polarity of auditory hair cells through regulation of microtubule organization. Development 2013; 140:1785-95. [PMID: 23533177 DOI: 10.1242/dev.089763] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The V-shaped hair bundles atop auditory hair cells and their uniform orientation are manifestations of epithelial planar cell polarity (PCP) required for proper perception of sound. PCP is regulated at the tissue level by a conserved core Wnt/PCP pathway. However, the hair cell-intrinsic polarity machinery is poorly understood. Recent findings implicate hair cell microtubules in planar polarization of hair cells. To elucidate the microtubule-mediated polarity pathway, we analyzed Lis1 function in the auditory sensory epithelium in the mouse. We show that conditional deletion of Lis1 in developing hair cells causes defects in cytoplasmic dynein and microtubule organization, resulting in planar polarity defects without overt effects on the core PCP pathway. Lis1 ablation during embryonic development results in defects in hair bundle morphology and orientation, cellular organization and junctional nectin localization. We present evidence that Lis1 regulates localized Rac-PAK signaling in embryonic hair cells, probably through microtubule-associated Tiam1, a guanine nucleotide exchange factor for Rac. Lis1 ablation in postnatal hair cells significantly disrupts centrosome anchoring and the normal V-shape of hair bundles, accompanied by defects in the pericentriolar matrix and microtubule organization. Lis1 is also required for proper positioning of the Golgi complex and mitochondria as well as for hair cell survival. Together, our results demonstrate that Lis1 mediates the planar polarity of hair cells through regulation of microtubule organization downstream of the tissue polarity pathway.
Collapse
Affiliation(s)
- Conor W Sipe
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
30
|
Patel K, Scrimieri F, Ghosh S, Zhong J, Kim MS, Ren YR, Morgan RA, Iacobuzio-Donahue CA, Pandey A, Kern SE. FAM190A deficiency creates a cell division defect. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:296-303. [PMID: 23665203 DOI: 10.1016/j.ajpath.2013.03.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/13/2013] [Accepted: 03/20/2013] [Indexed: 12/12/2022]
Abstract
Like the p16, SMAD4, and RB1 genes, FAM190A (alias CCSER1) lies at a consensus site of homogeneous genomic deletions in human cancer. FAM190A transcripts in 40% of cancers also contain in-frame deletions of evolutionarily conserved exons. Its gene function was unknown. We found an internal deletion of the FAM190A gene in a pancreatic cancer having prominent focal multinuclearity. The experimental knockdown of FAM190A expression by shRNA caused focal cytokinesis defects, multipolar mitosis, and multinuclearity as observed in time-lapse microscopy. FAM190A was localized to the γ-tubulin ring complex of early mitosis and to the midbody in late cytokinesis by immunofluorescence assay and was present in the nuclear fraction of unsynchronized cells by immunoblot. FAM190A interacted with EXOC1 and Ndel1, which function in cytoskeletal organization and the cell division cycle. Levels of FAM190A protein peaked 12 hours after release from thymidine block, corresponding to M-phase. Slower-migrating phosphorylated forms accumulated toward M-phase and disappeared after release from a mitotic block and before cytokinesis. Studies of FAM190A alterations may provide mechanistic insights into mitotic dysregulation and multinuclearity in cancer. We propose that FAM190A is a regulator or structural component required for normal mitosis and that both the rare truncating mutations and common in-frame deletion alteration of FAM190A may contribute to the chromosomal instability of cancer.
Collapse
Affiliation(s)
- Kalpesh Patel
- Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ludueña RF. A Hypothesis on the Origin and Evolution of Tubulin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:41-185. [DOI: 10.1016/b978-0-12-407699-0.00002-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Dormoy V, Tormanen K, Sütterlin C. Par6γ is at the mother centriole and controls centrosomal protein composition through a Par6α-dependent pathway. J Cell Sci 2012; 126:860-70. [PMID: 23264737 DOI: 10.1242/jcs.121186] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The centrosome contains two centrioles that differ in age, protein composition and function. This non-membrane bound organelle is known to regulate microtubule organization in dividing cells and ciliogenesis in quiescent cells. These specific roles depend on protein appendages at the older, or mother, centriole. In this study, we identified the polarity protein partitioning defective 6 homolog gamma (Par6γ) as a novel component of the mother centriole. This specific localization required the Par6γ C-terminus, but was independent of intact microtubules, the dynein/dynactin complex and the components of the PAR polarity complex. Par6γ depletion resulted in altered centrosomal protein composition, with the loss of a large number of proteins, including Par6α and p150(Glued), from the centrosome. As a consequence, there were defects in ciliogenesis, microtubule organization and centrosome reorientation during migration. Par6γ interacted with Par3 and aPKC, but these proteins were not required for the regulation of centrosomal protein composition. Par6γ also associated with Par6α, which controls protein recruitment to the centrosome through p150(Glued). Our study is the first to identify Par6γ as a component of the mother centriole and to report a role of a mother centriole protein in the regulation of centrosomal protein composition.
