1
|
Piovani G, Ferraro RM, Giliani SC. Establishment and characterization of Cri Du Chat neuronal stem cells: a novel promising resource to study the syndrome. Hum Cell 2025; 38:98. [PMID: 40343585 PMCID: PMC12064636 DOI: 10.1007/s13577-025-01230-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 05/02/2025] [Indexed: 05/11/2025]
Abstract
The Cri Du Chat (CdC) Syndrome is a rare chromosome disease condition resulting from variable size deletion occurring on the short arm of one of the chromosomes 5. This disorder, which affects one in 50,000 births, is responsible for developmental retardation, the mechanism of which has remained unexplained. TERT, SEMA5 A, CTNND2, TPPP, mapped in chromosome 5 short arm, are known to be expressed in the brain, and to play a role in the development of the nervous system, oligodentrocytes and in the regulation of glutamatergic and dopaminergic synaptic transmission. It is critical to understand how their haploinsufficiency might affect the development and presentation of the disease. In the absence of an animal model and of significant accessible, human tissue, human pluripotent stem cells (iPSC) directly reprogrammed from patient somatic cells open a new area of disease modeling as they can virtually be differentiated into any cell type. Our study reports, for the first time, the generation of neuronal stem cells (NSCs) from CdC-iPSCs line and in addition, subsequent differentiation into a heterogeneous population of neurons. Gene expression of the mentioned and single copy deleted genes was also evaluated by comparing their expression level in iPSC, NSCs and neuron lines. The present research represents the first and the most innovative approach, to create an in vitro CdC neuronal model to have a new translational framework to study the pathologic processes.
Collapse
Affiliation(s)
- Giovanna Piovani
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy.
- Scientific Committee of A.B.C. Associazione Bambini Cri du Chat, 50026, Florence, Italy.
| | - Rosalba Monica Ferraro
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
- "A. Nocivelli" Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Silvia Clara Giliani
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
- "A. Nocivelli" Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| |
Collapse
|
2
|
Harman A, Bryan TM. Telomere maintenance and the DNA damage response: a paradoxical alliance. Front Cell Dev Biol 2024; 12:1472906. [PMID: 39483338 PMCID: PMC11524846 DOI: 10.3389/fcell.2024.1472906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
Telomeres are the protective caps at the ends of linear chromosomes of eukaryotic organisms. Telomere binding proteins, including the six components of the complex known as shelterin, mediate the protective function of telomeres. They do this by suppressing many arms of the canonical DNA damage response, thereby preventing inappropriate fusion, resection and recombination of telomeres. One way this is achieved is by facilitation of DNA replication through telomeres, thus protecting against a "replication stress" response and activation of the master kinase ATR. On the other hand, DNA damage responses, including replication stress and ATR, serve a positive role at telomeres, acting as a trigger for recruitment of the telomere-elongating enzyme telomerase to counteract telomere loss. We postulate that repression of telomeric replication stress is a shared mechanism of control of telomerase recruitment and telomere length, common to several core telomere binding proteins including TRF1, POT1 and CTC1. The mechanisms by which replication stress and ATR cause recruitment of telomerase are not fully elucidated, but involve formation of nuclear actin filaments that serve as anchors for stressed telomeres. Perturbed control of telomeric replication stress by mutations in core telomere binding proteins can therefore cause the deregulation of telomere length control characteristic of diseases such as cancer and telomere biology disorders.
Collapse
Affiliation(s)
| | - Tracy M. Bryan
- Cell Biology Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
3
|
Sergeeva SV, Loshchenova PS, Oshchepkov DY, Orishchenko KE. Crosstalk between BER and NHEJ in XRCC4-Deficient Cells Depending on hTERT Overexpression. Int J Mol Sci 2024; 25:10405. [PMID: 39408734 PMCID: PMC11476898 DOI: 10.3390/ijms251910405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Targeting DNA repair pathways is an important strategy in anticancer therapy. However, the unrevealed interactions between different DNA repair systems may interfere with the desired therapeutic effect. Among DNA repair systems, BER and NHEJ protect genome integrity through the entire cell cycle. BER is involved in the repair of DNA base lesions and DNA single-strand breaks (SSBs), while NHEJ is responsible for the repair of DNA double-strand breaks (DSBs). Previously, we showed that BER deficiency leads to downregulation of NHEJ gene expression. Here, we studied BER's response to NHEJ deficiency induced by knockdown of NHEJ scaffold protein XRCC4 and compared the knockdown effects in normal (TIG-1) and hTERT-modified cells (NBE1). We investigated the expression of the XRCC1, LIG3, and APE1 genes of BER and LIG4; the Ku70/Ku80 genes of NHEJ at the mRNA and protein levels; as well as p53, Sp1 and PARP1. We found that, in both cell lines, XRCC4 knockdown leads to a decrease in the mRNA levels of both BER and NHEJ genes, though the effect on protein level is not uniform. XRCC4 knockdown caused an increase in p53 and Sp1 proteins, but caused G1/S delay only in normal cells. Despite the increased p53 protein, p21 did not significantly increase in NBE1 cells with overexpressed hTERT, and this correlated with the absence of G1/S delay in these cells. The data highlight the regulatory function of the XRCC4 scaffold protein and imply its connection to a transcriptional regulatory network or mRNA metabolism.
Collapse
Affiliation(s)
- Svetlana V. Sergeeva
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentieva 10, Novosibirsk 630090, Russia; (P.S.L.); (K.E.O.)
- Department of Genetic Technologies, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Polina S. Loshchenova
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentieva 10, Novosibirsk 630090, Russia; (P.S.L.); (K.E.O.)
- Department of Genetic Technologies, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Dmitry Yu. Oshchepkov
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentieva 10, Novosibirsk 630090, Russia; (P.S.L.); (K.E.O.)
| | - Konstantin E. Orishchenko
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentieva 10, Novosibirsk 630090, Russia; (P.S.L.); (K.E.O.)
- Department of Genetic Technologies, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| |
Collapse
|
4
|
Workman RJ, Huang CJ, Lynch GC, Pettitt BM. Peptide diffusion in biomolecular condensates. Biophys J 2024; 123:1668-1675. [PMID: 38751116 PMCID: PMC11213990 DOI: 10.1016/j.bpj.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/22/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024] Open
Abstract
Diffusion determines the turnover of biomolecules in liquid-liquid phase-separated condensates. We considered the mean square displacement and thus the diffusion constant for simple model systems of peptides GGGGG, GGQGG, and GGVGG in aqueous solutions after phase separation by simulating atomic-level models. These solutions readily separate into aqueous and peptide-rich droplet phases. We noted the effect of the peptides being in a solvated, surface, or droplet state on the peptide's diffusion coefficients. Both sequence and peptide conformational distribution were found to influence diffusion and condensate turnover in these systems, with sequence dominating the magnitude of the differences. We found that the most compact structures for each sequence diffused the fastest in the peptide-rich condensate phase. This model result may have implications for turnover dynamics in signaling systems.
Collapse
Affiliation(s)
- Riley J Workman
- University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas
| | - Caleb J Huang
- University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas
| | - Gillian C Lynch
- University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas
| | | |
Collapse
|
5
|
Bettin N, Querido E, Gialdini I, Grupelli GP, Goretti E, Cantarelli M, Andolfato M, Soror E, Sontacchi A, Jurikova K, Chartrand P, Cusanelli E. TERRA transcripts localize at long telomeres to regulate telomerase access to chromosome ends. SCIENCE ADVANCES 2024; 10:eadk4387. [PMID: 38865460 PMCID: PMC11168465 DOI: 10.1126/sciadv.adk4387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
The function of TERRA in the regulation of telomerase in human cells is still debated. While TERRA interacts with telomerase, how it regulates telomerase function remains unknown. Here, we show that TERRA colocalizes with the telomerase RNA subunit hTR in the nucleoplasm and at telomeres during different phases of the cell cycle. We report that TERRA transcripts relocate away from chromosome ends during telomere lengthening, leading to a reduced number of telomeric TERRA-hTR molecules and consequent increase in "TERRA-free" telomerase molecules at telomeres. Using live-cell imaging and super-resolution microscopy, we show that upon transcription, TERRA relocates from its telomere of origin to long chromosome ends. Furthermore, TERRA depletion by antisense oligonucleotides promoted hTR localization to telomeres, leading to increased residence time and extended half-life of hTR molecules at telomeres. Overall, our findings indicate that telomeric TERRA transcripts inhibit telomere elongation by telomerase acting in trans, impairing telomerase access to telomeres that are different from their chromosome end of origin.
Collapse
Affiliation(s)
- Nicole Bettin
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Emmanuelle Querido
- Department of Biochemistry and Molecular Medicine, University of Montreal, 2900 boul. Edouard Montpetit, H3T1J4 Montreal, Canada
| | - Irene Gialdini
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Glenda Paola Grupelli
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Elena Goretti
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Marta Cantarelli
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Marta Andolfato
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Eslam Soror
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Alessandra Sontacchi
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Katarina Jurikova
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, 84215 Bratislava, Slovakia
| | - Pascal Chartrand
- Department of Biochemistry and Molecular Medicine, University of Montreal, 2900 boul. Edouard Montpetit, H3T1J4 Montreal, Canada
| | - Emilio Cusanelli
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
6
|
Bartle L, Wellinger RJ. Methods that shaped telomerase research. Biogerontology 2024; 25:249-263. [PMID: 37903970 PMCID: PMC10998806 DOI: 10.1007/s10522-023-10073-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/30/2023] [Indexed: 11/01/2023]
Abstract
Telomerase, the ribonucleoprotein (RNP) responsible for telomere maintenance, has a complex life. Complex in that it is made of multiple proteins and an RNA, and complex because it undergoes many changes, and passes through different cell compartments. As such, many methods have been developed to discover telomerase components, delve deep into understanding its structure and function and to figure out how telomerase biology ultimately relates to human health and disease. While some old gold-standard methods are still key for determining telomere length and measuring telomerase activity, new technologies are providing promising new ways to gain detailed information that we have never had access to before. Therefore, we thought it timely to briefly review the methods that have revealed information about the telomerase RNP and outline some of the remaining questions that could be answered using new methodology.
