1
|
Magliozzi JO, Runyan LA, Dutta P, Hoeprich GJ, Goode BL. Sequential recruitment of F-BAR proteins controls cytoskeletal crosstalk at the yeast bud neck. Curr Biol 2025; 35:574-590.e10. [PMID: 39798561 PMCID: PMC11794016 DOI: 10.1016/j.cub.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/14/2024] [Accepted: 12/04/2024] [Indexed: 01/15/2025]
Abstract
In vivo functions of the septin and actin cytoskeletons are closely intertwined, yet the mechanisms underlying septin-actin crosstalk have remained poorly understood. Here, we show that the yeast-bud-neck-associated Fes/CIP4 homology Bar-amphiphysin-Rvs (F-BAR) protein suppressor of yeast profilin 1 (Syp1)/FCHo uses its intrinsically disordered region (IDR) to directly bind and bundle filamentous actin (F-actin) and to physically link septins and F-actin. Interestingly, the only other F-BAR protein found at the neck during bud development, Hof1, has related activities and also potently inhibits the bud-neck-associated formin Bnr1. However, we find that Syp1 enhances rather than inhibits Bnr1-mediated actin assembly and fully overcomes Hof1-mediated inhibition of Bnr1. Further, during bud development, Syp1 and Hof1 show reciprocal patterns of arrival and departure from the bud neck, and in vitro Syp1 and Hof1 compete for septin binding. Together, our observations suggest that as the bud grows, the relative levels of these two F-BAR proteins at the bud neck invert, driving changes in septin organization, septin-actin linkage, and formin activity. More broadly, our findings expand the functional roles of Syp1/FCHo family proteins and our understanding of the working relationships among F-BAR proteins in cytoskeletal regulation.
Collapse
Affiliation(s)
- Joseph O Magliozzi
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Lucas A Runyan
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Priyanka Dutta
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Gregory J Hoeprich
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| |
Collapse
|
2
|
Mahanta B, Courtemanche N. The mode of subunit addition regulates the processive elongation of actin filaments by formin. J Biol Chem 2025; 301:108071. [PMID: 39667500 PMCID: PMC11773026 DOI: 10.1016/j.jbc.2024.108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/25/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024] Open
Abstract
Formins play crucial roles in actin polymerization by nucleating filaments and regulating their elongation. Formins bind the barbed ends of filaments via their dimeric FH2 domains, which step processively onto incoming actin subunits during elongation. Actin monomers can bind formin-bound barbed ends directly or undergo diffusion-mediated delivery through interactions with formin FH1 domains and profilin. Despite its fundamental importance, a clear mechanism governing processive FH2 stepping has remained elusive. In this study, we systematically characterized the polymerization behavior of the Saccharomyces cerevisiae formin Bni1p using in vitro reconstitution assays and stochastic simulations. We found that Bni1p assembles populations of filaments with lengths that depend nonlinearly on the rate of elongation. This processive behavior is dictated by a variable probability of dissociation that depends on the reaction conditions. Bni1p dissociates from barbed ends with a basal off-rate, which enables prolonged filament assembly over the course of a long lifetime at the barbed end. A bias toward FH1-mediated delivery as the dominant mechanism for polymerization curtails elongation by shortening the lifetime of the formin at the filament end. This facilitates the assembly of populations of filaments with similar average lengths, even when polymerization proceeds at different rates. Our results suggest a central role for formin FH1 domains in regulating processivity. The specific effects of FH1 domains on processivity are variable and likely tailored to the physiological function of each formin.
Collapse
Affiliation(s)
- Biswaprakash Mahanta
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Naomi Courtemanche
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
3
|
Dhar A, Bagyashree VT, Biswas S, Kumari J, Sridhara A, Jeevan SB, Shekhar S, Palani S. Functional redundancy and formin-independent localization of tropomyosin isoforms in Saccharomyces cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.587703. [PMID: 38617342 PMCID: PMC11014519 DOI: 10.1101/2024.04.04.587703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Tropomyosin is an actin binding protein which protects actin filaments from cofilin-mediated disassembly. Distinct tropomyosin isoforms have long been hypothesized to differentially sort to subcellular actin networks and impart distinct functionalities. Nevertheless, a mechanistic understanding of the interplay between Tpm isoforms and their functional contributions to actin dynamics has been lacking. In this study, we present and charcaterize mNeonGreen-Tpm fusion proteins that exhibit good functionality in cells as a sole copy, surpassing limitations of existing probes and enabling real-time dynamic tracking of Tpm-actin filaments in vivo. Using these functional Tpm fusion proteins, we find that S. cerevisiae Tpm isoforms, Tpm1 and Tpm2, colocalize on actin cables and indiscriminately bind to actin filaments nucleated by either formin isoform-Bnr1 and Bni1 in vivo, in contrast to the long-held paradigm of Tpm-formin pairing. We show that cellular Tpm levels regulate endocytosis by affecting balance between linear and branched actin networks in yeast cells. Finally, we discover that Tpm2 can protect and organize functional actin cables in absence of Tpm1. Overall, our work supports a concentration-dependent and formin isoform independent model of Tpm isoform binding to F-actin and demonstrates for the first time, the functional redundancy of the paralog Tpm2 in actin cable maintenance in S. cerevisiae.
Collapse
Affiliation(s)
- Anubhav Dhar
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
- equal contribution
| | - VT Bagyashree
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
- equal contribution
| | - Sudipta Biswas
- Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Jayanti Kumari
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Amruta Sridhara
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Subodh B Jeevan
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Shashank Shekhar
- Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Saravanan Palani
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
4
|
Foltman M, Sanchez-Diaz A. Central Role of the Actomyosin Ring in Coordinating Cytokinesis Steps in Budding Yeast. J Fungi (Basel) 2024; 10:662. [PMID: 39330421 PMCID: PMC11433125 DOI: 10.3390/jof10090662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Eukaryotic cells must accurately transfer their genetic material and cellular components to their daughter cells. Initially, cells duplicate their chromosomes and subsequently segregate them toward the poles. The actomyosin ring, a crucial molecular machinery normally located in the middle of the cells and underneath the plasma membrane, then physically divides the cytoplasm and all components into two daughter cells, each ready to start a new cell cycle. This process, known as cytokinesis, is conserved throughout evolution. Defects in cytokinesis can lead to the generation of genetically unstable tetraploid cells, potentially initiating uncontrolled proliferation and cancer. This review focuses on the molecular mechanisms by which budding yeast cells build the actomyosin ring and the preceding steps involved in forming a scaffolding structure that supports the challenging structural changes throughout cytokinesis. Additionally, we describe how cells coordinate actomyosin ring contraction, plasma membrane ingression, and extracellular matrix deposition to successfully complete cytokinesis. Furthermore, the review discusses the regulatory roles of Cyclin-Dependent Kinase (Cdk1) and the Mitotic Exit Network (MEN) in ensuring the precise timing and execution of cytokinesis. Understanding these processes in yeast provides insights into the fundamental aspects of cell division and its implications for human health.
