1
|
Albert V, Bruss C, Tümen D, Piendl G, Weber F, Dahl E, Seitz S, Ortmann O, Wege AK, Brockhoff G. HER4 Affects Sensitivity to Tamoxifen and Abemaciclib in Luminal Breast Cancer Cells and Restricts Tumor Growth in MCF-7-Based Humanized Tumor Mice. Int J Mol Sci 2024; 25:7475. [PMID: 39000582 PMCID: PMC11242770 DOI: 10.3390/ijms25137475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
The impact of the HER4 receptor on the growth and treatment of estrogen receptor-positive breast cancer is widely uncertain. Using CRISPR/Cas9 technology, we generated stable HER4 knockout variants derived from the HER4-positive MCF-7, T-47D, and ZR-75-1 breast cancer cell lines. We investigated tumor cell proliferation as well as the cellular and molecular mechanisms of tamoxifen, abemaciclib, AMG232, and NRG1 treatments as a function of HER4 in vitro. HER4 differentially affects the cellular response to tamoxifen and abemaciclib treatment. Most conspicuous is the increased sensitivity of MCF-7 in vitro upon HER4 knockout and the inhibition of cell proliferation by NRG1. Additionally, we assessed tumor growth and immunological effects as responses to tamoxifen and abemaciclib therapy in humanized tumor mice (HTM) based on MCF-7 HER4-wildtype and the corresponding HER4-knockout cells. Without any treatment, the enhanced MCF-7 tumor growth in HTM upon HER4 knockout suggests a tumor-suppressive effect of HER4 under preclinical but human-like conditions. This phenomenon is associated with an increased HER2 expression in MCF-7 in vivo. Independent of HER4, abemaciclib and tamoxifen treatment considerably inhibited tumor growth in these mice. However, abemaciclib-treated hormone receptor-positive breast cancer patients with tumor-associated mdm2 gene copy gains or pronounced HER4 expression showed a reduced event-free survival. Evidently, the presence of HER4 affects the efficacy of tamoxifen and abemaciclib treatment in different estrogen receptor-positive breast cancer cells, even to different extents, and is associated with unfavorable outcomes in abemaciclib-treated patients.
Collapse
Affiliation(s)
- Veruschka Albert
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93935 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
| | - Christina Bruss
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93935 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
| | - Deniz Tümen
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Gerhard Piendl
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93935 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
| | - Florian Weber
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
- Institute of Pathology, University of Regensburg, 93093 Regensburg, Germany
| | - Edgar Dahl
- Institute of Pathology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Stephan Seitz
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93935 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93935 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
| | - Anja K Wege
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93935 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
| | - Gero Brockhoff
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93935 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
| |
Collapse
|
2
|
Udagawa H, Nilsson MB, Robichaux JP, He J, Poteete A, Jiang H, Heeke S, Elamin YY, Shibata Y, Matsumoto S, Yoh K, Okazaki S, Masuko T, Odintsov I, Somwar R, Ladanyi M, Goto K, Heymach JV. HER4 and EGFR Activate Cell Signaling in NRG1 Fusion-Driven Cancers: Implications for HER2-HER3-specific Versus Pan-HER Targeting Strategies. J Thorac Oncol 2024; 19:106-118. [PMID: 37678511 PMCID: PMC11161205 DOI: 10.1016/j.jtho.2023.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
INTRODUCTION NRG1 gene fusions are clinically actionable alterations identified in NSCLC and other tumors. Previous studies have reported that NRG1 fusions signal through HER2 and HER3 but, thus far, strategies targeting HER3 specifically or HER2-HER3 signaling have exhibited modest activity in patients with NSCLC bearing NRG1 fusions. Although NRG1 fusion proteins can bind HER4 in addition to HER3, the contribution of HER4 and other HER family members in NRG1 fusion-positive cancers is not fully understood. METHODS We investigated the role of HER4 and EGFR-HER3 signaling in NRG1 fusion-positive cancers using Ba/F3 models engineered to express various HER family members in combination with NRG1 fusions and in vitro and in vivo models of NRG1 fusion-positive cancer. RESULTS We determined that NRG1 fusions can stimulate downstream signaling and tumor cell growth through HER4, independent of other HER family members. Moreover, EGFR-HER3 signaling is also activated in cells expressing NRG1 fusions, and inhibition of these receptors is also necessary to effectively inhibit tumor cell growth. We observed that cetuximab, an anti-EGFR antibody, in combination with anti-HER2 antibodies, trastuzumab and pertuzumab, yielded a synergistic effect. Furthermore, pan-HER tyrosine kinase inhibitors were more effective than tyrosine kinase inhibitors with greater specificity for EGFR, EGFR-HER2, or HER2-HER4, although the relative degree of dependence on EGFR or HER4 signaling varied between different NRG1 fusion-positive cancers. CONCLUSIONS Our findings indicate that pan-HER inhibition including HER4 and EGFR blockade is more effective than selectively targeting HER3 or HER2-HER3 in NRG1 fusion-positive cancers.
Collapse
Affiliation(s)
- Hibiki Udagawa
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Monique B Nilsson
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jacqulyne P Robichaux
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Junqin He
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alissa Poteete
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hong Jiang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Simon Heeke
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yasir Y Elamin
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuji Shibata
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Shingo Matsumoto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Kiyotaka Yoh
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Shogo Okazaki
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, Japan
| | - Takashi Masuko
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka, Japan
| | - Igor Odintsov
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Romel Somwar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
3
|
Vaparanta K, Jokilammi A, Paatero I, Merilahti JA, Heliste J, Hemanthakumar KA, Kivelä R, Alitalo K, Taimen P, Elenius K. STAT5b is a key effector of NRG-1/ERBB4-mediated myocardial growth. EMBO Rep 2023; 24:e56689. [PMID: 37009825 PMCID: PMC10157316 DOI: 10.15252/embr.202256689] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 04/04/2023] Open
Abstract
The growth factor Neuregulin-1 (NRG-1) regulates myocardial growth and is currently under clinical investigation as a treatment for heart failure. Here, we demonstrate in several in vitro and in vivo models that STAT5b mediates NRG-1/EBBB4-stimulated cardiomyocyte growth. Genetic and chemical disruption of the NRG-1/ERBB4 pathway reduces STAT5b activation and transcription of STAT5b target genes Igf1, Myc, and Cdkn1a in murine cardiomyocytes. Loss of Stat5b also ablates NRG-1-induced cardiomyocyte hypertrophy. Dynamin-2 is shown to control the cell surface localization of ERBB4 and chemical inhibition of Dynamin-2 downregulates STAT5b activation and cardiomyocyte hypertrophy. In zebrafish embryos, Stat5 is activated during NRG-1-induced hyperplastic myocardial growth, and chemical inhibition of the Nrg-1/Erbb4 pathway or Dynamin-2 leads to loss of myocardial growth and Stat5 activation. Moreover, CRISPR/Cas9-mediated knockdown of stat5b results in reduced myocardial growth and cardiac function. Finally, the NRG-1/ERBB4/STAT5b signaling pathway is differentially regulated at mRNA and protein levels in the myocardium of patients with pathological cardiac hypertrophy as compared to control human subjects, consistent with a role of the NRG-1/ERBB4/STAT5b pathway in myocardial growth.
Collapse
Affiliation(s)
- Katri Vaparanta
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
- Medicity Research LaboratoriesUniversity of TurkuTurkuFinland
- Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Anne Jokilammi
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
- Medicity Research LaboratoriesUniversity of TurkuTurkuFinland
- Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Ilkka Paatero
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Johannes A Merilahti
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Juho Heliste
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
- Medicity Research LaboratoriesUniversity of TurkuTurkuFinland
- Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Karthik Amudhala Hemanthakumar
- Wihuri Research InstituteHelsinkiFinland
- Translational Cancer Biology Program, Research Programs Unit, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Riikka Kivelä
- Wihuri Research InstituteHelsinkiFinland
- Translational Cancer Biology Program, Research Programs Unit, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Kari Alitalo
- Wihuri Research InstituteHelsinkiFinland
- Translational Cancer Biology Program, Research Programs Unit, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Pekka Taimen
- Institute of Biomedicine and FICAN West Cancer CentreUniversity of TurkuTurkuFinland
- Department of PathologyTurku University HospitalTurkuFinland
| | - Klaus Elenius
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
- Medicity Research LaboratoriesUniversity of TurkuTurkuFinland
- Institute of BiomedicineUniversity of TurkuTurkuFinland
- Department of OncologyTurku University HospitalTurkuFinland
| |
Collapse
|
4
|
An extracellular receptor tyrosine kinase motif orchestrating intracellular STAT activation. Nat Commun 2022; 13:6953. [PMID: 36376313 PMCID: PMC9663514 DOI: 10.1038/s41467-022-34539-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
The ErbB4 receptor isoforms JM-a and JM-b differ within their extracellular juxtamembrane (eJM) domains. Here, ErbB4 isoforms are used as a model to address the effect of structural variation in the eJM domain of receptor tyrosine kinases (RTK) on downstream signaling. A specific JM-a-like sequence motif is discovered, and its presence or absence (in JM-b-like RTKs) in the eJM domains of several RTKs is demonstrated to dictate selective STAT activation. STAT5a activation by RTKs including the JM-a like motif is shown to involve interaction with oligosaccharides of N-glycosylated cell surface proteins such as β1 integrin, whereas STAT5b activation by JM-b is dependent on TYK2. ErbB4 JM-a- and JM-b-like RTKs are shown to associate with specific signaling complexes at different cell surface compartments using analyses of RTK interactomes and super-resolution imaging. These findings provide evidence for a conserved mechanism linking a ubiquitous extracellular motif in RTKs with selective intracellular STAT signaling.
Collapse
|
5
|
Pitcher JL, Alexander N, Miranda PJ, Johns TG. ErbB4 in the brain: Focus on high grade glioma. Front Oncol 2022; 12:983514. [PMID: 36119496 PMCID: PMC9471956 DOI: 10.3389/fonc.2022.983514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases (RTKs) consists of EGFR, ErbB2, ErbB3, and ErbB4. These receptors play key roles in cell proliferation, angiogenesis, cell migration, and in some cases, tumor promotion. ErbB4 is a unique member of the EGFR family, implicated not only in pro-tumorigenic mechanisms, such as cell proliferation and migration, but also in anti-tumorigenic activities, including cell differentiation and apoptosis. ErbB4 is differentially expressed in a wide variety of tissues, and interestingly, as different isoforms that result in vastly different signalling outcomes. Most studies have either ignored the presence of these isoforms or used overexpression models that may mask the true function of ErbB4. ErbB4 is widely expressed throughout the body with significant expression in skeletal tissue, mammary glands, heart, and brain. Knockout models have demonstrated embryonic lethality due to disrupted heart and brain development. Despite high expression in the brain and a critical role in brain development, remarkably little is known about the potential signalling activity of ErbB4 in brain cancer.This review focuses on the unique biology of ErbB4 in the brain, and in particular, highlights brain cancer research findings. We end the review with a focus on high grade gliomas, primarily glioblastoma, a disease that has been shown to involve EGFR and its mutant forms. The role of the different ErbB4 isotypes in high grade gliomas is still unclear and future research will hopefully shed some light on this question.
Collapse
Affiliation(s)
- Jamie-Lee Pitcher
- Oncogenic Signalling Laboratory, Telethon Kids Institute, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
- *Correspondence: Jamie-Lee Pitcher,
| | - Naomi Alexander
- Oncogenic Signalling Laboratory, Telethon Kids Institute, Nedlands, WA, Australia
| | - Panimaya Jeffreena Miranda
- Oncogenic Signalling Laboratory, Telethon Kids Institute, Nedlands, WA, Australia
- Division of Paediatrics/Centre for Child Health Research, University of Western Australia, Crawley, WA, Australia
| | - Terrance G. Johns
- Oncogenic Signalling Laboratory, Telethon Kids Institute, Nedlands, WA, Australia
- Division of Paediatrics/Centre for Child Health Research, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
6
|
Lara-Ureña N, Jafari V, García-Domínguez M. Cancer-Associated Dysregulation of Sumo Regulators: Proteases and Ligases. Int J Mol Sci 2022; 23:8012. [PMID: 35887358 PMCID: PMC9316396 DOI: 10.3390/ijms23148012] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
SUMOylation is a post-translational modification that has emerged in recent decades as a mechanism involved in controlling diverse physiological processes and that is essential in vertebrates. The SUMO pathway is regulated by several enzymes, proteases and ligases being the main actors involved in the control of sumoylation of specific targets. Dysregulation of the expression, localization and function of these enzymes produces physiological changes that can lead to the appearance of different types of cancer, depending on the enzymes and target proteins involved. Among the most studied proteases and ligases, those of the SENP and PIAS families stand out, respectively. While the proteases involved in this pathway have specific SUMO activity, the ligases may have additional functions unrelated to sumoylation, which makes it more difficult to study their SUMO-associated role in cancer process. In this review we update the knowledge and advances in relation to the impact of dysregulation of SUMO proteases and ligases in cancer initiation and progression.
Collapse
Affiliation(s)
| | | | - Mario García-Domínguez
- Andalusian Centre for Molecular Biology and Regenerative Medicine (CABIMER), CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain; (N.L.-U.); (V.J.)
| |
Collapse
|
7
|
Brockhoff G. "Shedding" light on HER4 signaling in normal and malignant breast tissues. Cell Signal 2022; 97:110401. [PMID: 35820544 DOI: 10.1016/j.cellsig.2022.110401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/25/2022]
Abstract
Receptor Tyrosine Kinases of the Epidermal Growth Factor Receptor Family play a pivotal role as drivers of carcinogenesis and uncontrolled cell growth for a variety of malignancies, not least for breast cancer. Besides the estrogen receptor, the HER2 receptor was and still is a representative marker for advanced taxonomic sub-differentiation of breast cancer and emerged as one of the first therapeutic targets for antibody based therapies. Since the approval of trastuzumab for the therapy of HER2-positive breast cancer in 1998 anti-HER2 treatment strategies are being modified, refined, and successfully combined with complementary treatments, nevertheless there is still potential for improvement. The HER2 relatives, namely HER1 (i.e., EGFR), HER3 and HER4 share a high degree of molecular homology and together form a functional unit for signal transmission. Under regular conditions, receptor coexpression patterns and receptor interaction represent key parameters for signaling robustness, which ensures cellular growth control and enables tissue differentiation. In addition, treatment efficiency of e.g., an anti-HER2 targeting is substantially determined by the expression pattern of HER receptors on target cells. Within the receptor family, the HER4 plays a particular role and is engaged in exceptional signaling activities. A favorable prognostic impact has been attributed to HER4 expression in breast cancer under specific molecular conditions. HER4-specific cellular effects are initially determined by a ligand-dependent or -independent receptor activation. Essential processes as cell growth and proliferation, cell differentiation, and apoptotic cell death can be initiated by this receptor. This review gives an overview of the role of HER4 in normal and malignant breast epithelial cells and tissues. Specific mechanism of HER4 activation and subsequent intracellular signaling will be described by taking a focus on effects provoked by receptor shedding. HER4 activities and specific effects will be correlated to breast cancer subtypes and the impact of HER4 on course and outcome of disease will be considered. Moreover, current and potential therapeutic approaches will be discussed.