Collapse
Affiliation(s)
- Valérian Dormoy
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-2300, USA
| | | | | |
Collapse
|
33
|
Sumigray KD, Foote HP, Lechler T. Noncentrosomal microtubules and type II myosins potentiate epidermal cell adhesion and barrier formation. ACTA ACUST UNITED AC 2012; 199:513-25. [PMID: 23091070 PMCID: PMC3483132 DOI: 10.1083/jcb.201206143] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Noncentrosomal microtubules recruit myosin II to the cell cortex in order to engage adherens junctions and increase tight junction formation, resulting in an increase in mechanical integrity of cell sheets. During differentiation, many cells reorganize their microtubule cytoskeleton into noncentrosomal arrays. Although these microtubules are likely organized to meet the physiological roles of their tissues, their functions in most cell types remain unexplored. In the epidermis, differentiation induces the reorganization of microtubules to cell–cell junctions in a desmosome-dependent manner. Here, we recapitulate the reorganization of microtubules in cultured epidermal cells. Using this reorganization assay, we show that cortical microtubules recruit myosin II to the cell cortex in order to engage adherens junctions, resulting in an increase in mechanical integrity of the cell sheets. Cortical microtubules and engaged adherens junctions, in turn, increase tight junction function. In vivo, disruption of microtubules or loss of myosin IIA and B resulted in loss of tight junction–mediated barrier activity. We propose that noncentrosomal microtubules act through myosin II recruitment to potentiate cell adhesion in the differentiating epidermis, thus forming a robust mechanical and chemical barrier against the external environment.
Collapse
Affiliation(s)
- Kaelyn D Sumigray
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
34
|
Fargier G, Favard C, Parmeggiani A, Sahuquet A, Mérezègue F, Morel A, Denis M, Molinari N, Mangeat PH, Coopman PJ, Montcourrier P. Centrosomal targeting of Syk kinase is controlled by its catalytic activity and depends on microtubules and the dynein motor. FASEB J 2012; 27:109-22. [DOI: 10.1096/fj.11-202465] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guillaume Fargier
- Centre de Recherche de Biochimie Macromoléculaire (CRBM), Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5237Universités Montpellier 1 and Montpellier 2MontpellierFrance
- Equipe Labellisée 2007 Ligue Nationale contre le CancerParisFrance
| | - Cyril Favard
- Centre d'Etudes d'Agents Pathogénes et Biotechnologies pour la Santé (CPBS), CNRS UMR 5236Universités Montpellier 1 and Montpellier 2MontpellierFrance
| | - Andrea Parmeggiani
- CNRS, UMR 5235, Biological Physics and System BiologyUniversité Montpellier 2MontpellierFrance
| | - Alain Sahuquet
- Centre de Recherche de Biochimie Macromoléculaire (CRBM), Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5237Universités Montpellier 1 and Montpellier 2MontpellierFrance
- Equipe Labellisée 2007 Ligue Nationale contre le CancerParisFrance
| | - Fabrice Mérezègue
- Centre de Recherche de Biochimie Macromoléculaire (CRBM), Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5237Universités Montpellier 1 and Montpellier 2MontpellierFrance
- Equipe Labellisée 2007 Ligue Nationale contre le CancerParisFrance
| | - Anne Morel
- Centre de Recherche de Biochimie Macromoléculaire (CRBM), Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5237Universités Montpellier 1 and Montpellier 2MontpellierFrance
- Equipe Labellisée 2007 Ligue Nationale contre le CancerParisFrance
| | - Marie Denis
- Laboratoire de Biostatistique, d'Epidémiologie et de Santé Publique, Unité Pédagogique MédicaleInstitut Universitaire de Recherche Clinique, Université Montpellier 1MontpellierFrance
| | - Nicolas Molinari
- Laboratoire de Biostatistique, d'Epidémiologie et de Santé Publique, Unité Pédagogique MédicaleInstitut Universitaire de Recherche Clinique, Université Montpellier 1MontpellierFrance
| | - Paul H. Mangeat
- Centre de Recherche de Biochimie Macromoléculaire (CRBM), Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5237Universités Montpellier 1 and Montpellier 2MontpellierFrance