Collapse
Affiliation(s)
- Magdalena Foltman
- Mechanisms and Regulation of Cell Division Research Unit, Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria-CSIC, 39011 Santander, Spain;
- Molecular Biology Department, Faculty of Medicine, University of Cantabria, 39005 Santander, Spain
| | - Alberto Sanchez-Diaz
- Mechanisms and Regulation of Cell Division Research Unit, Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria-CSIC, 39011 Santander, Spain;
- Molecular Biology Department, Faculty of Medicine, University of Cantabria, 39005 Santander, Spain
| |
Collapse
|
5
|
McInally SG, Reading AJB, Rosario A, Jelenkovic PR, Goode BL, Kondev J. Length control emerges from cytoskeletal network geometry. Proc Natl Acad Sci U S A 2024; 121:e2401816121. [PMID: 39106306 PMCID: PMC11331072 DOI: 10.1073/pnas.2401816121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/21/2024] [Indexed: 08/09/2024] Open
Abstract
Many cytoskeletal networks consist of individual filaments that are organized into elaborate higher-order structures. While it is appreciated that the size and architecture of these networks are critical for their biological functions, much of the work investigating control over their assembly has focused on mechanisms that regulate the turnover of individual filaments through size-dependent feedback. Here, we propose a very different, feedback-independent mechanism to explain how yeast cells control the length of their actin cables. Our findings, supported by quantitative cell imaging and mathematical modeling, indicate that actin cable length control is an emergent property that arises from the cross-linked and bundled organization of the filaments within the cable. Using this model, we further dissect the mechanisms that allow cables to grow longer in larger cells and propose that cell length-dependent tuning of formin activity allows cells to scale cable length with cell length. This mechanism is a significant departure from prior models of cytoskeletal filament length control and presents a different paradigm to consider how cells control the size, shape, and dynamics of higher-order cytoskeletal structures.
Collapse
Affiliation(s)
- Shane G. McInally
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA01609
| | | | - Aldric Rosario
- Department of Physics, Brandeis University, Waltham, MA02454
| | | | - Bruce L. Goode
- Department of Biology, Brandeis University, Waltham, MA02454
| | - Jane Kondev
- Department of Physics, Brandeis University, Waltham, MA02454
| |
Collapse
|
6
|
Magliozzi JO, Rands TJ, Shrestha S, Simke WC, Hase NE, Juanes MA, Kelley JB, Goode BL. The roles of yeast formins and their regulators Bud6 and Bil2 in the pheromone response. Mol Biol Cell 2024; 35:ar85. [PMID: 38656798 PMCID: PMC11238086 DOI: 10.1091/mbc.e23-11-0459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
In response to pheromone Saccharomyces cerevisiae extend a mating projection. This process depends on the formation of polarized actin cables which direct secretion to the mating tip and translocate the nucleus for karyogamy. Here, we demonstrate that proper mating projection formation requires the formin Bni1, as well as the actin nucleation promoting activities of Bud6, but not the formin Bnr1. Further, Bni1 is required for pheromone gradient tracking. Our work also reveals unexpected new functions for Bil2 in the pheromone response. Previously we identified Bil2 as a direct inhibitor of Bnr1 during vegetative cell growth. Here, we show that Bil2 has Bnr1-independent functions in spatially focusing Bni1-GFP at mating projection tips, and in vitro Bil2 and its binding partner Bud6 organize Bni1 into clusters that nucleate actin assembly. bil2∆ cells also display entangled Bni1-generated actin cable arrays and defects in secretory vesicle transport and nuclear positioning. At low pheromone concentrations, bil2∆ cells are delayed in establishing a polarity axis, and at high concentrations they prematurely form a second and a third mating projection. Together, these results suggest that Bil2 promotes the proper formation and timing of mating projections by organizing Bni1 and maintaining a persistent axis of polarized growth.
Collapse
Affiliation(s)
| | - Thomas J. Rands
- Department of Biology, Brandeis University, Waltham, MA 02454
| | - Sudati Shrestha
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469
| | - William C Simke
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469
| | - Niklas E. Hase
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469
| | - M. Angeles Juanes
- Department of Biology, Brandeis University, Waltham, MA 02454
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Joshua B. Kelley
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469
| | - Bruce L. Goode
- Department of Biology, Brandeis University, Waltham, MA 02454
| |
Collapse
|
7
|
Wang K, Okada H, Wloka C, Bi E. Unraveling the mechanisms and evolution of a two-domain module in IQGAP proteins for controlling eukaryotic cytokinesis. Cell Rep 2023; 42:113510. [PMID: 38041816 PMCID: PMC10809011 DOI: 10.1016/j.celrep.2023.113510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/17/2023] [Accepted: 11/13/2023] [Indexed: 12/04/2023] Open
Abstract
The IQGAP family of proteins plays a crucial role in cytokinesis across diverse organisms, but the underlying mechanisms are not fully understood. In this study, we demonstrate that IQGAPs in budding yeast, fission yeast, and human cells use a two-domain module to regulate their localization as well as the assembly and disassembly of the actomyosin ring during cytokinesis. Strikingly, the calponin homology domains (CHDs) in these IQGAPs bind to distinct cellular F-actin structures with varying specificity, whereas the non-conserved domains immediately downstream of the CHDs in these IQGAPs all target the division site, but differ in timing, localization strength, and binding partners. We also demonstrate that human IQGAP3 acts in parallel to septins and myosin-IIs to mediate the role of anillin in cytokinesis. Collectively, our findings highlight the two-domain mechanism by which IQGAPs regulate cytokinesis in distantly related organisms as well as their evolutionary conservation and divergence.
Collapse
Affiliation(s)
- Kangji Wang
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Carsten Wloka
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA; Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, A Corporate Member of Freie Universität, Humboldt-University, The Berlin Institute of Health, Berlin, Germany
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA.
| |
Collapse
|
8
|
McInally SG, Reading AJ, Rosario A, Jelenkovic PR, Goode BL, Kondev J. Length control emerges from cytoskeletal network geometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.569063. [PMID: 38076874 PMCID: PMC10705815 DOI: 10.1101/2023.11.28.569063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Many cytoskeletal networks consist of individual filaments that are organized into elaborate higher order structures. While it is appreciated that the size and architecture of these networks are critical for their biological functions, much of the work investigating control over their assembly has focused on mechanisms that regulate the turnover of individual filaments through size-dependent feedback. Here, we propose a very different, feedback-independent mechanism to explain how yeast cells control the length of their actin cables. Our findings, supported by quantitative cell imaging and mathematical modeling, indicate that actin cable length control is an emergent property that arises from the cross-linked and bundled organization of the filaments within the cable. Using this model, we further dissect the mechanisms that allow cables to grow longer in larger cells, and propose that cell length-dependent tuning of formin activity allows cells to scale cable length with cell length. This mechanism is a significant departure from prior models of cytoskeletal filament length control and presents a new paradigm to consider how cells control the size, shape, and dynamics of higher order cytoskeletal structures.
Collapse
Affiliation(s)
- Shane G. McInally
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | | | - Aldric Rosario
- Department of Physics, Brandeis University, Waltham, MA, 02454, USA
| | | | - Bruce L. Goode
- Department of Biology, Brandeis University, Waltham, MA, 02454, USA
| | - Jane Kondev
- Department of Physics, Brandeis University, Waltham, MA, 02454, USA
| |
Collapse
|
9
|
Wirshing AC, Rodriguez SG, Goode BL. Evolutionary tuning of barbed end competition allows simultaneous construction of architecturally distinct actin structures. J Cell Biol 2023; 222:213854. [PMID: 36729023 PMCID: PMC9929936 DOI: 10.1083/jcb.202209105] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/01/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023] Open
Abstract
How cells simultaneously assemble actin structures of distinct sizes, shapes, and filamentous architectures is still not well understood. Here, we used budding yeast as a model to investigate how competition for the barbed ends of actin filaments might influence this process. We found that while vertebrate capping protein (CapZ) and formins can simultaneously associate with barbed ends and catalyze each other's displacement, yeast capping protein (Cap1/2) poorly displaces both yeast and vertebrate formins. Consistent with these biochemical differences, in vivo formin-mediated actin cable assembly was strongly attenuated by the overexpression of CapZ but not Cap1/2. Multiwavelength live cell imaging further revealed that actin patches in cap2∆ cells acquire cable-like features over time, including recruitment of formins and tropomyosin. Together, our results suggest that the activities of S. cerevisiae Cap1/2 have been tuned across evolution to allow robust cable assembly by formins in the presence of high cytosolic levels of Cap1/2, which conversely limit patch growth and shield patches from formins.