Collapse
Affiliation(s)
- Gero Brockhoff
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany.
| |
Collapse
|
8
|
Wiegel D, Dammann CEL, Nielsen HC. ErbB4 alternative splicing mediates fetal mouse alveolar type II cell differentiation in vitro. Pediatr Res 2022:10.1038/s41390-022-02013-y. [PMID: 35338350 PMCID: PMC9509489 DOI: 10.1038/s41390-022-02013-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Alternative splicing (AS) creates different protein isoforms, an important mechanism regulating cell-specific function. Little is known about AS in lung development, particularly in alveolar type II (ATII) cells. ErbB4 receptor isoforms Jma and Jmb have significant and opposing functions in the brain, heart, and lung development and/or disease. However, the regulators of ErbB4 AS are unknown. ErbB4 AS regulators in fetal mouse ATII cells control its function in ATII cell maturation. METHODS Candidate ErbB4 AS regulators were found using in silico analysis. Their developmental expression was studied in fetal mouse ATII cells. The effects of splice factor downregulation and upregulation on ATII cell maturation were analyzed. RESULTS ErbB4-Jma increased significantly in ATII cells after gestation E16.5. In silico analysis found four candidate splice factors: FOX2, CUG/CELF1, TIAR, and HUB. Fetal ATII cells expressed these factors in distinct developmental profiles. HUB downregulation in E17.5 ATII cells increased Jma isoform levels and Sftpb gene expression and decreased Jmb. HUB overexpression decreased Jma and Sftpb. CONCLUSIONS ErbB4 AS is developmentally controlled by HUB in fetal ATII cells, promoting ATII differentiation. Regulated AS expression during ATII cell differentiation suggests novel therapeutic strategies to approach human disease. IMPACT Alternative splicing (AS) of the ErbB4 receptor, involving mutually exclusive exon inclusion, creates Jma and Jmb isoforms with distinct differences in receptor processing and function. The Jma isoform of ErbB4 promotes differentiation of fetal lung alveolar type II cells. The AS is mediated in part by the RNA-binding protein HUB. The molecular mechanism of AS for ErbB4 has not been previously described. The regulation of ErbB4 AS has important implications in the development of organs, such as the lung, brain, and heart, and for disease, including cancer.
Collapse
Affiliation(s)
- Dorothea Wiegel
- Hannover Medical School, 30625, Hannover, Germany
- Division of Newborn Medicine, Floating Hospital for Children at Tufts Medical Center, Boston, MA, 02111, USA
| | - Christiane E L Dammann
- Hannover Medical School, 30625, Hannover, Germany
- Division of Newborn Medicine, Floating Hospital for Children at Tufts Medical Center, Boston, MA, 02111, USA
- Graduate School for Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Heber C Nielsen
- Division of Newborn Medicine, Floating Hospital for Children at Tufts Medical Center, Boston, MA, 02111, USA.
- Graduate School for Biomedical Sciences, Tufts University, Boston, MA, USA.
| |
Collapse
|
9
|
Roy A, Anand A, Garg S, Khan MS, Bhasin S, Asghar MN, Emran TB. Structure-Based In Silico Investigation of Agonists for Proteins Involved in Breast Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7278731. [PMID: 35035508 PMCID: PMC8758269 DOI: 10.1155/2022/7278731] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/30/2022]
Abstract
Cancer is recognized as one of the main causes of mortality worldwide by the World Health Organization. The high cost of currently available cancer therapy and certain limitations of current treatment make it necessary to search for novel, cost-effective, and efficient methods of cancer treatment. Therefore, in the current investigation, sixty-two compounds from five medicinal plants (Tinospora cordifolia, Ocimum tenuiflorum, Podophyllum hexandrum, Andrographis paniculata, and Beta vulgaris) and two proteins that are associated with breast cancer, i.e., HER4/ErbB4 kinase and ERα were selected. Selected compounds were screened using Lipinski's rule, which resulted in eighteen molecules being ruled out. The remaining forty-four compounds were then taken forward for docking studies followed by molecular dynamics studies of the best screened complexes. Results showed that isocolumbin, isopropylideneandrographolide, and 14-acetylandrographolide were potential lead compounds against the selected breast cancer receptors. Furthermore, in vitro studies are required to confirm the efficacy of the lead compounds.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Ashutosh Anand
- Delhi Technological University, Rohini, New Delhi, India
| | - Saksham Garg
- Delhi Technological University, Rohini, New Delhi, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | - Muhammad Nadeem Asghar
- Department of Medical Biology, University of Québec at Trois-Rivieres, Trois-Rivieres, Québec G9A 5H7, Canada
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
10
|
Chakroborty D, Ojala VK, Knittle AM, Drexler J, Tamirat MZ, Ruzicka R, Bosch K, Woertl J, Schmittner S, Elo LL, Johnson MS, Kurppa KJ, Solca F, Elenius K. An Unbiased Functional Genetics Screen Identifies Rare Activating ERBB4 Mutations. CANCER RESEARCH COMMUNICATIONS 2022; 2:10-27. [PMID: 36860695 PMCID: PMC9973412 DOI: 10.1158/2767-9764.crc-21-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/04/2021] [Accepted: 12/21/2021] [Indexed: 06/18/2023]
Abstract
UNLABELLED Despite the relatively high frequency of somatic ERBB4 mutations in various cancer types, only a few activating ERBB4 mutations have been characterized, primarily due to lack of mutational hotspots in the ERBB4 gene. Here, we utilized our previously published pipeline, an in vitro screen for activating mutations, to perform an unbiased functional screen to identify potential activating ERBB4 mutations from a randomly mutated ERBB4 expression library. Ten potentially activating ERBB4 mutations were identified and subjected to validation by functional and structural analyses. Two of the 10 ERBB4 mutants, E715K and R687K, demonstrated hyperactivity in all tested cell models and promoted cellular growth under two-dimensional and three-dimensional culture conditions. ERBB4 E715K also promoted tumor growth in in vivo Ba/F3 cell mouse allografts. Importantly, all tested ERBB4 mutants were sensitive to the pan-ERBB tyrosine kinase inhibitors afatinib, neratinib, and dacomitinib. Our data indicate that rare ERBB4 mutations are potential candidates for ERBB4-targeted therapy with pan-ERBB inhibitors. STATEMENT OF SIGNIFICANCE ERBB4 is a member of the ERBB family of oncogenes that is frequently mutated in different cancer types but the functional impact of its somatic mutations remains unknown. Here, we have analyzed the function of over 8,000 randomly mutated ERBB4 variants in an unbiased functional genetics screen. The data indicate the presence of rare activating ERBB4 mutations in cancer, with potential to be targeted with clinically approved pan-ERBB inhibitors.
Collapse
Affiliation(s)
- Deepankar Chakroborty
- Institute of Biomedicine, University of Turku, Turku, Finland
- Medicity Research Laboratories, University of Turku, Turku, Finland
- Turku Doctoral Programme of Molecular Medicine, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Veera K. Ojala
- Institute of Biomedicine, University of Turku, Turku, Finland
- Medicity Research Laboratories, University of Turku, Turku, Finland
- Turku Doctoral Programme of Molecular Medicine, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Anna M. Knittle
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Mahlet Z. Tamirat
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
- Graduate School of Åbo Akademi University (Informational and Structural Biology Doctoral Network), Turku, Finland
| | | | - Karin Bosch
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | | | - Laura L. Elo
- Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Mark S. Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| | - Kari J. Kurppa
- Institute of Biomedicine, University of Turku, Turku, Finland
- Medicity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Flavio Solca
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Klaus Elenius
- Institute of Biomedicine, University of Turku, Turku, Finland
- Medicity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Oncology, Turku University Hospital, Turku, Finland
| |
Collapse
|
11
|
Lucas LM, Dwivedi V, Senfeld JI, Cullum RL, Mill CP, Piazza JT, Bryant IN, Cook LJ, Miller ST, Lott JH, Kelley CM, Knerr EL, Markham JA, Kaufmann DP, Jacobi MA, Shen J, Riese DJ. The Yin and Yang of ERBB4: Tumor Suppressor and Oncoprotein. Pharmacol Rev 2022; 74:18-47. [PMID: 34987087 PMCID: PMC11060329 DOI: 10.1124/pharmrev.121.000381] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/15/2021] [Indexed: 12/11/2022] Open
Abstract
ERBB4 (HER4) is a member of the ERBB family of receptor tyrosine kinases, a family that includes the epidermal growth factor receptor (EGFR/ERBB1/HER1), ERBB2 (Neu/HER2), and ERBB3 (HER3). EGFR and ERBB2 are oncoproteins and validated targets for therapeutic intervention in a variety of solid tumors. In contrast, the role that ERBB4 plays in human malignancies is ambiguous. Thus, here we review the literature regarding ERBB4 function in human malignancies. We review the mechanisms of ERBB4 signaling with an emphasis on mechanisms of signaling specificity. In the context of this signaling specificity, we discuss the hypothesis that ERBB4 appears to function as a tumor suppressor protein and as an oncoprotein. Next, we review the literature that describes the role of ERBB4 in tumors of the bladder, liver, prostate, brain, colon, stomach, lung, bone, ovary, thyroid, hematopoietic tissues, pancreas, breast, skin, head, and neck. Whenever possible, we discuss the possibility that ERBB4 mutants function as biomarkers in these tumors. Finally, we discuss the potential roles of ERBB4 mutants in the staging of human tumors and how ERBB4 function may dictate the treatment of human tumors. SIGNIFICANCE STATEMENT: This articles reviews ERBB4 function in the context of the mechanistic model that ERBB4 homodimers function as tumor suppressors, whereas ERBB4-EGFR or ERBB4-ERBB2 heterodimers act as oncogenes. Thus, this review serves as a mechanistic framework for clinicians and scientists to consider the role of ERBB4 and ERBB4 mutants in staging and treating human tumors.
Collapse
Affiliation(s)
- Lauren M Lucas
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Vipasha Dwivedi
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Jared I Senfeld
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Richard L Cullum
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Christopher P Mill
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - J Tyler Piazza
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Ianthe N Bryant
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Laura J Cook
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - S Tyler Miller
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - James H Lott
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Connor M Kelley
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Elizabeth L Knerr
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Jessica A Markham
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - David P Kaufmann
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Megan A Jacobi
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Jianzhong Shen
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - David J Riese
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| |
Collapse
|
12
|
El-Gamal MI, Mewafi NH, Abdelmotteleb NE, Emara MA, Tarazi H, Sbenati RM, Madkour MM, Zaraei SO, Shahin AI, Anbar HS. A Review of HER4 (ErbB4) Kinase, Its Impact on Cancer, and Its Inhibitors. Molecules 2021; 26:7376. [PMID: 34885957 PMCID: PMC8659013 DOI: 10.3390/molecules26237376] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
HER4 is a receptor tyrosine kinase that is required for the evolution of normal body systems such as cardiovascular, nervous, and endocrine systems, especially the mammary glands. It is activated through ligand binding and activates MAPKs and PI3K/AKT pathways. HER4 is commonly expressed in many human tissues, both adult and fetal. It is important to understand the role of HER4 in the treatment of many disorders. Many studies were also conducted on the role of HER4 in tumors and its tumor suppressor function. Mostly, overexpression of HER4 kinase results in cancer development. In the present article, we reviewed the structure, location, ligands, physiological functions of HER4, and its relationship to different cancer types. HER4 inhibitors reported mainly from 2016 to the present were reviewed as well.
Collapse
Affiliation(s)
- Mohammed I. El-Gamal
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (N.H.M.); (N.E.A.); (M.A.E.); (H.T.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.M.S.); (M.M.M.); (S.-O.Z.); (A.I.S.)
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Nada H. Mewafi
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (N.H.M.); (N.E.A.); (M.A.E.); (H.T.)
| | - Nada E. Abdelmotteleb
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (N.H.M.); (N.E.A.); (M.A.E.); (H.T.)
| | - Minnatullah A. Emara
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (N.H.M.); (N.E.A.); (M.A.E.); (H.T.)
| | - Hamadeh Tarazi
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (N.H.M.); (N.E.A.); (M.A.E.); (H.T.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.M.S.); (M.M.M.); (S.-O.Z.); (A.I.S.)
| | - Rawan M. Sbenati
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.M.S.); (M.M.M.); (S.-O.Z.); (A.I.S.)
| | - Moustafa M. Madkour
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.M.S.); (M.M.M.); (S.-O.Z.); (A.I.S.)
| | - Seyed-Omar Zaraei
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.M.S.); (M.M.M.); (S.-O.Z.); (A.I.S.)
| | - Afnan I. Shahin
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.M.S.); (M.M.M.); (S.-O.Z.); (A.I.S.)
| | - Hanan S. Anbar
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai 19099, United Arab Emirates
| |
Collapse
|
13
|
Kukkula A, Ojala VK, Mendez LM, Sistonen L, Elenius K, Sundvall M. Therapeutic Potential of Targeting the SUMO Pathway in Cancer. Cancers (Basel) 2021; 13:4402. [PMID: 34503213 PMCID: PMC8431684 DOI: 10.3390/cancers13174402] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
SUMOylation is a dynamic and reversible post-translational modification, characterized more than 20 years ago, that regulates protein function at multiple levels. Key oncoproteins and tumor suppressors are SUMO substrates. In addition to alterations in SUMO pathway activity due to conditions typically present in cancer, such as hypoxia, the SUMO machinery components are deregulated at the genomic level in cancer. The delicate balance between SUMOylation and deSUMOylation is regulated by SENP enzymes possessing SUMO-deconjugation activity. Dysregulation of SUMO machinery components can disrupt the balance of SUMOylation, contributing to the tumorigenesis and drug resistance of various cancers in a context-dependent manner. Many molecular mechanisms relevant to the pathogenesis of specific cancers involve SUMO, highlighting the potential relevance of SUMO machinery components as therapeutic targets. Recent advances in the development of inhibitors targeting SUMOylation and deSUMOylation permit evaluation of the therapeutic potential of targeting the SUMO pathway in cancer. Finally, the first drug inhibiting SUMO pathway, TAK-981, is currently also being evaluated in clinical trials in cancer patients. Intriguingly, the inhibition of SUMOylation may also have the potential to activate the anti-tumor immune response. Here, we comprehensively and systematically review the recent developments in understanding the role of SUMOylation in cancer and specifically focus on elaborating the scientific rationale of targeting the SUMO pathway in different cancers.
