1
|
Obsilova V, Obsil T. The yeast 14-3-3 proteins Bmh1 and Bmh2 regulate key signaling pathways. Front Mol Biosci 2024; 11:1327014. [PMID: 38328397 PMCID: PMC10847541 DOI: 10.3389/fmolb.2024.1327014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Cell signaling regulates several physiological processes by receiving, processing, and transmitting signals between the extracellular and intracellular environments. In signal transduction, phosphorylation is a crucial effector as the most common posttranslational modification. Selectively recognizing specific phosphorylated motifs of target proteins and modulating their functions through binding interactions, the yeast 14-3-3 proteins Bmh1 and Bmh2 are involved in catabolite repression, carbon metabolism, endocytosis, and mitochondrial retrograde signaling, among other key cellular processes. These conserved scaffolding molecules also mediate crosstalk between ubiquitination and phosphorylation, the spatiotemporal control of meiosis, and the activity of ion transporters Trk1 and Nha1. In humans, deregulation of analogous processes triggers the development of serious diseases, such as diabetes, cancer, viral infections, microbial conditions and neuronal and age-related diseases. Accordingly, the aim of this review article is to provide a brief overview of the latest findings on the functions of yeast 14-3-3 proteins, focusing on their role in modulating the aforementioned processes.
Collapse
Affiliation(s)
- Veronika Obsilova
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division, BIOCEV, Vestec, Czechia
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
2
|
Morozumi Y, Mahayot F, Nakase Y, Soong JX, Yamawaki S, Sofyantoro F, Imabata Y, Oda AH, Tamura M, Kofuji S, Akikusa Y, Shibatani A, Ohta K, Shiozaki K. Rapamycin-sensitive mechanisms confine the growth of fission yeast below the temperatures detrimental to cell physiology. iScience 2024; 27:108777. [PMID: 38269097 PMCID: PMC10805665 DOI: 10.1016/j.isci.2023.108777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/12/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024] Open
Abstract
Cells cease to proliferate above their growth-permissible temperatures, a ubiquitous phenomenon generally attributed to heat damage to cellular macromolecules. We here report that, in the presence of rapamycin, a potent inhibitor of Target of Rapamycin Complex 1 (TORC1), the fission yeast Schizosaccharomyces pombe can proliferate at high temperatures that usually arrest its growth. Consistently, mutations to the TORC1 subunit RAPTOR/Mip1 and the TORC1 substrate Sck1 significantly improve cellular heat resistance, suggesting that TORC1 restricts fission yeast growth at high temperatures. Aiming for a more comprehensive understanding of the negative regulation of high-temperature growth, we conducted genome-wide screens, which identified additional factors that suppress cell proliferation at high temperatures. Among them is Mks1, which is phosphorylated in a TORC1-dependent manner, forms a complex with the 14-3-3 protein Rad24, and suppresses the high-temperature growth independently of Sck1. Our study has uncovered unexpected mechanisms of growth restraint even below the temperatures deleterious to cell physiology.
Collapse
Affiliation(s)
- Yuichi Morozumi
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Fontip Mahayot
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Yukiko Nakase
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Jia Xin Soong
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Sayaka Yamawaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Fajar Sofyantoro
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- Faculty of Biology, Universitas Gadjah Mada, Sleman, Yogyakarta 55281, Indonesia
| | - Yuki Imabata
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Arisa H. Oda
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Miki Tamura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Shunsuke Kofuji
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Yutaka Akikusa
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Ayu Shibatani
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kunihiro Ohta
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Kazuhiro Shiozaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
3
|
Bui THD, Labedzka-Dmoch K. RetroGREAT signaling: The lessons we learn from yeast. IUBMB Life 2024; 76:26-37. [PMID: 37565710 DOI: 10.1002/iub.2775] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023]
Abstract
The mitochondrial retrograde signaling (RTG) pathway of communication from mitochondria to the nucleus was first studied in yeast Saccharomyces cerevisiae. It rewires cellular metabolism according to the mitochondrial state by reprogramming nuclear gene expression in response to mitochondrial triggers. The main players involved in retrograde signaling are the Rtg1 and Rtg3 transcription factors, and a set of positive and negative regulators, including the Rtg2, Mks1, Lst8, and Bmh1/2 proteins. Retrograde regulation is integrated with other processes, including stress response, osmoregulation, and nutrient sensing through functional crosstalk with cellular pathways such as high osmolarity glycerol or target of rapamycin signaling. In this review, we summarize metabolic changes observed upon retrograde stimulation and analyze the progress made to uncover the mechanisms underlying the integration of regulatory circuits. Comparisons of the evolutionary adaptations of the retrograde pathway that have occurred in the different yeast groups can help to fully understand the process.
Collapse
Affiliation(s)
- Thi Hoang Diu Bui
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Karolina Labedzka-Dmoch
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Sengupta S, Levy DL. Organelle Communication with the Nucleus. Results Probl Cell Differ 2024; 73:3-23. [PMID: 39242372 PMCID: PMC11409190 DOI: 10.1007/978-3-031-62036-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Compartmentalization of cellular components is critical to the spatiotemporal and environmental regulation of biochemical activities inside a cell, ensures the proper division of cellular labor and resources, and increases the efficiency of metabolic processes. However, compartmentalization also poses a challenge as organelles often need to communicate across these compartments to complete reaction pathways. These communication signals are often critical aspects of the cellular response to changing environmental conditions. A central signaling hub in the cell, the nucleus communicates with mitochondria, lysosomes, the endoplasmic reticulum, and the Golgi body to ensure optimal organellar and cellular performance. Here we review different mechanisms by which these organelles communicate with the nucleus, focusing on anterograde and retrograde signaling of mitochondria, localization-based signaling of lysosomes, the unfolded protein response of the endoplasmic reticulum, and evidence for nucleus-Golgi signaling. We also include a brief overview of some less well-characterized mechanisms of communication between non-nuclear organelles.
Collapse
Affiliation(s)
- Sourabh Sengupta
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Daniel L. Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
5
|
González-Arzola K, Díaz-Quintana A. Mitochondrial Factors in the Cell Nucleus. Int J Mol Sci 2023; 24:13656. [PMID: 37686461 PMCID: PMC10563088 DOI: 10.3390/ijms241713656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The origin of eukaryotic organisms involved the integration of mitochondria into the ancestor cell, with a massive gene transfer from the original proteobacterium to the host nucleus. Thus, mitochondrial performance relies on a mosaic of nuclear gene products from a variety of genomes. The concerted regulation of their synthesis is necessary for metabolic housekeeping and stress response. This governance involves crosstalk between mitochondrial, cytoplasmic, and nuclear factors. While anterograde and retrograde regulation preserve mitochondrial homeostasis, the mitochondria can modulate a wide set of nuclear genes in response to an extensive variety of conditions, whose response mechanisms often merge. In this review, we summarise how mitochondrial metabolites and proteins-encoded either in the nucleus or in the organelle-target the cell nucleus and exert different actions modulating gene expression and the chromatin state, or even causing DNA fragmentation in response to common stress conditions, such as hypoxia, oxidative stress, unfolded protein stress, and DNA damage.