Collapse
Affiliation(s)
- Alison C.E. Wirshing
- https://ror.org/05abbep66Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Sofia Gonzalez Rodriguez
- https://ror.org/05abbep66Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Bruce L. Goode
- https://ror.org/05abbep66Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA,Correspondence to Bruce L. Goode:
| |
Collapse
|
10
|
Maufront J, Guichard B, Cao LY, Cicco AD, Jégou A, Romet-Lemonne G, Bertin A. Direct observation of the conformational states of formin mDia1 at actin filament barbed ends and along the filament. Mol Biol Cell 2022; 34:ar2. [PMID: 36383775 PMCID: PMC9816646 DOI: 10.1091/mbc.e22-10-0472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The fine regulation of actin polymerization is essential to control cell motility and architecture and to perform essential cellular functions. Formins are key regulators of actin filament assembly, known to processively elongate filament barbed ends and increase their polymerization rate. Different models have been extrapolated to describe the molecular mechanism governing the processive motion of formin FH2 domains at polymerizing barbed ends. Using negative stain electron microscopy, we directly identified for the first time two conformations of the mDia1 formin FH2 domains in interaction with the barbed ends of actin filaments. These conformations agree with the speculated open and closed conformations of the "stair-stepping" model. We observed the FH2 dimers to be in the open conformation for 79% of the data, interacting with the two terminal actin subunits of the barbed end while they interact with three actin subunits in the closed conformation. In addition, we identified and characterized the structure of single FH2 dimers encircling the core of actin filaments, and reveal their ability to spontaneously depart from barbed ends.
Collapse
Affiliation(s)
- Julien Maufront
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie,75005 Paris, France
| | - Bérengère Guichard
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Lu-Yan Cao
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Aurélie Di Cicco
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie,75005 Paris, France
| | - Antoine Jégou
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France,*Address correspondence to: Aurélie Bertin (); Guillaume Romet-Lemonne (); Antoine Jégou ()
| | - Guillaume Romet-Lemonne
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France,*Address correspondence to: Aurélie Bertin (); Guillaume Romet-Lemonne (); Antoine Jégou ()
| | - Aurélie Bertin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie,75005 Paris, France,*Address correspondence to: Aurélie Bertin (); Guillaume Romet-Lemonne (); Antoine Jégou ()
| |
Collapse
|
11
|
Simke WC, Johnson CP, Hart AJ, Mayhue S, Craig PL, Sojka S, Kelley JB. Phosphorylation of RGS regulates MAP kinase localization and promotes completion of cytokinesis. Life Sci Alliance 2022; 5:5/10/e202101245. [PMID: 35985794 PMCID: PMC9394524 DOI: 10.26508/lsa.202101245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/03/2022] Open
Abstract
Phosphorylation of the RGS Sst2 alters its subcellular distribution, MAPK localization, and interaction with Kel1, which promotes coordination of polarized growth with completion of cytokinesis. Yeast use the G-protein–coupled receptor signaling pathway to detect and track the mating pheromone. The G-protein–coupled receptor pathway is inhibited by the regulator of G-protein signaling (RGS) Sst2 which induces Gα GTPase activity and inactivation of downstream signaling. G-protein signaling activates the MAPK Fus3, which phosphorylates the RGS; however, the role of this modification is unknown. We found that pheromone-induced RGS phosphorylation peaks early; the phospho-state of RGS controls its localization and influences MAPK spatial distribution. Surprisingly, phosphorylation of the RGS promotes completion of cytokinesis before pheromone-induced growth. Completion of cytokinesis in the presence of pheromone is promoted by the kelch-repeat protein, Kel1 and antagonized by the formin Bni1. We found that RGS complexes with Kel1 and prefers the unphosphorylatable RGS mutant. We also found overexpression of unphosphorylatable RGS exacerbates cytokinetic defects, whereas they are rescued by overexpression of Kel1. These data lead us to a model where Kel1 promotes completion of cytokinesis before pheromone-induced polarity but is inhibited by unphosphorylated RGS binding.
Collapse
Affiliation(s)
- William C Simke
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Cory P Johnson
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| | - Andrew J Hart
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Sari Mayhue
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - P Lucas Craig
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Savannah Sojka
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Joshua B Kelley
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA .,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| |
Collapse
|
12
|
Nomura W, Ng SP, Takahara T, Maeda T, Kawada T, Goto T, Inoue Y. Roles of phosphatidylserine and phospholipase C in the activation of TOR complex 2 signaling in Saccharomyces cerevisiae. J Cell Sci 2022; 135:276172. [PMID: 35912799 DOI: 10.1242/jcs.259988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/22/2022] [Indexed: 11/20/2022] Open
Abstract
The target of rapamycin (TOR) forms two distinct complexes, TORC1 and TORC2, to exert its functions essential for cellular growth and homeostasis. TORC1 signaling is regulated in response to nutrients such as amino acids and glucose; however, the mechanisms underlying the activation of TORC2 signaling are still poorly understood compared to TORC1 signaling. In the budding yeast Saccharomyces cerevisiae, TORC2 targets protein kinases Ypk1, Ypk2, and Pkc1 for phosphorylation. Plasma membrane stress is known to activate the TORC2-Ypk1/2 signaling. We have previously reported that methylglyoxal (MG), a metabolite derived from glycolysis, activates TORC2-Pkc1 signaling. In this study, we found that MG activates the TORC2-Ypk1/2 and TORC2-Pkc1 signaling, and that phosphatidylserine is involved in the activation of both signaling pathways. We also demonstrated that the Rho-family GTPase Cdc42 contributes to the plasma membrane stress-induced activation of TORC2-Ypk1/2 signaling. Furthermore, we revealed that phosphatidylinositol-specific phospholipase C, Plc1, contributes to the activation of both TORC2-Ypk1/2 and TORC2-Pkc1 signaling.
Collapse
Affiliation(s)
- Wataru Nomura
- Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Su-Ping Ng
- Laboratory of Molecular Functions of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Terunao Takahara
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Tatsuya Maeda
- Department of Biology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Teruo Kawada
- Laboratory of Molecular Functions of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tsuyoshi Goto
- Laboratory of Molecular Functions of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yoshiharu Inoue
- Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
13
|
Ma Z, Zhu K, Gao Y, Tan S, Miao Y. Molecular condensation and mechanoregulation of plant class I formin, an integrin‐like actin nucleator. FEBS J 2022. [DOI: 10.1111/febs.16571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/29/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Zhiming Ma
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
| | - Kexin Zhu
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
| | - Yong‐Gui Gao
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
| | - Suet‐Mien Tan
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
| | - Yansong Miao
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
- Institute for Digital Molecular Analytics and Science Nanyang Technological University Singapore City Singapore
| |
Collapse
|
14
|
Dorweiler JE, Lyke DR, Lemoine NP, Guereca S, Buchholz HE, Legan ER, Radtke CM, Manogaran AL. Implications of the Actin Cytoskeleton on the Multi-Step Process of [PSI+] Prion Formation. Viruses 2022; 14:v14071581. [PMID: 35891561 PMCID: PMC9321047 DOI: 10.3390/v14071581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/27/2022] [Accepted: 07/02/2022] [Indexed: 11/23/2022] Open
Abstract
Yeast prions are self-perpetuating misfolded proteins that are infectious. In yeast, [PSI+] is the prion form of the Sup35 protein. While the study of [PSI+] has revealed important cellular mechanisms that contribute to prion propagation, the underlying cellular factors that influence prion formation are not well understood. Prion formation has been described as a multi-step process involving both the initial nucleation and growth of aggregates, followed by the subsequent transmission of prion particles to daughter cells. Prior evidence suggests that actin plays a role in this multi-step process, but actin’s precise role is unclear. Here, we investigate how actin influences the cell’s ability to manage newly formed visible aggregates and how actin influences the transmission of newly formed aggregates to future generations. At early steps, using 3D time-lapse microscopy, several actin mutants, and Markov modeling, we find that the movement of newly formed aggregates is random and actin independent. At later steps, our prion induction studies provide evidence that the transmission of newly formed prion particles to daughter cells is limited by the actin cytoskeletal network. We suspect that this limitation is because actin is used to possibly retain prion particles in the mother cell.