Collapse
Affiliation(s)
- Antti Kukkula
- Cancer Research Unit, FICAN West Cancer Center Laboratory, Institute of Biomedicine, Turku University Hospital, University of Turku, FI-20520 Turku, Finland; (A.K.); (V.K.O.); (K.E.)
| | - Veera K. Ojala
- Cancer Research Unit, FICAN West Cancer Center Laboratory, Institute of Biomedicine, Turku University Hospital, University of Turku, FI-20520 Turku, Finland; (A.K.); (V.K.O.); (K.E.)
- Turku Doctoral Programme of Molecular Medicine, University of Turku, FI-20520 Turku, Finland
- Medicity Research Laboratories, University of Turku, FI-20520 Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland;
| | - Lourdes M. Mendez
- Beth Israel Deaconess Cancer Center, Beth Israel Deaconess Medical Center, Department of Medicine and Pathology, Cancer Research Institute, Harvard Medical School, Boston, MA 02115, USA;
| | - Lea Sistonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland;
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, FI-20520 Turku, Finland
| | - Klaus Elenius
- Cancer Research Unit, FICAN West Cancer Center Laboratory, Institute of Biomedicine, Turku University Hospital, University of Turku, FI-20520 Turku, Finland; (A.K.); (V.K.O.); (K.E.)
- Medicity Research Laboratories, University of Turku, FI-20520 Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland;
- Department of Oncology, Turku University Hospital, FI-20521 Turku, Finland
| | - Maria Sundvall
- Cancer Research Unit, FICAN West Cancer Center Laboratory, Institute of Biomedicine, Turku University Hospital, University of Turku, FI-20520 Turku, Finland; (A.K.); (V.K.O.); (K.E.)
- Department of Oncology, Turku University Hospital, FI-20521 Turku, Finland
| |
Collapse
|
14
|
Rattanaburee T, Tanawattanasuntorn T, Thongpanchang T, Tipmanee V, Graidist P. Trans-(-)-Kusunokinin: A Potential Anticancer Lignan Compound against HER2 in Breast Cancer Cell Lines? Molecules 2021; 26:molecules26154537. [PMID: 34361688 PMCID: PMC8348432 DOI: 10.3390/molecules26154537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 11/16/2022] Open
Abstract
Trans-(−)-kusunokinin, an anticancer compound, binds CSF1R with low affinity in breast cancer cells. Therefore, finding an additional possible target of trans-(−)-kusunokinin remains of importance for further development. Here, a computational study was completed followed by indirect proof of specific target proteins using small interfering RNA (siRNA). Ten proteins in breast cancer were selected for molecular docking and molecular dynamics simulation. A preferred active form in racemic trans-(±)-kusunokinin was trans-(−)-kusunokinin, which had stronger binding energy on HER2 trans-(+)-kusunokinin; however, it was weaker than the designed HER inhibitors (03Q and neratinib). Predictively, trans-(−)-kusunokinin bound HER2 similarly to a reversible HER2 inhibitor. We then verified the action of (±)-kusunokinin compared with neratinibon breast cancer cells (MCF-7). (±)-Kusunokinin exhibited less cytotoxicity on normal L-929 and MCF-7 than neratinib. (±)-Kusunokinin and neratinib had stronger inhibited cell proliferation than siRNA-HER2. Moreover, (±)-kusunokinin decreased Ras, ERK, CyclinB1, CyclinD and CDK1. Meanwhile, neratinib downregulated HER, MEK1, ERK, c-Myc, CyclinB1, CyclinD and CDK1. Knocking down HER2 downregulated only HER2. siRNA-HER2 combination with (±)-kusunokinin suppressed HER2, c-Myc, CyclinB1, CyclinD and CDK1. On the other hand, siRNA-HER2 combination with neratinib increased HER2, MEK1, ERK, c-Myc, CyclinB1, CyclinD and CDK1 to normal levels. We conclude that trans-(±)-kusunokinin may bind HER2 with low affinity and had a different action from neratinib.
Collapse
Affiliation(s)
- Thidarath Rattanaburee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (T.R.); (T.T.)
| | - Tanotnon Tanawattanasuntorn
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (T.R.); (T.T.)
| | - Tienthong Thongpanchang
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Varomyalin Tipmanee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (T.R.); (T.T.)
- Correspondence: (V.T.); (P.G.); Tel.: +66-74-45-1743 (V.T.); +66-74-45-1184 (P.G.)
| | - Potchanapond Graidist
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (T.R.); (T.T.)
- Correspondence: (V.T.); (P.G.); Tel.: +66-74-45-1743 (V.T.); +66-74-45-1184 (P.G.)
| |
Collapse
|
15
|
Wang Z, Chan HW, Gambarotta G, Smith NJ, Purdue BW, Pennisi DJ, Porrello ER, O'Brien SL, Reichelt ME, Thomas WG, Paravicini TM. Stimulation of the four isoforms of receptor tyrosine kinase ErbB4, but not ErbB1, confers cardiomyocyte hypertrophy. J Cell Physiol 2021; 236:8160-8170. [PMID: 34170016 DOI: 10.1002/jcp.30487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 11/11/2022]
Abstract
Epidermal growth factor (EGF) receptors (ErbB1-ErbB4) promote cardiac development and growth, although the specific EGF ligands and receptor isoforms involved in growth/repair versus pathology remain undefined. We challenged ventricular cardiomyocytes with EGF-like ligands and observed that selective activation of ErbB4 (the receptor for neuregulin 1 [NRG1]), but not ErbB1 (the receptor for EGF, EGFR), stimulated hypertrophy. This lack of direct ErbB1-mediated hypertrophy occurred despite robust activation of extracellular-regulated kinase 1/2 (ERK) and protein kinase B. Hypertrophic responses to NRG1 were unaffected by the tyrosine kinase inhibitor (AG1478) at concentrations that are selective for ErbB1 over ErbB4. NRG1-induced cardiomyocyte enlargement was suppressed by small interfering RNA (siRNA) knockdown of ErbB4 and ErbB2, whereas ERK phosphorylation was only suppressed by ErbB4 siRNA. Four ErbB4 isoforms exist (JM-a/JM-b and CYT-1/CYT-2), generated by alternative splicing, and their expression declines postnatally and following cardiac hypertrophy. Silencing of all four isoforms in cardiomyocytes, using an ErbB4 siRNA, abrogated NRG1-induced hypertrophic promoter/reporter activity, which was rescued by coexpression of knockdown-resistant versions of the ErbB4 isoforms. Thus, ErbB4 confers cardiomyocyte hypertrophy to NRG1, and all four ErbB4 isoforms possess the capacity to mediate this effect.
Collapse
Affiliation(s)
- Zhen Wang
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Hsiu-Wen Chan
- School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino, Italy
| | - Nicola J Smith
- School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, New South Wales, Australia
| | - Brooke W Purdue
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - David J Pennisi
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Enzo R Porrello
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Shannon L O'Brien
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Melissa E Reichelt
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Walter G Thomas
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Tamara M Paravicini
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Kawai T, Elliott KJ, Scalia R, Eguchi S. Contribution of ADAM17 and related ADAMs in cardiovascular diseases. Cell Mol Life Sci 2021; 78:4161-4187. [PMID: 33575814 PMCID: PMC9301870 DOI: 10.1007/s00018-021-03779-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/23/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
A disintegrin and metalloproteases (ADAMs) are key mediators of cell signaling by ectodomain shedding of various growth factors, cytokines, receptors and adhesion molecules at the cellular membrane. ADAMs regulate cell proliferation, cell growth, inflammation, and other regular cellular processes. ADAM17, the most extensively studied ADAM family member, is also known as tumor necrosis factor (TNF)-α converting enzyme (TACE). ADAMs-mediated shedding of cytokines such as TNF-α orchestrates immune system or inflammatory cascades and ADAMs-mediated shedding of growth factors causes cell growth or proliferation by transactivation of the growth factor receptors including epidermal growth factor receptor. Therefore, increased ADAMs-mediated shedding can induce inflammation, tissue remodeling and dysfunction associated with various cardiovascular diseases such as hypertension and atherosclerosis, and ADAMs can be a potential therapeutic target in these diseases. In this review, we focus on the role of ADAMs in cardiovascular pathophysiology and cardiovascular diseases. The main aim of this review is to stimulate new interest in this area by highlighting remarkable evidence.
Collapse
Affiliation(s)
- Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Katherine J Elliott
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Huang H. Proteolytic Cleavage of Receptor Tyrosine Kinases. Biomolecules 2021; 11:biom11050660. [PMID: 33947097 PMCID: PMC8145142 DOI: 10.3390/biom11050660] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/15/2021] [Accepted: 04/26/2021] [Indexed: 01/18/2023] Open
Abstract
The receptor tyrosine kinases (RTKs) are a large family of cell-surface receptors, which are essential components of signal transduction pathways. There are more than fifty human RTKs that can be grouped into multiple RTK subfamilies. RTKs mediate cellular signaling transduction, and they play important roles in the regulation of numerous cellular processes. The dysregulation of RTK signaling is related to various human diseases, including cancers. The proteolytic cleavage phenomenon has frequently been found among multiple receptor tyrosine kinases. More and more information about proteolytic cleavage in RTKs has been discovered, providing rich insight. In this review, we summarize research about different aspects of RTK cleavage, including its relation to cancer, to better elucidate this phenomenon. This review also presents proteolytic cleavage in various members of the RTKs.
Collapse
Affiliation(s)
- Hao Huang
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; or
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
18
|
Lin M, Wang YN, Ye Y, Xiong Z, Guo F, Chen H. DNAJC12 as a Mediator Between ESR1 and ERBB4 in Breast Carcinoma Cells. Front Oncol 2021; 11:582277. [PMID: 33718139 PMCID: PMC7943744 DOI: 10.3389/fonc.2021.582277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 01/05/2021] [Indexed: 02/05/2023] Open
Abstract
Mutation of the DNAJC12 gene is typically associated with non-progressive Parkinsonism, but is also detectable in breast carcinoma where its contribution and mechanisms are unexplored. In breast carcinoma, ESR1 was positively correlated with DNAJC12 and ERBB4, and DNAJC12 was positively correlated with ERBB4. We used the GEO2R tool to compare differential gene expression of MCF-7 cells, following ESR1 knockdown (GEO database, E-GEOD-27473 array), and found decreased expression of DNAJC12 and ERBB4 in ESR1-silenced MCF-7 cells. The number of identical genes having correlativity with ESR1, DNAJC12, or ERBB4 was 12,165 (66.41%). These results suggest that ESR1 can promote the expression of DNAJC12 and ERBB4, and DNAJC12 can enhance the expression of ERBB4 in MCF-7 cells, implying that there may be a regulatory network among these three genes.
Collapse
Affiliation(s)
- Mianjie Lin
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Shantou University Medical College, Shantou, China
| | - Ya-Nan Wang
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Yixin Ye
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Zhelei Xiong
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Fengbiao Guo
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Haibin Chen
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Shantou University Medical College, Shantou, China
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
- *Correspondence: Haibin Chen,
| |
Collapse
|
19
|
Koivu MKA, Chakroborty D, Tamirat MZ, Johnson MS, Kurppa KJ, Elenius K. Identification of Predictive ERBB Mutations by Leveraging Publicly Available Cell Line Databases. Mol Cancer Ther 2020; 20:564-576. [PMID: 33323455 DOI: 10.1158/1535-7163.mct-20-0590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/24/2020] [Accepted: 12/07/2020] [Indexed: 11/16/2022]
Abstract
Although targeted therapies can be effective for a subgroup of patients, identification of individuals who benefit from the treatments is challenging. At the same time, the predictive significance of the majority of the thousands of mutations observed in the cancer tissues remains unknown. Here, we describe the identification of novel predictive biomarkers for ERBB-targeted tyrosine kinase inhibitors (TKIs) by leveraging the genetic and drug screening data available in the public cell line databases: Cancer Cell Line Encyclopedia, Genomics of Drug Sensitivity in Cancer, and Cancer Therapeutics Response Portal. We assessed the potential of 412 ERBB mutations in 296 cell lines to predict responses to 10 different ERBB-targeted TKIs. Seventy-six ERBB mutations were identified that were associated with ERBB TKI sensitivity comparable with non-small cell lung cancer cell lines harboring the well-established predictive EGFR L858R mutation or exon 19 deletions. Fourteen (18.4%) of these mutations were classified as oncogenic by the cBioPortal database, whereas 62 (81.6%) were regarded as novel potentially predictive mutations. Of the nine functionally validated novel mutations, EGFR Y1069C and ERBB2 E936K were transforming in Ba/F3 cells and demonstrated enhanced signaling activity. Mechanistically, the EGFR Y1069C mutation disrupted the binding of the ubiquitin ligase c-CBL to EGFR, whereas the ERBB2 E936K mutation selectively enhanced the activity of ERBB heterodimers. These findings indicate that integrating data from publicly available cell line databases can be used to identify novel, predictive nonhotspot mutations, potentially expanding the patient population benefiting from existing cancer therapies.