Collapse
Affiliation(s)
- Katiuska González-Arzola
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Consejo Superior de Investigaciones Científicas—Universidad de Sevilla—Universidad Pablo de Olavide, 41092 Seville, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
| | - Antonio Díaz-Quintana
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
- Instituto de Investigaciones Químicas—cicCartuja, Universidad de Sevilla—C.S.I.C, 41092 Seville, Spain
| |
Collapse
|
6
|
Mahmud SA, Qureshi MA, Pellegrino MW. On the offense and defense: mitochondrial recovery programs amidst targeted pathogenic assault. FEBS J 2022; 289:7014-7037. [PMID: 34270874 PMCID: PMC9192128 DOI: 10.1111/febs.16126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/24/2021] [Accepted: 07/15/2021] [Indexed: 01/13/2023]
Abstract
Bacterial pathogens employ a variety of tactics to persist in their host and promote infection. Pathogens often target host organelles in order to benefit their survival, either through manipulation or subversion of their function. Mitochondria are regularly targeted by bacterial pathogens owing to their diverse cellular roles, including energy production and regulation of programmed cell death. However, disruption of normal mitochondrial function during infection can be detrimental to cell viability because of their essential nature. In response, cells use multiple quality control programs to mitigate mitochondrial dysfunction and promote recovery. In this review, we will provide an overview of mitochondrial recovery programs including mitochondrial dynamics, the mitochondrial unfolded protein response (UPRmt ), and mitophagy. We will then discuss the various approaches used by bacterial pathogens to target mitochondria, which result in mitochondrial dysfunction. Lastly, we will discuss how cells leverage mitochondrial recovery programs beyond their role in organelle repair, to promote host defense against pathogen infection.
Collapse
Affiliation(s)
- Siraje A Mahmud
- Department of Biology, University of Texas Arlington, TX, USA
| | | | | |
Collapse
|
7
|
Li X, Lyu W, Cai Q, Sha T, Cai L, Lyu X, Li Z, Hu Z, Zhang M, Yang J. General regulatory factor 3 regulates the expression of alternative oxidase 1a and the biosynthesis of glucosinolates in cytoplasmic male sterile Brassica juncea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111244. [PMID: 35487653 DOI: 10.1016/j.plantsci.2022.111244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/22/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Mitochondrial retrograde signaling (MRS) plays an essential role in sensing and responding to internal and external stimuli to optimize growth to adapt to the prevailing environmental conditions. Previously studies showed alterations on MRS in cytoplasmic male sterile (CMS) plant. However, the regulators involved in MRS in CMS plants remain largely unknown. In this study, we used alternative oxidase 1a (AOX1a) as an indicator of MRS and found that the expression of AOX1a was significantly downregulated in a CMS line comparing to its revertant line, thus indicating an alteration in MRS in the CMS line. By performing a BLAST search of known regulatory components involved in MRS in yeast, we identified general regulatory factor 3 (GRF3), an orthologue of Bmh1/2 in yeast, and demonstrated an association between this gene and MRS in plants, as evidenced by change in AOX1a expression. GRF3 protein was found to be located in the nucleus and the plasma membrane. Further studies showed that GRF3 interacted with MYB29, and regulated the biosynthesis of glucosinolates in Brassica juncea. These findings revealed that GRF3, a negative regulator of AOX1a, is involved in MRS, and also plays a vital role in the accumulation of glucosinolates in CMS crops.
Collapse
Affiliation(s)
- Xiang Li
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Wenhui Lyu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Qingze Cai
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Tongyun Sha
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Lingmin Cai
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaolong Lyu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Zhangping Li
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China.
| |
Collapse
|
8
|
Shoket H, Pandita M, Sharma M, Kumar R, Rakwal A, Wazir S, Verma V, Salunke DB, Bairwa NK. Genetic interaction between F-box motif encoding YDR131C and retrograde signaling-related RTG1 regulates the stress response and apoptosis in Saccharomyces cerevisiae. J Biochem Mol Toxicol 2021; 35:e22864. [PMID: 34309121 DOI: 10.1002/jbt.22864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/18/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022]
Abstract
The retrograde signaling pathway is well conserved from yeast to humans, which regulates cell adaptation during stress conditions and prevents cell death. One of its components, RTG1 encoded Rtg1p in association with Rtg3p communicates between mitochondria, nucleus, and peroxisome during stress for adaptation, by regulation of transcription. The F-box motif protein encoded by YDR131C constitutes a part of SCF Ydr131c -E3 ligase complex, with unknown function; however, it is known that retrograde signaling is modulated by the E3 ligase complex. This study reports epistasis interaction between YDR131C and RTG1, which regulates cell growth, response to genotoxic stress, decreased apoptosis, resistance to petite mutation, and cell wall integrity. The cells of ydr131cΔrtg1Δ genetic background exhibits growth rate improvement however, sensitivity to hydroxyurea, itraconazole antifungal agent and synthetic indoloquinazoline-based alkaloid (8-fluorotryptanthrin, RK64), which disrupts the cell wall integrity in Saccharomyces cerevisiae. The epistatic interaction between YDR131C and RTG1 indicates a link between protein degradation and retrograde signaling pathways.
Collapse
Affiliation(s)
- Heena Shoket
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Monika Pandita
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Meenu Sharma
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Ravinder Kumar
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| | - Ayushi Rakwal
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Shreya Wazir
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Vijeshwar Verma
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India.,National Interdisciplinary Centre of Vaccine, Immunotherapeutic and Antimicrobials, Panjab University, Chandigarh, India
| | - Narendra K Bairwa
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| |
Collapse
|
9
|
Bhondeley M, Liu Z. Mitochondrial Biogenesis Is Positively Regulated by Casein Kinase I Hrr25 Through Phosphorylation of Puf3 in Saccharomyces cerevisiae. Genetics 2020; 215:463-482. [PMID: 32317286 PMCID: PMC7268985 DOI: 10.1534/genetics.120.303191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/20/2020] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial biogenesis requires coordinated expression of genes encoding mitochondrial proteins, which in Saccharomyces cerevisiae is achieved in part via post-transcriptional control by the Pumilio RNA-binding domain protein Puf3 Puf3 binds to the 3'-UTR of many messenger RNAs (mRNAs) that encode mitochondrial proteins, regulating their turnover, translation, and/or mitochondrial targeting. Puf3 hyperphosphorylation correlates with increased mitochondrial biogenesis; however, the kinase responsible for Puf3 phosphorylation is unclear. Here, we show that the casein kinase I protein Hrr25 negatively regulates Puf3 by mediating its phosphorylation. An hrr25 mutation results in reduced phosphorylation of Puf3 in vivo and a puf3 deletion mutation reverses growth defects of hrr25 mutant cells grown on medium with a nonfermentable carbon source. We show that Hrr25 directly phosphorylates Puf3, and that the interaction between Puf3 and Hrr25 is mediated through the N-terminal domain of Puf3 and the kinase domain of Hrr25 We further found that an hrr25 mutation reduces GFP expression from GFP reporter constructs carrying the 3'-UTR of Puf3 targets. Downregulation of GFP expression due to an hrr25 mutation can be reversed either by puf3Δ or by mutations to the Puf3-binding sites in the 3'-UTR of the GFP reporter constructs. Together, our data indicate that Hrr25 is a positive regulator of mitochondrial biogenesis by phosphorylating Puf3 and inhibiting its function in downregulating target mRNAs encoding mitochondrial proteins.