Collapse
Affiliation(s)
- Jane E. Dorweiler
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA; (J.E.D.); (D.R.L.); (N.P.L.); (S.G.); (H.E.B.); (E.R.L.); (C.M.R.)
| | - Douglas R. Lyke
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA; (J.E.D.); (D.R.L.); (N.P.L.); (S.G.); (H.E.B.); (E.R.L.); (C.M.R.)
| | - Nathan P. Lemoine
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA; (J.E.D.); (D.R.L.); (N.P.L.); (S.G.); (H.E.B.); (E.R.L.); (C.M.R.)
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI 53233, USA
| | - Samantha Guereca
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA; (J.E.D.); (D.R.L.); (N.P.L.); (S.G.); (H.E.B.); (E.R.L.); (C.M.R.)
| | - Hannah E. Buchholz
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA; (J.E.D.); (D.R.L.); (N.P.L.); (S.G.); (H.E.B.); (E.R.L.); (C.M.R.)
| | - Emily R. Legan
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA; (J.E.D.); (D.R.L.); (N.P.L.); (S.G.); (H.E.B.); (E.R.L.); (C.M.R.)
| | - Claire M. Radtke
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA; (J.E.D.); (D.R.L.); (N.P.L.); (S.G.); (H.E.B.); (E.R.L.); (C.M.R.)
| | - Anita L. Manogaran
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA; (J.E.D.); (D.R.L.); (N.P.L.); (S.G.); (H.E.B.); (E.R.L.); (C.M.R.)
- Correspondence:
| |
Collapse
|
15
|
Identification of a modulator of the actin cytoskeleton, mitochondria, nutrient metabolism and lifespan in yeast. Nat Commun 2022; 13:2706. [PMID: 35577788 PMCID: PMC9110415 DOI: 10.1038/s41467-022-30045-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/06/2022] [Indexed: 11/26/2022] Open
Abstract
In yeast, actin cables are F-actin bundles that are essential for cell division through their function as tracks for cargo movement from mother to daughter cell. Actin cables also affect yeast lifespan by promoting transport and inheritance of higher-functioning mitochondria to daughter cells. Here, we report that actin cable stability declines with age. Our genome-wide screen for genes that affect actin cable stability identified the open reading frame YKL075C. Deletion of YKL075C results in increases in actin cable stability and abundance, mitochondrial fitness, and replicative lifespan. Transcriptome analysis revealed a role for YKL075C in regulating branched-chain amino acid (BCAA) metabolism. Consistent with this, modulation of BCAA metabolism or decreasing leucine levels promotes actin cable stability and function in mitochondrial quality control. Our studies support a role for actin stability in yeast lifespan, and demonstrate that this process is controlled by BCAA and a previously uncharacterized ORF YKL075C, which we refer to as actin, aging and nutrient modulator protein 1 (AAN1). Actin cables affect lifespan by supporting movement and inheritance of fitter mitochondria to daughter cells in yeast. Here the authors show that branched-chain amino acid (BCAA) levels affect actin cable stability and a role for YKL075C/AAN1 in control of BCAA metabolism and actin cable stability and function.
Collapse
|
16
|
Ma Z, Sun Y, Zhu X, Yang L, Chen X, Miao Y. Membrane nanodomains modulate formin condensation for actin remodeling in Arabidopsis innate immune responses. THE PLANT CELL 2022; 34:374-394. [PMID: 34726756 PMCID: PMC8774048 DOI: 10.1093/plcell/koab261] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/20/2021] [Indexed: 05/23/2023]
Abstract
The assembly of macromolecules on the plasma membrane concentrates cell surface biomolecules into nanometer- to micrometer-scale clusters (nano- or microdomains) that help the cell initiate or respond to signals. In plant-microbe interactions, the actin cytoskeleton undergoes rapid remodeling during pathogen-associated molecular pattern-triggered immunity (PTI). The nanoclustering of formin-actin nucleator proteins at the cell surface has been identified as underlying actin nucleation during plant innate immune responses. Here, we show that the condensation of nanodomain constituents and the self-assembly of remorin proteins enables this mechanism of controlling formin condensation and activity during innate immunity in Arabidopsis thaliana. Through intrinsically disordered region-mediated remorin oligomerization and formin interaction, remorin gradually recruits and condenses formins upon PTI activation in lipid bilayers, consequently increasing actin nucleation in a time-dependent manner postinfection. Such nanodomain- and remorin-mediated regulation of plant surface biomolecules is expected to be a general feature of plant innate immune responses that creates spatially separated biochemical compartments and fine tunes membrane physicochemical properties for transduction of immune signals in the host.
Collapse
Affiliation(s)
- Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Yanbiao Sun
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Centre, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinlu Zhu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Liang Yang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
- School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, China
| | - Xu Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Centre, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | |
Collapse
|
17
|
Xie Y, Zhou F, Ma Q, Lu L, Miao Y. A teamwork promotion of formin-mediated actin nucleation by Bud6 and Aip5 in Saccharomyces cerevisiae. Mol Biol Cell 2021; 33:ar19. [PMID: 34818061 PMCID: PMC9236144 DOI: 10.1091/mbc.e21-06-0285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actin nucleation is achieved by collaborative teamwork of actin nucleator factors (NFs) and nucleation-promoting factors (NPFs) into functional protein complexes. Selective inter- and intramolecular interactions between the nucleation complex constituents enable diverse modes of complex assembly in initiating actin polymerization on demand. Budding yeast has two formins, Bni1 and Bnr1, which are teamed up with different NPFs. However, the selective pairing between formin NFs and NPFs into the nucleation core for actin polymerization is not completely understood. By examining the functions and interactions of NPFs and NFs via biochemistry, genetics, and mathematical modeling approaches, we found that two NPFs, Aip5 and Bud6, showed joint teamwork effort with Bni1 and Bnr1, respectively, by interacting with the C-terminal intrinsically disordered region (IDR) of formin, in which two NPFs work together to promote formin-mediated actin nucleation. Although the C-terminal IDRs of Bni1 and Bnr1 are distinct in length, each formin IDR orchestrates the recruitment of Bud6 and Aip5 cooperatively by different positioning strategies to form a functional complex. Our study demonstrated the dynamic assembly of the actin nucleation complex by recruiting multiple partners in budding yeast, which may be a general feature for effective actin nucleation by formins.