Collapse
Affiliation(s)
- Marika K A Koivu
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, Finland.,Turku Doctoral Programme of Molecular Medicine, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Deepankar Chakroborty
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, Finland.,Turku Doctoral Programme of Molecular Medicine, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Mahlet Z Tamirat
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Mark S Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Kari J Kurppa
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, Finland
| | - Klaus Elenius
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, Finland. .,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Oncology, Turku University Hospital, Turku, Finland
| |
Collapse
|
20
|
Soltani I, Bahia W, Radhouani A, Mahdhi A, Ferchichi S, Almawi WY. Comprehensive in-silico analysis of damage associated SNPs in hOCT1 affecting Imatinib response in chronic myeloid leukemia. Genomics 2020; 113:755-766. [PMID: 33075481 DOI: 10.1016/j.ygeno.2020.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022]
Abstract
Non-synonymous single nucleotide polymorphisms (nsSNPs) in hOCT1 (encoded by SLC22A1 gene) are expected to affect Imatinib uptake in chronic myeloid leukemia (CML). In this study, sequence homology-based genetic analysis of a set of 270 coding SNPs identified 18 nsSNPs to be putatively damaging/deleterious using eight different algorithms. Subsequently, based on conservation of amino acid residues, stability analysis, posttranscriptional modifications, and solvent accessibility analysis, the possible structural-functional relationship was established for high-confidence nsSNPs. Furthermore, based on the modeling results, some dissimilarities of mutant type amino acids from wild-type amino acids such as size, charge, interaction and hydrophobicity were revealed. Three highly deleterious mutations consisting of P283L, G401S and R402G in SLC22A1 gene that may alter the protein structure, function and stability were identified. These results provide a filtered data to explore the effect of uncharacterized nsSNP and find their association with Imatinib resistance in CML.
Collapse
Affiliation(s)
- Ismael Soltani
- Molecular and Cellular Hematology Laboratory, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia.
| | - Wael Bahia
- Research Unit of Clinical and Molecular Biology, Department of Biochemistry, Faculty of Pharmacy of Monastir, University of Monastir, Tunisia
| | - Assala Radhouani
- Faculty of Medicine, University of Tunis El Manar, Tunis, Tunisia
| | - Abdelkarim Mahdhi
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Tunisia
| | - Salima Ferchichi
- Research Unit of Clinical and Molecular Biology, Department of Biochemistry, Faculty of Pharmacy of Monastir, University of Monastir, Tunisia
| | - Wassim Y Almawi
- Faculty of Sciences, El Manar University, Tunis, Tunisia; College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
21
|
Ojala VK, Knittle AM, Kirjalainen P, Merilahti JAM, Kortesoja M, Tvorogov D, Vaparanta K, Lin S, Kast J, Pulliainen AT, Kurppa KJ, Elenius K. The guanine nucleotide exchange factor VAV3 participates in ERBB4-mediated cancer cell migration. J Biol Chem 2020; 295:11559-11571. [PMID: 32561640 DOI: 10.1074/jbc.ra119.010925] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 06/06/2020] [Indexed: 11/06/2022] Open
Abstract
ERBB4 is a member of the epidermal growth factor receptor (EGFR)/ERBB subfamily of receptor tyrosine kinases that regulates cellular processes including proliferation, migration, and survival. ERBB4 signaling is involved in embryogenesis and homeostasis of healthy adult tissues, but also in human pathologies such as cancer, neurological disorders, and cardiovascular diseases. Here, an MS-based analysis revealed the Vav guanine nucleotide exchange factor 3 (VAV3), an activator of Rho family GTPases, as a critical ERBB4-interacting protein in breast cancer cells. We confirmed the ERBB4-VAV3 interaction by targeted MS and coimmunoprecipitation experiments and further defined it by demonstrating that kinase activity and Tyr-1022 and Tyr-1162 of ERBB4, as well as the intact phosphotyrosine-interacting SH2 domain of VAV3, are necessary for this interaction. We found that ERBB4 stimulates tyrosine phosphorylation of the VAV3 activation domain, known to be required for guanine nucleotide exchange factor (GEF) activity of VAV proteins. In addition to VAV3, the other members of the VAV family, VAV1 and VAV2, also coprecipitated with ERBB4. Analyses of the effects of overexpression of dominant-negative VAV3 constructs or shRNA-mediated down-regulation of VAV3 expression in breast cancer cells indicated that active VAV3 is involved in ERBB4-stimulated cell migration. These results define the VAV GEFs as effectors of ERBB4 activity in a signaling pathway relevant for cancer cell migration.
Collapse
Affiliation(s)
- Veera K Ojala
- Institute of Biomedicine and Medicity Research Laboratories, University of Turku, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland
| | - Anna M Knittle
- Institute of Biomedicine and Medicity Research Laboratories, University of Turku, Turku, Finland
| | - Peppi Kirjalainen
- Institute of Biomedicine and Medicity Research Laboratories, University of Turku, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johannes A M Merilahti
- Institute of Biomedicine and Medicity Research Laboratories, University of Turku, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland
| | - Maarit Kortesoja
- Institute of Biomedicine and Medicity Research Laboratories, University of Turku, Turku, Finland
| | - Denis Tvorogov
- Institute of Biomedicine and Medicity Research Laboratories, University of Turku, Turku, Finland
| | - Katri Vaparanta
- Institute of Biomedicine and Medicity Research Laboratories, University of Turku, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland
| | - Shujun Lin
- Biomedical Research Centre, Department of Chemistry, and Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jürgen Kast
- Biomedical Research Centre, Department of Chemistry, and Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Arto T Pulliainen
- Institute of Biomedicine and Medicity Research Laboratories, University of Turku, Turku, Finland
| | - Kari J Kurppa
- Institute of Biomedicine and Medicity Research Laboratories, University of Turku, Turku, Finland
| | - Klaus Elenius
- Institute of Biomedicine and Medicity Research Laboratories, University of Turku, Turku, Finland .,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Oncology and Radiotherapy, Turku University Hospital, Turku, Finland
| |
Collapse
|
22
|
Lanotte R, Garambois V, Gaborit N, Larbouret C, Musnier A, Martineau P, Pèlegrin A, Chardès T. Biasing human epidermal growth factor receptor 4 (HER4) tyrosine kinase signaling with antibodies: Induction of cell death by antibody-dependent HER4 intracellular domain trafficking. Cancer Sci 2020; 111:2508-2525. [PMID: 32415868 PMCID: PMC7385388 DOI: 10.1111/cas.14458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
Human epidermal growth factor receptor 4 (HER4) isoforms have oncogenic or tumor suppressor functions depending on their susceptibility to proteolytic cleavage and HER4 intracellular domain (4ICD) translocation. Here, we report that the neuregulin 1 (NRG1) tumor suppressor mechanism through the HER4 JMa/CYT1 isoform can be mimicked by the agonist anti‐HER4 Ab C6. Neuregulin 1 induced cleavage of poly(ADP‐ribose) polymerase (PARP) and sub‐G1 DNA fragmentation, and also reduced the metabolic activity of HER3−/HER4+ cervical (C‐33A) and ovarian (COV318) cancer cells. This effect was confirmed in HER4 JMa/CYT1‐, but not JMa/CYT2‐transfected BT549 triple‐negative breast cancer cells. Neuregulin 1 favored 4ICD cleavage and retention in mitochondria in JMa/CYT1‐transfected BT549 cells, leading to reactive oxygen species (ROS) production through mitochondrial depolarization. Similarly, the anti‐HER4 Ab C6, which binds to a conformational epitope located on a.a. 575‐592 and 605‐620 of HER4 domain IV, induced 4ICD cleavage and retention in mitochondria, and mimicked NRG1‐mediated effects on PARP cleavage, ROS production, and mitochondrial membrane depolarization in cancer cells. In vivo, C6 reduced growth of COV434 and HCC1187 tumor cell xenografts in nude mice. Biasing 4ICD trafficking to mitochondria with anti‐HER4 Abs to mimic NRG1 suppressor functions could be an alternative anticancer strategy.
Collapse
Affiliation(s)
- Romain Lanotte
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Véronique Garambois
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Nadège Gaborit
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Christel Larbouret
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Astrid Musnier
- MAbSilico SAS, Centre de Recherche INRA Val de Loire, Nouzilly, France
| | - Pierre Martineau
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - André Pèlegrin
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Thierry Chardès
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France.,Centre National de la Recherche Scientifique (CNRS), Paris, France
| |
Collapse
|
23
|
Segers VFM, Dugaucquier L, Feyen E, Shakeri H, De Keulenaer GW. The role of ErbB4 in cancer. Cell Oncol (Dordr) 2020; 43:335-352. [PMID: 32219702 DOI: 10.1007/s13402-020-00499-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The epidermal growth factor receptor family consists of four members, ErbB1 (epidermal growth factor receptor-1), ErbB2, ErbB3, and ErbB4, which all have been found to play important roles in tumor development. ErbB4 appears to be unique among these receptors, because it is the only member with growth inhibiting properties. ErbB4 plays well-defined roles in normal tissue development, in particular the heart, the nervous system, and the mammary gland system. In recent years, information on the role of ErbB4 in a number of tumors has emerged and its general direction points towards a tumor suppressor role for ErbB4. However, there are some controversies and conflicting data, warranting a review on this topic. CONCLUSIONS Here, we discuss the role of ErbB4 in normal physiology and in breast, lung, colorectal, gastric, pancreatic, prostate, bladder, and brain cancers, as well as in hepatocellular carcinoma, cholangiocarcinoma, and melanoma. Understanding the role of ErbB4 in cancer is not only important for the treatment of tumors, but also for the treatment of other disorders in which ErbB4 plays a major role, e.g. cardiovascular disease.
Collapse
Affiliation(s)
- Vincent F M Segers
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium. .,Department of Cardiology, University Hospital Antwerp, Edegem, Belgium.
| | - Lindsey Dugaucquier
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Eline Feyen
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Hadis Shakeri
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Gilles W De Keulenaer
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.,Department of Cardiology, ZNA Hospital, Antwerp, Belgium
| |
Collapse
|
24
|
Hoesl C, Fröhlich T, Hundt JE, Kneitz H, Goebeler M, Wolf R, Schneider MR, Dahlhoff M. The transmembrane protein LRIG2 increases tumor progression in skin carcinogenesis. Mol Oncol 2019; 13:2476-2492. [PMID: 31580518 PMCID: PMC6822252 DOI: 10.1002/1878-0261.12579] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/18/2019] [Accepted: 10/01/2019] [Indexed: 01/23/2023] Open
Abstract
Over the last few decades, the number of cases of non‐melanoma skin cancer (NMSC) has risen to over 3 million cases every year worldwide. Members of the ERBB receptor family are important regulators of skin development and homeostasis and, when dysregulated, contribute to skin pathogenesis. In this study, we investigated leucine‐rich repeats and immunoglobulin‐like domains 2 (LRIG2), a transmembrane protein involved in feedback loop regulation of the ERBB receptor family during NMSC. LRIG2 was identified to be up‐regulated in various types of squamous cell carcinoma (SCC), but little is known about LRIG2 in cutaneous SCC (cSCC). To investigate the function of LRIG2 in cSCC in vivo, we generated a skin‐specific LRIG2 overexpressing transgenic mouse line (LRIG2‐TG) using the Tet‐Off system. We employed the 7,12‐dimethylbenz(a)anthracene/12‐O‐tetra‐decanoylphorbol‐13‐acetate (DMBA/TPA) two‐stage chemical carcinogenesis model and analyzed the skin during homeostasis and tumorigenesis. LRIG2‐TG mice did not exhibit alterations in skin development or homeostasis but showed an interaction between LRIG2 and thrombospondin‐1, which is often involved in angiogenesis and tumorigenesis. However, during carcinogenesis, transgenic animals showed significantly increased tumor progression and a more rapid development of cSCC. This was accompanied by changes in the ERBB system. After a single TPA application, inflammation of the epidermis was enhanced during LRIG2 overexpression. In human skin samples, LRIG2 expression was identified in the basal layer of the epidermis and in hair follicles of normal skin, but also in cSCC samples. In conclusion, epidermal LRIG2 excess is associated with activated EGFR/ERBB4‐MAPK signaling and accelerated tumor progression in experimentally induced NMSC, suggesting LRIG2 as a potential oncoprotein in skin.
Collapse
Affiliation(s)
- Christine Hoesl
- Institute of Molecular Animal Breeding and BiotechnologyGene CenterLMU MünchenGermany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA)Gene CenterLMU MünchenGermany
| | - Jennifer E. Hundt
- Lübeck Institute for Experimental DermatologyUniversität zu LübeckGermany
| | - Hermann Kneitz
- Klinik und Poliklinik für Dermatologie, Venerologie und AllergologieUniversitätsklinikum WürzburgGermany
| | - Matthias Goebeler
- Klinik und Poliklinik für Dermatologie, Venerologie und AllergologieUniversitätsklinikum WürzburgGermany
| | - Ronald Wolf
- Department of Dermatology und AllergologyPhilipps UniversityMarburgGermany
| | - Marlon R. Schneider
- Institute of Molecular Animal Breeding and BiotechnologyGene CenterLMU MünchenGermany
| | - Maik Dahlhoff
- Institute of Molecular Animal Breeding and BiotechnologyGene CenterLMU MünchenGermany
| |
Collapse
|
25
|
Haryuni RD, Watabe S, Yamaguchi A, Fukushi Y, Tanaka T, Kawasaki Y, Zhou Y, Yokoyama S, Sakurai H. Negative feedback regulation of ErbB4 tyrosine kinase activity by ERK-mediated non-canonical phosphorylation. Biochem Biophys Res Commun 2019; 514:456-461. [PMID: 31053301 DOI: 10.1016/j.bbrc.2019.04.125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023]
Abstract
ErbB4 receptor tyrosine kinase has four different isoforms that are classified based on variants in the extracellular juxtamembrane domain (JM-a and JM-b) and the C-terminal region (CYT-1 and CYT-2). Here, we used the JM-b/CYT-1 isoform to investigate the roles of serine/threonine phosphorylation in MEK-ERK-dependent feedback inhibition. TPA as an activator of the ERK pathway markedly induced ErbB4 phosphorylation at Thr-674, the conserved common feedback site in the intracellular JM domain, which resulted in the downregulation of tyrosine autophosphorylation. We also identified Ser-1026 as an ErbB4-specific ERK target site in the CYT-1 region. Moreover, double mutations (Thr-674/Ser-1026 to Ala) significantly upregulated ErbB4 activation, indicating that Thr-674 and Ser-1026 are cooperatively involved in negative feedback regulation. Given the fact that ErbB4 mutation is one of the most common genetic alterations in melanoma cells, we demonstrated that a typical oncogenic ErbB4 mutant was resistant to the negative feedback regulation to maintain a highly active status of tyrosine kinase activity. Together, these findings indicate that feedback mechanisms are key switches determining oncogenic potentials of ErbB receptor kinases.