Collapse
Affiliation(s)
- Manika Bhondeley
- Department of Biological Sciences, University of New Orleans, Louisiana 70148
| | - Zhengchang Liu
- Department of Biological Sciences, University of New Orleans, Louisiana 70148
| |
Collapse
|
10
|
Guaragnella N, Coyne LP, Chen XJ, Giannattasio S. Mitochondria-cytosol-nucleus crosstalk: learning from Saccharomyces cerevisiae. FEMS Yeast Res 2019; 18:5066171. [PMID: 30165482 DOI: 10.1093/femsyr/foy088] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are key cell organelles with a prominent role in both energetic metabolism and the maintenance of cellular homeostasis. Since mitochondria harbor their own genome, which encodes a limited number of proteins critical for oxidative phosphorylation and protein translation, their function and biogenesis strictly depend upon nuclear control. The yeast Saccharomyces cerevisiae has been a unique model for understanding mitochondrial DNA organization and inheritance as well as for deciphering the process of assembly of mitochondrial components. In the last three decades, yeast also provided a powerful tool for unveiling the communication network that coordinates the functions of the nucleus, the cytosol and mitochondria. This crosstalk regulates how cells respond to extra- and intracellular changes either to maintain cellular homeostasis or to activate cell death. This review is focused on the key pathways that mediate nucleus-cytosol-mitochondria communications through both transcriptional regulation and proteostatic signaling. We aim to highlight yeast that likely continues to serve as a productive model organism for mitochondrial research in the years to come.
Collapse
Affiliation(s)
- Nicoletta Guaragnella
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Via Amendola 165/A, 70126 Bari, Italy
| | - Liam P Coyne
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Xin Jie Chen
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Sergio Giannattasio
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Via Amendola 165/A, 70126 Bari, Italy
| |
Collapse
|
11
|
General Amino Acid Control and 14-3-3 Proteins Bmh1/2 Are Required for Nitrogen Catabolite Repression-Sensitive Regulation of Gln3 and Gat1 Localization. Genetics 2016; 205:633-655. [PMID: 28007891 DOI: 10.1534/genetics.116.195800] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 12/21/2016] [Indexed: 01/08/2023] Open
Abstract
Nitrogen catabolite repression (NCR), the ability of Saccharomyces cerevisiae to use good nitrogen sources in preference to poor ones, derives from nitrogen-responsive regulation of the GATA family transcription activators Gln3 and Gat1 In nitrogen-replete conditions, the GATA factors are cytoplasmic and NCR-sensitive transcription minimal. When only poor nitrogen sources are available, Gln3 is nuclear, dramatically increasing GATA factor-mediated transcription. This regulation was originally attributed to mechanistic Tor protein kinase complex 1 (mTorC1)-mediated control of Gln3 However, we recently showed that two regulatory systems act cumulatively to maintain cytoplasmic Gln3 sequestration, only one of which is mTorC1. Present experiments demonstrate that the other previously elusive component is uncharged transfer RNA-activated, Gcn2 protein kinase-mediated general amino acid control (GAAC). Gcn2 and Gcn4 are required for NCR-sensitive nuclear Gln3-Myc13 localization, and from epistasis experiments Gcn2 appears to function upstream of Ure2 Bmh1/2 are also required for nuclear Gln3-Myc13 localization and appear to function downstream of Ure2 Overall, Gln3 phosphorylation levels decrease upon loss of Gcn2, Gcn4, or Bmh1/2 Our results add a new dimension to nitrogen-responsive GATA-factor regulation and demonstrate the cumulative participation of the mTorC1 and GAAC pathways, which respond oppositely to nitrogen availability, in the nitrogen-responsive control of catabolic gene expression in yeast.
Collapse
|
12
|
Eisenberg-Bord M, Schuldiner M. Ground control to major TOM: mitochondria-nucleus communication. FEBS J 2016; 284:196-210. [PMID: 27283924 DOI: 10.1111/febs.13778] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/23/2016] [Accepted: 06/08/2016] [Indexed: 01/13/2023]
Abstract
Mitochondria have crucial functions in the cell, including ATP generation, iron-sulfur cluster biogenesis, nucleotide biosynthesis, and amino acid metabolism. All of these functions require tight regulation on mitochondrial activity and homeostasis. As mitochondria biogenesis is controlled by the nucleus and almost all mitochondrial proteins are encoded by nuclear genes, a tight communication network between mitochondria and the nucleus has evolved, which includes signaling cascades, proteins which are dual-localized to the two compartments, and sensing of mitochondrial products by nuclear proteins. All of these enable a crosstalk between mitochondria and the nucleus that allows the 'ground control' to get information on mitochondria's status. Such information facilitates the creation of a cellular balance of mitochondrial status with energetic needs. This communication also allows a transcriptional response in case mitochondrial function is impaired aimed to restore mitochondrial homeostasis. As mitochondrial dysfunction is related to a growing number of genetic diseases as well as neurodegenerative conditions and aging, elucidating the mechanisms governing the mitochondrial/nuclear communication should progress a better understanding of mitochondrial dysfunctions.
Collapse
Affiliation(s)
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
13
|
Deng QS, Dong XY, Wu H, Wang W, Wang ZT, Zhu JW, Liu CF, Jia WQ, Zhang Y, Schachner M, Ma QH, Xu RX. Disrupted-in-Schizophrenia-1 Attenuates Amyloid-β Generation and Cognitive Deficits in APP/PS1 Transgenic Mice by Reduction of β-Site APP-Cleaving Enzyme 1 Levels. Neuropsychopharmacology 2016; 41:440-53. [PMID: 26062786 PMCID: PMC5130120 DOI: 10.1038/npp.2015.164] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/27/2015] [Accepted: 05/05/2015] [Indexed: 02/05/2023]
Abstract
Disrupted-in-Schizophrenia-1 (DISC1) is a genetic risk factor for a wide range of major mental disorders, including schizophrenia, major depression, and bipolar disorders. Recent reports suggest a potential role of DISC1 in the pathogenesis of Alzheimer's disease (AD), by referring to an interaction between DISC1 and amyloid precursor protein (APP), and to an association of a single-nucleotide polymorphism in a DISC1 intron and late onset of AD. However, the function of DISC1 in AD remains unknown. In this study, decreased levels of DISC1 were observed in the cortex and hippocampus of 8-month-old APP/PS1 transgenic mice, an animal model of AD. Overexpression of DISC1 reduced, whereas knockdown of DISC1 increased protein levels, but not mRNA levels of β-site APP-Cleaving Enzyme 1 (BACE1), a key enzyme in amyloid-β (Aβ) generation. Reduction of BACE1 protein levels by overexpression of DISC1 was accompanied by an accelerating decline rate of BACE1, and was blocked by the lysosomal inhibitor chloroquine, rather than proteasome inhibitor MG-132. Moreover, overexpression of DISC1 in the hippocampus with an adeno-associated virus reduced the levels of BACE1, soluble Aβ40/42, amyloid plaque density, and rescued cognitive deficits of APP/PS1 transgenic mice. These results indicate that DISC1 attenuates Aβ generation and cognitive deficits of APP/PS1 transgenic mice through promoting lysosomal degradation of BACE1. Our findings provide new insights into the role of DISC1 in AD pathogenesis and link a potential function of DISC1 to the psychiatric symptoms of AD.