Collapse
Affiliation(s)
- Ying Xie
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Feng Zhou
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Qianqian Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Lanyuan Lu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
18
|
Valenti M, Molina M, Cid VJ. Heterologous Expression and Auto-Activation of Human Pro-Inflammatory Caspase-1 in Saccharomyces cerevisiae and Comparison to Caspase-8. Front Immunol 2021; 12:668602. [PMID: 34335569 PMCID: PMC8317575 DOI: 10.3389/fimmu.2021.668602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/28/2021] [Indexed: 01/15/2023] Open
Abstract
Caspases are a family of cysteine proteases that play an essential role in inflammation, apoptosis, cell death, and development. Here we delve into the effects caused by heterologous expression of human caspase-1 in the yeast Saccharomyces cerevisiae and compare them to those of caspase-8. Overexpression of both caspases in the heterologous model led to their activation and caused mitochondrial hyperpolarization, damage to different organelles, and cell death. All these effects were dependent on their protease activity, and caspase-8 was more aggressive than caspase-1. Growth arrest could be at least partially explained by dysfunction of the actin cytoskeleton as a consequence of the processing of the yeast Bni1 formin, which we identify here as a likely direct substrate of both caspases. Through the modulation of the GAL1 promoter by using different galactose:glucose ratios in the culture medium, we have established a scenario in which caspase-1 is sufficiently expressed to become activated while yeast growth is not impaired. Finally, we used the yeast model to explore the role of death-fold domains (DD) of both caspases in their activity. Peculiarly, the DDs of either caspase showed an opposite involvement in its intrinsic activity, as the deletion of the caspase activation and recruitment domain (CARD) of caspase-1 enhanced its activity, whereas the deletion of the death effector domain (DED) of caspase-8 diminished it. We show that caspase-1 is able to efficiently process its target gasdermin D (GSDMD) when co-expressed in yeast. In sum, we propose that S. cerevisiae provides a manageable tool to explore caspase-1 activity and structure–function relationships.
Collapse
Affiliation(s)
- Marta Valenti
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Universidad Complutense de Madrid, Madrid, Spain
| | - María Molina
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Universidad Complutense de Madrid, Madrid, Spain
| | - Víctor J Cid
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
19
|
Prostak SM, Robinson KA, Titus MA, Fritz-Laylin LK. The actin networks of chytrid fungi reveal evolutionary loss of cytoskeletal complexity in the fungal kingdom. Curr Biol 2021; 31:1192-1205.e6. [DOI: 10.1016/j.cub.2021.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/05/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022]
|
20
|
Rands TJ, Goode BL. Bil2 Is a Novel Inhibitor of the Yeast Formin Bnr1 Required for Proper Actin Cable Organization and Polarized Secretion. Front Cell Dev Biol 2021; 9:634587. [PMID: 33634134 PMCID: PMC7900418 DOI: 10.3389/fcell.2021.634587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/20/2021] [Indexed: 11/21/2022] Open
Abstract
Cell growth in budding yeast depends on rapid and on-going assembly and turnover of polarized actin cables, which direct intracellular transport of post-Golgi vesicles to the bud tip. Saccharomyces cerevisiae actin cables are polymerized by two formins, Bni1 and Bnr1. Bni1 assembles cables in the bud, while Bnr1 is anchored to the bud neck and assembles cables that specifically extend filling the mother cell. Here, we report a formin regulatory role for YGL015c, a previously uncharacterized open reading frame, which we have named Bud6 Interacting Ligand 2 (BIL2). bil2Δ cells display defects in actin cable architecture and partially-impaired secretory vesicle transport. Bil2 inhibits Bnr1-mediated actin filament nucleation in vitro, yet has no effect on the rate of Bnr1-mediated filament elongation. This activity profile for Bil2 resembles that of another yeast formin regulator, the F-BAR protein Hof1, and we find that bil2Δ with hof1Δ are synthetic lethal. Unlike Hof1, which localizes exclusively to the bud neck, GFP-Bil2 localizes to the cytosol, secretory vesicles, and sites of polarized cell growth. Further, we provide evidence that Hof1 and Bil2 inhibitory effects on Bnr1 are overcome by distinct mechanisms. Together, our results suggest that Bil2 and Hof1 perform distinct yet genetically complementary roles in inhibiting the actin nucleation activity of Bnr1 to control actin cable assembly and polarized secretion.
Collapse
Affiliation(s)
- Thomas J Rands
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, United States
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, United States
| |
Collapse
|
21
|
Xie Y, Miao Y. Polarisome assembly mediates actin remodeling during polarized yeast and fungal growth. J Cell Sci 2021; 134:134/1/jcs247916. [PMID: 33419950 DOI: 10.1242/jcs.247916] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dynamic assembly and remodeling of actin is critical for many cellular processes during development and stress adaptation. In filamentous fungi and budding yeast, actin cables align in a polarized manner along the mother-to-daughter cell axis, and are essential for the establishment and maintenance of polarity; moreover, they rapidly remodel in response to environmental cues to achieve an optimal system response. A formin at the tip region within a macromolecular complex, called the polarisome, is responsible for driving actin cable polymerization during polarity establishment. This polarisome undergoes dynamic assembly through spatial and temporally regulated interactions between its components. Understanding this process is important to comprehend the tuneable activities of the formin-centered nucleation core, which are regulated through divergent molecular interactions and assembly modes within the polarisome. In this Review, we focus on how intrinsically disordered regions (IDRs) orchestrate the condensation of the polarisome components and the dynamic assembly of the complex. In addition, we address how these components are dynamically distributed in and out of the assembly zone, thereby regulating polarized growth. We also discuss the potential mechanical feedback mechanisms by which the force-induced actin polymerization at the tip of the budding yeast regulates the assembly and function of the polarisome.
Collapse
Affiliation(s)
- Ying Xie
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
22
|
Wang K, Okada H, Bi E. Comparative Analysis of the Roles of Non-muscle Myosin-IIs in Cytokinesis in Budding Yeast, Fission Yeast, and Mammalian Cells. Front Cell Dev Biol 2020; 8:593400. [PMID: 33330476 PMCID: PMC7710916 DOI: 10.3389/fcell.2020.593400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/30/2020] [Indexed: 12/31/2022] Open
Abstract
The contractile ring, which plays critical roles in cytokinesis in fungal and animal cells, has fascinated biologists for decades. However, the basic question of how the non-muscle myosin-II and actin filaments are assembled into a ring structure to drive cytokinesis remains poorly understood. It is even more mysterious why and how the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe, and humans construct the ring structure with one, two, and three myosin-II isoforms, respectively. Here, we provide a comparative analysis of the roles of the non-muscle myosin-IIs in cytokinesis in these three model systems, with the goal of defining the common and unique features and highlighting the major questions regarding this family of proteins.
Collapse
Affiliation(s)
- Kangji Wang
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
23
|
Gingras RM, Lwin KM, Miller AM, Bretscher A. Yeast Rgd3 is a phospho-regulated F-BAR-containing RhoGAP involved in the regulation of Rho3 distribution and cell morphology. Mol Biol Cell 2020; 31:2570-2582. [PMID: 32941095 PMCID: PMC7851877 DOI: 10.1091/mbc.e20-05-0288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Polarized growth requires the integration of polarity pathways with the delivery of exocytic vesicles for cell expansion and counterbalancing endocytic uptake. In budding yeast, the myosin-V Myo2 is aided by the kinesin-related protein Smy1 in carrying out the essential Sec4-dependent transport of secretory vesicles to sites of polarized growth. Overexpression suppressors of a conditional myo2 smy1 mutant identified a novel F-BAR (Fes/CIP4 homology-Bin-Amphiphysin-Rvs protein)-containing RhoGAP, Rgd3, that has activity primarily on Rho3, but also Cdc42. Internally tagged Rho3 is restricted to the plasma membrane in a gradient corresponding to cell polarity that is altered upon Rgd3 overexpression. Rgd3 itself is localized to dynamic polarized vesicles that, while distinct from constitutive secretory vesicles, are dependent on actin and Myo2 function. In vitro Rgd3 associates with liposomes in a PIP2-enhanced manner. Further, the Rgd3 C-terminal region contains several phosphorylatable residues within a reported SH3-binding motif. An unphosphorylated mimetic construct is active and highly polarized, while the phospho-mimetic form is not. Rgd3 is capable of activating Myo2, dependent on its phospho state, and Rgd3 overexpression rescues aberrant Rho3 localization and cell morphologies seen at the restrictive temperature in the myo2 smy1 mutant. We propose a model where Rgd3 functions to modulate and maintain Rho3 polarity during growth.