Collapse
Affiliation(s)
- Ratna Dini Haryuni
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan; Center for Radioisotope and Radiopharmaceutical Technology, National Nuclear Energy Agency of Indonesia, Serpong, Tangerang Selatan, Indonesia
| | - Satoko Watabe
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Asako Yamaguchi
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yayoi Fukushi
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Tomohiro Tanaka
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yuki Kawasaki
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan; Laboratory of Public Health, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Yue Zhou
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Satoru Yokoyama
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hiroaki Sakurai
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| |
Collapse
|
26
|
Lopez-Font I, Sogorb-Esteve A, Javier-Torrent M, Brinkmalm G, Herrando-Grabulosa M, García-Lareu B, Turon-Sans J, Rojas-García R, Lleó A, Saura CA, Zetterberg H, Blennow K, Bosch A, Navarro X, Sáez-Valero J. Decreased circulating ErbB4 ectodomain fragments as a read-out of impaired signaling function in amyotrophic lateral sclerosis. Neurobiol Dis 2019; 124:428-438. [DOI: 10.1016/j.nbd.2018.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/06/2018] [Accepted: 12/26/2018] [Indexed: 02/07/2023] Open
|
27
|
Merilahti JAM, Elenius K. Gamma-secretase-dependent signaling of receptor tyrosine kinases. Oncogene 2018; 38:151-163. [PMID: 30166589 PMCID: PMC6756091 DOI: 10.1038/s41388-018-0465-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/28/2022]
Abstract
Human genome harbors 55 receptor tyrosine kinases (RTK). At least half of the RTKs have been reported to be cleaved by gamma-secretase-mediated regulated intramembrane proteolysis. The two-step process involves releasing the RTK ectodomain to the extracellular space by proteolytic cleavage called shedding, followed by cleavage in the RTK transmembrane domain by the gamma-secretase complex resulting in release of a soluble RTK intracellular domain. This intracellular domain, including the tyrosine kinase domain, can in turn translocate to various cellular compartments, such as the nucleus or proteasome. The soluble intracellular domain may interact with transcriptional regulators and other proteins to induce specific effects on cell survival, proliferation, and differentiation, establishing an additional signaling mode for the cleavable RTKs. On the other hand, the same process can facilitate RTK turnover and proteasomal degradation. In this review we focus on the regulation of RTK shedding and gamma-secretase cleavage, as well as signaling promoted by the soluble RTK ICDs. In addition, therapeutic implications of increased knowledge on RTK cleavage on cancer drug development are discussed.
Collapse
Affiliation(s)
- Johannes A M Merilahti
- Institute of Biomedicine, University of Turku, 20520, Turku, Finland.,Medicity Research Laboratory, University of Turku, 20520, Turku, Finland.,Turku Doctoral Programme of Molecular Medicine, University of Turku, 20520, Turku, Finland
| | - Klaus Elenius
- Institute of Biomedicine, University of Turku, 20520, Turku, Finland. .,Medicity Research Laboratory, University of Turku, 20520, Turku, Finland. .,Department of Oncology, Turku University Hospital, 20520, Turku, Finland.
| |
Collapse
|
28
|
Donoghue JF, Kerr LT, Alexander NW, Greenall SA, Longano AB, Gottardo NG, Wang R, Tabar V, Adams TE, Mischel PS, Johns TG. Activation of ERBB4 in Glioblastoma Can Contribute to Increased Tumorigenicity and Influence Therapeutic Response. Cancers (Basel) 2018; 10:cancers10080243. [PMID: 30044378 PMCID: PMC6116191 DOI: 10.3390/cancers10080243] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 01/28/2023] Open
Abstract
Glioblastoma (GBM) is often resistant to conventional and targeted therapeutics. ErbB2 Receptor Tyrosine Kinase 4 (ERBB4) is expressed throughout normal brain and is an oncogene in several pediatric brain cancers; therefore, we investigated ERBB4 as a prognostic marker and therapeutic target in GBM. Using RT-qPCR, we quantified mRNA encoding total ERBB4 and known ERBB4 variants in GBM and non-neoplastic normal brain (NNB) samples. Using immunohistochemistry, we characterized the localization of total and phosphorylated ERBB4 (p-ERBB4) and EGFR protein in archived GBM samples and assessed their association with patient survival. Furthermore, we evaluated the effect of ERBB4 phosphorylation on angiogenesis and tumorigenicity in GBM xenograft models. Total ERBB4 mRNA was significantly lower in GBM than NNB samples, with the juxtamembrane JM-a and cytoplasmic CYT-2 variants predominating. ERBB4 protein was ubiquitously expressed in GBM but was not associated with patient survival. However, high p-ERBB4 in 11% of archived GBM samples, independent of p-EGFR, was associated with shorter patient survival (12.0 ± 3.2 months) than was no p-ERBB4 (22.5 ± 9.5 months). Increased ERBB4 activation was also associated with increased proliferation, angiogenesis, tumorigenicity and reduced sensitivity to anti-EGFR treatment in xenograft models. Despite low ERBB4 mRNA in GBM, the functional effects of increased ERBB4 activation identify ERBB4 as a potential prognostic and therapeutic target.
Collapse
Affiliation(s)
- Jacqueline F Donoghue
- Oncogenic Signalling Group, Hudson Institute of Medical Research, 21⁻37 Wright Street, Clayton, VIC 3168, Australia.
| | - Lauren T Kerr
- Oncogenic Signalling Group, Hudson Institute of Medical Research, 21⁻37 Wright Street, Clayton, VIC 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia.
| | - Naomi W Alexander
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA 6008, Australia.
| | - Sameer A Greenall
- Oncogenic Signalling Group, Hudson Institute of Medical Research, 21⁻37 Wright Street, Clayton, VIC 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia.
| | - Anthony B Longano
- Department of Anatomical Pathology, Monash Medical Centre, Clayton, VIC 3168, Australia.
| | - Nicholas G Gottardo
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA 6008, Australia.
| | - Rong Wang
- Department of Neurosurgery and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Viviane Tabar
- Department of Neurosurgery and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Timothy E Adams
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, VIC 3052, Australia.
| | - Paul S Mischel
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA.
| | - Terrance G Johns
- Oncogenic Signalling Group, Hudson Institute of Medical Research, 21⁻37 Wright Street, Clayton, VIC 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia.
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA 6008, Australia.
| |
Collapse
|
29
|
Wang J, Yin J, Yang Q, Ding F, Chen X, Li B, Tian X. Human epidermal growth factor receptor 4 (HER4) is a favorable prognostic marker of breast cancer: a systematic review and meta-analysis. Oncotarget 2018; 7:76693-76703. [PMID: 27736797 PMCID: PMC5363541 DOI: 10.18632/oncotarget.12485] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/21/2016] [Indexed: 11/25/2022] Open
Abstract
Based on a large cohort of clinical studies involving a total of 8024 patients and reporting the effects of HER4 on breast cancer prognosis, we conducted the first meta-analysis and review of this type. We identified 26 studies published between 1985 and 2016 and assessed the prognostic value of HER4 in breast cancer by either real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR, for mRNA levels) or immunohistochemistry (IHC, for protein levels). Elevated expression of HER4 was significantly associated with longer relapse-free survival (RFS) (HR = 0.63; CI: 0.48-0.83; P = 0.001, random effects). Further subgroup analysis showed that our results were stable irrespective of subtype [Luminal: HR = 0.40, CI: 0.30-0.53, P < 0.001, fixed effects; triple negative breast cancer (TNBC): HR = 0.49, CI: 0.26-0.90, P = 0.02, fixed effects; and HER2-positive: HR = 0.53, CI: 0.40-0.71, P < 0.001, fixed effects]. Cytoplasmic HER4 was more effective than nuclear HER4 (HR = 0.74, CI: 0.60-0.92, P = 0.007, fixed effects) for predicting RFS. HER4 was also found to be a favorable prognostic marker for overall survival (OS) among patients with non-TNBC in the subgroup analysis (Luminal: HR = 0.71, CI: 0.52-0.95, P = 0.023, fixed effects; HER2-positive: HR = 0.48, CI: 0.26-0.89, P = 0.020, fixed effects).
Collapse
Affiliation(s)
- Jue Wang
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Jun Yin
- Department of Systems Biology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Qing Yang
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Feng Ding
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China, Department of General Surgery, Jinan Hospital, Jinan, Shandong, China
| | - Xiao Chen
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Bingjie Li
- Division of Epidemiology, School of Public Health, the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xingsong Tian
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
30
|
Knittle AM, Helkkula M, Johnson MS, Sundvall M, Elenius K. SUMOylation regulates nuclear accumulation and signaling activity of the soluble intracellular domain of the ErbB4 receptor tyrosine kinase. J Biol Chem 2017; 292:19890-19904. [PMID: 28974580 DOI: 10.1074/jbc.m117.794271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/22/2017] [Indexed: 01/24/2023] Open
Abstract
Erb-B2 receptor tyrosine kinase 4 (ErbB4) is a kinase that can signal via a proteolytically released intracellular domain (ICD) in addition to classical receptor tyrosine kinase-activated signaling cascades. Previously, we have demonstrated that ErbB4 ICD is posttranslationally modified by the small ubiquitin-like modifier (SUMO) and functionally interacts with the PIAS3 SUMO E3 ligase. However, direct evidence of SUMO modification in ErbB4 signaling has remained elusive. Here, we report that the conserved lysine residue 714 in the ErbB4 ICD undergoes SUMO modification, which was reversed by sentrin-specific proteases (SENPs) 1, 2, and 5. Although ErbB4 kinase activity was not necessary for the SUMOylation, the SUMOylated ErbB4 ICD was tyrosine phosphorylated to a higher extent than unmodified ErbB4 ICD. Mutation of the SUMOylation site compromised neither ErbB4-induced phosphorylation of the canonical signaling pathway effectors Erk1/2, Akt, or STAT5 nor ErbB4 stability. In contrast, SUMOylation was required for nuclear accumulation of the ErbB4 ICD. We also found that Lys-714 was located within a leucine-rich stretch, which resembles a nuclear export signal, and could be inactivated by site-directed mutagenesis. Furthermore, SUMOylation modulated the interaction of ErbB4 with chromosomal region maintenance 1 (CRM1), the major nuclear export receptor for proteins. Finally, the SUMO acceptor lysine was functionally required for ErbB4 ICD-mediated inhibition of mammary epithelial cell differentiation in a three-dimensional cell culture model. Our findings indicate that a SUMOylation-mediated mechanism regulates nuclear localization and function of the ICD of ErbB4 receptor tyrosine kinase.
Collapse
Affiliation(s)
- Anna M Knittle
- From the Department of Medical Biochemistry and Genetics, and MediCity Research Laboratory, University of Turku, FI-20520 Turku, Finland.,Turku Doctoral Programmes of Biomedical Sciences and Molecular Medicine, University of Turku, FI-20014 Turku, Finland
| | - Maria Helkkula
- From the Department of Medical Biochemistry and Genetics, and MediCity Research Laboratory, University of Turku, FI-20520 Turku, Finland
| | - Mark S Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, FI-20500 Turku, Finland, and
| | - Maria Sundvall
- From the Department of Medical Biochemistry and Genetics, and MediCity Research Laboratory, University of Turku, FI-20520 Turku, Finland, .,Department of Oncology and Radiotherapy, University of Turku and Turku University Hospital, FI-20014 Turku, Finland
| | - Klaus Elenius
- From the Department of Medical Biochemistry and Genetics, and MediCity Research Laboratory, University of Turku, FI-20520 Turku, Finland, .,Department of Oncology and Radiotherapy, University of Turku and Turku University Hospital, FI-20014 Turku, Finland
| |
Collapse
|
31
|
Merilahti JAM, Ojala VK, Knittle AM, Pulliainen AT, Elenius K. Genome-wide screen of gamma-secretase-mediated intramembrane cleavage of receptor tyrosine kinases. Mol Biol Cell 2017; 28:3123-3131. [PMID: 28904208 PMCID: PMC5662267 DOI: 10.1091/mbc.e17-04-0261] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/11/2017] [Accepted: 09/06/2017] [Indexed: 12/20/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) have been demonstrated to signal via regulated intramembrane proteolysis, in which ectodomain shedding and subsequent intramembrane cleavage by gamma-secretase leads to release of a soluble intracellular receptor fragment with functional activity. For most RTKs, however, it is unknown whether they can exploit this new signaling mechanism. Here we used a system-wide screen to address the frequency of susceptibility to gamma-secretase cleavage among human RTKs. The screen covering 45 of the 55 human RTKs identified 12 new as well as all nine previously published gamma-secretase substrates. We biochemically validated the screen by demonstrating that the release of a soluble intracellular fragment from endogenous AXL was dependent on the sheddase disintegrin and metalloprotease 10 (ADAM10) and the gamma-secretase component presenilin-1. Functional analysis of the cleavable RTKs indicated that proliferation promoted by overexpression of the TAM family members AXL or TYRO3 depends on gamma-secretase cleavage. Taken together, these data indicate that gamma-secretase-mediated cleavage provides an additional signaling mechanism for numerous human RTKs.