Collapse
Affiliation(s)
- Louise Bartle
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Applied Cancer Research Pavilion, 3201 rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Raymund J Wellinger
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Applied Cancer Research Pavilion, 3201 rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada.
| |
Collapse
|
7
|
Qiu J, Xia Y, Bao Y, Cheng J, Liu L, Qian D. Silencing PinX1 enhances radiosensitivity and antitumor-immunity of radiotherapy in non-small cell lung cancer. J Transl Med 2024; 22:228. [PMID: 38431575 PMCID: PMC10908107 DOI: 10.1186/s12967-024-05023-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND We aimed to investigate the effects of PinX1 on non-small cell lung cancer(NSCLC) radiosensitivity and radiotherapy-associated tumor immune microenvironment and its mechanisms. METHODS The effect of PinX1 silencing on radiosensitivity in NSCLC was assessed by colony formation and CCK8 assay, immunofluorescence detection of γ- H2AX and micronucleus assay. Western blot was used to assess the effect of PinX1 silencing on DNA damage repair pathway and cGAS-STING pathway. The nude mouse and Lewis lung cancer mouse model were used to assess the combined efficacy of PinX1 silencing and radiotherapy in vivo. Changes in the tumor immune microenvironment were assessed by flow cytometry for different treatment modalities in the Lewis luuse model. The interaction protein RBM10 was screened by immunoprecipitation-mass spectrometry. RESULTS Silencing PinX1 enhanced radiosensitivity and activation of the cGAS-STING pathway while attenuating the DNA damage repair pathway. Silencing PinX1 further increases radiotherapy-stimulated CD8+ T cell infiltration and activation, enhances tumor control and improves survival in vivo; Moreover, PinX1 downregulation improves the anti-tumor efficacy of radioimmunotherapy, increases radioimmune-stimulated CD8+ T cell infiltration, and reprograms M2-type macrophages into M1-type macrophages in tumor tissues. The interaction of PinX1 and RBM10 may promote telomere maintenance by assisting telomerase localization to telomeres, thereby inhibiting the immunostimulatory effects of IR. CONCLUSIONS In NSCLC, silencing PinX1 significantly contributed to the radiosensitivity and promoted the efficacy of radioimmunotherapy. Mechanistically, PinX1 may regulate the transport of telomerase to telomeres through interacting with RBM10, which promotes telomere maintenance and DNA stabilization. Our findings reveal that PinX1 is a potential target to enhance the efficacy of radioimmunotherapy in NSCLC patients.
Collapse
Affiliation(s)
- Jieping Qiu
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Ying Xia
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yawei Bao
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jingjing Cheng
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Liu
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Dong Qian
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
8
|
Liang J, Cai D. Membrane-less compartments in the nucleus: Separated or connected phases? Curr Opin Cell Biol 2023; 84:102215. [PMID: 37574634 PMCID: PMC10528681 DOI: 10.1016/j.ceb.2023.102215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023]
Abstract
In recent years, it has become increasingly clear that many nuclear membrane-less compartments have liquid-like properties and may form through the physicochemical process of phase separation. In this review, we will first discuss how various nuclear compartments, such as the genome, transcription compartments, and nuclear bodies are formed through phase separation. Then, we propose that inter-compartmental communications can also be prevalent and may be mediated by inter-compartmental diffusion of macromolecules, fusion among different compartments, and transient or stable contacts among nuclear compartments. Understanding how nuclear compartments communicate with each other represents an exciting new area of research and may reveal important insights about cellular functions and uncover previously under-appreciated disease mechanisms.
Collapse
Affiliation(s)
- Jindayi Liang
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Danfeng Cai
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
9
|
Klump BM, Perez GI, Patrick EM, Adams-Boone K, Cohen SB, Han L, Yu K, Schmidt JC. TCAB1 prevents nucleolar accumulation of the telomerase RNA to facilitate telomerase assembly. Cell Rep 2023; 42:112577. [PMID: 37267110 PMCID: PMC10569210 DOI: 10.1016/j.celrep.2023.112577] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/27/2023] [Accepted: 05/12/2023] [Indexed: 06/04/2023] Open
Abstract
Localization of a variety of RNAs to non-membrane-bound cellular compartments such as nucleoli and Cajal bodies is critical for their stability and function. The molecular mechanisms that underly the recruitment and exclusion of RNAs from these phase-separated organelles is incompletely understood. Telomerase is a ribonucleoprotein composed of the reverse transcriptase protein telomerase reverse transcriptase (TERT), the telomerase RNA (TR), and several auxiliary proteins, including TCAB1. Here we show that in the absence of TCAB1, a large fraction of TR is tightly bound to the nucleolus, while TERT is largely excluded from the nucleolus, reducing telomerase assembly. This suggests that nuclear compartmentalization by the non-membrane-bound nucleolus counteracts telomerase assembly, and TCAB1 is required to retain TR in the nucleoplasm. Our work provides insight into the mechanism and functional consequences of RNA recruitment to organelles formed by phase separation and demonstrates that TCAB1 plays an important role in telomerase assembly.
Collapse
Affiliation(s)
- Basma M Klump
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA; College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA; Cellular and Molecular Biology Graduate Program, College of Natural Sciences, Michigan State University, East Lansing, MI, USA
| | - Gloria I Perez
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA
| | - Eric M Patrick
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA
| | - Kate Adams-Boone
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA
| | - Scott B Cohen
- Children's Medical Research Institute and University of Sydney, Westmead, NSW 2145, Australia
| | - Li Han
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Kefei Yu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Jens C Schmidt
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA; Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
10
|
Shepelev N, Dontsova O, Rubtsova M. Post-Transcriptional and Post-Translational Modifications in Telomerase Biogenesis and Recruitment to Telomeres. Int J Mol Sci 2023; 24:5027. [PMID: 36902458 PMCID: PMC10003056 DOI: 10.3390/ijms24055027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Telomere length is associated with the proliferative potential of cells. Telomerase is an enzyme that elongates telomeres throughout the entire lifespan of an organism in stem cells, germ cells, and cells of constantly renewed tissues. It is activated during cellular division, including regeneration and immune responses. The biogenesis of telomerase components and their assembly and functional localization to the telomere is a complex system regulated at multiple levels, where each step must be tuned to the cellular requirements. Any defect in the function or localization of the components of the telomerase biogenesis and functional system will affect the maintenance of telomere length, which is critical to the processes of regeneration, immune response, embryonic development, and cancer progression. An understanding of the regulatory mechanisms of telomerase biogenesis and activity is necessary for the development of approaches toward manipulating telomerase to influence these processes. The present review focuses on the molecular mechanisms involved in the major steps of telomerase regulation and the role of post-transcriptional and post-translational modifications in telomerase biogenesis and function in yeast and vertebrates.
Collapse
Affiliation(s)
- Nikita Shepelev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Olga Dontsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Maria Rubtsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| |
Collapse
|
11
|
Madaeva IM, Kurashova NA, Berdina ON, Titova EV, Semenova NV, Madaev VV, Kolesnikov SI, Kolesnikova LI. [Activity of the telomerase complex before and after CPAP therapy in patients with obstructive sleep apnea syndrome]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:110-114. [PMID: 37276007 DOI: 10.17116/jnevro2023123052110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To evaluate changes in the activity of the telomerase complex in patients with obstructive sleep apnea (OSA) before and after continuous positive airway pressure (CPAP) therapy. MATERIAL AND METHODS In accordance with the objectives of the stages of the study of telomers-telomerase relationships, we maintained the unified design of the study described earlier. The main group 1 (MG1), n=35, consisted of men, aged 53.4 [45.5-60.1] years with characteristic complaints indicating of OSA. The main group 2 (MG2) included the same patients before and after 6 months of CPAP therapy. Blood sampling was performed after the first diagnostic polysomnography (PSG) and after 6 months of CPAP in the morning after the second PSG. The control group (CG) consisted of 26 men, comparable in age and the presence of chronic diseases. Questionnaire, PSG and blood sampling were conducted in CG as well. All participants signed an informed consent. RESULTS As a result of the STOP-BANG questionnaire conducted before PSG, all patients in the MG1 had scores from 5 to 8. The scores on the Epworth scale were more than 5 points. In the MG2 apnea-hypopnea index decreased from 20.1 to 6.4 ev/hour, the desaturation index decreased from 15.6 to 7.1 ev/hour after 6 months of CPAP. Statistically significant differences in changes in the activity of the telomerase complex were revealed, which after treatment significantly exceed the values of these indicators before treatment. So, telomerase reverse transcriptase value was 0.04 (0.009; 0.06) in the MG1, after treatment it was 0.07 (0.06; 0.09) in the MG2 and 0.134 (0.009; 0.18) in the CG. Telomerase RNA subunit TER1 values were 0.06 (0.03; 0.09), 0.07 (0.05; 0.09) and 0.136 (0.04; 0.17), respectively. However, despite the activation of the telomerase complex during CPAP therapy in patients with OSA, in the CG its activity is significantly higher in comparison with the MG1 and MG2. CONCLUSION In OSA accompanied by intermittent hypoxia, a decrease in the activity of the telomerase complex was shown. Elimination of nocturnal hypoxia and improvement of breathing during sleep is accompanied by an increase in the activity of the components of the telomerase complex.
Collapse
Affiliation(s)
- I M Madaeva
- Scientific Centre for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - N A Kurashova
- Scientific Centre for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - O N Berdina
- Scientific Centre for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - E V Titova
- Scientific Centre for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - N V Semenova
- Scientific Centre for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - V V Madaev
- Scientific Centre for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - S I Kolesnikov
- Scientific Centre for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - L I Kolesnikova
- Scientific Centre for Family Health and Human Reproduction Problems, Irkutsk, Russia
| |
Collapse
|
12
|
In Vitro Determination of the Skin Anti-Aging Potential of Four-Component Plant-Based Ingredient. Molecules 2022; 27:molecules27228101. [PMID: 36432202 PMCID: PMC9697998 DOI: 10.3390/molecules27228101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
The beauty industry is actively searching for solutions to prevent skin aging. Some of the crucial elements protecting cells from the aging process are telomere shortening, telomerase expression, cell senescence, and homeostasis of the redox system. Modification of these factors using natural antioxidants is an appealing way to support healthy skin aging. Therefore, in this study, we sought to investigate the antiaging efficacy of a specific combination of four botanical extracts (pomegranate, sweet orange, Cistanche and Centella asiatica) with proven antioxidant properties. To this end, normal human dermal fibroblasts were used as a cell model and the following studies were performed: cell proliferation was established by means of the MTT assay and the intracellular ROS levels in stress-induced premature senescence fibroblasts; telomere length measurement was performed under standard cell culture conditions using qPCR and under oxidative stress conditions using a variation of the Q-FISH technique; telomerase activity was examined by means of Q-TRAP; and AGE quantification was completed by means of ELISA assay in UV-irradiated fibroblasts. As a result, the botanical blend significantly reversed the H2O2-induced decrease in cell viability and reduced H2O2-induced ROS. Additionally, the presence of the botanical ingredient reduced the telomere shortening rate in both stressed and non-stressed replicating fibroblasts, and under oxidative stress conditions, the fibroblasts presented a higher median and 20th percentile telomere length, as well as a lower percentage of short telomeres (<3 Kbp) compared with untreated fibroblasts. Furthermore, the ingredient transiently increased relative telomerase activity after 24 h and prevented the accumulation of UVR-induced glycated species. The results support the potential use of this four-component plant-based ingredient as an antiaging agent.
Collapse
|
13
|
Ebata H, Loo TM, Takahashi A. Telomere Maintenance and the cGAS-STING Pathway in Cancer. Cells 2022; 11:1958. [PMID: 35741087 PMCID: PMC9221635 DOI: 10.3390/cells11121958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer cells exhibit the unique characteristics of high proliferation and aberrant DNA damage response, which prevents cancer therapy from effectively eliminating them. The machinery required for telomere maintenance, such as telomerase and the alternative lengthening of telomeres (ALT), enables cancer cells to proliferate indefinitely. In addition, the molecules in this system are involved in noncanonical pro-tumorigenic functions. Of these, the function of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, which contains telomere-related molecules, is a well-known contributor to the tumor microenvironment (TME). This review summarizes the current knowledge of the role of telomerase and ALT in cancer regulation, with emphasis on their noncanonical roles beyond telomere maintenance. The components of the cGAS-STING pathway are summarized with respect to intercell communication in the TME. Elucidating the underlying functional connection between telomere-related molecules and TME regulation is important for the development of cancer therapeutics that target cancer-specific pathways in different contexts. Finally, strategies for designing new cancer therapies that target cancer cells and the TME are discussed.