Collapse
Affiliation(s)
- Robert M Gingras
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Kyaw Myo Lwin
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Abigail M Miller
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Anthony Bretscher
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
24
|
Xie Y, Loh ZY, Xue J, Zhou F, Sun J, Qiao Z, Jin S, Deng Y, Li H, Wang Y, Lu L, Gao Y, Miao Y. Orchestrated actin nucleation by the Candida albicans polarisome complex enables filamentous growth. J Biol Chem 2020; 295:14840-14854. [PMID: 32848016 DOI: 10.1074/jbc.ra120.013890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/09/2020] [Indexed: 12/29/2022] Open
Abstract
Candida albicans is a dimorphic fungus that converts from a yeast form to a hyphae form during infection. This switch requires the formation of actin cable to coordinate polarized cell growth. It's known that nucleation of this cable requires a multiprotein complex localized at the tip called the polarisome, but the mechanisms underpinning this process were unclear. Here, we found that C. albicans Aip5, a homolog of polarisome component ScAip5 in Saccharomyces cerevisiae that nucleates actin polymerization and synergizes with the formin ScBni1, regulates actin assembly and hyphae growth synergistically with other polarisome proteins Bni1, Bud6, and Spa2. The C terminus of Aip5 binds directly to G-actin, Bni1, and the C-terminal of Bud6, which form the core of the nucleation complex to polymerize F-actin. Based on insights from structural biology and molecular dynamic simulations, we propose a possible complex conformation of the actin nucleation core, which provides cooperative positioning and supports the synergistic actin nucleation activity of a tri-protein complex Bni1-Bud6-Aip5. Together with known interactions of Bni1 with Bud6 and Aip5 in S. cerevisiae, our findings unravel molecular mechanisms of C. albicans by which the tri-protein complex coordinates the actin nucleation in actin cable assembly and hyphal growth, which is likely a conserved mechanism in different filamentous fungi and yeast.
Collapse
Affiliation(s)
- Ying Xie
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Zhi Yang Loh
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Jiao Xue
- School of Biological Sciences, Nanyang Technological University, Singapore; College of Life Science and Technology, Jinan University, Guangzhou, China; The College of Life Sciences, Northwest University, Xi'an, China
| | - Feng Zhou
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Jialin Sun
- School of Biological Sciences, Nanyang Technological University, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Zhu Qiao
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Shengyang Jin
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Hongye Li
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yue Wang
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Lanyuan Lu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Yonggui Gao
- School of Biological Sciences, Nanyang Technological University, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Nanyang Drive, Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
25
|
Garabedian MV, Wirshing A, Vakhrusheva A, Turegun B, Sokolova OS, Goode BL. A septin-Hof1 scaffold at the yeast bud neck binds and organizes actin cables. Mol Biol Cell 2020; 31:1988-2001. [PMID: 32579428 PMCID: PMC7543067 DOI: 10.1091/mbc.e19-12-0693] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cellular actin arrays are often highly organized, with characteristic patterns critical to their in vivo functions, yet the mechanisms for establishing these higher order geometries remain poorly understood. In Saccharomyces cerevisiae, formin-polymerized actin cables are spatially organized and aligned along the mother–bud axis to facilitate polarized vesicle traffic. Here, we show that the bud neck–associated F-BAR protein Hof1, independent of its functions in regulating the formin Bnr1, binds to actin filaments and organizes actin cables in vivo. Hof1 bundles actin filaments and links them to septins in vitro. F-actin binding is mediated by the “linker” domain of Hof1, and its deletion leads to cable organization defects in vivo. Using superresolution imaging, we show that Hof1 and septins are patterned at the bud neck into evenly spaced axial pillars (∼200 nm apart), from which actin cables emerge and grow into the mother cell. These results suggest that Hof1, while bound to septins at the bud neck, not only regulates Bnr1 activity, but also binds to actin cables and aligns them along the mother–bud axis. More broadly, these findings provide a strong example of how an actin regulatory protein can be spatially patterned at the cell cortex to govern actin network geometry.
Collapse
Affiliation(s)
- Mikael V Garabedian
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, 02454
| | - Alison Wirshing
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, 02454
| | - Anna Vakhrusheva
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Bengi Turegun
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, 02454
| | - Olga S Sokolova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, 02454
| |
Collapse
|
26
|
Yeast as a Model to Understand Actin-Mediated Cellular Functions in Mammals-Illustrated with Four Actin Cytoskeleton Proteins. Cells 2020; 9:cells9030672. [PMID: 32164332 PMCID: PMC7140605 DOI: 10.3390/cells9030672] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 12/31/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has an actin cytoskeleton that comprises a set of protein components analogous to those found in the actin cytoskeletons of higher eukaryotes. Furthermore, the actin cytoskeletons of S. cerevisiae and of higher eukaryotes have some similar physiological roles. The genetic tractability of budding yeast and the availability of a stable haploid cell type facilitates the application of molecular genetic approaches to assign functions to the various actin cytoskeleton components. This has provided information that is in general complementary to that provided by studies of the equivalent proteins of higher eukaryotes and hence has enabled a more complete view of the role of these proteins. Several human functional homologues of yeast actin effectors are implicated in diseases. A better understanding of the molecular mechanisms underpinning the functions of these proteins is critical to develop improved therapeutic strategies. In this article we chose as examples four evolutionarily conserved proteins that associate with the actin cytoskeleton: (1) yeast Hof1p/mammalian PSTPIP1, (2) yeast Rvs167p/mammalian BIN1, (3) yeast eEF1A/eEF1A1 and eEF1A2 and (4) yeast Yih1p/mammalian IMPACT. We compare the knowledge on the functions of these actin cytoskeleton-associated proteins that has arisen from studies of their homologues in yeast with information that has been obtained from in vivo studies using live animals or in vitro studies using cultured animal cell lines.
Collapse
|
27
|
Pollard LW, Garabedian MV, Alioto SL, Shekhar S, Goode BL. Genetically inspired in vitro reconstitution of Saccharomyces cerevisiae actin cables from seven purified proteins. Mol Biol Cell 2020; 31:335-347. [PMID: 31913750 PMCID: PMC7183793 DOI: 10.1091/mbc.e19-10-0576] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A major goal of synthetic biology is to define the minimal cellular machinery required to assemble a biological structure in its simplest form. Here, we focused on Saccharomyces cerevisiae actin cables, which provide polarized tracks for intracellular transport and maintain defined lengths while continuously undergoing rapid assembly and turnover. Guided by the genetic requirements for proper cable assembly and dynamics, we show that seven evolutionarily conserved S. cerevisiae proteins (actin, formin, profilin, tropomyosin, capping protein, cofilin, and AIP1) are sufficient to reconstitute the formation of cables that undergo polarized turnover and maintain steady-state lengths similar to actin cables in vivo. Further, the removal of individual proteins from this simple in vitro reconstitution system leads to cable defects that closely approximate in vivo cable phenotypes caused by disrupting the corresponding genes. Thus, a limited set of molecular components is capable of self-organizing into dynamic, micron-scale actin structures with features similar to cables in living cells.