- Equipe Labellisée 2007 Ligue Nationale contre le CancerParisFrance
| | - Peter J. Coopman
- Centre de Recherche de Biochimie Macromoléculaire (CRBM), Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5237Universités Montpellier 1 and Montpellier 2MontpellierFrance
- Equipe Labellisée 2007 Ligue Nationale contre le CancerParisFrance
- Institut de Recherche en Cancérologie de Montpellier (IRCM)Institut National de la Santé et de la Recherche Médicale (INSERM) U896Centre Régional de Lutte contre le Cancer (CRLC) Val d'AurelleUniversité Montpellier 1MontpellierFrance
| | - Philippe Montcourrier
- Centre de Recherche de Biochimie Macromoléculaire (CRBM), Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5237Universités Montpellier 1 and Montpellier 2MontpellierFrance
- Equipe Labellisée 2007 Ligue Nationale contre le CancerParisFrance
- Institut de Recherche en Cancérologie de Montpellier (IRCM)Institut National de la Santé et de la Recherche Médicale (INSERM) U896Centre Régional de Lutte contre le Cancer (CRLC) Val d'AurelleUniversité Montpellier 1MontpellierFrance
| |
Collapse
|
35
|
Neumayer G, Helfricht A, Shim SY, Le HT, Lundin C, Belzil C, Chansard M, Yu Y, Lees-Miller SP, Gruss OJ, van Attikum H, Helleday T, Nguyen MD. Targeting protein for xenopus kinesin-like protein 2 (TPX2) regulates γ-histone 2AX (γ-H2AX) levels upon ionizing radiation. J Biol Chem 2012; 287:42206-22. [PMID: 23045526 DOI: 10.1074/jbc.m112.385674] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The microtubule-associated protein targeting protein for Xenopus kinesin-like protein 2 (TPX2) plays a key role in spindle assembly and is required for mitosis in human cells. In interphase, TPX2 is actively imported into the nucleus to prevent its premature activity in microtubule organization. To date, no function has been assigned to nuclear TPX2. We now report that TPX2 plays a role in the cellular response to DNA double strand breaks induced by ionizing radiation. Loss of TPX2 leads to inordinately strong and transient accumulation of ionizing radiation-dependent Ser-139-phosphorylated Histone 2AX (γ-H2AX) at G(0) and G(1) phases of the cell cycle. This is accompanied by the formation of increased numbers of high intensity γ-H2AX ionizing radiation-induced foci. Conversely, cells overexpressing TPX2 have reduced levels of γ-H2AX after ionizing radiation. Consistent with a role for TPX2 in the DNA damage response, we found that the protein accumulates at DNA double strand breaks and associates with the mediator of DNA damage checkpoint 1 (MDC1) and the ataxia telangiectasia mutated (ATM) kinase, both key regulators of γ-H2AX amplification. Pharmacologic inhibition or depletion of ATM or MDC1, but not of DNA-dependent protein kinase (DNA-PK), antagonizes the γ-H2AX phenotype caused by TPX2 depletion. Importantly, the regulation of γ-H2AX signals by TPX2 is not associated with apoptosis or the mitotic functions of TPX2. In sum, our study identifies a novel and the first nuclear function for TPX2 in the cellular responses to DNA damage.
Collapse
Affiliation(s)
- Gernot Neumayer
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary T2N4N1, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Garcia-Gonzalo FR, Reiter JF. Scoring a backstage pass: mechanisms of ciliogenesis and ciliary access. ACTA ACUST UNITED AC 2012; 197:697-709. [PMID: 22689651 PMCID: PMC3373398 DOI: 10.1083/jcb.201111146] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cilia are conserved, microtubule-based cell surface projections that emanate from basal bodies, membrane-docked centrioles. The beating of motile cilia and flagella enables cells to swim and epithelia to displace fluids. In contrast, most primary cilia do not beat but instead detect environmental or intercellular stimuli. Inborn defects in both kinds of cilia cause human ciliopathies, diseases with diverse manifestations such as heterotaxia and kidney cysts. These diseases are caused by defects in ciliogenesis or ciliary function. The signaling functions of cilia require regulation of ciliary composition, which depends on the control of protein traffic into and out of cilia.