Collapse
Affiliation(s)
- Hiroshi Ebata
- Department of Biological Sciences, Faculty of Science, The University of Tokyo, Tokyo 113-0033, Japan;
- Project for Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan;
| | - Tze Mun Loo
- Project for Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan;
| | - Akiko Takahashi
- Project for Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan;
| |
Collapse
|
14
|
Brenner KA, Nandakumar J. Consequences of telomere replication failure: the other end-replication problem. Trends Biochem Sci 2022; 47:506-517. [PMID: 35440402 PMCID: PMC9106919 DOI: 10.1016/j.tibs.2022.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/28/2022] [Accepted: 03/17/2022] [Indexed: 01/14/2023]
Abstract
Telomeres are chromosome-capping structures that protect ends of the linear genome from DNA damage sensors. However, these structures present obstacles during DNA replication. Incomplete telomere replication accelerates telomere shortening and limits replicative lifespan. Therefore, continued proliferation under conditions of replication stress requires a means of telomere repair, particularly in the absence of telomerase. It was recently revealed that replication stress triggers break-induced replication (BIR) and mitotic DNA synthesis (MiDAS) at mammalian telomeres; however, these mechanisms are error prone and primarily utilized in tumorigenic contexts. In this review article, we discuss the consequences of replication stress at telomeres and how use of available repair pathways contributes to genomic instability. Current research suggests that fragile telomeres are ultimately tumor-suppressive and thus may be better left unrepaired.
Collapse
Affiliation(s)
- Kirsten A Brenner
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
15
|
Buemi V, Schillaci O, Santorsola M, Bonazza D, Broccia PV, Zappone A, Bottin C, Dell'Omo G, Kengne S, Cacchione S, Raffa GD, Piazza S, di Fagagna FD, Benetti R, Cortale M, Zanconati F, Del Sal G, Schoeftner S. TGS1 mediates 2,2,7-trimethyl guanosine capping of the human telomerase RNA to direct telomerase dependent telomere maintenance. Nat Commun 2022; 13:2302. [PMID: 35484160 PMCID: PMC9050681 DOI: 10.1038/s41467-022-29907-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/25/2022] [Indexed: 11/21/2022] Open
Abstract
Pathways that direct the selection of the telomerase-dependent or recombination-based, alternative lengthening of telomere (ALT) maintenance pathway in cancer cells are poorly understood. Using human lung cancer cells and tumor organoids we show that formation of the 2,2,7-trimethylguanosine (TMG) cap structure at the human telomerase RNA 5′ end by the Trimethylguanosine Synthase 1 (TGS1) is central for recruiting telomerase to telomeres and engaging Cajal bodies in telomere maintenance. TGS1 depletion or inhibition by the natural nucleoside sinefungin impairs telomerase recruitment to telomeres leading to Exonuclease 1 mediated generation of telomere 3′ end protrusions that engage in RAD51-dependent, homology directed recombination and the activation of key features of the ALT pathway. This indicates a critical role for 2,2,7-TMG capping of the RNA component of human telomerase (hTR) in enforcing telomerase-dependent telomere maintenance to restrict the formation of telomeric substrates conductive to ALT. Our work introduces a targetable pathway of telomere maintenance that holds relevance for telomere-related diseases such as cancer and aging. Telomerase protects chromosome ends in stem cells and cancer cells. Here the authors show that Trimethylguaonsine Synthase 1 (TGS-1) – dependent trimethylguanosine capping of the RNA component of the human telomerase complex has an important role in directing telomere dependent telomere maintenance and suppressing the ALT pathway in cancer cells.
Collapse
Affiliation(s)
- Valentina Buemi
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy.,Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SM2 5NG, United Kingdom
| | - Odessa Schillaci
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Mariangela Santorsola
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Deborah Bonazza
- Struttura Complessa di Anatomia ed Istologia Patologica, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) Trieste, Strada di Fiume 447, 34149, Trieste, Italy
| | - Pamela Veneziano Broccia
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Annie Zappone
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Cristina Bottin
- Dipartimento Universitario Clinico di Scienze Mediche Chirurgiche e della Salute, Università degli Studi di Trieste, Ospedale di Cattinara - Strada di Fiume 447, 34149, Trieste, Italy
| | - Giulia Dell'Omo
- IFOM Foundation-FIRC Institute of Molecular Oncology Foundation, Milan, 20139, Italy
| | - Sylvie Kengne
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Stefano Cacchione
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy
| | - Grazia Daniela Raffa
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy
| | - Silvano Piazza
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park - Padriciano, 34149, Trieste, Italy
| | - Fabrizio d'Adda di Fagagna
- IFOM Foundation-FIRC Institute of Molecular Oncology Foundation, Milan, 20139, Italy.,Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Pavia, 27100, Italy
| | - Roberta Benetti
- Dipartimento di Area Medica (Dame), Università degli Studi di Udine, p.le Kolbe 4, 33100, Udine, Italy
| | - Maurizio Cortale
- Struttura Complessa di Chirurgia Toracica, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) Trieste, Strada di Fiume 447, 34149, Trieste, Italy
| | - Fabrizio Zanconati
- Struttura Complessa di Anatomia ed Istologia Patologica, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) Trieste, Strada di Fiume 447, 34149, Trieste, Italy.,Dipartimento Universitario Clinico di Scienze Mediche Chirurgiche e della Salute, Università degli Studi di Trieste, Ospedale di Cattinara - Strada di Fiume 447, 34149, Trieste, Italy
| | - Giannino Del Sal
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy.,IFOM Foundation-FIRC Institute of Molecular Oncology Foundation, Milan, 20139, Italy.,International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park - Padriciano, 34149, Trieste, Italy
| | - Stefan Schoeftner
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy.
| |
Collapse
|
16
|
Liu R, Hu JJ, Wu X, Hu Q, Jiang W, Zhao Z, Xia F, Lou X. Precisely Detecting the Telomerase Activities by an AIEgen Probe with Dual Signal Outputs after Cell-Cycle Synchronization. Anal Chem 2022; 94:4874-4880. [PMID: 35276037 DOI: 10.1021/acs.analchem.2c00583] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
By maintaining the telomere lengths, telomerase can make the tumor cells avoid the apoptosis, thus, achieving the cell immortalization. In the past, a series of telomerase detection systems have been developed through utilizing the unique characteristic of telomerase extended primer. However, fluctuation of telomerase activity, along with the cell cycle progression, leads to ambiguous detection results. Here, we reported a dual signal output detection strategy based on cell-cycle synchronization for precisely detecting telomerase activities by using a new AIEgen probe SSNB. Experimental and simulating calculation results demonstrated that positively charged SSNB could interact with DNA through the electrostatic interaction and π-π interaction, as well as the hydrogen bonds. The aggregation of SSNB caused by the extended template strand primer (TP) could be observed in tumor cells, thus, indicating the telomerase activity in various cell lines. Furthermore, after cell cycle synchronization, it was found that the telomerase activity in the S phase was the highest, no matter from the fluorescence intensity or the ROS generation situation. Dual signal outputs of SSNB verified the significance and necessity of cell-cycle synchronization detection for telomerase activity. This strategy could open a new window for the biotargets of which activity is variational in time dimension.
Collapse
Affiliation(s)
- Rui Liu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Xia Wu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Qinyu Hu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Wenlian Jiang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China.,Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
17
|
Zhu Z, Tran H, Mathahs MM, Fink BD, Albert JA, Moninger TO, Meier JL, Li M, Schmidt WN. Zinc protoporphyrin binding to telomerase complexes and inhibition of telomerase activity. Pharmacol Res Perspect 2021; 9:e00882. [PMID: 34747573 PMCID: PMC8573827 DOI: 10.1002/prp2.882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/16/2022] Open
Abstract
Zinc protoporphyrin (ZnPP), a naturally occurring metalloprotoporphyrin (MPP), is currently under development as a chemotherapeutic agent although its mechanism is unclear. When tested against other MPPs, ZnPP was the most effective DNA synthesis and cellular proliferation inhibitor while promoting apoptosis in telomerase positive but not telomerase negative cells. Concurrently, ZnPP down-regulated telomerase expression and was the best overall inhibitor of telomerase activity in intact cells and cellular extracts with IC50 and EC50 values of ca 2.5 and 6 µM, respectively. The natural fluorescence properties of ZnPP enabled direct imaging in cellular fractions using non-denaturing agarose gel electrophoresis, western blots, and confocal fluorescence microscopy. ZnPP localized to large cellular complexes (>600 kD) that contained telomerase and dysskerin as confirmed with immunocomplex mobility shift, immunoprecipitation, and immunoblot analyses. Confocal fluorescence studies showed that ZnPP co-localized with telomerase reverse transcriptase (TERT) and telomeres in the nucleus of synchronized S-phase cells. ZnPP also co-localized with TERT in the perinuclear regions of log phase cells but did not co-localize with telomeres on the ends of metaphase chromosomes, a site known to be devoid of telomerase complexes. Overall, these results suggest that ZnPP does not bind to telomeric sequences per se, but alternatively, interacts with other structural components of the telomerase complex to inhibit telomerase activity. In conclusion, ZnPP actively interferes with telomerase activity in neoplastic cells, thus promoting pro-apoptotic and anti-proliferative properties. These data support further development of natural or synthetic protoporphyrins for use as chemotherapeutic agents to augment current treatment protocols for neoplastic disease.
Collapse
Affiliation(s)
- Zhaowen Zhu
- Department of Internal Medicine and Research ServiceVeterans Affairs Medical CenterIowa CityIowaUSA
- Department of Internal MedicineRoy G. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Huy Tran
- Department of Internal MedicineRoy G. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Meleah M. Mathahs
- Department of Internal Medicine and Research ServiceVeterans Affairs Medical CenterIowa CityIowaUSA
| | - Brian D. Fink
- Department of Internal Medicine and Research ServiceVeterans Affairs Medical CenterIowa CityIowaUSA
| | - John A. Albert
- Department of Internal Medicine and Research ServiceVeterans Affairs Medical CenterIowa CityIowaUSA
| | - Thomas O. Moninger
- Central Microscopy Research Facility Roy G. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Jeffery L. Meier
- Department of Internal Medicine and Research ServiceVeterans Affairs Medical CenterIowa CityIowaUSA
- Department of Internal MedicineRoy G. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Ming Li
- Department of Internal Medicine and Research ServiceVeterans Affairs Medical CenterIowa CityIowaUSA
| | - Warren N. Schmidt
- Department of Internal Medicine and Research ServiceVeterans Affairs Medical CenterIowa CityIowaUSA
- Department of Internal MedicineRoy G. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
18
|
Lin CYG, Näger AC, Lunardi T, Vančevska A, Lossaint G, Lingner J. The human telomeric proteome during telomere replication. Nucleic Acids Res 2021; 49:12119-12135. [PMID: 34747482 PMCID: PMC8643687 DOI: 10.1093/nar/gkab1015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Telomere shortening can cause detrimental diseases and contribute to aging. It occurs due to the end replication problem in cells lacking telomerase. Furthermore, recent studies revealed that telomere shortening can be attributed to difficulties of the semi-conservative DNA replication machinery to replicate the bulk of telomeric DNA repeats. To investigate telomere replication in a comprehensive manner, we develop QTIP-iPOND - Quantitative Telomeric chromatin Isolation Protocol followed by isolation of Proteins On Nascent DNA - which enables purification of proteins that associate with telomeres specifically during replication. In addition to the core replisome, we identify a large number of proteins that specifically associate with telomere replication forks. Depletion of several of these proteins induces telomere fragility validating their importance for telomere replication. We also find that at telomere replication forks the single strand telomere binding protein POT1 is depleted, whereas histone H1 is enriched. Our work reveals the dynamic changes of the telomeric proteome during replication, providing a valuable resource of telomere replication proteins. To our knowledge, this is the first study that examines the replisome at a specific region of the genome.