Collapse
Affiliation(s)
| | | | | | | | - Bruce L Goode
- Department of Biology, Brandeis University, Waltham, MA 02454
| |
Collapse
|
28
|
Polarisome scaffolder Spa2-mediated macromolecular condensation of Aip5 for actin polymerization. Nat Commun 2019; 10:5078. [PMID: 31699995 PMCID: PMC6838200 DOI: 10.1038/s41467-019-13125-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/11/2019] [Indexed: 11/25/2022] Open
Abstract
A multiprotein complex polarisome nucleates actin cables for polarized cell growth in budding yeast and filamentous fungi. However, the dynamic regulations of polarisome proteins in polymerizing actin under physiological and stress conditions remains unknown. We identify a previously functionally unknown polarisome member, actin-interacting-protein 5 (Aip5), which promotes actin assembly synergistically with formin Bni1. Aip5-C terminus is responsible for its activities by interacting with G-actin and Bni1. Through N-terminal intrinsically disordered region, Aip5 forms high-order oligomers and generate cytoplasmic condensates under the stresses conditions. The molecular dynamics and reversibility of Aip5 condensates are regulated by scaffolding protein Spa2 via liquid-liquid phase separation both in vitro and in vivo. In the absence of Spa2, Aip5 condensates hamper cell growth and actin cable structures under stress treatment. The present study reveals the mechanisms of actin assembly for polarity establishment and the adaptation in stress conditions to protect actin assembly by protein phase separation. The polarisome is a dynamic protein complex that nucleates F-actin for polarized yeast growth, but its regulation is unclear. Here, the authors report that the polarisome protein Aip5 undergoes Spa2-mediated phase separation in physiological and stress conditions, potentially for regulating actin assembly.
Collapse
|
29
|
Mohapatra L, Lagny TJ, Harbage D, Jelenkovic PR, Kondev J. The Limiting-Pool Mechanism Fails to Control the Size of Multiple Organelles. Cell Syst 2019; 4:559-567.e14. [PMID: 28544883 DOI: 10.1016/j.cels.2017.04.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/31/2017] [Accepted: 04/26/2017] [Indexed: 10/24/2022]
Abstract
How the size of micrometer-scale cellular structures such as the mitotic spindle, cytoskeletal filaments, the nucleus, the nucleolus, and other non-membrane bound organelles is controlled despite a constant turnover of their constituent parts is a central problem in biology. Experiments have implicated the limiting-pool mechanism: structures grow by stochastic addition of molecular subunits from a finite pool until the rates of subunit addition and removal are balanced, producing a structure of well-defined size. Here, we consider these dynamics when multiple filamentous structures are assembled stochastically from a shared pool of subunits. Using analytical calculations and computer simulations, we show that robust size control can be achieved only when a single filament is assembled. When multiple filaments compete for monomers, filament lengths exhibit large fluctuations. These results extend to three-dimensional structures and reveal the physical limitations of the limiting-pool mechanism of size control when multiple organelles are assembled from a shared pool of subunits.
Collapse
Affiliation(s)
| | - Thibaut J Lagny
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France; Institut Curie, PSL Research University, CNRS, UMR 144, 75005 Paris, France
| | - David Harbage
- Department of Physics, Brandeis University, Waltham, MA 02454, USA
| | - Predrag R Jelenkovic
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Jane Kondev
- Department of Physics, Brandeis University, Waltham, MA 02454, USA
| |
Collapse
|
30
|
Garabedian MV, Stanishneva-Konovalova T, Lou C, Rands TJ, Pollard LW, Sokolova OS, Goode BL. Integrated control of formin-mediated actin assembly by a stationary inhibitor and a mobile activator. J Cell Biol 2018; 217:3512-3530. [PMID: 30076201 PMCID: PMC6168263 DOI: 10.1083/jcb.201803164] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/20/2018] [Accepted: 07/17/2018] [Indexed: 12/15/2022] Open
Abstract
This study shows that in vivo actin nucleation by the yeast formin Bnr1 is controlled through the coordinated effects of two distinct regulators, a stationary inhibitor (the F-BAR protein Hof1) and a mobile activator (Bud6), establishing a positive feedback loop for precise spatial and temporal control of actin assembly. Formins are essential actin assembly factors whose activities are controlled by a diverse array of binding partners. Until now, most formin ligands have been studied on an individual basis, leaving open the question of how multiple inputs are integrated to regulate formins in vivo. Here, we show that the F-BAR domain of Saccharomyces cerevisiae Hof1 interacts with the FH2 domain of the formin Bnr1 and blocks actin nucleation. Electron microscopy of the Hof1–Bnr1 complex reveals a novel dumbbell-shaped structure, with the tips of the F-BAR holding two FH2 dimers apart. Deletion of Hof1’s F-BAR domain in vivo results in disorganized actin cables and secretory defects. The formin-binding protein Bud6 strongly alleviates Hof1 inhibition in vitro, and bud6Δ suppresses hof1Δ defects in vivo. Whereas Hof1 stably resides at the bud neck, we show that Bud6 is delivered to the neck on secretory vesicles. We propose that Hof1 and Bud6 functions are intertwined as a stationary inhibitor and a mobile activator, respectively.
Collapse
Affiliation(s)
- Mikael V Garabedian
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA
| | | | - Chenyu Lou
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA
| | - Thomas J Rands
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA
| | - Luther W Pollard
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA
| | - Olga S Sokolova
- Bioengineering Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA
| |
Collapse
|
31
|
Miao Y, Tipakornsaowapak T, Zheng L, Mu Y, Lewellyn E. Phospho-regulation of intrinsically disordered proteins for actin assembly and endocytosis. FEBS J 2018; 285:2762-2784. [PMID: 29722136 DOI: 10.1111/febs.14493] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/04/2018] [Accepted: 04/26/2018] [Indexed: 12/13/2022]
Abstract
Actin filament assembly contributes to the endocytic pathway pleiotropically, with active roles in clathrin-dependent and clathrin-independent endocytosis as well as subsequent endosomal trafficking. Endocytosis comprises a series of dynamic events, including the initiation of membrane curvature, bud invagination, vesicle abscission and subsequent vesicular transport. The ultimate success of endocytosis requires the coordinated activities of proteins that trigger actin polymerization, recruit actin-binding proteins (ABPs) and organize endocytic proteins (EPs) that promote membrane curvature through molecular crowding or scaffolding mechanisms. A particularly interesting phenomenon is that multiple EPs and ABPs contain a substantial percentage of intrinsically disordered regions (IDRs), which can contribute to protein coacervation and phase separation. In addition, intrinsically disordered proteins (IDPs) frequently contain sites for post-translational modifications (PTMs) such as phosphorylation, and these modifications exhibit a high preference for IDR residues [Groban ES et al. (2006) PLoS Comput Biol 2, e32]. PTMs are implicated in regulating protein function by modulating the protein conformation, protein-protein interactions and the transition between order and disorder states of IDPs. The molecular mechanisms by which IDRs of ABPs and EPs fine-tune actin assembly and endocytosis remain mostly unexplored and elusive. In this review, we analyze protein sequences of budding yeast EPs and ABPs, and discuss the potential underlying mechanisms for regulating endocytosis and actin assembly through the emerging concept of IDR-mediated protein multivalency, coacervation, and phase transition, with an emphasis on the phospho-regulation of IDRs. Finally, we summarize the current understanding of how these mechanisms coordinate actin cytoskeleton assembly and membrane curvature formation during endocytosis in budding yeast.