Collapse
Affiliation(s)
- Francesc R Garcia-Gonzalo
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | | |
Collapse
|
37
|
Soares DC, Bradshaw NJ, Zou J, Kennaway CK, Hamilton RS, Chen ZA, Wear MA, Blackburn EA, Bramham J, Böttcher B, Millar JK, Barlow PN, Walkinshaw MD, Rappsilber J, Porteous DJ. The mitosis and neurodevelopment proteins NDE1 and NDEL1 form dimers, tetramers, and polymers with a folded back structure in solution. J Biol Chem 2012; 287:32381-93. [PMID: 22843697 PMCID: PMC3463352 DOI: 10.1074/jbc.m112.393439] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 07/26/2012] [Indexed: 11/06/2022] Open
Abstract
Paralogs NDE1 (nuclear distribution element 1) and NDEL1 (NDE-like 1) are essential for mitosis and neurodevelopment. Both proteins are predicted to have similar structures, based upon high sequence similarity, and they co-complex in mammalian cells. X-ray diffraction studies and homology modeling suggest that their N-terminal regions (residues 8-167) adopt continuous, extended α-helical coiled-coil structures, but no experimentally derived information on the structure of their C-terminal regions or the architecture of the full-length proteins is available. In the case of NDE1, no biophysical data exists. Here we characterize the structural architecture of both full-length proteins utilizing negative stain electron microscopy along with our established paradigm of chemical cross-linking followed by tryptic digestion, mass spectrometry, and database searching, which we enhance using isotope labeling for mixed NDE1-NDEL1. We determined that full-length NDE1 forms needle-like dimers and tetramers in solution, similar to crystal structures of NDEL1, as well as chain-like end-to-end polymers. The C-terminal domain of each protein, required for interaction with key protein partners dynein and DISC1 (disrupted-in-schizophrenia 1), includes a predicted disordered region that allows a bent back structure. This facilitates interaction of the C-terminal region with the N-terminal coiled-coil domain and is in agreement with previous results showing N- and C-terminal regions of NDEL1 and NDE1 cooperating in dynein interaction. It sheds light on recently identified mutations in the NDE1 gene that cause truncation of the encoded protein. Additionally, analysis of mixed NDE1-NDEL1 complexes demonstrates that NDE1 and NDEL1 can interact directly.
Collapse
Affiliation(s)
- Dinesh C. Soares
- From the Medical Genetics Section, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Nicholas J. Bradshaw
- From the Medical Genetics Section, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
- the Institut für Neuropathologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Juan Zou
- the Wellcome Trust Centre for Cell Biology and
| | - Christopher K. Kennaway
- the School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Russell S. Hamilton
- the Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | - Martin A. Wear
- the Centre for Translational and Chemical Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom, and
| | - Elizabeth A. Blackburn
- the Centre for Translational and Chemical Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom, and
| | - Janice Bramham
- the Centre for Translational and Chemical Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom, and
| | - Bettina Böttcher
- the School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - J. Kirsty Millar
- From the Medical Genetics Section, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Paul N. Barlow
- the Centre for Translational and Chemical Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom, and
| | - Malcolm D. Walkinshaw
- the Centre for Translational and Chemical Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom, and
| | - Juri Rappsilber
- the Wellcome Trust Centre for Cell Biology and
- the Department of Biotechnology, Technische Universität Berlin, 13353 Berlin, Germany
| | - David J. Porteous
- From the Medical Genetics Section, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
38
|
Splinter D, Razafsky DS, Schlager MA, Serra-Marques A, Grigoriev I, Demmers J, Keijzer N, Jiang K, Poser I, Hyman AA, Hoogenraad CC, King SJ, Akhmanova A. BICD2, dynactin, and LIS1 cooperate in regulating dynein recruitment to cellular structures. Mol Biol Cell 2012; 23:4226-41. [PMID: 22956769 PMCID: PMC3484101 DOI: 10.1091/mbc.e12-03-0210] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study dissects the recruitment of dynein and dynactin to cargo by a conserved motor adaptor BICD2. It is shown that dynein, dynactin, and BICD2 form a triple complex in vitro and in vivo. Investigation of the properties of this complex by direct visualization of dynein in live cells shows that BICD2-induced dynein transport requires LIS1. Cytoplasmic dynein is the major microtubule minus-end–directed cellular motor. Most dynein activities require dynactin, but the mechanisms regulating cargo-dependent dynein–dynactin interaction are poorly understood. In this study, we focus on dynein–dynactin recruitment to cargo by the conserved motor adaptor Bicaudal D2 (BICD2). We show that dynein and dynactin depend on each other for BICD2-mediated targeting to cargo and that BICD2 N-terminus (BICD2-N) strongly promotes stable interaction between dynein and dynactin both in vitro and in vivo. Direct visualization of dynein in live cells indicates that by itself the triple BICD2-N–dynein–dynactin complex is unable to interact with either cargo or microtubules. However, tethering of BICD2-N to different membranes promotes their microtubule minus-end–directed motility. We further show that LIS1 is required for dynein-mediated transport induced by membrane tethering of BICD2-N and that LIS1 contributes to dynein accumulation at microtubule plus ends and BICD2-positive cellular structures. Our results demonstrate that dynein recruitment to cargo requires concerted action of multiple dynein cofactors.