Collapse
Affiliation(s)
- Qing-Shan Deng
- Affiliated Bayi Brain Hospital and Affiliated Beijing Military Hospital of Southern Medical University, Beijing, China
| | - Xing-Yu Dong
- Affiliated Bayi Brain Hospital and Affiliated Beijing Military Hospital of Southern Medical University, Beijing, China
| | - Hao Wu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Wang Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Zhao-Tao Wang
- Affiliated Bayi Brain Hospital and Affiliated Beijing Military Hospital of Southern Medical University, Beijing, China
| | - Jian-Wei Zhu
- Affiliated Bayi Brain Hospital and Affiliated Beijing Military Hospital of Southern Medical University, Beijing, China
| | - Chun-Feng Liu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Wei-Qiang Jia
- Affiliated Bayi Brain Hospital and Affiliated Beijing Military Hospital of Southern Medical University, Beijing, China
| | - Yan Zhang
- Affiliated Bayi Brain Hospital and Affiliated Beijing Military Hospital of Southern Medical University, Beijing, China
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Quan-Hong Ma
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute, of Neuroscience, Soochow University, Blk402, Renai Road 199, Suzhou, Jiangsu 215021, China, Tel: +86 18015504376, Fax: +86 512 65880829 E-mail:
| | - Ru-Xiang Xu
- Affiliated Bayi Brain Hospital and Affiliated Beijing Military Hospital of Southern Medical University, Beijing, China
- Affiliated Bayi Brain Hospital and Affiliated Beijing Military Hospital of Southern Medical University, Beijing 100070, China, Tel: +8613391788118, Fax: +86 10 64057752, E-mail:
| |
Collapse
|
14
|
Mitochondrial Retrograde Signaling: Triggers, Pathways, and Outcomes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:482582. [PMID: 26583058 PMCID: PMC4637108 DOI: 10.1155/2015/482582] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/08/2015] [Accepted: 05/13/2015] [Indexed: 12/22/2022]
Abstract
Mitochondria are essential organelles for eukaryotic homeostasis. Although these organelles possess their own DNA, the vast majority (>99%) of mitochondrial proteins are encoded in the nucleus. This situation makes systems that allow the communication between mitochondria and the nucleus a requirement not only to coordinate mitochondrial protein synthesis during biogenesis but also to communicate eventual mitochondrial malfunctions, triggering compensatory responses in the nucleus. Mitochondria-to-nucleus retrograde signaling has been described in various organisms, albeit with differences in effector pathways, molecules, and outcomes, as discussed in this review.
Collapse
|
15
|
Martínez JL, Bordel S, Hong KK, Nielsen J. Gcn4p and the Crabtree effect of yeast: drawing the causal model of the Crabtree effect inSaccharomyces cerevisiaeand explaining evolutionary trade-offs of adaptation to galactose through systems biology. FEMS Yeast Res 2014; 14:654-62. [DOI: 10.1111/1567-1364.12153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 02/20/2014] [Accepted: 03/14/2014] [Indexed: 11/26/2022] Open
Affiliation(s)
- José L. Martínez
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Gothenburg Sweden
| | - Sergio Bordel
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Gothenburg Sweden
| | - KuFk-Ki Hong
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Gothenburg Sweden
| | - Jens Nielsen
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Gothenburg Sweden
| |
Collapse
|
16
|
Jazwinski SM. The retrograde response: a conserved compensatory reaction to damage from within and from without. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 127:133-54. [PMID: 25149216 DOI: 10.1016/b978-0-12-394625-6.00005-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The retrograde response was discovered in Saccharomyces cerevisiae as a signaling pathway from the mitochondrion to the nucleus that triggers an array of gene regulatory changes in the latter. The activation of the retrograde response compensates for the deficits associated with aging, and thus it extends yeast replicative life span. The retrograde response is activated by the progressive decline in mitochondrial membrane potential during aging that is the result of increasing mitochondrial dysfunction. The ensuing metabolic adaptations and stress resistance can only delay the inevitable demise of the yeast cell. The retrograde response is embedded in a network of signal transduction pathways that impinge upon virtually every aspect of cell physiology. Thus, its manifestations are complicated. Many of these pathways have been implicated in life span regulation quite independently of the retrograde response. Together, they operate in a delicate balance in promoting longevity. The retrograde response is closely aligned with cell quality control, often performing when quality control is not sufficient to assure longevity. Among the key pathways related to this aspect of retrograde signaling are target of rapamycin and ceramide signaling. The retrograde response can also be found in other organisms, including Caenorhabditis elegans, Drosophila melanogaster, mouse, and human, where it exhibits an ever-increasing complexity that may be corralled by the transcription factor NFκB. The retrograde response may have evolved as a cytoprotective mechanism that senses and defends the organism from pathogens and environmental toxins.
Collapse
Affiliation(s)
- S Michal Jazwinski
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
17
|
Guaragnella N, Ždralević M, Lattanzio P, Marzulli D, Pracheil T, Liu Z, Passarella S, Marra E, Giannattasio S. Yeast growth in raffinose results in resistance to acetic-acid induced programmed cell death mostly due to the activation of the mitochondrial retrograde pathway. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:2765-2774. [PMID: 23906793 DOI: 10.1016/j.bbamcr.2013.07.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/27/2013] [Accepted: 07/19/2013] [Indexed: 12/22/2022]
Abstract
In order to investigate whether and how a modification of mitochondrial metabolism can affect yeast sensitivity to programmed cell death (PCD) induced by acetic acid (AA-PCD), yeast cells were grown on raffinose, as a sole carbon source, which, differently from glucose, favours mitochondrial respiration. We found that, differently from glucose-grown cells, raffinose-grown cells were mostly resistant to AA-PCD and that this was due to the activation of mitochondrial retrograde (RTG) response, which increased with time, as revealed by the up-regulation of the peroxisomal isoform of citrate synthase and isocitrate dehydrogenase isoform 1, RTG pathway target genes. Accordingly, the deletion of RTG2 and RTG3, a positive regulator and a transcription factor of the RTG pathway, resulted in AA-PCD, as shown by TUNEL assay. Neither deletion in raffinose-grown cells of HAP4, encoding the positive regulatory subunit of the Hap2,3,4,5 complex nor constitutive activation of the RTG pathway in glucose-grown cells due to deletion of MKS1, a negative regulator of RTG pathway, had effect on yeast AA-PCD. The RTG pathway was found to be activated in yeast cells containing mitochondria, in which membrane potential was measured, capable to consume oxygen in a manner stimulated by the uncoupler CCCP and inhibited by the respiratory chain inhibitor antimycin A. AA-PCD resistance in raffinose-grown cells occurs with a decrease in both ROS production and cytochrome c release as compared to glucose-grown cells en route to AA-PCD.
Collapse
Affiliation(s)
| | - Maša Ždralević
- CNR, Istituto di Biomembrane e Bioenergetica, Via Amendola 165/a, 70126 Bari, Italy
| | - Paolo Lattanzio
- CNR, Istituto di Biomembrane e Bioenergetica, Via Amendola 165/a, 70126 Bari, Italy
| | - Domenico Marzulli
- CNR, Istituto di Biomembrane e Bioenergetica, Via Amendola 165/a, 70126 Bari, Italy
| | - Tammy Pracheil
- Department of Biological Sciences, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA
| | - Zhengchang Liu
- Department of Biological Sciences, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA
| | - Salvatore Passarella
- Dipartimento di Medicina e Scienze per la Salute, Università del Molise, Via de Sanctis, 86100 Campobasso, Italy
| | - Ersilia Marra
- CNR, Istituto di Biomembrane e Bioenergetica, Via Amendola 165/a, 70126 Bari, Italy
| | - Sergio Giannattasio
- CNR, Istituto di Biomembrane e Bioenergetica, Via Amendola 165/a, 70126 Bari, Italy.