Collapse
Affiliation(s)
- Chih-Yi Gabriela Lin
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Anna Christina Näger
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Thomas Lunardi
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Aleksandra Vančevska
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Gérald Lossaint
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Joachim Lingner
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Cruz J, Lemos B. Post-transcriptional diversity in riboproteins and RNAs in aging and cancer. Semin Cancer Biol 2021; 76:292-300. [PMID: 34474152 PMCID: PMC8627441 DOI: 10.1016/j.semcancer.2021.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 12/19/2022]
Abstract
Post-transcriptional (PtscM) and post-translational (PtrnM) modifications of nucleotides and amino acids are covalent modifications able to change physio-chemical properties of RNAs and proteins. In the ribosome, the adequate assembly of rRNAs and ribosomal protein subunits in the nucleolus ensures suitable translational activity, with protein synthesis tuned according to intracellular demands of energy production, replication, proliferation, and growth. Disruption in the regulatory control of PtscM and PtrnM can impair ribosome biogenesis and ribosome function. Ribosomal impairment may, in turn, impact the synthesis of proteins engaged in functions as varied as telomere maintenance, apoptosis, and DNA repair, as well as intersect with mitochondria and telomerase activity. These cellular processes often malfunction in carcinogenesis and senescence. Here we discuss regulatory mechanisms of PtscMs and PtrnMs on ribosomal function. We also address chemical modification in rRNAs and their impacts on cellular metabolism, replication control, and senescence. Further, we highlight similarities and differences of PtscMs and PtrnMs in ribosomal intermediates during aging and carcinogenesis. Understanding these regulatory mechanisms may uncover critical steps for the development of more efficient oncologic and anti-aging therapies.
Collapse
Affiliation(s)
- Jurandir Cruz
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP 01246, Brazil
| | - Bernardo Lemos
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
20
|
DNA Binding Mode Analysis of a Core-Extended Naphthalene Diimide as a Conformation-Sensitive Fluorescent Probe of G-Quadruplex Structures. Int J Mol Sci 2021; 22:ijms221910624. [PMID: 34638964 PMCID: PMC8508963 DOI: 10.3390/ijms221910624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/27/2022] Open
Abstract
G-quadruplex existence was proved in cells by using both antibodies and small molecule fluorescent probes. However, the G-quadruplex probes designed thus far are structure- but not conformation-specific. Recently, a core-extended naphthalene diimide (cex-NDI) was designed and found to provide fluorescent signals of markedly different intensities when bound to G-quadruplexes of different conformations or duplexes. Aiming at evaluating how the fluorescence behaviour of this compound is associated with specific binding modes to the different DNA targets, cex-NDI was here studied in its interaction with hybrid G-quadruplex, parallel G-quadruplex, and B-DNA duplex models by biophysical techniques, molecular docking, and biological assays. cex-NDI showed different binding modes associated with different amounts of stacking interactions with the three DNA targets. The preferential binding sites were the groove, outer quartet, or intercalative site of the hybrid G-quadruplex, parallel G-quadruplex, and B-DNA duplex, respectively. Interestingly, our data show that the fluorescence intensity of DNA-bound cex-NDI correlates with the amount of stacking interactions formed by the ligand with each DNA target, thus providing the rationale behind the conformation-sensitive properties of cex-NDI and supporting its use as a fluorescent probe of G-quadruplex structures. Notably, biological assays proved that cex-NDI mainly localizes in the G-quadruplex-rich nuclei of cancer cells.
Collapse
|
21
|
Ovarian Telomerase and Female Fertility. Biomedicines 2021; 9:biomedicines9070842. [PMID: 34356906 PMCID: PMC8301802 DOI: 10.3390/biomedicines9070842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022] Open
Abstract
Women's fertility is characterized both quantitatively and qualitatively mainly by the pool of ovarian follicles. Monthly, gonadotropins cause an intense multiplication of granulosa cells surrounding the oocyte. This step of follicular development requires a high proliferation ability for these cells. Telomere length plays a crucial role in the mitotic index of human cells. Hence, disrupting telomere homeostasis could directly affect women's fertility. Strongly expressed in ovaries, telomerase is the most effective factor to limit telomeric attrition and preserve ovarian reserve. Considering these facts, two situations of infertility could be correlated with the length of telomeres and ovarian telomerase activity: PolyCystic Ovary Syndrome (PCOS), which is associated with a high density of small antral follicles, and Premature Ovarian Failure (POF), which is associated with a premature decrease in ovarian reserve. Several authors have studied this topic, expecting to find long telomeres and strong telomerase activity in PCOS and short telomeres and low telomerase activity in POF patients. Although the results of these studies are contradictory, telomere length and the ovarian telomerase impact in women's fertility disorders appear obvious. In this context, our research perspectives aimed to explore the stimulation of ovarian telomerase to limit the decrease in the follicular pool while avoiding an increase in cancer risk.
Collapse
|
22
|
The structurally conserved TELR region on shelterin protein TPP1 is essential for telomerase processivity but not recruitment. Proc Natl Acad Sci U S A 2021; 118:2024889118. [PMID: 34282008 DOI: 10.1073/pnas.2024889118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The shelterin protein TPP1 is involved in both recruiting telomerase and stimulating telomerase processivity in human cells. Assessing the in vivo significance of the latter role of TPP1 has been difficult, because TPP1 mutations that perturb telomerase function tend to abolish both telomerase recruitment and processivity. The Saccharomyces cerevisiae telomerase-associated Est3 protein adopts a protein fold similar to the N-terminal region of TPP1. Interestingly, a previous structure-guided mutagenesis study of Est3 revealed a TELR surface region that regulates telomerase function via an unknown mechanism without affecting the interaction between Est3 and telomerase [T. Rao et al., Proc. Natl. Acad. Sci. U.S.A. 111, 214-218 (2014)]. Here, we show that mutations within the structurally conserved TELR region on human TPP1 impaired telomerase processivity while leaving telomerase recruitment unperturbed, hence uncoupling the two roles of TPP1 in regulating telomerase. Telomeres in cell lines containing homozygous TELR mutations progressively shortened to a critical length that caused cellular senescence, despite the presence of abundant telomerase in these cells. Our findings not only demonstrate that telomerase processivity can be regulated by TPP1 in a process separable from its role in recruiting telomerase, but also establish that the in vivo stimulation of telomerase processivity by TPP1 is critical for telomere length homeostasis and long-term viability of human cells.
Collapse
|
23
|
Wu X, Wu J, Dai J, Chen B, Chen Z, Wang S, Wu F, Lou X, Xia F. Aggregation-induced emission luminogens reveal cell cycle-dependent telomerase activity in cancer cells. Natl Sci Rev 2021; 8:nwaa306. [PMID: 34691667 PMCID: PMC8288165 DOI: 10.1093/nsr/nwaa306] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 12/28/2022] Open
Abstract
Telomerase acts as an important biomarker for tumor identification, and synthesizes telomeric repeats at the end of chromosome telomeres during the replicative phase of the cell cycle; thus, the expression level of telomerase changes as the cell cycle progresses. TERT mRNA expression and telomerase activity were significantly increased in over 80% of human cancers from tissue specimens. Although many efforts have been made in detecting the activity of TERT mRNA and active telomerase, the heterogeneous behavior of the cell cycle was overlooked, which might affect the accuracy of the detection results. Herein, the AIEgen-based biosensing systems of PyTPA-DNA and Silole-R were developed to detect the cellular level of TERT mRNA and telomerase in different cell cycles. As a result, the fluorescence signal of cancer cells gradually increased from G0/G1, G1/S to S phase. In contrast, both cancer cells arrested at G2/M phase and normal cells exhibited negligible fluorescence intensities. Compared to normal tissues, malignant tumor samples demonstrated a significant turn-on fluorescence signal. Furthermore, the transcriptomics profiling revealed that tumor biomarkers changed as the cell cycle progressed and biomarkers of CA9, TK1 and EGFR were more abundantly expressed at early S stage. In this vein, our study presented advanced biosensing tools for more accurate analysis of the cell-cycle-dependent activity of TERT mRNA and active telomerase in clinical tissue samples.
Collapse
Affiliation(s)
- Xia Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jun Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Biao Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhe Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Feng Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
24
|
Moreno-Acosta P, Molano MÓ, Morales N, Acosta J, GonzÁlez-Prieto C, Mayorga D, Buitrago L, Gamboa O, MejÍa JC, Castro J, Romero-Rojas A, Espenel S, Murray GL, Garland SM, Vallard A, MagnÉ N. hTERT Protein Expression in Cytoplasm and Nucleus and its Association With HPV Infection in Patients With Cervical Cancer. Cancer Genomics Proteomics 2021; 17:615-625. [PMID: 32859640 DOI: 10.21873/cgp.20218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Few studies have analyzed the association between human telomerase reverse transcriptase (hTERT) protein expression (nuclear and cytoplasmic localization), hTERT methylation status, and human papillomavirus (HPV) genotype infection in cervical cancer. PATIENTS AND METHODS One hundred seventy-three patients with cervical cancer were analyzed. hTERT protein expression was detected by immunohistochemistry. hTERT DNA methylation analysis was performed using a PCR-RLB-hTERT assay, targeting two regions of the hTERT promoter. Type specific HPV infection was detected by using GP5+/GP6+PCR-RLB. RESULTS hTERT protein expression was found in both cytoplasm and nucleus (78.0% of the samples showed a cytoplasmic localization and 79.8% had a nuclear localization). A statistically significant association was found between alpha 9 and 7 HPV species with a non-methylation pattern of the hTERT promoter and between these species and high expression of hTERT protein with nuclear localization. CONCLUSION hTERT protein is found in both the nucleus and cytoplasm of patients with cervical cancer and confirm the relationship between the non-methylated status of hTERT promoter and some HPV species as well as the relationship between these species and hTERT protein expression.