Collapse
Affiliation(s)
- Daniël Splinter
- Department of Cell Biology, Erasmus Medical Centre, 3000 CA Rotterdam, Netherlands Department of Neuroscience, Erasmus Medical Centre, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ogden A, Rida PCG, Aneja R. Let's huddle to prevent a muddle: centrosome declustering as an attractive anticancer strategy. Cell Death Differ 2012; 19:1255-67. [PMID: 22653338 DOI: 10.1038/cdd.2012.61] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Nearly a century ago, cell biologists postulated that the chromosomal aberrations blighting cancer cells might be caused by a mysterious organelle-the centrosome-that had only just been discovered. For years, however, this enigmatic structure was neglected in oncologic investigations and has only recently reemerged as a key suspect in tumorigenesis. A majority of cancer cells, unlike healthy cells, possess an amplified centrosome complement, which they manage to coalesce neatly at two spindle poles during mitosis. This clustering mechanism permits the cell to form a pseudo-bipolar mitotic spindle for segregation of sister chromatids. On rare occasions this mechanism fails, resulting in declustered centrosomes and the assembly of a multipolar spindle. Spindle multipolarity consigns the cell to an almost certain fate of mitotic arrest or death. The catastrophic nature of multipolarity has attracted efforts to develop drugs that can induce declustering in cancer cells. Such chemotherapeutics would theoretically spare healthy cells, whose normal centrosome complement should preclude multipolar spindle formation. In search of the 'Holy Grail' of nontoxic, cancer cell-selective, and superiorly efficacious chemotherapy, research is underway to elucidate the underpinnings of centrosome clustering mechanisms. Here, we detail the progress made towards that end, highlighting seminal work and suggesting directions for future research, aimed at demystifying this riddling cellular tactic and exploiting it for chemotherapeutic purposes. We also propose a model to highlight the integral role of microtubule dynamicity and the delicate balance of forces on which cancer cells rely for effective centrosome clustering. Finally, we provide insights regarding how perturbation of this balance may pave an inroad for inducing lethal centrosome dispersal and death selectively in cancer cells.
Collapse
Affiliation(s)
- A Ogden
- Department of Biology, Georgia State University, Atlanta, 30303, USA
| | | | | |
Collapse
|
40
|
Wu S, Ma L, Wu Y, Zeng R, Zhu X. Nudel is crucial for the WAVE complex assembly in vivo by selectively promoting subcomplex stability and formation through direct interactions. Cell Res 2012; 22:1270-84. [PMID: 22453242 DOI: 10.1038/cr.2012.47] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The WAVE regulatory complex (WRC), consisting of WAVE, Sra, Nap, Abi, and HSPC300, activates the Arp2/3 complex to control branched actin polymerization in response to Rac activation. How the WRC is assembled in vivo is not clear. Here we show that Nudel, a protein critical for lamellipodia formation, dramatically stabilized the Sra1-Nap1-Abi1 complex against degradation in cells through a dynamic binding to Sra1, whereas its physical interaction with HSPC300 protected free HSPC300 from the proteasome-mediated degradation and stimulated the HSPC300-WAVE2 complex formation. By contrast, Nudel showed little or no interactions with the Sra1-Nap1-Abi1-WAVE2 and the Sra1-Nap1-Abi1-HSPC300 complexes as well as the mature WRC. Depletion of Nudel by RNAi led to general subunit degradation and markedly attenuated the levels of mature WRC. It also abolished the WRC-dependent actin polymerization in vitro and the Rac1-induced lamellipodial actin network formation during cell spreading. Therefore, Nudel is important for the early steps of the WRC assembly in vivo by antagonizing the instability of certain WRC subunits and subcomplexes.
Collapse
Affiliation(s)
- Shuang Wu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
41
|
Misfolded Gβ is recruited to cytoplasmic dynein by Nudel for efficient clearance. Cell Res 2012; 22:1140-54. [PMID: 22430153 DOI: 10.1038/cr.2012.41] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Gβγ heterodimer is an important signal transducer. Gβ, however, is prone to misfolding due to its requirement for Gγ and chaperones for proper folding. How cells dispose of misfolded Gβ (mfGβ) is not clear. Here, we showed that mfGβ was able to be polyubiquitinated and subsequently degraded by the proteasome. It was sequestered in aggresomes after the inhibition of the proteasome activity with MG132. Sustained activation of Gβγ signaling further elevated cellular levels of the ubiquitinated Gβ. Moreover, Nudel, a regulator of cytoplasmic dynein, the microtubule minus end-directed motor, directly interacted with both the unubiquitinated and ubiquitinated mfGβ. Increasing the levels of both mfGβ and Nudel promoted the association of Gβ with both Nudel and dynein, resulting in robust aggresome formation in a dynein-dependent manner. Depletion of Nudel by RNAi reduced the dynein-associated mfGβ, impaired the MG132-induced aggresome formation, and markedly prolonged the half-life of nascent Gβ. Therefore, cytosolic mfGβ is recruited to dynein by Nudel and transported to the centrosome for rapid sequestration and degradation. Such a process not only eliminates mfGβ efficiently for the control of protein quality, but may also help to terminate the Gβγ signaling.