Collapse
Affiliation(s)
- Johannes A M Merilahti
- Department of Medical Biochemistry and Genetics, University of Turku, 20520 Turku, Finland.,Medicity Research Laboratory, University of Turku, 20520 Turku, Finland.,Turku Doctoral Programme of Molecular Medicine, University of Turku, 20520 Turku, Finland
| | - Veera K Ojala
- Department of Medical Biochemistry and Genetics, University of Turku, 20520 Turku, Finland
| | - Anna M Knittle
- Department of Medical Biochemistry and Genetics, University of Turku, 20520 Turku, Finland
| | - Arto T Pulliainen
- Department of Medical Biochemistry and Genetics, University of Turku, 20520 Turku, Finland
| | - Klaus Elenius
- Department of Medical Biochemistry and Genetics, University of Turku, 20520 Turku, Finland .,Medicity Research Laboratory, University of Turku, 20520 Turku, Finland.,Department of Oncology, Turku University Hospital, 20520 Turku, Finland
| |
Collapse
|
32
|
Sahu A, Patra PK, Yadav MK, Varma M. Identification and characterization of ErbB4 kinase inhibitors for effective breast cancer therapy. J Recept Signal Transduct Res 2017; 37:470-480. [DOI: 10.1080/10799893.2017.1342129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ankita Sahu
- Department of Biochemistry, Pt. J.N.M. Medical College, Raipur, India
- Department of Biochemistry, Sri Aurobindo Institute of Medical Sciences, Indore, India
| | - P. K. Patra
- Department of Biochemistry, Pt. J.N.M. Medical College, Raipur, India
| | - Manoj Kumar Yadav
- Department of Biochemistry, Pt. J.N.M. Medical College, Raipur, India
| | - Meena Varma
- Department of Biochemistry, Sri Aurobindo Institute of Medical Sciences, Indore, India
| |
Collapse
|
33
|
Fenelon JC, Shaw G, Frankenberg SR, Murphy BD, Renfree MB. Embryo arrest and reactivation: potential candidates controlling embryonic diapause in the tammar wallaby and mink†. Biol Reprod 2017; 96:877-894. [DOI: 10.1093/biolre/iox019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/29/2017] [Indexed: 12/13/2022] Open
|
34
|
Schumacher MA, Hedl M, Abraham C, Bernard JK, Lozano PR, Hsieh JJ, Almohazey D, Bucar EB, Punit S, Dempsey PJ, Frey MR. ErbB4 signaling stimulates pro-inflammatory macrophage apoptosis and limits colonic inflammation. Cell Death Dis 2017; 8:e2622. [PMID: 28230865 PMCID: PMC5386486 DOI: 10.1038/cddis.2017.42] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/14/2017] [Accepted: 01/17/2017] [Indexed: 02/07/2023]
Abstract
Efficient clearance of pro-inflammatory macrophages from tissues after resolution of a challenge is critical to prevent prolonged inflammation. Defects in clearance can contribute to conditions such as inflammatory bowel disease, and thus may be therapeutically targetable. However, the signaling pathways that induce termination of pro-inflammatory macrophages are incompletely defined. We tested whether the ErbB4 receptor tyrosine kinase, previously not known to have role in macrophage biology, is involved in this process. In vitro, pro-inflammatory activation of cultured murine and human macrophages induced ErbB4 expression; in contrast, other ErbB family members were not induced in pro-inflammatory cells, and other innate immune lineages (dendritic cells, neutrophils) did not express detectable ErbB4 levels. Treatment of activated pro-inflammatory macrophages with the ErbB4 ligand neuregulin-4 (NRG4) induced apoptosis. ErbB4 localized to the mitochondria in these cells. Apoptosis was accompanied by loss of mitochondrial membrane potential, and was dependent upon the proteases that generate the cleaved ErbB4 intracellular domain fragment, suggesting a requirement for this fragment and mitochondrial pathway apoptosis. In vivo, ErbB4 was highly expressed on pro-inflammatory macrophages but not neutrophils during experimental DSS colitis in C57Bl/6 mice. Active inflammation in this model suppressed NRG4 expression, which may allow for macrophage persistence and ongoing inflammation. Consistent with this notion, NRG4 levels rebounded during the recovery phase, and administration of exogenous NRG4 during colitis reduced colonic macrophage numbers and ameliorated inflammation. These data define a novel role for ErbB4 in macrophage apoptosis, and outline a mechanism of feedback inhibition that may promote resolution of colitis.
Collapse
Affiliation(s)
- Michael A Schumacher
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.,Departments of Pediatrics and of Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Matija Hedl
- Department of Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Clara Abraham
- Department of Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jessica K Bernard
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.,Departments of Pediatrics and of Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA.,University of Southern California Herman Ostrow School of Dentistry, Los Angeles, CA 90089, USA
| | - Patricia R Lozano
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Jonathan J Hsieh
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.,Departments of Pediatrics and of Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Dana Almohazey
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.,Departments of Pediatrics and of Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA.,University of Southern California Herman Ostrow School of Dentistry, Los Angeles, CA 90089, USA
| | - Edie B Bucar
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.,Departments of Pediatrics and of Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Shivesh Punit
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Peter J Dempsey
- Department of Pediatrics, University of Colorado Medical School, Aurora, CO 80045, USA
| | - Mark R Frey
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.,Departments of Pediatrics and of Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| |
Collapse
|
35
|
Developmental pruning of excitatory synaptic inputs to parvalbumin interneurons in monkey prefrontal cortex. Proc Natl Acad Sci U S A 2017; 114:E629-E637. [PMID: 28074037 DOI: 10.1073/pnas.1610077114] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Working memory requires efficient excitatory drive to parvalbumin-positive (PV) interneurons in the primate dorsolateral prefrontal cortex (DLPFC). Developmental pruning eliminates superfluous excitatory inputs, suggesting that working memory maturation during adolescence requires pruning of excitatory inputs to PV interneurons. Therefore, we tested the hypothesis that excitatory synapses on PV interneurons are pruned during adolescence. The density of excitatory synapses, defined by overlapping vesicular glutamate transporter 1-positive (VGlut1+) and postsynaptic density 95-positive (PSD95+) puncta, on PV interneurons was lower in postpubertal relative to prepubertal monkeys. In contrast, puncta levels of VGlut1 and PSD95 proteins were higher in postpubertal monkeys and positively predicted activity-dependent PV levels, suggesting a greater strength of the remaining synapses after pruning. Because excitatory synapse number on PV interneurons is regulated by erb-b2 receptor tyrosine kinase 4 (ErbB4), whose function is influenced by alternative splicing, we tested the hypothesis that pruning of excitatory synapses on PV interneurons is associated with developmental shifts in ErbB4 expression and/or splicing. Pan-ErbB4 expression did not change, whereas the minor-to-major splice variant ratios increased with age. In cell culture, the major, but not the minor, variant increased excitatory synapse number on PV interneurons and displayed greater kinase activity than the minor variant, suggesting that the effect of ErbB4 signaling in PV interneurons is mediated by alternative splicing. Supporting this interpretation, in monkey DLPFC, higher minor-to-major variant ratios predicted lower PSD95+ puncta density on PV interneurons. Together, our findings suggest that ErbB4 splicing may regulate the pruning of excitatory synapses on PV interneurons during adolescence.
Collapse
|
36
|
Shen H, Li L, Zhou S, Yu D, Yang S, Chen X, Wang D, Zhong S, Zhao J, Tang J. The role of ADAM17 in tumorigenesis and progression of breast cancer. Tumour Biol 2016; 37:15359–15370. [PMID: 27658778 DOI: 10.1007/s13277-016-5418-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/15/2016] [Indexed: 12/22/2022] Open
Abstract
A disintegrin and metalloproteinase (ADAM) family members are known to process the target membrane-bound molecules through the quick induction of their protease activities under interaction with other molecules, which have diverse roles in tissue morphogenesis and pathophysiological remodeling. Among these, ADAM17 is a membrane-bound protease that sheds the extracellular domain of various receptors or its ligands from the cell membrane and subsequently activates downstream signaling transduction pathways. Importantly, breast cancer remains a mainspring of cancer-induced death in women, and numerous regulatory pathways have been implicated in the formation of breast cancer. Substantial evidence has demonstrated that an obvious increased in ADAM17 cell surface expression has been discovered in breast cancer and was shown to be associated with mammary tumorigenesis, invasiveness, and drug resistance. Over the last decades, it has received more than its share of attention that ADAM17 plays a potential role in breast cancer, including cell proliferation, invasion, angiogenesis, apoptosis, and trastuzumab resistance. In our review, we discuss the mechanisms through which ADAM17 acts on breast cancer tumorigenesis and progression. Thus, this will provide further impetus for exploiting ADAM17 as a new target for breast cancer treatment.
Collapse
Affiliation(s)
- Hongyu Shen
- The Fourth Clinical School of Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
| | - Liangpeng Li
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing, Jiangsu, 210006, China
| | - Siying Zhou
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
- Nanjing University of Traditional Chinese Medicine, Xianlin Road 138, Nanjing, Jiangsu, 210023, China
| | - Dandan Yu
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
| | - Sujin Yang
- The Fourth Clinical School of Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
| | - Xiu Chen
- The Fourth Clinical School of Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
| | - Dandan Wang
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
| | - Shanliang Zhong
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
| | - Jianhua Zhao
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China.
| | - Jinhai Tang
- The Fourth Clinical School of Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China.
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
37
|
Gerarduzzi C, de Polo A, Liu XS, El Kharbili M, Little JB, Yuan ZM. Human epidermal growth factor receptor 4 (Her4) Suppresses p53 Protein via Targeting the MDMX-MDM2 Protein Complex: IMPLICATION OF A NOVEL MDMX SER-314 PHOSPHOSITE. J Biol Chem 2016; 291:25937-25949. [PMID: 27777309 DOI: 10.1074/jbc.m116.752303] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/03/2016] [Indexed: 12/11/2022] Open
Abstract
Deregulated receptor tyrosine kinase (RTK) signaling is frequently associated with tumorigenesis and therapy resistance, but its underlying mechanisms still need to be elucidated. In this study, we have shown that the RTK human epidermal growth factor receptor 4 (Her4, also known as Erbb4) can inhibit the tumor suppressor p53 by regulating MDMX-mouse double minute 2 homolog (MDM2) complex stability. Upon activation by either overexpression of a constitutively active vector or ligand binding (Neuregulin-1), Her4 was able to stabilize the MDMX-MDM2 complex, resulting in suppression of p53 transcriptional activity, as shown by p53-responsive element-driven luciferase assay and mRNA levels of p53 target genes. Using a phospho-proteomics approach, we functionally identified a novel Her4-induced posttranslational modification on MDMX at Ser-314, a putative phosphorylation site for the CDK4/6 kinase. Remarkably, inhibition of Ser-314 phosphorylation either with Ser-to-Ala substitution or with a specific inhibitor of CDK4/6 kinase blocked Her4-induced stabilization of MDMX-MDM2 and rescued p53 activity. Our study offers insights into the mechanisms of deregulated RTK-induced carcinogenesis and provides the basis for the use of inhibitors targeting RTK-mediated signals for p53 restoration.
Collapse
Affiliation(s)
- Casimiro Gerarduzzi
- From the John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Anna de Polo
- From the John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Xue-Song Liu
- From the John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Manale El Kharbili
- From the John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115
| | - John B Little
- From the John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Zhi-Min Yuan
- From the John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115
| |
Collapse
|
38
|
Association between ERBB4 gene polymorphism in the microRNA binding site and endometrial carcinoma risk. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0336-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Mohd Nafi SN, Generali D, Kramer-Marek G, Gijsen M, Strina C, Cappelletti M, Andreis D, Haider S, Li JL, Bridges E, Capala J, Ioannis R, Harris AL, Kong A. Nuclear HER4 mediates acquired resistance to trastuzumab and is associated with poor outcome in HER2 positive breast cancer. Oncotarget 2015; 5:5934-49. [PMID: 25153719 PMCID: PMC4171603 DOI: 10.18632/oncotarget.1904] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The role of HER4 in breast cancer is controversial and its role in relation to trastuzumab resistance remains unclear. We showed that trastuzumab treatment and its acquired resistance induced HER4 upregulation, cleavage and nuclear translocation. However, knockdown of HER4 by specific siRNAs increased trastuzumab sensitivity and reversed its resistance in HER2 positive breast cancer cells. Preventing HER4 cleavage by a γ-secretase inhibitor and inhibiting HER4 tyrosine kinase activity by neratinib decreased trastuzumab-induced HER4 nuclear translocation and enhanced trastuzumab response. There was also increased nuclear HER4 staining in the tumours from BT474 xenograft mice and human patients treated with trastuzumab. Furthermore, nuclear HER4 predicted poor clinical response to trastuzumab monotherapy in patients undergoing a window study and was shown to be an independent poor prognostic factor in HER2 positive breast cancer. Our data suggest that HER4 plays a key role in relation to trastuzumab resistance in HER2 positive breast cancer. Therefore, our study provides novel findings that HER4 activation, cleavage and nuclear translocation influence trastuzumab sensitivity and resistance in HER2 positive breast cancer. Nuclear HER4 could be a potential prognostic and predictive biomarker and understanding the role of HER4 may provide strategies to overcome trastuzumab resistance in HER2 positive breast cancer.