Collapse
Affiliation(s)
- Pablo Moreno-Acosta
- Research Group in Radiobiology Clinical, Molecular and Cellular, National Cancer Institute, Bogotá, Colombia .,Research Group in Cancer Biology, National Cancer Institute, Bogotá, Colombia
| | - MÓnica Molano
- Centre Women's Infectious Diseases Research, The Royal Women's Hospital, Melbourne, Australia
| | - Nicolas Morales
- Research Group in Cancer Biology, National Cancer Institute, Bogotá, Colombia
| | - Jinneth Acosta
- Pathology Group, National University of Colombia, Bogotá, Colombia
| | | | - Diana Mayorga
- Research Group in Radiobiology Clinical, Molecular and Cellular, National Cancer Institute, Bogotá, Colombia
| | - Lina Buitrago
- Unit of Analysis, National Cancer Institute, Bogotá, Colombia
| | - Oscar Gamboa
- Unit of Analysis, National Cancer Institute, Bogotá, Colombia
| | - Juan Carlos MejÍa
- Group of Pathology Oncology, National Cancer Institute, Bogotá, Colombia
| | - July Castro
- Group of Pathology Oncology, National Cancer Institute, Bogotá, Colombia
| | | | - Sophie Espenel
- Department of Radiation Oncology, Institut de Cancérologie de la Loire-Lucien Neuwirth, Saint-Priest en Jarez, France
| | - Gerald L Murray
- Centre Women's Infectious Diseases Research, The Royal Women's Hospital, Melbourne, Australia.,Department of Obstetrics and Gynecology, University of Melbourne, Parkville, VIC, Australia.,Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Suzanne M Garland
- Centre Women's Infectious Diseases Research, The Royal Women's Hospital, Melbourne, Australia.,Department of Obstetrics and Gynecology, University of Melbourne, Parkville, VIC, Australia.,Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Alexis Vallard
- Department of Radiation Oncology, Institut de Cancérologie de la Loire-Lucien Neuwirth, Saint-Priest en Jarez, France
| | - Nicolas MagnÉ
- Department of Radiation Oncology, Institut de Cancérologie de la Loire-Lucien Neuwirth, Saint-Priest en Jarez, France
| |
Collapse
|
25
|
SUMOylation- and GAR1-Dependent Regulation of Dyskerin Nuclear and Subnuclear Localization. Mol Cell Biol 2021; 41:MCB.00464-20. [PMID: 33526451 DOI: 10.1128/mcb.00464-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/20/2021] [Indexed: 12/29/2022] Open
Abstract
The nuclear and subnuclear compartmentalization of the telomerase-associated protein and H/ACA ribonucleoprotein component dyskerin is an important although incompletely understood aspect of H/ACA ribonucleoprotein function. Four SUMOylation sites were previously identified in the C-terminal nuclear/nucleolar localization signal (N/NoLS) of dyskerin. We found that a cytoplasmic localized C-terminal truncation variant of dyskerin lacking most of the C-terminal N/NoLS represents an under-SUMOylated variant of dyskerin compared to wild-type dyskerin. We demonstrate that mimicking constitutive SUMOylation of dyskerin using a SUMO3 fusion construct can drive nuclear accumulation of this variant and that the SUMO site K467 in this N/NoLS is particularly important for the subnuclear localization of dyskerin to the nucleolus in a mature H/ACA complex assembly- and SUMO-dependent manner. We also characterize a novel SUMO-interacting motif in the mature H/ACA complex component GAR1 that mediates the interaction between dyskerin and GAR1. Mislocalization of dyskerin, either in the cytoplasm or excluded from the nucleolus, disrupts dyskerin function and leads to reduced interaction of dyskerin with the telomerase RNA. These data indicate a role for dyskerin C-terminal N/NoLS SUMOylation in regulating the nuclear and subnuclear localization of dyskerin, which is essential for dyskerin function as both a telomerase-associated protein and as an H/ACA ribonucleoprotein.
Collapse
|
26
|
Chen L, Roake CM, Galati A, Bavasso F, Micheli E, Saggio I, Schoeftner S, Cacchione S, Gatti M, Artandi SE, Raffa GD. Loss of Human TGS1 Hypermethylase Promotes Increased Telomerase RNA and Telomere Elongation. Cell Rep 2021; 30:1358-1372.e5. [PMID: 32023455 PMCID: PMC7156301 DOI: 10.1016/j.celrep.2020.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/09/2019] [Accepted: 12/31/2019] [Indexed: 02/08/2023] Open
Abstract
Biogenesis of the human telomerase RNA (hTR) involves a complex series of posttranscriptional modifications, including hypermethylation of the 5' mono-methylguanosine cap to a tri-methylguanosine cap (TMG). How the TMG cap affects hTR maturation is unknown. Here, we show that depletion of trimethylguanosine synthase 1 (TGS1), the enzyme responsible for cap hypermethylation, increases levels of hTR and telomerase. Diminished trimethylation increases hTR association with the cap-binding complex (CBC) and with Sm chaperone proteins. Loss of TGS1 causes an increase in accumulation of mature hTR in both the nucleus and the cytoplasm compared with controls. In TGS1 mutant cells, increased hTR assembles with telomerase reverse transcriptase (TERT) protein to yield elevated active telomerase complexes and increased telomerase activity, resulting in telomere elongation in cultured human cells. Our results show that TGS1-mediated hypermethylation of the hTR cap inhibits hTR accumulation, restrains levels of assembled telomerase, and limits telomere elongation.
Collapse
Affiliation(s)
- Lu Chen
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caitlin M Roake
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alessandra Galati
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy
| | - Francesca Bavasso
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy
| | - Emanuela Micheli
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy
| | - Isabella Saggio
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy
| | - Stefan Schoeftner
- Cancer Epigenetic Group, Laboratorio Nazionale Consorzio Interuniversitario Biotecnologie, Trieste, Italy
| | - Stefano Cacchione
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy; Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Roma, Italy
| | - Steven E Artandi
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Grazia D Raffa
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy.
| |
Collapse
|
27
|
Baxley RM, Leung W, Schmit MM, Matson JP, Yin L, Oram MK, Wang L, Taylor J, Hedberg J, Rogers CB, Harvey AJ, Basu D, Taylor JC, Pagnamenta AT, Dreau H, Craft J, Ormondroyd E, Watkins H, Hendrickson EA, Mace EM, Orange JS, Aihara H, Stewart GS, Blair E, Cook JG, Bielinsky AK. Bi-allelic MCM10 variants associated with immune dysfunction and cardiomyopathy cause telomere shortening. Nat Commun 2021; 12:1626. [PMID: 33712616 PMCID: PMC7955084 DOI: 10.1038/s41467-021-21878-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 02/11/2021] [Indexed: 12/22/2022] Open
Abstract
Minichromosome maintenance protein 10 (MCM10) is essential for eukaryotic DNA replication. Here, we describe compound heterozygous MCM10 variants in patients with distinctive, but overlapping, clinical phenotypes: natural killer (NK) cell deficiency (NKD) and restrictive cardiomyopathy (RCM) with hypoplasia of the spleen and thymus. To understand the mechanism of MCM10-associated disease, we modeled these variants in human cell lines. MCM10 deficiency causes chronic replication stress that reduces cell viability due to increased genomic instability and telomere erosion. Our data suggest that loss of MCM10 function constrains telomerase activity by accumulating abnormal replication fork structures enriched with single-stranded DNA. Terminally-arrested replication forks in MCM10-deficient cells require endonucleolytic processing by MUS81, as MCM10:MUS81 double mutants display decreased viability and accelerated telomere shortening. We propose that these bi-allelic variants in MCM10 predispose specific cardiac and immune cell lineages to prematurely arrest during differentiation, causing the clinical phenotypes observed in both NKD and RCM patients.
Collapse
Affiliation(s)
- Ryan M Baxley
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wendy Leung
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Megan M Schmit
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jacob Peter Matson
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Lulu Yin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Marissa K Oram
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Liangjun Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - John Taylor
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jack Hedberg
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Colette B Rogers
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Adam J Harvey
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Debashree Basu
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jenny C Taylor
- Wellcome Centre Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Oxford NIHR Biomedical Research Centre, Oxford, OX3 7BN, UK
| | - Alistair T Pagnamenta
- Wellcome Centre Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Oxford NIHR Biomedical Research Centre, Oxford, OX3 7BN, UK
| | - Helene Dreau
- Department of Haematology, University of Oxford, Oxford, OX3 7BN, UK
| | - Jude Craft
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Elizabeth Ormondroyd
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Emily M Mace
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Jordan S Orange
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Edward Blair
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jeanette Gowen Cook
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
28
|
Qin J, Autexier C. Regulation of human telomerase RNA biogenesis and localization. RNA Biol 2021; 18:305-315. [PMID: 32813614 PMCID: PMC7954027 DOI: 10.1080/15476286.2020.1809196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 12/16/2022] Open
Abstract
Maintenance of telomeres is essential for genome integrity and replicative capacity in eukaryotic cells. Telomerase, the ribonucleoprotein complex that catalyses telomere synthesis is minimally composed of a reverse transcriptase and an RNA component. The sequence and structural domains of human telomerase RNA (hTR) have been extensively characterized, while the regulation of hTR transcription, maturation, and localization, is not fully understood. Here, we provide an up-to-date review of hTR, with an emphasis on current breakthroughs uncovering the mechanisms of hTR maturation and localization.
Collapse
Affiliation(s)
- Jian Qin
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, Canada
| | - Chantal Autexier
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, Canada
| |
Collapse
|
29
|
Akincilar SC, Chan CHT, Ng QF, Fidan K, Tergaonkar V. Non-canonical roles of canonical telomere binding proteins in cancers. Cell Mol Life Sci 2021; 78:4235-4257. [PMID: 33599797 PMCID: PMC8164586 DOI: 10.1007/s00018-021-03783-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/28/2020] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
Reactivation of telomerase is a major hallmark observed in 90% of all cancers. Yet paradoxically, enhanced telomerase activity does not correlate with telomere length and cancers often possess short telomeres; suggestive of supplementary non-canonical roles that telomerase might play in the development of cancer. Moreover, studies have shown that aberrant expression of shelterin proteins coupled with their release from shortening telomeres can further promote cancer by mechanisms independent of their telomeric role. While targeting telomerase activity appears to be an attractive therapeutic option, this approach has failed in clinical trials due to undesirable cytotoxic effects on stem cells. To circumvent this concern, an alternative strategy could be to target the molecules involved in the non-canonical functions of telomeric proteins. In this review, we will focus on emerging evidence that has demonstrated the non-canonical roles of telomeric proteins and their impact on tumorigenesis. Furthermore, we aim to address current knowledge gaps in telomeric protein functions and propose future research approaches that can be undertaken to achieve this.
Collapse
Affiliation(s)
- Semih Can Akincilar
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Claire Hian Tzer Chan
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Qin Feng Ng
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Kerem Fidan
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Vinay Tergaonkar
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore.