Collapse
|
42
|
Bradshaw NJ, Porteous DJ. DISC1-binding proteins in neural development, signalling and schizophrenia. Neuropharmacology 2012; 62:1230-41. [PMID: 21195721 PMCID: PMC3275753 DOI: 10.1016/j.neuropharm.2010.12.027] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/17/2010] [Accepted: 12/22/2010] [Indexed: 12/18/2022]
Abstract
In the decade since Disrupted in Schizophrenia 1 (DISC1) was first identified it has become one of the most convincing risk genes for major mental illness. As a multi-functional scaffold protein, DISC1 has multiple identified protein interaction partners that highlight pathologically relevant molecular pathways with potential for pharmaceutical intervention. Amongst these are proteins involved in neuronal migration (e.g. APP, Dixdc1, LIS1, NDE1, NDEL1), neural progenitor proliferation (GSK3β), neurosignalling (Girdin, GSK3β, PDE4) and synaptic function (Kal7, TNIK). Furthermore, emerging evidence of genetic association (NDEL1, PCM1, PDE4B) and copy number variation (NDE1) implicate several DISC1-binding partners as risk factors for schizophrenia in their own right. Thus, a picture begins to emerge of DISC1 as a key hub for multiple critical developmental pathways within the brain, disruption of which can lead to a variety of psychiatric illness phenotypes.
Collapse
Key Words
- disc1
- schizophrenia
- neurodevelopment
- signalling
- synapse
- association studies
- app, amyloid precursor protein
- atf4, activating transcription factor 4
- bace1, β-site app-cleaving enzyme-1
- bbs4, bardet–biedl syndrome 4
- cep290, centrosomal protein 290 kda
- cnv, copy number variation
- cre, camp response element
- dbz, disc1-binding zinc finger
- disc1, disrupted in schizophrenia 1
- dixdc1, dishevelled-axin domain containing-1
- fez1, fasciculation and elongation protein zeta 1
- glur, glutamate receptor
- gsk3β, glycogen synthase kinase 3β
- kal7, kalirin-7
- lef/tcf, lymphoid enhancer factor/t cell factor
- lis1, lissencephaly 1
- mtor, mammalian target of rapamycin
- nde1, nuclear distribution factor e homologue 1 or nuclear distribution element 1
- ndel1, nde-like 1
- nrg, neuregulin
- pacap, pituitary adenylate cyclase-activating polypeptide
- pcm1, pericentriolar material 1
- pcnt, pericentrin
- pde4, phosphodiesterase 4
- pi3 k, phosphatidylinositiol 3-kinase
- psd, post-synaptic density
- rac1, ras-related c3 botulinum toxin substrate 1
- tnik, traf2 and nck interacting kinase
Collapse
Affiliation(s)
- Nicholas J. Bradshaw
- Medical Genetics Section, Molecular Medicine Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, Midlothian EH4 2XU, UK
| | | |
Collapse
|
43
|
Abstract
The organization and function of eukaryotic cells rely on the action of many different molecular motor proteins. Cytoplasmic dynein drives the movement of a wide range of cargoes towards the minus ends of microtubules, and these events are needed, not just at the single-cell level, but are vital for correct development. In the present paper, I review recent progress on understanding dynein's mechanochemistry, how it is regulated and how it binds to such a plethora of cargoes. The importance of a number of accessory factors in these processes is discussed.
Collapse
|
44
|
McKenney RJ, Weil SJ, Scherer J, Vallee RB. Mutually exclusive cytoplasmic dynein regulation by NudE-Lis1 and dynactin. J Biol Chem 2011; 286:39615-22. [PMID: 21911489 PMCID: PMC3234784 DOI: 10.1074/jbc.m111.289017] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/02/2011] [Indexed: 12/27/2022] Open
Abstract
Cytoplasmic dynein is responsible for a wide range of cellular roles. How this single motor protein performs so many functions has remained a major outstanding question for many years. Part of the answer is thought to lie in the diversity of dynein regulators, but how the effects of these factors are coordinated in vivo remains unexplored. We previously found NudE to bind dynein through its light chain 8 (LC8) and intermediate chain (IC) subunits (1), the latter of which also mediates the dynein-dynactin interaction (2). We report here that NudE and dynactin bind to a common region within the IC, and compete for this site. We find LC8 to bind to a novel sequence within NudE, without detectably affecting the dynein-NudE interaction. We further find that commonly used dynein inhibitory reagents have broad effects on the interaction of dynein with its regulatory factors. Together these results reveal an unanticipated mechanism for preventing dual regulation of individual dynein molecules, and identify the IC as a nexus for regulatory interactions within the dynein complex.