| |
Collapse
|
18
|
Ünlü ES, Narayanan L, Gordon DM. Characterization of fungal RTG2 genes in retrograde signaling of Saccharomyces cerevisiae. FEMS Yeast Res 2013; 13:495-503. [PMID: 23711018 PMCID: PMC3814403 DOI: 10.1111/1567-1364.12055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/16/2013] [Accepted: 05/17/2013] [Indexed: 12/01/2022] Open
Abstract
Changes in the functional status of mitochondria result in the transcriptional activation of a subset of nuclear-encoded genes in a process referred to as retrograde signaling. In Saccharomyces cerevisiae, this molecular link between mitochondria and the nuclear genome is controlled by three key signaling proteins: Rtg1p, Rtg2p, and Rtg3p. Although the retrograde signaling response has been well characterized in S. cerevisiae, very little is known about this pathway in other fungi. In this study, we selected four species having uncharacterized open reading frames (ORFs) with more than 66% amino acid identity to Rtg2p for further analysis. To determine whether these putative RTG2 ORFs encoded bona fide regulators of retrograde signaling, we tested their ability to complement the defects associated with the S. cerevisiae rtg2Δ mutant. Specifically, we tested for complementation of citrate synthase (CIT2) and aconitase (ACO1) at the transcript and protein levels, glutamate auxotrophy, and changes in the interaction between Rtg2p and the negative regulator Mks1p. Our findings show that all four Rtg2p homologs are functional upon activation of retrograde signaling, although their degree of complementation varied. In addition, all Rtg2p homologs showed a marked reduction in Mks1p binding, which may contribute to their altered responses to retrograde signaling.
Collapse
Affiliation(s)
- Ercan Selçuk Ünlü
- Department of Biological Sciences, Mississippi State UniversityMississippi State, MS, USA
- Department of Chemistry, Abant Izzet Baysal UniversityBolu, Turkey
| | - Lakshmi Narayanan
- Department of Biological Sciences, Mississippi State UniversityMississippi State, MS, USA
| | - Donna M Gordon
- Department of Biological Sciences, Mississippi State UniversityMississippi State, MS, USA
| |
Collapse
|
19
|
Mitochondrial signaling: forwards, backwards, and in between. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:351613. [PMID: 23819011 PMCID: PMC3681274 DOI: 10.1155/2013/351613] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/04/2013] [Indexed: 12/13/2022]
Abstract
Mitochondria are semiautonomous organelles that are a defining characteristic of almost all eukaryotic cells. They are vital for energy production, but increasing evidence shows that they play important roles in a wide range of cellular signaling and homeostasis. Our understanding of nuclear control of mitochondrial function has expanded over the past half century with the discovery of multiple transcription factors and cofactors governing mitochondrial biogenesis. More recently, nuclear changes in response to mitochondrial messaging have led to characterization of retrograde mitochondrial signaling, in which mitochondria have the ability to alter nuclear gene expression. Mitochondria are also integral to other components of stress response or quality control including ROS signaling, unfolded protein response, mitochondrial autophagy, and biogenesis. These avenues of mitochondrial signaling are discussed in this review.
Collapse
|
20
|
Zhang F, Pracheil T, Thornton J, Liu Z. Adenosine Triphosphate (ATP) Is a Candidate Signaling Molecule in the Mitochondria-to-Nucleus Retrograde Response Pathway. Genes (Basel) 2013; 4:86-100. [PMID: 24605246 PMCID: PMC3899953 DOI: 10.3390/genes4010086] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/09/2013] [Accepted: 03/15/2013] [Indexed: 01/08/2023] Open
Abstract
Intracellular communication from the mitochondria to the nucleus is achieved via the retrograde response. In budding yeast, the retrograde response, also known as the RTG pathway, is regulated positively by Rtg1, Rtg2, Rtg3 and Grr1 and negatively by Mks1, Lst8 and two 14-3-3 proteins, Bmh1/2. Activation of retrograde signaling leads to activation of Rtg1/3, two basic helix-loop-helix leucine zipper transcription factors. Rtg1/3 activation requires Rtg2, a cytoplasmic protein with an N-terminal adenosine triphosphate (ATP) binding domain belonging to the actin/Hsp70/sugar kinase superfamily. The critical regulatory step of the retrograde response is the interaction between Rtg2 and Mks1. Rtg2 binds to and inactivates Mks1, allowing for activation of Rtg1/3 and the RTG pathway. When the pathway is inactive, Mks1 has dissociated from Rtg2 and bound to Bmh1/2, preventing activation of Rtg1/3. What signals association or disassociation of Mks1 and Rtg2 is unknown. Here, we show that ATP at physiological concentrations dissociates Mks1 from Rtg2 in a highly cooperative fashion. We report that ATP-mediated dissociation of Mks1 from Rtg2 is conserved in two other fungal species, K. lactis and K. waltii. Activation of Rtg1/3 upregulates expression of genes encoding enzymes catalyzing the first three reactions of the Krebs cycle, which is coupled to ATP synthesis through oxidative phosphorylation. Therefore, we propose that the retrograde response is an ATP homeostasis pathway coupling ATP production with ATP-mediated repression of the retrograde response by releasing Mks1 from Rtg2.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA; E-Mails: (F.Z.); (J.T.)
| | - Tammy Pracheil
- Department of Biological Sciences, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA; E-Mail:
| | - Janet Thornton
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA; E-Mails: (F.Z.); (J.T.)
| | - Zhengchang Liu
- Department of Biological Sciences, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-504-280-6314; Fax: +1-504-280-6121
| |
Collapse
|
21
|
Giannattasio S, Guaragnella N, Ždralević M, Marra E. Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid. Front Microbiol 2013; 4:33. [PMID: 23430312 PMCID: PMC3576806 DOI: 10.3389/fmicb.2013.00033] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 02/05/2013] [Indexed: 01/07/2023] Open
Abstract
Beyond its classical biotechnological applications such as food and beverage production or as a cell factory, the yeast Saccharomyces cerevisiae is a valuable model organism to study fundamental mechanisms of cell response to stressful environmental changes. Acetic acid is a physiological product of yeast fermentation and it is a well-known food preservative due to its antimicrobial action. Acetic acid has recently been shown to cause yeast cell death and aging. Here we shall focus on the molecular mechanisms of S. cerevisiae stress adaptation and programmed cell death in response to acetic acid. We shall elaborate on the intracellular signaling pathways involved in the cross-talk of pro-survival and pro-death pathways underlying the importance of understanding fundamental aspects of yeast cell homeostasis to improve the performance of a given yeast strain in biotechnological applications.
Collapse
Affiliation(s)
- Sergio Giannattasio
- Istituto di Biomembrane e Bioenergetica, Consiglio Nazionale delle RicercheBari, Italy
| | | | | | | |
Collapse
|
22
|
Jazwinski SM. The retrograde response: when mitochondrial quality control is not enough. BIOCHIMICA ET BIOPHYSICA ACTA 2013. [PMID: 22374136 DOI: 10.1016/j.bbamcr.2012.02.010 [epub ahead of print]] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Mitochondria are responsible for generating adenosine triphosphate (ATP) and metabolic intermediates for biosynthesis. These dual functions require the activity of the electron transport chain in the mitochondrial inner membrane. The performance of these electron carriers is imperfect, resulting in release of damaging reactive oxygen species. Thus, continued mitochondrial activity requires maintenance. There are numerous means by which this quality control is ensured. Autophagy and selective mitophagy are among them. However, the cell inevitably must compensate for declining quality control by activating a variety of adaptations that entail the signaling of the presence of mitochondrial dysfunction to the nucleus. The best known of these is the retrograde response. This signaling pathway is triggered by the loss of mitochondrial membrane potential, which engages a series of signal transduction proteins, and it culminates in the induction of a broad array of nuclear target genes. One of the hallmarks of the retrograde response is its capacity to extend the replicative life span of the cell. The retrograde signaling pathway interacts with several other signaling pathways, such as target of rapamycin (TOR) and ceramide signaling. All of these pathways respond to stress, including metabolic stress. The retrograde response is also linked to both autophagy and mitophagy at the gene and protein activation levels. Another quality control mechanism involves age-asymmetry in the segregation of dysfunctional mitochondria. One of the processes that impinge on this age-asymmetry is related to biogenesis of the organelle. Altogether, it is apparent that mitochondrial quality control constitutes a complex network of processes, whose full understanding will require a systems approach. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- S Michal Jazwinski
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA.