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.
| |
Collapse
|
30
|
Samuel P, Tsapekos M, de Pedro N, Liu AG, Casey Lippmeier J, Chen S. Ergothioneine Mitigates Telomere Shortening under Oxidative Stress Conditions. J Diet Suppl 2020; 19:212-225. [PMID: 33287595 DOI: 10.1080/19390211.2020.1854919] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Shortened telomeres are associated with aging and age-related diseases. Oxidative stress is thought to be a major contributor to telomere shortening, and antioxidants may be able to mitigate these effects. Ergothioneine is a naturally occurring amino acid with potent antioxidant properties. In order to investigate ergothioneine's effects on telomere length, we cultured primary human fibroblasts under standard and oxidative (10 µM H2O2) conditions and treated cells with 0.04, 0.1, 0.3, or 1.0 mg/ml ergothioneine for 8 weeks. Telomere length measurements were performed using high-throughput quantitative fluorescent in situ hybridization (HT Q-FISH). Treatment with ergothioneine transiently increased relative telomerase activity after 24 h (p < 0.05 for all concentrations). Under oxidative conditions, ergothioneine treatment resulted in significantly longer median telomere length and 20th percentile telomere length, and significantly reduced the percentage of short telomeres (<3 kilobase pairs) for all treatment concentrations after 8 weeks. Telomere shortening rate was also reduced. Overall, ergothioneine demonstrated beneficial effects by decreasing the rate of telomere shortening and preserving telomere length under oxidative stress conditions. Our data support a potential role for ergothioneine in oxidative stress-related conditions and healthy aging.
Collapse
Affiliation(s)
| | | | | | - Ann G Liu
- Freelance Medical Writer, Valencia, CA, USA
| | | | - Steven Chen
- Blue California, Rancho Santa Margarita, CA, USA
| |
Collapse
|
31
|
Razgonova MP, Zakharenko AM, Golokhvast KS, Thanasoula M, Sarandi E, Nikolouzakis K, Fragkiadaki P, Tsoukalas D, Spandidos DA, Tsatsakis A. Telomerase and telomeres in aging theory and chronographic aging theory (Review). Mol Med Rep 2020; 22:1679-1694. [PMID: 32705188 PMCID: PMC7411297 DOI: 10.3892/mmr.2020.11274] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/24/2020] [Indexed: 01/03/2023] Open
Abstract
The current review focuses on the connection of telomerase and telomeres with aging. In this review, we describe the changes in telomerase and telomere length (TEL) during development, their role in carcinogenesis processes, and the consequences of reduced telomerase activity. More specifically, the connection of TEL in peripheral blood cells with the development of aging‑associated diseases is discussed. The review provides systematic data on the role of telomerase in mitochondria, the biology of telomeres in stem cells, as well as the consequences of the forced expression of telomerase (telomerization) in human cells. Additionally, it presents the effects of chronic stress exposure on telomerase activity, the effect of TEL on fertility, and the effect of nutraceutical supplements on TEL. Finally, a comparative review of the chronographic theory of aging, presented by Olovnikov is provided based on currently available scientific research on telomere, telomerase activity, and the nature of aging by multicellular organisms.
Collapse
Affiliation(s)
- Mayya P. Razgonova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 Saint-Petersburg, Russia
- Far Eastern Federal University, 690950 Vladivostok, Russia
| | - Alexander M. Zakharenko
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 Saint-Petersburg, Russia
- Far Eastern Federal University, 690950 Vladivostok, Russia
| | - Kirill S. Golokhvast
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 Saint-Petersburg, Russia
- Far Eastern Federal University, 690950 Vladivostok, Russia
- Pacific Geographical Institute, Far Eastern Branch of The Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Maria Thanasoula
- Metabolomic Μedicine, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece
| | - Evangelia Sarandi
- Metabolomic Μedicine, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece
| | | | - Persefoni Fragkiadaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
- Spin-Off Toxplus S.A., 71601 Heraklion, Greece
| | - Dimitris Tsoukalas
- Metabolomic Μedicine, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, Heraklion 71003, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
- Spin-Off Toxplus S.A., 71601 Heraklion, Greece
| |
Collapse
|
32
|
Single-Molecule Imaging of Telomerase RNA Reveals a Recruitment-Retention Model for Telomere Elongation. Mol Cell 2020; 79:115-126.e6. [DOI: 10.1016/j.molcel.2020.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/13/2020] [Accepted: 05/03/2020] [Indexed: 11/23/2022]
|
33
|
Roake CM, Artandi SE. Regulation of human telomerase in homeostasis and disease. Nat Rev Mol Cell Biol 2020; 21:384-397. [PMID: 32242127 PMCID: PMC7377944 DOI: 10.1038/s41580-020-0234-z] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2020] [Indexed: 12/14/2022]
Abstract
Telomerase is a ribonucleoprotein complex, the catalytic core of which includes the telomerase reverse transcriptase (TERT) and the non-coding human telomerase RNA (hTR), which serves as a template for the addition of telomeric repeats to chromosome ends. Telomerase expression is restricted in humans to certain cell types, and telomerase levels are tightly controlled in normal conditions. Increased levels of telomerase are found in the vast majority of human cancers, and we have recently begun to understand the mechanisms by which cancer cells increase telomerase activity. Conversely, germline mutations in telomerase-relevant genes that decrease telomerase function cause a range of genetic disorders, including dyskeratosis congenita, idiopathic pulmonary fibrosis and bone marrow failure. In this Review, we discuss the transcriptional regulation of human TERT, hTR processing, assembly of the telomerase complex, the cellular localization of telomerase and its recruitment to telomeres, and the regulation of telomerase activity. We also discuss the disease relevance of each of these steps of telomerase biogenesis.
Collapse
Affiliation(s)
- Caitlin M Roake
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven E Artandi
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
34
|
Telomerase Biogenesis and Activities from the Perspective of Its Direct Interacting Partners. Cancers (Basel) 2020; 12:cancers12061679. [PMID: 32599885 PMCID: PMC7352425 DOI: 10.3390/cancers12061679] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
Telomerase reverse transcriptase (TERT)—the catalytic subunit of telomerase—is reactivated in up to 90% of all human cancers. TERT is observed in heterogenous populations of protein complexes, which are dynamically regulated in a cell type- and cell cycle-specific manner. Over the past two decades, in vitro protein–protein interaction detection methods have discovered a number of endogenous TERT binding partners in human cells that are responsible for the biogenesis and functionalization of the telomerase holoenzyme, including the processes of TERT trafficking between subcellular compartments, assembly into telomerase, and catalytic action at telomeres. Additionally, TERT have been found to interact with protein species with no known telomeric functions, suggesting that these complexes may contribute to non-canonical activities of TERT. Here, we survey TERT direct binding partners and discuss their contributions to TERT biogenesis and functions. The goal is to review the comprehensive spectrum of TERT pro-malignant activities, both telomeric and non-telomeric, which may explain the prevalence of its upregulation in cancer.
Collapse
|
35
|
MacNeil DE, Lambert-Lanteigne P, Autexier C. N-terminal residues of human dyskerin are required for interactions with telomerase RNA that prevent RNA degradation. Nucleic Acids Res 2019; 47:5368-5380. [PMID: 30931479 PMCID: PMC6547437 DOI: 10.1093/nar/gkz233] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/16/2022] Open
Abstract
The telomerase holoenzyme responsible for maintaining telomeres in vertebrates requires many components in vivo, including dyskerin. Dyskerin binds and regulates the accumulation of the human telomerase RNA, hTR, as well as other non-coding RNAs that share the conserved H/ACA box motif. The precise mechanism by which dyskerin controls hTR levels is unknown, but is evidenced by defective hTR accumulation caused by substitutions in dyskerin, that are observed in the X-linked telomere biology disorder dyskeratosis congenita (X-DC). To understand the role of dyskerin in hTR accumulation, we analyzed X-DC substitutions K39E and K43E in the poorly characterized dyskerin N-terminus, and A353V within the canonical RNA binding domain (the PUA). These variants exhibited impaired binding to hTR and polyadenylated hTR species, while interactions with other H/ACA RNAs appear largely unperturbed by the N-terminal substitutions. hTR accumulation and telomerase activity defects of dyskerin-deficient cells were rescued by wildtype dyskerin but not the variants. hTR 3′ extended or polyadenylated species did not accumulate, suggesting hTR precursor degradation occurs upstream of mature complex assembly in the absence of dyskerin binding. Our findings demonstrate that the dyskerin-hTR interaction mediated by PUA and N-terminal residues of dyskerin is crucial to prevent unchecked hTR degradation.
Collapse
Affiliation(s)
- Deanna E MacNeil
- Jewish General Hospital of McGill University, Lady Davis Institute, Montreal, Quebec H3T 1E2, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Patrick Lambert-Lanteigne
- Jewish General Hospital of McGill University, Lady Davis Institute, Montreal, Quebec H3T 1E2, Canada
| | - Chantal Autexier
- Jewish General Hospital of McGill University, Lady Davis Institute, Montreal, Quebec H3T 1E2, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| |
Collapse
|
36
|
Bizarro J, Bhardwaj A, Smith S, Meier UT. Nopp140-mediated concentration of telomerase in Cajal bodies regulates telomere length. Mol Biol Cell 2019; 30:3136-3150. [PMID: 31664887 PMCID: PMC6938241 DOI: 10.1091/mbc.e19-08-0429] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cajal bodies (CBs) are nuclear organelles concentrating two kinds of RNA–protein complexes (RNPs), spliceosomal small nuclear (sn), and small CB-specific (sca)RNPs. Whereas the CB marker protein coilin is responsible for retaining snRNPs, the tether for scaRNPs is not known. Here we show that Nopp140, an intrinsically disordered CB phosphoprotein, is required to recruit and retain all scaRNPs in CBs. Knockdown (KD) of Nopp140 releases all scaRNPs leading to an unprecedented reduction in size of CB granules, hallmarks of CB ultrastructure. The CB-localizing protein WDR79 (aka TCAB1), which is mutated in the inherited bone marrow failure syndrome dyskeratosis congenita, is a specific component of all scaRNPs, including telomerase. Whereas mislocalization of telomerase by mutation of WDR79 leads to critically shortened telomeres, mislocalization of telomerase by Nopp140 KD leads to gradual extension of telomeres. Our studies suggest that the dynamic distribution of telomerase between CBs and nucleoplasm uniquely impacts telomere length maintenance and identify Nopp140 as a novel player in telomere biology.
Collapse
Affiliation(s)
- Jonathan Bizarro
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Amit Bhardwaj
- Department of Pathology, Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY 10016
| | - Susan Smith
- Department of Pathology, Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY 10016
| | - U Thomas Meier
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
37
|
Jackson MR, Bavelaar BM, Waghorn PA, Gill MR, El-Sagheer AH, Brown T, Tarsounas M, Vallis KA. Radiolabeled Oligonucleotides Targeting the RNA Subunit of Telomerase Inhibit Telomerase and Induce DNA Damage in Telomerase-Positive Cancer Cells. Cancer Res 2019; 79:4627-4637. [PMID: 31311806 PMCID: PMC7611324 DOI: 10.1158/0008-5472.can-18-3594] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/01/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022]
Abstract
Telomerase is expressed in the majority (>85%) of tumors, but has restricted expression in normal tissues. Long-term telomerase inhibition in malignant cells results in progressive telomere shortening and reduction in cell proliferation. Here we report the synthesis and characterization of radiolabeled oligonucleotides that target the RNA subunit of telomerase, hTR, simultaneously inhibiting enzymatic activity and delivering radiation intracellularly. Oligonucleotides complementary (Match) and noncomplementary (Scramble or Mismatch) to hTR were conjugated to diethylenetriaminepentaacetic dianhydride (DTPA), allowing radiolabeling with the Auger electron-emitting radionuclide indium-111 (111In). Match oligonucleotides inhibited telomerase activity with high potency, which was not observed with Scramble or Mismatch oligonucleotides. DTPA-conjugation and 111In-labeling did not change telomerase inhibition. In telomerase-positive cancer cells, unlabeled Match oligonucleotides had no effect on survival, however, 111In-labeled Match oligonucleotides significantly reduced clonogenic survival and upregulated the DNA damage marker γH2AX. Minimal radiotoxicity and DNA damage was observed in telomerase-negative cells exposed to 111In-Match oligonucleotides. Match oligonucleotides localized in close proximity to nuclear Cajal bodies in telomerase-positive cells. In comparison with Match oligonucleotides, 111In-Scramble or 111In-Mismatch oligonucleotides demonstrated reduced retention and negligible impact on cell survival. This study indicates the therapeutic activity of radiolabeled oligonucleotides that specifically target hTR through potent telomerase inhibition and DNA damage induction in telomerase-expressing cancer cells and paves the way for the development of novel oligonucleotide radiotherapeutics targeting telomerase-positive cancers. SIGNIFICANCE: These findings present a novel radiolabeled oligonucleotide for targeting telomerase-positive cancer cells that exhibits dual activity by simultaneously inhibiting telomerase and promoting radiation-induced genomic DNA damage.