Collapse
Affiliation(s)
- Siti Norasikin Mohd Nafi
- Human Epidermal Growth Factor Group, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Daniele Generali
- U.O. Multidisciplinare di Patologia Mammaria, U.S Terapia Molecolare e Farmacogenomica, A.O. Instituti Ospitalieri di Cremona, Viale Concordia 1, Cremona, Italy
| | - Gabriela Kramer-Marek
- Institute of Cancer Research, Division of Radiotherapy and Imaging, 15 Cotswold Road, Belmont, Sutton, Surrey, UK
| | - Merel Gijsen
- Human Epidermal Growth Factor Group, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Carla Strina
- U.O. Multidisciplinare di Patologia Mammaria, U.S Terapia Molecolare e Farmacogenomica, A.O. Instituti Ospitalieri di Cremona, Viale Concordia 1, Cremona, Italy
| | - Mariarosa Cappelletti
- U.O. Multidisciplinare di Patologia Mammaria, U.S Terapia Molecolare e Farmacogenomica, A.O. Instituti Ospitalieri di Cremona, Viale Concordia 1, Cremona, Italy
| | - Daniele Andreis
- U.O. Multidisciplinare di Patologia Mammaria, U.S Terapia Molecolare e Farmacogenomica, A.O. Instituti Ospitalieri di Cremona, Viale Concordia 1, Cremona, Italy
| | - Syed Haider
- Growth Factor Group, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ji-Liang Li
- Growth Factor Group, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Esther Bridges
- Growth Factor Group, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Jacek Capala
- National Institutes of Health, Radiation Oncology Branch, Bethesda MD, US
| | - Roxanis Ioannis
- Department of Cellular Pathology, Oxford University Hospitals and Oxford Biomedical Research Centre, Oxford, UK
| | - Adrian L Harris
- Growth Factor Group, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Anthony Kong
- Human Epidermal Growth Factor Group, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
40
|
Londino JD, Gulick D, Isenberg JS, Mallampalli RK. Cleavage of Signal Regulatory Protein α (SIRPα) Enhances Inflammatory Signaling. J Biol Chem 2015; 290:31113-25. [PMID: 26534964 DOI: 10.1074/jbc.m115.682914] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Indexed: 11/06/2022] Open
Abstract
Signal regulatory protein α (SIRPα) is a membrane glycoprotein immunoreceptor abundant in cells of monocyte lineage. SIRPα ligation by a broadly expressed transmembrane protein, CD47, results in phosphorylation of the cytoplasmic immunoreceptor tyrosine-based inhibitory motifs, resulting in the inhibition of NF-κB signaling in macrophages. Here we observed that proteolysis of SIRPα during inflammation is regulated by a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), resulting in the generation of a membrane-associated cleavage fragment in both THP-1 monocytes and human lung epithelia. We mapped a charge-dependent putative cleavage site near the membrane-proximal domain necessary for ADAM10-mediated cleavage. In addition, a secondary proteolytic cleavage within the membrane-associated SIRPα fragment by γ-secretase was identified. Ectopic expression of a SIRPα mutant plasmid encoding a proteolytically resistant form in HeLa cells inhibited activation of the NF-κB pathway and suppressed STAT1 phosphorylation in response to TNFα to a greater extent than expression of wild-type SIRPα. Conversely, overexpression of plasmids encoding the proteolytically cleaved SIRPα fragments in cells resulted in enhanced STAT-1 and NF-κB pathway activation. Thus, the data suggest that combinatorial actions of ADAM10 and γ-secretase on SIRPα cleavage promote inflammatory signaling.
Collapse
Affiliation(s)
- James D Londino
- From the Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine and
| | - Dexter Gulick
- From the Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine and
| | - Jeffrey S Isenberg
- From the Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine and Vascular Medicine Institute, Starzl Transplantation Institute, Department of Pharmacology and Chemical Biology, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Rama K Mallampalli
- From the Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine and Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania 15213, Department of Cell Biology and Physiology and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213,
| |
Collapse
|
41
|
Bae JA, Kho DH, Sun EG, Ko YS, Yoon S, Lee KH, Ahn KY, Lee JH, Joo YE, Chung IJ, Lee SH, Kim H, Kim KK. Elevated Coexpression of KITENIN and the ErbB4 CYT-2 Isoform Promotes the Transition from Colon Adenoma to Carcinoma Following APC loss. Clin Cancer Res 2015; 22:1284-94. [PMID: 26527747 DOI: 10.1158/1078-0432.ccr-15-0306] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 10/16/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE AND EXPERIMENTAL DESIGN The molecular events in the malignant progression of colon adenoma after loss of adenomatous polyposis coli (APC) are not fully understood. KITENIN (KAI1 C-terminal interacting tetraspanin) increases the invasiveness of colorectal cancer cells, and we identified a novel EGFR-independent oncogenic signal of EGF that works under coexpressed KITENIN and ErbB4. Here we tested whether elevated KITENIN and ErbB4 contribute to further progression of intestinal adenoma following APC loss. RESULTS The intestinal tissues of villin-KITENIN transgenic mice in which villin-driven KITENIN expression induces increased c-Jun expression exhibit mild epithelial cell proliferation but no epithelial lineage changes compared with those of nontransgenic mice. Among the four ErbB4 isoforms, JM-a/CYT-2 and JM-b/CYT-2 exhibited the highest AP-1 activity when cells coexpressing KITENIN and each isoform were stimulated by EGF. Interestingly, predominant overexpression of the ErB4-CYT-2 mRNA as well as increased EGFR expression were observed in intestinal adenoma of APC(min/+) mice, which makes the microenvironment of activated EGF signaling. When we crossed villin-KITENIN mice with APC(min/+) mice, intestinal tumor tissues in the crossed mice showed the characteristics of early-stage invading adenocarcinoma. In patients with colorectal cancer, ErbB4-CYT-2 mRNA expression was significantly greater in tumor tissues than in normal adjacent tissues, but no significant differences in tumor tissue expression were found between different colorectal cancer stages. Furthermore, the mRNA expression of KITENIN and that of ErbB4-CYT-2 were positively correlated in human colorectal cancer tissue. CONCLUSIONS Elevated coexpression of KITENIN and ErbB4-CYT-2 promotes the transition of colon adenoma to adenocarcinoma within an APC loss-associated tumor microenvironment.
Collapse
Affiliation(s)
- Jeong A Bae
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Kwangju, Korea
| | - Dhong Hyo Kho
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Kwangju, Korea
| | - Eun Gene Sun
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Kwangju, Korea
| | - Yoo-Seung Ko
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Kwangju, Korea
| | - Somy Yoon
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Kwangju, Korea
| | - Kyung Hwa Lee
- Department of Pathology, Chonnam National University Medical School, Kwangju, Korea
| | - Kyu Youn Ahn
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Kwangju, Korea
| | - Jae Hyuk Lee
- Department of Pathology, Chonnam National University Medical School, Kwangju, Korea
| | - Young Eun Joo
- Department of Gastroenterology-Hepatology, Chonnam National University Medical School, Kwangju, Korea
| | - Ik Joo Chung
- Department of Hematology-Oncology, Chonnam National University Medical School, Kwangju, Korea
| | - Sug Hyung Lee
- Department of Pathology, The Catholic University of Korea, Seoul, Korea
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, Sunchon, Korea
| | - Kyung Keun Kim
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Kwangju, Korea.
| |
Collapse
|
42
|
Kurppa KJ, Denessiouk K, Johnson MS, Elenius K. Activating ERBB4 mutations in non-small cell lung cancer. Oncogene 2015; 35:1283-91. [PMID: 26050618 DOI: 10.1038/onc.2015.185] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 01/13/2023]
Abstract
Recent efforts to comprehensively characterize the mutational landscape of non-small cell lung cancer have identified frequent mutations in the receptor tyrosine kinase ERBB4. However, the significance of mutated ERBB4 in non-small cell lung cancer remains elusive. Here, we have functionally characterized nine ERBB4 mutations previously identified in lung adenocarcinoma. Four out of the nine mutations, Y285C, D595V, D931Y and K935I, were found to be activating, increasing both basal and ligand-induced ErbB4 phosphorylation. According to structural analysis, the four activating mutations were located at critical positions at the dimerization interfaces of the ErbB4 extracellular (Y285C and D595V) and kinase (D931Y and K935I) domains. Consistently, the mutations enhanced ErbB4 dimerization and increased the trans activation in ErbB4 homodimers and ErbB4-ErbB2 heterodimers. The expression of the activating ERBB4 mutants promoted survival of NIH 3T3 cells in the absence of serum. Interestingly, serum starvation of NIH 3T3 cells expressing the ERBB4 mutants only moderately increased the phosphorylation of canonical ErbB signaling pathway effectors Erk1/2 and Akt as compared with wild-type ERBB4. In contrast, the mutations clearly enhanced the proteolytic release of signaling-competent ErbB4 intracellular domain. These results suggest the presence of activating driver mutations of ERBB4 in non-small cell lung cancer.
Collapse
Affiliation(s)
- K J Kurppa
- MediCity Research Laboratories, Department of Medical Biochemistry and Genetics, University of Turku, Turku, Finland.,Turku Doctoral Programme of Molecular Medicine, Turku, Finland
| | - K Denessiouk
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Sciences and Engineering, Åbo Akademi University, Turku, Finland
| | - M S Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Sciences and Engineering, Åbo Akademi University, Turku, Finland
| | - K Elenius
- MediCity Research Laboratories, Department of Medical Biochemistry and Genetics, University of Turku, Turku, Finland.,Department of Oncology, Turku University Hospital, Turku, Finland
| |
Collapse
|
43
|
Williams CS, Bernard JK, Demory Beckler M, Almohazey D, Washington MK, Smith JJ, Frey MR. ERBB4 is over-expressed in human colon cancer and enhances cellular transformation. Carcinogenesis 2015; 36:710-8. [PMID: 25916654 DOI: 10.1093/carcin/bgv049] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/05/2015] [Indexed: 01/21/2023] Open
Abstract
The ERBB4 receptor tyrosine kinase promotes colonocyte survival. Herein, we tested whether ERBB4's antiapoptotic signaling promotes transformation and colorectal tumorigenesis. ERBB4 alterations in a The Cancer Genome Atlas colorectal cancer (CRC) data set stratified survival, and in a combined Moffitt Cancer Center and Vanderbilt Medical Center CRC expression data set, ERBB4 message levels were increased at all tumor stages. Similarly, western blot and immunohistochemistry on additional CRC tissue banks showed elevated ERBB4 protein in tumors. ERBB4 was highly expressed in aggressive, dedifferentiated CRC cell lines, and its knockdown in LIM2405 cells reduced anchorage-independent colony formation. In nude mouse xenograft studies, ERBB4 alone was insufficient to induce tumor establishment of non-transformed mouse colonocytes, but its over-expression in cells harboring Apc(min) and v-Ha-Ras caused a doubling of tumor size. ERBB4-expressing xenografts displayed increased activation of survival pathways, including epidermal growth factor receptor and Akt phosphorylation and COX-2 expression, and decreased apoptotic signals. Finally, ERBB4 deletion from mouse intestinal epithelium impaired stem cell replication and in vitro enteroid establishment. In summary, we report that ERBB4 is over-expressed in human CRC, and in experimental systems enhances the survival and growth of cells driven by Ras and/or WNT signaling. Chronic ERBB4 over-expression in the context of, for example, inflammation may contribute to colorectal carcinogenesis. Tumors with high receptor levels are likely to have enhanced cell survival signaling through epidermal growth factor receptor, PI3K and COX-2. These results suggest ERBB4 as a novel therapeutic target in a subset of CRC.
Collapse
Affiliation(s)
- Christopher S Williams
- Departments of Medicine and Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA, Department of Surgery, Veterans Affairs Tennessee Valley Health Care System, Nashville, TN 37232, USA
| | - Jessica K Bernard
- Department of Pediatrics, University of Southern California Keck School of Medicine and The Saban Research Institute at Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Michelle Demory Beckler
- Department of Pediatrics, University of Southern California Keck School of Medicine and The Saban Research Institute at Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Dana Almohazey
- Department of Pediatrics, University of Southern California Keck School of Medicine and The Saban Research Institute at Children's Hospital Los Angeles, Los Angeles, CA 90027, USA, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Mary Kay Washington
- Departments of Pathology, Microbiology, and Immunology, Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA and
| | - Jesse J Smith
- Department of Surgery, Veterans Affairs Tennessee Valley Health Care System, Nashville, TN 37232, USA
| | - Mark R Frey
- Department of Pediatrics, University of Southern California Keck School of Medicine and The Saban Research Institute at Children's Hospital Los Angeles, Los Angeles, CA 90027, USA, Department of Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| |
Collapse
|
44
|
Wali VB, Gilmore-Hebert M, Mamillapalli R, Haskins JW, Kurppa KJ, Elenius K, Booth CJ, Stern DF. Overexpression of ERBB4 JM-a CYT-1 and CYT-2 isoforms in transgenic mice reveals isoform-specific roles in mammary gland development and carcinogenesis. Breast Cancer Res 2014; 16:501. [PMID: 25516216 PMCID: PMC4303208 DOI: 10.1186/s13058-014-0501-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 12/09/2014] [Indexed: 11/16/2022] Open
Abstract
Introduction Human Epidermal Growth Factor Receptor (ERBB4/HER4) belongs to the Epidermal Growth Factor receptor/ERBB family of receptor tyrosine kinases. While ERBB1, ERBB2 and ERBB3 are often overexpressed or activated in breast cancer, and are oncogenic, the role of ERBB4 in breast cancer is uncertain. Some studies suggest a tumor suppressor role of ERBB4, while other reports suggest an oncogenic potential. Alternative splicing of ERBB4 yields four major protein products, these spliced isoforms differ in the extracellular juxtamembrane domain (JM-a versus JM-b) and cytoplasmic domain (CYT-1 versus CYT-2). Two of these isoforms, JM-a CYT-1 and JM-a CYT-2, are expressed in the mammary gland. Failure to account for isoform-specific functions in previous studies may account for conflicting reports on the role of ERBB4 in breast cancer. Methods We have produced mouse mammary tumour virus (MMTV) -ERBB4 transgenic mice to evaluate potential developmental and carcinogenic changes associated with full length (FL) JM-a ERBB4 CYT-1 versus ERBB4 CYT-2. Mammary tissue was isolated from transgenic mice and sibling controls at various developmental stages for whole mount analysis, RNA extraction, and immunohistochemistry. To maintain maximal ERBB4 expression, transgenic mice were bred continuously for a year after which mammary glands were isolated and analyzed. Results Overexpressing FL CYT-1 isoform resulted in suppression of mammary ductal morphogenesis which was accompanied by decreased number of mammary terminal end buds (TEBs) and Ki-67 positive cells within TEBs, while FL CYT-2 isoform had no effect on ductal growth in pubescent mice. The suppressive ductal phenotype in CYT-1 mice disappeared after mid-pregnancy, and subsequent developmental stages showed no abnormality in mammary gland morphology or function in CYT-1 or CYT-2 transgenic mice. However, sustained expression of FL CYT-1 isoform resulted in formation of neoplastic mammary lesions, suggesting a potential oncogenic function for this isoform. Conclusions Together, we present isoform-specific roles of ERBB4 during puberty and early pregnancy, and reveal a novel oncogenic property of CYT-1 ERBB4. The results may be exploited to develop better therapeutic strategies in breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13058-014-0501-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vikram B Wali
- Department of Pathology, Yale School of Medicine, P.O.Box 208023, New Haven, CT, 06520, USA. .,Department of Breast Medical Oncology, Yale Cancer Center, Room#786, 300 George Street, New Haven, CT-06511, USA.
| | - Maureen Gilmore-Hebert
- Department of Pathology, Yale School of Medicine, P.O.Box 208023, New Haven, CT, 06520, USA.
| | - Ramanaiah Mamillapalli
- Department of Pathology, Yale School of Medicine, P.O.Box 208023, New Haven, CT, 06520, USA.