Collapse
Affiliation(s)
- Richard J. McKenney
- From the Department of Pathology and Cell Biology, Columbia University, New York, New York 10032
| | - Sarah J. Weil
- From the Department of Pathology and Cell Biology, Columbia University, New York, New York 10032
| | - Julian Scherer
- From the Department of Pathology and Cell Biology, Columbia University, New York, New York 10032
| | - Richard B. Vallee
- From the Department of Pathology and Cell Biology, Columbia University, New York, New York 10032
| |
Collapse
|
45
|
Mimori-Kiyosue Y. Shaping microtubules into diverse patterns: molecular connections for setting up both ends. Cytoskeleton (Hoboken) 2011; 68:603-18. [PMID: 22021191 DOI: 10.1002/cm.20540] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 09/17/2011] [Accepted: 10/04/2011] [Indexed: 12/11/2022]
Abstract
Microtubules serve as rails for intracellular trafficking and their appropriate organization is critical for the generation of cell polarity, which is a foundation of cell differentiation, tissue morphogenesis, ontogenesis and the maintenance of homeostasis. The microtubule array is not just a static railway network; it undergoes repeated collapse and reassembly in diverse patterns during cell morphogenesis. In the last decade much progress has been made toward understanding the molecular mechanisms governing complex microtubule patterning. This review first revisits the basic principle of microtubule dynamics, and then provides an overview of how microtubules are arranged in highly shaped and functional patterns in cells changing their morphology by factors controlling the fate of microtubule ends.
Collapse
Affiliation(s)
- Yuko Mimori-Kiyosue
- Optical Image Analysis Unit, RIKEN Center for Developmental Biology, Kobe Institute, Kobe, Hyogo, Japan.
| |
Collapse
|
46
|
Chansard M, Hong JH, Park YU, Park SK, Nguyen MD. Ndel1, Nudel (Noodle): flexible in the cell? Cytoskeleton (Hoboken) 2011; 68:540-54. [PMID: 21948775 DOI: 10.1002/cm.20532] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 02/06/2023]
Abstract
Nuclear distribution element-like 1 (Ndel1 or Nudel) was firstly described as a regulator of the cytoskeleton in microtubule and intermediate filament dynamics and microtubule-based transport. Emerging evidence indicates that Ndel1 also serves as a docking platform for signaling proteins and modulates enzymatic activities (kinase, ATPase, oligopeptidase, GTPase). Through these structural and signaling functions, Ndel1 plays a role in diverse cellular processes (e.g., mitosis, neurogenesis, neurite outgrowth, and neuronal migration). Furthermore, Ndel1 is linked to the etiology of various mental illnesses and neurodegenerative disorders. In the present review, we summarize the physiological and pathological functions associated with Ndel1. We further advance the concept that Ndel1 interfaces GTPases-mediated processes (endocytosis, vesicles morphogenesis/signaling) and cytoskeletal dynamics to impact cell signaling and behaviors. This putative mechanism may affect cellular functionalities and may contribute to shed light into the causes of devastating human diseases.
Collapse
Affiliation(s)
- Mathieu Chansard
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
47
|
Sumigray KD, Chen H, Lechler T. Lis1 is essential for cortical microtubule organization and desmosome stability in the epidermis. ACTA ACUST UNITED AC 2011; 194:631-42. [PMID: 21844209 PMCID: PMC3160577 DOI: 10.1083/jcb.201104009] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Desmoplakin recruits the centrosomal protein Lis1 to the epidermal cell cortex, where it regulates cortical microtubule organization and desmosome stability. Desmosomes are cell–cell adhesion structures that integrate cytoskeletal networks. In addition to binding intermediate filaments, the desmosomal protein desmoplakin (DP) regulates microtubule reorganization in the epidermis. In this paper, we identify a specific subset of centrosomal proteins that are recruited to the cell cortex by DP upon epidermal differentiation. These include Lis1 and Ndel1, which are centrosomal proteins that regulate microtubule organization and anchoring in other cell types. This recruitment was mediated by a region of DP specific to a single isoform, DPI. Furthermore, we demonstrate that the epidermal-specific loss of Lis1 results in dramatic defects in microtubule reorganization. Lis1 ablation also causes desmosomal defects, characterized by decreased levels of desmosomal components, decreased attachment of keratin filaments, and increased turnover of desmosomal proteins at the cell cortex. This contributes to loss of epidermal barrier activity, resulting in completely penetrant perinatal lethality. This work reveals essential desmosome-associated components that control cortical microtubule organization and unexpected roles for centrosomal proteins in epidermal function.