Collapse
Affiliation(s)
- Mark R Jackson
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Bas M Bavelaar
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Philip A Waghorn
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Martin R Gill
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Afaf H El-Sagheer
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Tom Brown
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Madalena Tarsounas
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Katherine A Vallis
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
38
|
Ho ST, Jin R, Cheung DHC, Huang JJ, Shaw PC. The PinX1/NPM interaction associates with hTERT in early-S phase and facilitates telomerase activation. Cell Biosci 2019; 9:47. [PMID: 31210926 PMCID: PMC6567508 DOI: 10.1186/s13578-019-0306-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/23/2019] [Indexed: 01/26/2023] Open
Abstract
Background Telomere maintenance is an important factor in tumorigenesis. PinX1 is a potent telomerase regulator which also involves in telomerase loading to telomeres. Nucleophosmin (NPM) can partially attenuate PinX1 inhibition of telomerase activity and NPM loading to hTERT requires PinX1. However, the role of the PinX1/NPM interaction in telomerase activity is not fully understood. Method The long-term effects of PinX1 and NPM down-regulation on telomere length were investigated by TRF assay. The localization of the PinX1/NPM association and the NPM/PinX1/hTERT complex formation were examined by immunofluorescence studies. Results Concurrent long-term down-regulation of PinX1 and NPM led to a substantial decrease in telomere length. The interaction with PinX1 was crucial in NPM localization in the nucleolus during the S phase. PinX1 and NPM associated throughout S phase and the NPM/PinX1/hTERT complex formation peaked during the early-S phase. The PinX1/NPM interaction was shown to localize away from Cajal Bodies at the start of S phase. Conclusion PinX1/NPM interaction is important in telomerase regulation during catalysis. NPM is recruited to hTERT by PinX1 and is required in the proposed telomerase modulating unit to activate telomerase when telomere extension occurs during S phase. Electronic supplementary material The online version of this article (10.1186/s13578-019-0306-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sai-Tim Ho
- 1Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, China
| | - Rui Jin
- 2Laboratory of Tumor and Molecular Biology, Beijing Institute of Biotechnology, Beijing, China
| | - Derek Hang-Cheong Cheung
- 1Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, China
| | - Jun-Jian Huang
- 2Laboratory of Tumor and Molecular Biology, Beijing Institute of Biotechnology, Beijing, China
| | - Pang-Chui Shaw
- 1Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, China
| |
Collapse
|
39
|
Abstract
Telomeres are specialised structures at the end of linear chromosomes. They consist of tandem repeats of the hexanucleotide sequence TTAGGG, as well as a protein complex called shelterin. Together, they form a protective loop structure against chromosome fusion and degradation. Shortening or damage to telomeres and opening of the loop induce an uncapped state that triggers a DNA damage response resulting in senescence or apoptosis.Average telomere length, usually measured in human blood lymphocytes, was thought to be a biomarker for ageing, survival and mortality. However, it becomes obvious that regulation of telomere length is very complex and involves multiple processes. For example, the "end replication problem" during DNA replication as well as oxidative stress are responsible for the shortening of telomeres. In contrast, telomerase activity can potentially counteract telomere shortening when it is able to access and interact with telomeres. However, while highly active during development and in cancer cells, the enzyme is down-regulated in most human somatic cells with a few exceptions such as human lymphocytes. In addition, telomeres can be transcribed, and the transcription products called TERRA are involved in telomere length regulation.Thus, telomere length and their integrity are regulated at many different levels, and we only start to understand this process under conditions of increased oxidative stress, inflammation and during diseases as well as the ageing process.This chapter aims to describe our current state of knowledge on telomeres and telomerase and their regulation in order to better understand their role for the ageing process.
Collapse
|
40
|
Picart-Picolo A, Picault N, Pontvianne F. Ribosomal RNA genes shape chromatin domains associating with the nucleolus. Nucleus 2019; 10:67-72. [PMID: 30870088 PMCID: PMC6527388 DOI: 10.1080/19491034.2019.1591106] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Genomic interactions can occur in addition to those within chromosome territories and can be organized around nuclear bodies. Several studies revealed how the nucleolus anchors higher order chromatin structures of specific chromosome regions displaying heterochromatic features. In this review, we comment on advances in this emerging field, with a particular focus on a recent study published by Quinodoz et al., that developed a new method to characterize simultaneous genomic interactions in the same cell. Highlighting studies conducted in animal and plant cells, we then discuss the establishment of inactive chromatin at nucleolus organizer region (NOR)-bearing chromosomes.
Collapse
Affiliation(s)
- Ariadna Picart-Picolo
- a CNRS , Laboratoire Génome et Développement des Plantes (LGDP) , Perpignan , France.,b Université de Perpignan Via Domitia , LGDP , Perpignan , France
| | - Nathalie Picault
- a CNRS , Laboratoire Génome et Développement des Plantes (LGDP) , Perpignan , France.,b Université de Perpignan Via Domitia , LGDP , Perpignan , France
| | - Frédéric Pontvianne
- a CNRS , Laboratoire Génome et Développement des Plantes (LGDP) , Perpignan , France.,b Université de Perpignan Via Domitia , LGDP , Perpignan , France
| |
Collapse
|
41
|
Dilshara MG, Jayasooriya RGPT, Choi YH, Kim GY. Camptothecin induces c-Myc- and Sp1-mediated hTERT expression in LNCaP cells: Involvement of reactive oxygen species and PI3K/Akt. Food Chem Toxicol 2019; 127:53-60. [PMID: 30851366 DOI: 10.1016/j.fct.2019.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 02/14/2019] [Accepted: 03/01/2019] [Indexed: 01/08/2023]
Abstract
Camptothecin (CPT), a quinoline alkaloid isolated from Camptotheca acuminate, targets topoisomerase I, which is continuously expressed in cancer cells. However, the molecular mechanisms responsible for CPT-induced telomerase inhibition remain unclear. Unexpectedly, we found that CPT upregulates hTERT expression and concomitantly increases telomerase activity. However, transfection of hTERT-targeting siRNA had no effect on CPT-induced G2/M phase arrest, suggesting that CPT-induced telomerase activation was not related to G2/M phase arrest. CPT simultaneously increased Nrf2 expression and the level of intracellular reactive oxygen species (ROS), whereas pretreatment with the antioxidants N-acetyl-cysteine (NAC) or glutathione (GSH) strongly attenuated ROS production, which was accompanied by hTERT downregulation. Additionally, transient Nrf2 knockdown enhanced CPT-induced ROS production and hTERT promoter activity. CPT also upregulated hTERT expression and telomerase activity by inducing c-Myc and Sp1 expression and activity. Moreover, c-Myc stimulated ROS production in response to CPT, leading to Sp1 activation, which promoted hTERT expression and telomerase activity. CPT treatment enhanced the phosphorylation of PI3K and Akt, which led to hTERT phosphorylation into the nucleus. These findings demonstrate that CPT positively regulates telomerase activity by upregulating hTERT expression and phosphorylation via the c-Myc/ROS/Sp1 and PI3K/Akt axis.
Collapse
Affiliation(s)
| | | | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
42
|
Zhang Z, Zhang T, Ge Y, Tang M, Ma W, Zhang Q, Gong S, Wright WE, Shay J, Liu H, Zhao Y. 2D gel electrophoresis reveals dynamics of t-loop formation during the cell cycle and t-loop in maintenance regulated by heterochromatin state. J Biol Chem 2019; 294:6645-6656. [PMID: 30819801 DOI: 10.1074/jbc.ra119.007677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/20/2019] [Indexed: 12/15/2022] Open
Abstract
Linear chromosome ends are capped by telomeres that have been previously reported to adopt a t-loop structure. The lack of simple methods for detecting t-loops has hindered progress in understanding the dynamics of t-loop formation and its function in protecting chromosome ends. Here, we employed a classical two-dimensional agarose gel method (2D gel method) to innovatively apply to t-loop detection. Briefly, restriction fragments of genomic DNA were separated in a 2D gel, and the telomere sequence was detected by in-gel hybridization with telomeric probe. Using this method, we found that t-loops are present throughout the cell cycle, and t-loop formation tightly couples to telomere replication. We also observed that t-loop abundance positively correlates with chromatin condensation, i.e. cells with less compact telomeric chromatin (ALT cells and trichostatin A (TSA)-treated HeLa cells) exhibited fewer t-loops. Moreover, we observed that telomere dysfunction-induced foci, ALT-associated promyelocytic leukemia bodies, and telomere sister chromatid exchanges are activated upon TSA-induced loss of t-loops. These findings confirm the importance of the t-loop in protecting linear chromosomes from damage or illegitimate recombination.
Collapse
Affiliation(s)
- Zepeng Zhang
- From the MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Tianpeng Zhang
- From the MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanlong Ge
- From the MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Mengfan Tang
- From the MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenbin Ma
- From the MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qinfen Zhang
- From the MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shengzhao Gong
- Department of Chemical Engineering, Guangdong Industry Technical College, Guangzhou 510006, China
| | - Woodring E Wright
- the Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, and
| | - Jerry Shay
- the Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, and
| | - Haiying Liu
- From the MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China,
| | - Yong Zhao
- From the MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China,
| |
Collapse
|
43
|
Eisenberg DTA, Kuzawa CW. The paternal age at conception effect on offspring telomere length: mechanistic, comparative and adaptive perspectives. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2016.0442. [PMID: 29335366 DOI: 10.1098/rstb.2016.0442] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2017] [Indexed: 01/14/2023] Open
Abstract
Telomeres are repeating DNA found at the ends of chromosomes that, in the absence of restorative processes, shorten with cell replications and are implicated as a cause of senescence. It appears that sperm telomere length (TL) increases with age in humans, and as a result offspring of older fathers inherit longer telomeres. We review possible mechanisms underlying this paternal age at conception (PAC) effect on TL, including sperm telomere extension due to telomerase activity, age-dependent changes in the spermatogonial stem cell population (possibly driven by 'selfish' spermatogonia) and non-causal confounding. In contrast to the lengthening of TL with PAC, higher maternal age at conception appears to predict shorter offspring TL in humans. We review evidence for heterogeneity across species in the PAC effect on TL, which could relate to differences in statistical power, sperm production rates or testicular telomerase activity. Finally, we review the hypothesis that the PAC effect on TL may allow a gradual multi-generational adaptive calibration of maintenance effort, and reproductive lifespan, to local demographic conditions: descendants of males who reproduced at a later age are likely to find themselves in an environment where increased maintenance effort, allowing later reproduction, represents a fitness improving resource allocation.This article is part of the theme issue 'Understanding diversity in telomere dynamics'.