| |
Collapse
|
23
|
Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics 2012; 190:885-929. [PMID: 22419079 DOI: 10.1534/genetics.111.133306] [Citation(s) in RCA: 377] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ever since the beginning of biochemical analysis, yeast has been a pioneering model for studying the regulation of eukaryotic metabolism. During the last three decades, the combination of powerful yeast genetics and genome-wide approaches has led to a more integrated view of metabolic regulation. Multiple layers of regulation, from suprapathway control to individual gene responses, have been discovered. Constitutive and dedicated systems that are critical in sensing of the intra- and extracellular environment have been identified, and there is a growing awareness of their involvement in the highly regulated intracellular compartmentalization of proteins and metabolites. This review focuses on recent developments in the field of amino acid, nucleotide, and phosphate metabolism and provides illustrative examples of how yeast cells combine a variety of mechanisms to achieve coordinated regulation of multiple metabolic pathways. Importantly, common schemes have emerged, which reveal mechanisms conserved among various pathways, such as those involved in metabolite sensing and transcriptional regulation by noncoding RNAs or by metabolic intermediates. Thanks to the remarkable sophistication offered by the yeast experimental system, a picture of the intimate connections between the metabolomic and the transcriptome is becoming clear.
Collapse
|
24
|
Jazwinski SM, Kriete A. The yeast retrograde response as a model of intracellular signaling of mitochondrial dysfunction. Front Physiol 2012; 3:139. [PMID: 22629248 PMCID: PMC3354551 DOI: 10.3389/fphys.2012.00139] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 04/26/2012] [Indexed: 12/03/2022] Open
Abstract
Mitochondrial dysfunction activates intracellular signaling pathways that impact yeast longevity, and the best known of these pathways is the retrograde response. More recently, similar responses have been discerned in other systems, from invertebrates to human cells. However, the identity of the signal transducers is either unknown or apparently diverse, contrasting with the well-established signaling module of the yeast retrograde response. On the other hand, it has become equally clear that several other pathways and processes interact with the retrograde response, embedding it in a network responsive to a variety of cellular states. An examination of this network supports the notion that the master regulator NFκB aggregated a variety of mitochondria-related cellular responses at some point in evolution and has become the retrograde transcription factor. This has significant consequences for how we view some of the deficits associated with aging, such as inflammation. The support for NFκB as the retrograde response transcription factor is not only based on functional analyses. It is bolstered by the fact that NFκB can regulate Myc–Max, which is activated in human cells with dysfunctional mitochondria and impacts cellular metabolism. Myc–Max is homologous to the yeast retrograde response transcription factor Rtg1–Rtg3. Further research will be needed to disentangle the pro-aging from the anti-aging effects of NFκB. Interestingly, this is also a challenge for the complete understanding of the yeast retrograde response.
Collapse
Affiliation(s)
- S Michal Jazwinski
- Department of Medicine, Tulane Center for Aging, Tulane University Health Sciences Center New Orleans, LA, USA
| | | |
Collapse
|
25
|
Jazwinski SM. The retrograde response: when mitochondrial quality control is not enough. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:400-9. [PMID: 22374136 DOI: 10.1016/j.bbamcr.2012.02.010] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/10/2012] [Accepted: 02/12/2012] [Indexed: 12/28/2022]
Abstract
Mitochondria are responsible for generating adenosine triphosphate (ATP) and metabolic intermediates for biosynthesis. These dual functions require the activity of the electron transport chain in the mitochondrial inner membrane. The performance of these electron carriers is imperfect, resulting in release of damaging reactive oxygen species. Thus, continued mitochondrial activity requires maintenance. There are numerous means by which this quality control is ensured. Autophagy and selective mitophagy are among them. However, the cell inevitably must compensate for declining quality control by activating a variety of adaptations that entail the signaling of the presence of mitochondrial dysfunction to the nucleus. The best known of these is the retrograde response. This signaling pathway is triggered by the loss of mitochondrial membrane potential, which engages a series of signal transduction proteins, and it culminates in the induction of a broad array of nuclear target genes. One of the hallmarks of the retrograde response is its capacity to extend the replicative life span of the cell. The retrograde signaling pathway interacts with several other signaling pathways, such as target of rapamycin (TOR) and ceramide signaling. All of these pathways respond to stress, including metabolic stress. The retrograde response is also linked to both autophagy and mitophagy at the gene and protein activation levels. Another quality control mechanism involves age-asymmetry in the segregation of dysfunctional mitochondria. One of the processes that impinge on this age-asymmetry is related to biogenesis of the organelle. Altogether, it is apparent that mitochondrial quality control constitutes a complex network of processes, whose full understanding will require a systems approach. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- S Michal Jazwinski
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA.
| |
Collapse
|
26
|
Ždralević M, Guaragnella N, Antonacci L, Marra E, Giannattasio S. Yeast as a tool to study signaling pathways in mitochondrial stress response and cytoprotection. ScientificWorldJournal 2012; 2012:912147. [PMID: 22454613 PMCID: PMC3289858 DOI: 10.1100/2012/912147] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 11/29/2011] [Indexed: 11/17/2022] Open
Abstract
Cell homeostasis results from the balance between cell capability to adapt or succumb to environmental stress. Mitochondria, in addition to supplying cellular energy, are involved in a range of processes deciding about cellular life or death. The crucial role of mitochondria in cell death is well recognized. Mitochondrial dysfunction has been associated with the death process and the onset of numerous diseases. Yet, mitochondrial involvement in cellular adaptation to stress is still largely unexplored. Strong interest exists in pharmacological manipulation of mitochondrial metabolism and signaling. The yeast Saccharomyces cerevisiae has proven a valuable model organism in which several intracellular processes have been characterized in great detail, including the retrograde response to mitochondrial dysfunction and, more recently, programmed cell death. In this paper we review experimental evidences of mitochondrial involvement in cytoprotection and propose yeast as a model system to investigate the role of mitochondria in the cross-talk between prosurvival and prodeath pathways.