Collapse
Affiliation(s)
- Kaelyn D Sumigray
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
48
|
Bolhy S, Bouhlel I, Dultz E, Nayak T, Zuccolo M, Gatti X, Vallee R, Ellenberg J, Doye V. A Nup133-dependent NPC-anchored network tethers centrosomes to the nuclear envelope in prophase. ACTA ACUST UNITED AC 2011; 192:855-71. [PMID: 21383080 PMCID: PMC3051818 DOI: 10.1083/jcb.201007118] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Centrosomes are closely associated with the nuclear envelope (NE) throughout the cell cycle and this association is maintained in prophase when they separate to establish the future mitotic spindle. At this stage, the kinetochore constituents CENP-F, NudE, NudEL, dynein, and dynactin accumulate at the NE. We demonstrate here that the N-terminal domain of the nuclear pore complex (NPC) protein Nup133, although largely dispensable for NPC assembly, is required for efficient anchoring of the dynein/dynactin complex to the NE in prophase. Nup133 exerts this function through an interaction network via CENP-F and NudE/EL. We show that this molecular chain is critical for maintaining centrosome association with the NE at mitotic entry and contributes to this process without interfering with the previously described RanBP2-BICD2-dependent pathway of centrosome anchoring. Finally, our study reveals that tethering of centrosomes to the nuclear surface at the G2/M transition contributes, along with other cellular mechanisms, to early stages of bipolar spindle assembly.
Collapse
Affiliation(s)
- Stéphanie Bolhy
- Cell Biology Program, Institut Jacques Monod, UMR 7592 Centre National de la Recherche Scientifique-Université Paris Diderot, 75205 Paris Cedex 13, France
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Mahjoub MR, Xie Z, Stearns T. Cep120 is asymmetrically localized to the daughter centriole and is essential for centriole assembly. ACTA ACUST UNITED AC 2011; 191:331-46. [PMID: 20956381 PMCID: PMC2958470 DOI: 10.1083/jcb.201003009] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cep120, a protein involved in maintenance of neural progenitor cells, is required for centriole duplication in cycling cells and for centriole amplification in tracheal epithelial cells. Centrioles form the core of the centrosome in animal cells and function as basal bodies that nucleate and anchor cilia at the plasma membrane. In this paper, we report that Cep120 (Ccdc100), a protein previously shown to be involved in maintaining the neural progenitor pool in mouse brain, is associated with centriole structure and function. Cep120 is up-regulated sevenfold during differentiation of mouse tracheal epithelial cells (MTECs) and localizes to basal bodies. Cep120 localizes preferentially to the daughter centriole in cycling cells, and this asymmetry between mother and daughter centrioles is relieved coincident with new centriole assembly. Photobleaching recovery analysis identifies two pools of Cep120, differing in their halftime at the centriole. We find that Cep120 is required for centriole duplication in cycling cells, centriole amplification in MTECs, and centriole overduplication in S phase–arrested cells. We propose that Cep120 is required for centriole assembly and that the observed defect in neuronal migration might derive from a defect in this process.
Collapse
Affiliation(s)
- Moe R Mahjoub
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
50
|
Wang S, Zheng Y. Identification of a novel dynein binding domain in nudel essential for spindle pole organization in Xenopus egg extract. J Biol Chem 2010; 286:587-93. [PMID: 21056974 PMCID: PMC3013018 DOI: 10.1074/jbc.m110.181578] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The nuclear distribution protein E (NudE) and nuclear distribution protein E-like (Nudel or Ndel1) interact with both lissencephaly 1 (Lis1) and dynein. These interactions are thought to be essential for dynein function. Previous studies have shown that the highly conserved N terminus of NudE/Nudel directly binds to Lis1, and such binding is critical for dynein activity. By contrast, although the C terminus of NudE/Nudel was reported to bind to dynein, the functional significance of this binding has remained unclear. Using the sperm-mediated spindle assembly assay in Xenopus egg extracts and extensive mutagenesis studies, we have identified a highly conserved dynein binding domain within the first 80 amino acids of Nudel. We further demonstrate that the dynein intermediate chain in the dynein complex is directly involved in this interaction. Importantly, we show that both the dynein and Lis1 binding domains of Nudel are required for spindle pole organization. Finally, we report that spindle defects caused by immuno-depletion of Nudel could be rescued by a 1-fold increase of Lis1 concentration in Xenopus egg extracts. This suggests that an important function of the N terminus of Nudel is to facilitate the interaction between Lis1 and dynein during spindle assembly. Together, our findings open up new avenues to further decipher the mechanism of dynein regulation by Nudel and Lis1.
Collapse
Affiliation(s)
- Shusheng Wang
- Department of Embryology, Carnegie Institution for Science and Howard Hughes Medical Institute, Baltimore, Maryland 21218, USA
| | | |
Collapse
|