| | - Jonathan W Haskins
- Department of Pathology, Yale School of Medicine, P.O.Box 208023, New Haven, CT, 06520, USA.
| | - Kari J Kurppa
- Department of Medicinal Biochemistry and genetics and Medicity Research Laboratories, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.
| | - Klaus Elenius
- Department of Medicinal Biochemistry and genetics and Medicity Research Laboratories, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.
| | - Carmen J Booth
- Section of Comparative Medicine, Yale School of Medicine, P.O. Box 208016, New Haven, CT 06520, USA.
| | - David F Stern
- Department of Pathology, Yale School of Medicine, P.O.Box 208023, New Haven, CT, 06520, USA.
| |
Collapse
|
45
|
Kiuchi T, Ortiz-Zapater E, Monypenny J, Matthews DR, Nguyen LK, Barbeau J, Coban O, Lawler K, Burford B, Rolfe DJ, de Rinaldis E, Dafou D, Simpson MA, Woodman N, Pinder S, Gillett CE, Devauges V, Poland SP, Fruhwirth G, Marra P, Boersma YL, Plückthun A, Gullick WJ, Yarden Y, Santis G, Winn M, Kholodenko BN, Martin-Fernandez ML, Parker P, Tutt A, Ameer-Beg SM, Ng T. The ErbB4 CYT2 variant protects EGFR from ligand-induced degradation to enhance cancer cell motility. Sci Signal 2014; 7:ra78. [PMID: 25140053 DOI: 10.1126/scisignal.2005157] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The epidermal growth factor receptor (EGFR) is a member of the ErbB family that can promote the migration and proliferation of breast cancer cells. Therapies that target EGFR can promote the dimerization of EGFR with other ErbB receptors, which is associated with the development of drug resistance. Understanding how interactions among ErbB receptors alter EGFR biology could provide avenues for improving cancer therapy. We found that EGFR interacted directly with the CYT1 and CYT2 variants of ErbB4 and the membrane-anchored intracellular domain (mICD). The CYT2 variant, but not the CYT1 variant, protected EGFR from ligand-induced degradation by competing with EGFR for binding to a complex containing the E3 ubiquitin ligase c-Cbl and the adaptor Grb2. Cultured breast cancer cells overexpressing both EGFR and ErbB4 CYT2 mICD exhibited increased migration. With molecular modeling, we identified residues involved in stabilizing the EGFR dimer. Mutation of these residues in the dimer interface destabilized the complex in cells and abrogated growth factor-stimulated cell migration. An exon array analysis of 155 breast tumors revealed that the relative mRNA abundance of the ErbB4 CYT2 variant was increased in ER+ HER2- breast cancer patients, suggesting that our findings could be clinically relevant. We propose a mechanism whereby competition for binding to c-Cbl in an ErbB signaling heterodimer promotes migration in response to a growth factor gradient.
Collapse
Affiliation(s)
- Tai Kiuchi
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK. Breakthrough Breast Cancer Research Unit, Research Oncology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Elena Ortiz-Zapater
- Department of Asthma, Allergy and Respiratory Science, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - James Monypenny
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK. Breakthrough Breast Cancer Research Unit, Research Oncology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Daniel R Matthews
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Lan K Nguyen
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jody Barbeau
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Oana Coban
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Katherine Lawler
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Brian Burford
- Breakthrough Breast Cancer Research Unit, Research Oncology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Daniel J Rolfe
- Central Laser Facility, Rutherford Appleton Laboratory, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0QX, UK
| | - Emanuele de Rinaldis
- Breakthrough Breast Cancer Research Unit, Research Oncology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Dimitra Dafou
- Genetics and Molecular Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Michael A Simpson
- Genetics and Molecular Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Natalie Woodman
- Guy's and St Thomas' Breast Tissue and Data Bank, King's College London, Guy's Hospital, London SE1 9RT, UK. Research Oncology, Division of Cancer Studies, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Sarah Pinder
- Guy's and St Thomas' Breast Tissue and Data Bank, King's College London, Guy's Hospital, London SE1 9RT, UK. Research Oncology, Division of Cancer Studies, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Cheryl E Gillett
- Guy's and St Thomas' Breast Tissue and Data Bank, King's College London, Guy's Hospital, London SE1 9RT, UK. Research Oncology, Division of Cancer Studies, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Viviane Devauges
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Simon P Poland
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Gilbert Fruhwirth
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Pierfrancesco Marra
- Breakthrough Breast Cancer Research Unit, Research Oncology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Ykelien L Boersma
- Department of Biochemistry, University of Zurich, 190, 8057 Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, 190, 8057 Zurich, Switzerland
| | - William J Gullick
- Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Yosef Yarden
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - George Santis
- Department of Asthma, Allergy and Respiratory Science, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Martyn Winn
- Computational Science and Engineering Department, Daresbury Laboratory, Science and Technology Facilities Council, Research Complex at Warrington, Warrington WA4 4AD, UK
| | - Boris N Kholodenko
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Marisa L Martin-Fernandez
- Central Laser Facility, Rutherford Appleton Laboratory, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0QX, UK
| | - Peter Parker
- Division of Cancer Studies, King's College London, London SE1 1UL, UK. Protein Phosphorylation Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Andrew Tutt
- Breakthrough Breast Cancer Research Unit, Research Oncology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Simon M Ameer-Beg
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK.
| | - Tony Ng
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK. Breakthrough Breast Cancer Research Unit, Research Oncology, King's College London, Guy's Hospital, London SE1 9RT, UK. UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6BT, UK.
| |
Collapse
|
46
|
Paatero I, Seagroves TN, Vaparanta K, Han W, Jones FE, Johnson RS, Elenius K. Hypoxia-inducible factor-1α induces ErbB4 signaling in the differentiating mammary gland. J Biol Chem 2014; 289:22459-69. [PMID: 24966332 DOI: 10.1074/jbc.m113.533497] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conditional knock-out of Hif1a in the mouse mammary gland impairs lobuloalveolar differentiation during lactation. Here, we demonstrate that expression of ErbB4 was reduced in the lobulalveoli of mice with mammary gland-specific deletion of Hif1a. Erbb4 was not, however, a direct target gene for transcriptional regulation by HIF-1α in vitro. HIF-1α overexpression or HIF accumulating prolyl hydroxylase inhibitors reduced ErbB4 endocytosis, promoted transcriptional co-regulatory activity of ErbB4, and stimulated ErbB4-induced differentiation of mammary carcinoma cells. Consistently, RNA interference-mediated down-regulation of HIF-1α resulted in reduced ErbB4 protein amount and reduced mammary carcinoma cell differentiation. These findings indicate that HIF-1α is a physiologically relevant regulator of ErbB4 and that ErbB4 is involved in HIF-regulated differentiation of the mammary gland.
Collapse
Affiliation(s)
- Ilkka Paatero
- From the Department of Medical Biochemistry and Genetics, and MediCity Research Laboratory, University of Turku, 20520 Turku, Finland, the Turku Graduate School of Biomedical Sciences, 20520 Turku, Finland
| | - Tiffany N Seagroves
- the Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Katri Vaparanta
- From the Department of Medical Biochemistry and Genetics, and MediCity Research Laboratory, University of Turku, 20520 Turku, Finland
| | - Wen Han
- the Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118
| | - Frank E Jones
- the Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118
| | - Randall S Johnson
- the Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge CB2 1TN, United Kingdom, and
| | - Klaus Elenius
- From the Department of Medical Biochemistry and Genetics, and MediCity Research Laboratory, University of Turku, 20520 Turku, Finland, the Department of Oncology, Turku University Hospital, 20520 Turku, Finland
| |
Collapse
|
47
|
Wali VB, Haskins JW, Gilmore-Hebert M, Platt JT, Liu Z, Stern DF. Convergent and divergent cellular responses by ErbB4 isoforms in mammary epithelial cells. Mol Cancer Res 2014; 12:1140-55. [PMID: 24829397 DOI: 10.1158/1541-7786.mcr-13-0637] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UNLABELLED Associations of ErbB4 (ERBB4/HER4), the fourth member of the EGFR family, with cancer are variable, possibly as a result of structural diversity of this receptor. There are multiple structural isoforms of ERBB4 arising by alternative mRNA splicing, and a subset undergo proteolysis that releases membrane-anchored and soluble isoforms that associate with transcription factors and coregulators to modulate transcription. To compare the differential and common signaling activities of full-length (FL) and soluble intracellular isoforms of ERBB4, four JM-a isoforms (FL and soluble intracellular domain (ICD) CYT-1 and CYT-2) were expressed in isogenic MCF10A cells and their biologic activities were analyzed. Both FL and ICD CYT-2 promoted cell proliferation and invasion, and CYT-1 suppressed cell growth. Transcriptional profiling revealed several new and underexplored ERBB4-regulated transcripts, including: proteases/protease inhibitors (MMP3 and SERPINE2), the YAP/Hippo pathway (CTGF, CYR61, and SPARC), the mevalonate/cholesterol pathway (HMGCR, HMGCS1, LDLR, and DHCR7), and cytokines (IL8, CCL20, and CXCL1). Many of these transcripts were subsequently validated in a luminal breast cancer cell line that normally expresses ERBB4. Furthermore, ChIP-seq experiments identified ADAP1, APOE, SPARC, STMN1, and MXD1 as novel molecular targets of ERBB4. These findings clarify the diverse biologic activities of ERBB4 isoforms, and reveal new and divergent functions. IMPLICATIONS ErbB4 as a regulator of Hippo and mevalonate pathways provides new insight into milk production and anabolic processes in normal mammary epithelia and cancer.
Collapse
Affiliation(s)
- Vikram B Wali
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Jonathan W Haskins
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | | | - James T Platt
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Zongzhi Liu
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - David F Stern
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
48
|
Machleidt A, Buchholz S, Diermeier-Daucher S, Zeman F, Ortmann O, Brockhoff G. The prognostic value of Her4 receptor isoform expression in triple-negative and Her2 positive breast cancer patients. BMC Cancer 2013; 13:437. [PMID: 24063248 PMCID: PMC3849049 DOI: 10.1186/1471-2407-13-437] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 09/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Not only four but rather seven different human epidermal growth factor receptor related (Her) receptor tyrosine kinases (RTKs) have been described to be expressed in a variety of normal and neoplastic tissues: Her1, Her2, Her3, and additionally four Her4 isoforms have been identified. A differential expression of Her4 isoforms does not, however, play any role in either the molecular diagnostics or treatment decision for breast cancer patients. The prognostic and predictive impact of Her4 expression in breast cancer is basically unclear. METHODS We quantified the Her4 variants JM-a/CYT1, JM-a/CYT2, JM-b/CYT1, and JM-b/CYT2 by isoform-specific polymerase chain reaction (qPCR) in (i) triple-negative, (ii) Her2 positive breast cancer tissues and (iii) in benign breast tissues. RESULTS In all three tissue collectives we never found the JM-b/CYT1 or the JM-b/CYT2 isoform expressed. In contrast, the two JM-a/CYT1 and JM-a/CYT2 isoforms were always simultaneously expressed but at different ratios. We identified a positive prognostic impact on overall survival (OS) in triple-negative and event-free survival (EFS) in Her2 positive patients. This finding is independent of the absolute JM-a/CYT1 to JM-a/CYT2 expression ratio. In Her2 positive patients, Her4 expression only has a favorable effect in estrogen-receptor (ER)-positive but not in ER-negative individuals. CONCLUSION In summary, JM-a/CYT1 and JM-a/CYT2 but not JM-b isoforms of the Her4 receptor are simultaneously expressed in both triple-negative and Her2 positive breast cancer tissues. Although different expression ratios of the two JM-a isoforms did not reveal any additional information, Her4 expression basically indicates a prolonged EFS and OFS. An extended expression analysis that takes all Her receptor homologs, including the Her4 isoforms, into account might render more precisely the molecular diagnostics required for the development of optimized targeted therapies.
Collapse
Affiliation(s)
- Anna Machleidt
- Department of Gynecology and Obstetrics, University Medical Center, Caritas Hospital St, Josef, University of Regensburg, Landshuter Strasse 65, 93053 Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Munk M, Memon A, Poulsen SS, Borre M, Nexo E, Sorensen BS. The HER4 isoform JM-a/CYT2 relates to improved survival in bladder cancer patients but only if the estrogen receptor α is not expressed. Scandinavian Journal of Clinical and Laboratory Investigation 2013; 73:503-13. [DOI: 10.3109/00365513.2013.818706] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Mendoza-Naranjo A, El-Naggar A, Wai DH, Mistry P, Lazic N, Ayala FRR, da Cunha IW, Rodriguez-Viciana P, Cheng H, Tavares Guerreiro Fregnani JH, Reynolds P, Arceci RJ, Nicholson A, Triche TJ, Soares FA, Flanagan AM, Wang YZ, Strauss SJ, Sorensen PH. ERBB4 confers metastatic capacity in Ewing sarcoma. EMBO Mol Med 2013; 5:1087-102. [PMID: 23681745 PMCID: PMC3721475 DOI: 10.1002/emmm.201202343] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 12/17/2022] Open
Abstract
Metastatic spread is the single-most powerful predictor of poor outcome in Ewing sarcoma (ES). Therefore targeting pathways that drive metastasis has tremendous potential to reduce the burden of disease in ES. We previously showed that activation of the ERBB4 tyrosine kinase suppresses anoikis, or detachment-induced cell death, and induces chemoresistance in ES cell lines in vitro. We now show that ERBB4 is transcriptionally overexpressed in ES cell lines derived from chemoresistant or metastatic ES tumours. ERBB4 activates the PI3K-Akt cascade and focal adhesion kinase (FAK), and both pathways contribute to ERBB4-mediated activation of the Rac1 GTPase in vitro and in vivo. ERBB4 augments tumour invasion and metastasis in vivo, and these effects are blocked by ERBB4 knockdown. ERBB4 expression correlates significantly with reduced disease-free survival, and increased expression is observed in metastatic compared to primary patient-matched ES biopsies. Our findings identify a novel ERBB4-PI3K-Akt-FAK-Rac1 pathway associated with aggressive disease in ES. These results predict that therapeutic targeting of ERBB4, alone or in combination with cytotoxic agents, may suppress the metastatic phenotype in ES.
Collapse
|