Collapse
Affiliation(s)
- Dan T A Eisenberg
- Department of Anthropology, Center for Studies in Demography and Ecology, University of Washington, Seattle, WA, USA
| | - Christopher W Kuzawa
- Department of Anthropology, Institute for Policy Research, Northwestern University, Evanston, IL, USA
| |
Collapse
|
44
|
Viviescas MA, Cano MIN, Segatto M. Chaperones and Their Role in Telomerase Ribonucleoprotein Biogenesis and Telomere Maintenance. CURR PROTEOMICS 2018. [DOI: 10.2174/1570164615666180713103133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Telomere length maintenance is important for genome stability and cell division. In most
eukaryotes, telomeres are maintained by the telomerase ribonucleoprotein (RNP) complex, minimally
composed of the Telomerase Reverse Transcriptase (TERT) and the telomerase RNA (TER) components.
In addition to TERT and TER, other protein subunits are part of the complex and are involved in
telomerase regulation, assembly, disassembly, and degradation. Among them are some molecular
chaperones such as Hsp90 and its co-chaperone p23 which are found associated with the telomerase
RNP complex in humans, yeast and probably in protozoa. Hsp90 and p23 are necessary for the telomerase
RNP assembly and enzyme activity. In budding yeast, the Hsp90 homolog (Hsp82) is also responsible
for the association and dissociation of telomerase from the telomeric DNA by its direct interaction
with a telomere end-binding protein (Cdc13), responsible for regulating telomerase access to telomeres.
In addition, AAA+ ATPases, such as Pontin and Reptin, which are also considered chaperone-
like proteins, associate with the human telomerase complex by the direct interaction of Pontin with
TERT and dyskerin. They are probably responsible for telomerase RNP assembly since their depletion
impairs the accumulation of the complex. Moreover, various RNA chaperones, are also pivotal in the
assembly and migration of the mature telomerase complex and complex intermediates. In this review,
we will focus on the importance of molecular chaperones for telomerase RNP biogenesis and how they
impact telomere length maintenance and cellular homeostasis.
Collapse
Affiliation(s)
- Maria Alejandra Viviescas
- Genetics Department, Biosciences Institute, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | - Marcela Segatto
- Genetics Department, Biosciences Institute, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
45
|
Ivanyi-Nagy R, Ahmed SM, Peter S, Ramani PD, Ong PF, Dreesen O, Dröge P. The RNA interactome of human telomerase RNA reveals a coding-independent role for a histone mRNA in telomere homeostasis. eLife 2018; 7:40037. [PMID: 30355447 PMCID: PMC6249008 DOI: 10.7554/elife.40037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/24/2018] [Indexed: 12/26/2022] Open
Abstract
Telomerase RNA (TR) provides the template for DNA repeat synthesis at telomeres and is essential for genome stability in continuously dividing cells. We mapped the RNA interactome of human TR (hTR) and identified a set of non-coding and coding hTR-interacting RNAs, including the histone 1C mRNA (HIST1H1C). Disruption of the hTR-HIST1H1C RNA association resulted in markedly increased telomere elongation without affecting telomerase enzymatic activity. Conversely, over-expression of HIST1H1C led to telomere attrition. By using a combination of mutations to disentangle the effects of histone 1 RNA synthesis, protein expression, and hTR interaction, we show that HIST1H1C RNA negatively regulates telomere length independently of its protein coding potential. Taken together, our data provide important insights into a surprisingly complex hTR-RNA interaction network and define an unexpected non-coding RNA role for HIST1H1C in regulating telomere length homeostasis, thus offering a glimpse into the mostly uncharted, vast space of non-canonical messenger RNA functions.
Collapse
Affiliation(s)
- Roland Ivanyi-Nagy
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Syed Moiz Ahmed
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sabrina Peter
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Peh Fern Ong
- Cell Ageing, Skin Research Institute Singapore, Singapore, Singapore
| | - Oliver Dreesen
- Cell Ageing, Skin Research Institute Singapore, Singapore, Singapore
| | - Peter Dröge
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Nanyang Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
46
|
Armstrong CA, Tomita K. Fundamental mechanisms of telomerase action in yeasts and mammals: understanding telomeres and telomerase in cancer cells. Open Biol 2018; 7:rsob.160338. [PMID: 28330934 PMCID: PMC5376709 DOI: 10.1098/rsob.160338] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/20/2017] [Indexed: 12/12/2022] Open
Abstract
Aberrant activation of telomerase occurs in 85–90% of all cancers and underpins the ability of cancer cells to bypass their proliferative limit, rendering them immortal. The activity of telomerase is tightly controlled at multiple levels, from transcriptional regulation of the telomerase components to holoenzyme biogenesis and recruitment to the telomere, and finally activation and processivity. However, studies using cancer cell lines and other model systems have begun to reveal features of telomeres and telomerase that are unique to cancer. This review summarizes our current knowledge on the mechanisms of telomerase recruitment and activation using insights from studies in mammals and budding and fission yeasts. Finally, we discuss the differences in telomere homeostasis between normal cells and cancer cells, which may provide a foundation for telomere/telomerase targeted cancer treatments.
Collapse
Affiliation(s)
- Christine A Armstrong
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Kazunori Tomita
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| |
Collapse
|
47
|
Liu Y, Liu F, Cao Y, Xu H, Wu Y, Wu S, Liu D, Zhao Y, Songyang Z, Ma W. Shwachman-Diamond Syndrome Protein SBDS Maintains Human Telomeres by Regulating Telomerase Recruitment. Cell Rep 2018; 22:1849-1860. [PMID: 29444436 PMCID: PMC5844287 DOI: 10.1016/j.celrep.2018.01.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/20/2017] [Accepted: 01/19/2018] [Indexed: 01/15/2023] Open
Abstract
Shwachman-Diamond syndrome (SDS) is a rare pediatric disease characterized by various systemic disorders, including hematopoietic dysfunction. The mutation of Shwachman-Bodian-Diamond syndrome (SBDS) gene has been proposed to be a major causative reason for SDS. Although SBDS patients were reported to have shorter telomere length in granulocytes, the underlying mechanism is still unclear. Here we provide data to elucidate the role of SBDS in telomere protection. We demonstrate that SBDS deficiency leads to telomere shortening. We found that overexpression of disease-associated SBDS mutants or knockdown of SBDS hampered the recruitment of telomerase onto telomeres, while the overall reverse transcriptase activity of telomerase remained unaffected. Moreover, we show that SBDS could specifically bind to TPP1 during the S phase of cell cycle, likely functioning as a stabilizer for TPP1-telomerase interaction. Our findings suggest that SBDS is a telomere-protecting protein that participates in regulating telomerase recruitment.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Oncology in South China, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Feng Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Oncology in South China, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yizhao Cao
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Oncology in South China, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Huimin Xu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Oncology in South China, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yangxiu Wu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Oncology in South China, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Su Wu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Oncology in South China, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Dan Liu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yong Zhao
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Oncology in South China, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Oncology in South China, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; Collaborative Innovation Center for Cancer Medicine, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou 510006, China; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | - Wenbin Ma
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Oncology in South China, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; Collaborative Innovation Center for Cancer Medicine, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
48
|
Abstract
Human telomerase is a ribonucleoprotein (RNP) that synthesizes DNA repeats at the ends of chromosomes and maintains telomere length and genome stability. The enzyme is comprised of telomerase RNA (hTR) (which provides the template for telomere addition) and several protein subunits including telomerase reverse transcriptase (hTERT) (the catalytic component). Intracellular trafficking of the enzyme has emerged as an important factor in the regulation of telomerase activity. Telomerase trafficking between nuclear Cajal bodies (proposed sites of telomerase biogenesis and regulation) and telomeres (sites of action) is regulated by the cell cycle in concordance with telomere synthesis during S phase. Here, we describe fluorescence microscopy approaches to visualize the subcellular localization of the essential RNA component of telomerase (hTR) relative to Cajal bodies and telomeres in cultured human cells. These methods include fluorescence in situ hybridization (to detect hTR and telomeric DNA) and immunofluorescence (to detect Cajal bodies and telomere binding proteins). Because telomerase localization to telomeres is normally restricted to S phase, we also describe methods to synchronize and analyze cells within this phase of the cell cycle.
Collapse
|
49
|
Current Perspectives of Telomerase Structure and Function in Eukaryotes with Emerging Views on Telomerase in Human Parasites. Int J Mol Sci 2018; 19:ijms19020333. [PMID: 29364142 PMCID: PMC5855555 DOI: 10.3390/ijms19020333] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 12/11/2022] Open
Abstract
Replicative capacity of a cell is strongly correlated with telomere length regulation. Aberrant lengthening or reduction in the length of telomeres can lead to health anomalies, such as cancer or premature aging. Telomerase is a master regulator for maintaining replicative potential in most eukaryotic cells. It does so by controlling telomere length at chromosome ends. Akin to cancer cells, most single-cell eukaryotic pathogens are highly proliferative and require persistent telomerase activity to maintain constant length of telomere and propagation within their host. Although telomerase is key to unlimited cellular proliferation in both cases, not much was known about the role of telomerase in human parasites (malaria, Trypanosoma, etc.) until recently. Since telomerase regulation is mediated via its own structural components, interactions with catalytic reverse transcriptase and several factors that can recruit and assemble telomerase to telomeres in a cell cycle-dependent manner, we compare and discuss here recent findings in telomerase biology in cancer, aging and parasitic diseases to give a broader perspective of telomerase function in human diseases.
Collapse
|
50
|
Telomeres: Implications for Cancer Development. Int J Mol Sci 2018; 19:ijms19010294. [PMID: 29351238 PMCID: PMC5796239 DOI: 10.3390/ijms19010294] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 12/31/2022] Open
Abstract
Telomeres facilitate the protection of natural ends of chromosomes from constitutive exposure to the DNA damage response (DDR). This is most likely achieved by a lariat structure that hides the linear telomeric DNA through protein-protein and protein-DNA interactions. The telomere shortening associated with DNA replication in the absence of a compensatory mechanism culminates in unmasked telomeres. Then, the subsequent activation of the DDR will define the fate of cells according to the functionality of cell cycle checkpoints. Dysfunctional telomeres can suppress cancer development by engaging replicative senescence or apoptotic pathways, but they can also promote tumour initiation. Studies in telomere dynamics and karyotype analysis underpin telomere crisis as a key event driving genomic instability. Significant attainment of telomerase or alternative lengthening of telomeres (ALT)-pathway to maintain telomere length may be permissive and required for clonal evolution of genomically-unstable cells during progression to malignancy. We summarise current knowledge of the role of telomeres in the maintenance of chromosomal stability and carcinogenesis.
Collapse
|