Collapse
Affiliation(s)
- Maša Ždralević
- CNR—Istituto di Biomembrane e Bioenergetica, Via Amendola 165/A, 70126 Bari, Italy
| | | | - Lucia Antonacci
- CNR—Istituto di Biomembrane e Bioenergetica, Via Amendola 165/A, 70126 Bari, Italy
| | - Ersilia Marra
- CNR—Istituto di Biomembrane e Bioenergetica, Via Amendola 165/A, 70126 Bari, Italy
| | - Sergio Giannattasio
- CNR—Istituto di Biomembrane e Bioenergetica, Via Amendola 165/A, 70126 Bari, Italy
| |
Collapse
|
27
|
The retrograde response retrograde response and other pathways of interorganelle communication interorganelle communication in yeast replicative aging. Subcell Biochem 2011; 57:79-100. [PMID: 22094418 DOI: 10.1007/978-94-007-2561-4_4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A form of mitochondria-to-nucleus signaling mitochondria-to-nucleus signaling is known to play a role in determining replicative life span in yeast. This retrograde response is triggered by experimentally-induced mitochondrial dysfunction mitochondrial dysfunction, but it also is activated during the course of normal replicative aging, allowing yeast to have as long a replicative life span as they do. The components of the retrograde signaling pathway participate in diverse cellular processes such as mitophagy, which appear to be involved in mitochondrial quality control mitochondrial quality control. This plethora of mitochondrial surveillance mitochondrial surveillance mechanisms points to the central importance of this organelle organelle in yeast replicative aging. Additional pathways pathways that monitor mitochondrial status mitochondrial status that do not apparently involve the retrograde response machinery also play a role. A unifying theme is the involvement of the target of rapamycin target of rapamycin (TOR) in both these additional pathways and in the retrograde response. The involvement of TOR brings another large family of signaling events into juxtaposition. Ceramide synthesis is regulated by TOR opening up the potential for coordination of mitochondrial status with a wide array of additional cellular processes. The retrograde response lies at the nexus of metabolic regulation metabolic regulation, stress resistance stress resistance, chromatin-dependent gene regulation chromatin-dependent gene regulation, and genome stability genome stability. In its metabolic outputs, it is related to calorie restriction,calorie restriction, which may be the result of the involvement of TOR. Retrograde response-like processes have been identified in systems other than yeast, including mammalian cells mammalian cells. The retrograde response is a prototypical pathway of interorganelle communication. Other such phenomena are emerging, such as the cross-talk cross-talk between mitochondria mitochondria and the vacuole vacuole, which involves components of the retrograde signaling pathway. The impact of these varied physiological responses on yeast replicative aging remains to be assessed.
Collapse
|
28
|
Tumusiime S, Zhang C, Overstreet MS, Liu Z. Differential regulation of transcription factors Stp1 and Stp2 in the Ssy1-Ptr3-Ssy5 amino acid sensing pathway. J Biol Chem 2010; 286:4620-31. [PMID: 21127045 DOI: 10.1074/jbc.m110.195313] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stp1 and Stp2 are two homologous transcription factors activated in response to extracellular amino acid stimuli. Here we show that both ubiquitin-dependent degradation of Stp1 and Stp2 and their intracellular localization are differentially regulated. We have found that the E2 ubiquitin-conjugating enzyme Cdc34 is required for degradation of both full-length and processed Stp1, but not Stp2. We have also found that Grr1, the F-box component of the SCF(Grr1) E3 ubiquitin ligase, is the primary factor in degradation of full-length Stp1, whereas both Grr1 and Cdc4 are required for degradation of processed Stp1. Our localization studies showed that full-length Stp1 is localized both in the cytoplasm and at the cell periphery, whereas full-length Stp2 is localized only diffusely in the cytoplasm. We identified two nuclear localization signals of Stp1 and found that the N-terminal domain of Stp1 is required for localization of full-length Stp1 to the cell periphery. We also found that Stp2 is the primary factor involved in basal activation of target gene expression. Our results indicate that the functions of two seemingly redundant transcription factors can be separated by differential degradation and distinct cellular localization.
Collapse
Affiliation(s)
- Sylvester Tumusiime
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana 70148, USA
| | | | | | | |
Collapse
|
29
|
Srinivasan V, Kriete A, Sacan A, Michal Jazwinski S. Comparing the yeast retrograde response and NF-κB stress responses: implications for aging. Aging Cell 2010; 9:933-41. [PMID: 20961379 PMCID: PMC2980572 DOI: 10.1111/j.1474-9726.2010.00622.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The mitochondrial retrograde response has been extensively described in Saccharomyces cerevisiae, where it has been found to extend life span during times of mitochondrial dysfunction, damage or low nutrient levels. In yeast, the retrograde response genes (RTG) convey these stress responses to the nucleus to change the gene expression adaptively. Similarly, most classes of higher organisms have been shown to have some version of a central stress-mediating transcription factor, NF-κB. There have been several modifications along the phylogenetic tree as NF-κB has taken a larger role in managing cellular stresses. Here, we review similarities and differences in mechanisms and pathways between RTG genes in yeast and NF-κB as seen in more complex organisms. We perform a structural homology search and reveal similarities of Rtg proteins with eukaryotic transcription factors involved in development and metabolism. NF-κB shows more sophisticated functions when compared to RTG genes including participation in immune responses and induction of apoptosis under high levels of ROS-induced mitochondrial and nuclear DNA damage. Involvement of NF-κB in chromosomal stability, coregulation of mitochondrial respiration, and cross talk with the TOR (target of rapamycin) pathway points to a conserved mechanism also found in yeast.
Collapse
Affiliation(s)
| | - Andres Kriete
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104
| | - Ahmet Sacan
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104
| | - S. Michal Jazwinski
- Tulane Center for Aging and Department of Medicine, Tulane University, 1430 Tulane Ave., New Orleans, LA 70112
| |
Collapse
|
30
|
Yoshida H. ER stress response, peroxisome proliferation, mitochondrial unfolded protein response and Golgi stress response. IUBMB Life 2009; 61:871-9. [PMID: 19504573 DOI: 10.1002/iub.229] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The endoplasmic reticulum (ER) response has been thought a cytoprotective mechanism to cope with accumulation of unfolded proteins in the ER. Recent progress has made a quantum leap revealing that ER stress response can be regarded as an autoregulatory system adjusting the ER capacity to cellular demand. This Copernican change raised a novel fundamental question in cell biology: how do cells regulate the capacity of each organelle in accordance with cellular needs? Although this fundamental question has not been fully addressed yet, research about each organelle has been advancing. The proliferation of the peroxisome is regulated by the PPAR alpha pathway, whereas the abundance of mitochondria appears to be regulated by mitochondrial retrograde signaling and the mitochondrial unfolded protein response. The functional capacity of the Golgi apparatus may be regulated by the mechanism of the Golgi stress response. These observations strongly suggest the existence of an elaborate network of organelle autoregulation in eukaryotic cells.
Collapse
Affiliation(s)
- Hiderou Yoshida
- Department of Biophysics, Graduate School of Science, Kyoto University, Japan.
| |
Collapse
|
31
|
|
32
|
Yeger-Lotem E, Riva L, Su LJ, Gitler AD, Cashikar A, King OD, Auluck PK, Geddie ML, Valastyan JS, Karger DR, Lindquist S, Fraenkel E. Bridging high-throughput genetic and transcriptional data reveals cellular responses to alpha-synuclein toxicity. Nat Genet 2009; 41:316-23. [PMID: 19234470 PMCID: PMC2733244 DOI: 10.1038/ng.337] [Citation(s) in RCA: 226] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 01/27/2009] [Indexed: 02/07/2023]
Abstract
Cells respond to stimuli by changes in various processes, including signaling pathways and gene expression. Efforts to identify components of these responses increasingly depend on mRNA profiling and genetic library screens. By comparing the results of these two assays across various stimuli, we found that genetic screens tend to identify response regulators, whereas mRNA profiling frequently detects metabolic responses. We developed an integrative approach that bridges the gap between these data using known molecular interactions, thus highlighting major response pathways. We used this approach to reveal cellular pathways responding to the toxicity of alpha-synuclein, a protein implicated in several neurodegenerative disorders including Parkinson's disease. For this we screened an established yeast model to identify genes that when overexpressed alter alpha-synuclein toxicity. Bridging these data and data from mRNA profiling provided functional explanations for many of these genes and identified previously unknown relations between alpha-synuclein toxicity and basic cellular pathways.
Collapse
Affiliation(s)
- Esti Yeger-Lotem
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142 USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Laura Riva
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Linhui Julie Su
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142 USA
| | - Aaron D. Gitler
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142 USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anil Cashikar
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142 USA
| | - Oliver D. King
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142 USA
| | - Pavan K. Auluck
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142 USA
- Department of Pathology and Neurology, Massachusetts General Hospital, Boston, MA 02114 and Harvard Medical School, Boston MA 02115 USA
| | - Melissa L. Geddie
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142 USA
| | - Julie S. Valastyan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142 USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David R. Karger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142 USA
- Howard Hughes Medical Institute, Cambridge, MA 02142 USA
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
33
|
Yurina NP, Odintsova MS. Mitochondrial signaling: Retrograde regulation in yeast Saccharomyces cerevisiae. RUSS J GENET+ 2009. [DOI: 10.1134/s102279540811001x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Borg M, Mittag T, Pawson T, Tyers M, Forman-Kay JD, Chan HS. Polyelectrostatic interactions of disordered ligands suggest a physical basis for ultrasensitivity. Proc Natl Acad Sci U S A 2007; 104:9650-5. [PMID: 17522259 PMCID: PMC1887549 DOI: 10.1073/pnas.0702580104] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of biological processes often involves phosphorylation of intrinsically disordered protein regions, thereby modulating protein interactions. Initiation of DNA replication in yeast requires elimination of the cyclin-dependent kinase inhibitor Sic1 via the SCF(Cdc4) ubiquitin ligase. Intriguingly, the substrate adapter subunit Cdc4 binds to Sic1 only after phosphorylation of a minimum of any six of the nine cyclin-dependent kinase sites on Sic1. To investigate the physical basis of this ultrasensitive interaction, we consider a mean-field statistical mechanical model for the electrostatic interactions between a single receptor site and a conformationally disordered polyvalent ligand. The formulation treats phosphorylation sites as negative contributions to the total charge of the ligand and addresses its interplay with the strength of the favorable ligand-receptor contact. Our model predicts a threshold number of phosphorylation sites for receptor-ligand binding, suggesting that ultrasensitivity in the Sic1-Cdc4 system may be driven at least in part by cumulative electrostatic interactions. This hypothesis is supported by experimental affinities of Cdc4 for Sic1 fragments with different total charges. Thus, polyelectrostatic interactions may provide a simple yet powerful framework for understanding the modulation of protein interactions by multiple phosphorylation sites in disordered protein regions.
Collapse
Affiliation(s)
- Mikael Borg
- Departments of *Biochemistry and
- Medical Genetics and Microbiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8
- Molecular Structure and Function, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8; and
| | - Tanja Mittag
- Molecular Structure and Function, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8; and
| | - Tony Pawson
- Medical Genetics and Microbiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada M5G 1X5
- To whom correspondence may be addressed. E-mail: or
| | - Mike Tyers
- Medical Genetics and Microbiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada M5G 1X5
| | - Julie D. Forman-Kay
- Departments of *Biochemistry and
- Molecular Structure and Function, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8; and
| | - Hue Sun Chan
- Departments of *Biochemistry and
- Medical Genetics and Microbiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
35
|
Abstract
Mitochondrial retrograde signaling is a pathway of communication from mitochondria to the nucleus under normal and pathophysiological conditions. The best understood of such pathways is retrograde signaling in the budding yeast Saccharomyces cerevisiae. It involves multiple factors that sense and transmit mitochondrial signals to effect changes in nuclear gene expression; these changes lead to a reconfiguration of metabolism to accommodate cells to defects in mitochondria. Analysis of regulatory factors has provided us with a mechanistic view of regulation of retrograde signaling. Here we review advances in the yeast retrograde signaling pathway and highlight its regulatory factors and regulatory mechanisms, its physiological functions, and its connection to nutrient sensing, TOR signaling, and aging.
Collapse
Affiliation(s)
- Zhengchang Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA.
| | | |
Collapse
|
36
|
Krappmann S, Jung N, Medic B, Busch S, Prade RA, Braus GH. The Aspergillus nidulans F-box protein GrrA links SCF activity to meiosis. Mol Microbiol 2006; 61:76-88. [PMID: 16824096 DOI: 10.1111/j.1365-2958.2006.05215.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cellular differentiation relies on precise and controlled means of gene expression that act on several levels to ensure a flexible and defined spatio-temporal expression of a given gene product. In our aim to identify transcripts enriched during fruiting body formation of the homothallic ascomycete Aspergillus (Emericella) nidulans, the grrA gene could be identified in a negative subtraction hybridization screening procedure. It encodes a protein similar to fungal F-box proteins, which function as substrate receptors for ubiquitin ligases, and that is highly related to the Saccharomyces cerevisiae regulatory protein Grr1p. Expression studies confirmed induction of grrA transcription and expression of its gene product during cleistothecial development of A. nidulans. Functional complementation of a yeast grr1Delta mutant was achieved by overexpression of the grrA coding sequence. A grrADelta deletion mutant resembles the wild-type in hyphal growth, asexual sporulation, Hülle cell formation or development of asci-containing cleistothecia, but is unable to produce mature ascospores due to a block in meiosis as demonstrated by cytological staining of cleistothecial contents. Our results specify a particular involvement of the E3 ubiquitin ligase SCFGrrA in meiosis and sexual spore formation of an ascomyceteous fungus and shed light on the diverse functions of ubiquitin-proteasome-mediated protein degradation in eukaryotic development.
Collapse
Affiliation(s)
- Sven Krappmann
- Institute of Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Georg-August-University Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Zhang Z, Evers DL, McCarville JF, Dantonel JC, Huong SM, Huang ES. Evidence that the human cytomegalovirus IE2-86 protein binds mdm2 and facilitates mdm2 degradation. J Virol 2006; 80:3833-43. [PMID: 16571800 PMCID: PMC1440454 DOI: 10.1128/jvi.80.8.3833-3843.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Levels of the p53 tumor suppressor protein are increased in human cytomegalovirus (HCMV)-infected cells and may be important for HCMV pathogenesis. In normal cells p53 levels are kept low due to an autoregulatory feedback loop where p53 activates the transcription of mdm2 and mdm2 binds and ubiquitinates p53, targeting p53 for proteasomal degradation. Here we report that, in contrast to uninfected cells, mdm2 was undetectable upon treatment of infected fibroblasts with the proteasome inhibitor MG132. Cellular depletion of mdm2 was reproducible in p53-null cells transfected with the HCMV IE2-86 protein, but not with IE172, independently of the endogenous mdm2 promoter. IE2-86 also prevented the emergence of presumably ubiquitinated species of p53. The regions of IE2-86 important for mdm2 depletion were those containing the sequences corresponding to the putative zinc finger and C-terminal acidic motifs. mdm2 and IE2-86 coimmunoprecipitated in transfected and infected cell lysates and in a cell-free system. IE2-86 blocked mdm2's p53-independent transactivation of the cyclin A promoter in transient-transfection experiments. Pulse-chase experiments revealed that IE2-86 but not IE1-72 or several loss-of-function IE2-86 mutants increased the half-life of p53 and reduced the half-life of mdm2. Short interfering RNA-mediated depletion of IE2-86 restored the ability of HCMV-infected cells to accumulate mdm2 in response to proteasome inhibition. Taken together, the data suggest that specific interactions between IE2-86 and mdm2 cause proteasome-independent degradation of mdm2 and that this may be important for the accumulation of p53 in HCMV-infected cells.
Collapse
Affiliation(s)
- Zhigang Zhang
- CB #7295, Lineberger Comprehensive Cancer Center, Rm. 32-026, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295, USA
| | | | | | | | | | | |
Collapse
|