Collapse
Affiliation(s)
- Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | | | - Liangzhen Zheng
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Eric Lewellyn
- Department of Biology, Division of Natural Sciences, St Norbert College, De Pere, WI, USA
| |
Collapse
|
32
|
Woodman S, Trousdale C, Conover J, Kim K. Yeast membrane lipid imbalance leads to trafficking defects toward the Golgi. Cell Biol Int 2018; 42:890-902. [PMID: 29500884 DOI: 10.1002/cbin.10956] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/24/2018] [Indexed: 12/19/2022]
Abstract
Protein recycling is an essential cellular process involving endocytosis, intracellular trafficking, and exocytosis. In mammalian systems membrane lipids, including cholesterol, sphingolipids, and phospholipids, play a pivotal role in protein recycling. To address this role in budding yeast, Saccharomyces cerevisiae, we utilized GFP-Snc1, a v-SNARE protein serving as a fluorescent marker for faithfully reporting the recycling pathway. Here we demonstrate results that display moderate to significant GFP-Snc1 recycling defects upon overexpression or inactivation of phospholipid, ergosterol, and sphingolipid biosynthesis enzymes, indicating that the homeostasis of membrane lipid levels is prerequisite for proper protein recycling. By using a truncated version of GFP-Snc1 that cannot be recycled from the plasma membrane, we determined that abnormalities in Snc1 localization in membrane lipid overexpression or underexpression mutants are not due to defects in the synthetic/secretory pathway, but rather in the intracellular trafficking pathway. We found that membrane lipid imbalance resulted in an accumulation of the late endosome marker Vps10-GFP, indicating trafficking from the endosomes to the Golgi may be being hindered, preventing recycling to the plasma membrane. To elucidate the possible mechanism for this trafficking hindrance, we stained the actin cytoskeleton, then quantified the percentage of cells with visible actin cables. Compared to wild-type cells, membrane lipid mutant cells exhibited lower levels of actin cables, indicating the actin cytoskeleton is disrupted upon membrane lipid imbalance. Taken together, our results show that impairment of proper recycling may be due to disruption of the actin cytoskeleton, which causes trafficking hindrance between the endosomes and Golgi.
Collapse
Affiliation(s)
- Sara Woodman
- Missouri State University, 901 S National Ave., Springfield, Missouri
| | - Christopher Trousdale
- Missouri State University, 901 S National Ave., Springfield, Missouri.,Washington University in St. Louis, 1 Brookings Dr., St. Louis, Missouri
| | - Justin Conover
- Missouri State University, 901 S National Ave., Springfield, Missouri.,Iowa State University, Ames, Iowa
| | - Kyoungtae Kim
- Missouri State University, 901 S National Ave., Springfield, Missouri.,Iowa State University, Ames, Iowa
| |
Collapse
|
33
|
Geymonat M, Segal M. Intrinsic and Extrinsic Determinants Linking Spindle Pole Fate, Spindle Polarity, and Asymmetric Cell Division in the Budding Yeast S. cerevisiae. Results Probl Cell Differ 2017; 61:49-82. [PMID: 28409300 DOI: 10.1007/978-3-319-53150-2_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The budding yeast S. cerevisiae is a powerful model to understand the multiple layers of control driving an asymmetric cell division. In budding yeast, asymmetric targeting of the spindle poles to the mother and bud cell compartments respectively orients the mitotic spindle along the mother-bud axis. This program exploits an intrinsic functional asymmetry arising from the age distinction between the spindle poles-one inherited from the preceding division and the other newly assembled. Extrinsic mechanisms convert this age distinction into differential fate. Execution of this program couples spindle orientation with the segregation of the older spindle pole to the bud. Remarkably, similar stereotyped patterns of inheritance occur in self-renewing stem cell divisions underscoring the general importance of studying spindle polarity and differential fate in yeast. Here, we review the mechanisms accounting for this pivotal interplay between intrinsic and extrinsic asymmetries that translate spindle pole age into differential fate.
Collapse
Affiliation(s)
- Marco Geymonat
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Marisa Segal
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
| |
Collapse
|
34
|
Non diaphanous formin delphilin acts as a barbed end capping protein. Exp Cell Res 2017; 357:163-169. [PMID: 28527698 DOI: 10.1016/j.yexcr.2017.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 05/09/2017] [Accepted: 05/14/2017] [Indexed: 10/19/2022]
Abstract
Formins are multi domain proteins present ubiquitously in all eukaryotes from lower fungi to higher vertebrates. Formins are characterized by the presence of formin homology domain-2 (FH2) and formin homology domain-1 (FH1). There are fifteen different formins present in mouse and human. Among these metazoan formins, Delphilin is a unique formin having two PDZ domains at the N-terminus and FH1, FH2 domain at the C-terminus respectively. In this study we observed that Delphilin binds to actin filaments, and Delphilin inhibits actin filament elongation like barbed end capping protein CapZ. In vitro, Delphilin stabilized actin filaments by inhibiting actin filament depolymerisation. Therefore, our study demonstrates Delphilin as an actin-filament capping protein.
Collapse
|
35
|
Rai U, Najm F, Tartakoff AM. Nucleolar asymmetry and the importance of septin integrity upon cell cycle arrest. PLoS One 2017; 12:e0174306. [PMID: 28339487 PMCID: PMC5365125 DOI: 10.1371/journal.pone.0174306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 03/07/2017] [Indexed: 12/31/2022] Open
Abstract
Cell cycle arrest can be imposed by inactivating the anaphase promoting complex (APC). In S. cerevisiae this arrest has been reported to stabilize a metaphase-like intermediate in which the nuclear envelope spans the bud neck, while chromatin repeatedly translocates between the mother and bud domains. The present investigation was undertaken to learn how other features of nuclear organization are affected upon depletion of the APC activator, Cdc20. We observe that the spindle pole bodies and the spindle repeatedly translocate across the narrow orifice at the level of the neck. Nevertheless, we find that the nucleolus (organized around rDNA repeats on the long right arm of chromosome XII) remains in the mother domain, marking the polarity of the nucleus. Accordingly, chromosome XII is polarized: TelXIIR remains in the mother domain and its centromere is predominantly located in the bud domain. In order to learn why the nucleolus remains in the mother domain, we studied the impact of inhibiting rRNA synthesis in arrested cells. We observed that this fragments the nucleolus and that these fragments entered the bud domain. Taken together with earlier observations, the restriction of the nucleolus to the mother domain therefore can be attributed to its massive structure. We also observed that inactivation of septins allowed arrested cells to complete the cell cycle, that the alternative APC activator, Cdh1, was required for completion of the cell cycle and that induction of Cdh1 itself caused arrested cells to progress to the end of the cell cycle.
Collapse
Affiliation(s)
- Urvashi Rai
- Cell Biology Program/Department of Molecular and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Fadi Najm
- Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alan M. Tartakoff
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
36
|
Nomura W, Ito Y, Inoue Y. Role of phosphatidylserine in the activation of Rho1-related Pkc1 signaling in Saccharomyces cerevisiae. Cell Signal 2017; 31:146-153. [DOI: 10.1016/j.cellsig.2017.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
|
37
|
Abstract
Cytokinesis is essential for the survival of all organisms. It requires concerted functions of cell signaling, force production, exocytosis, and extracellular matrix remodeling. Due to the conservation in core components and mechanisms between fungal and animal cells, the budding yeast Saccharomyces cerevisiae has served as an attractive model for studying this fundamental process. In this review, we discuss the mechanics and regulation of distinct events of cytokinesis in budding yeast, including the assembly, constriction, and disassembly of the actomyosin ring, septum formation, abscission, and their spatiotemporal coordination. We also highlight the key concepts and questions that are common to animal and fungal cytokinesis.
Collapse
Affiliation(s)
- Yogini P Bhavsar-Jog
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
38
|
Alioto SL, Garabedian MV, Bellavance DR, Goode BL. Tropomyosin and Profilin Cooperate to Promote Formin-Mediated Actin Nucleation and Drive Yeast Actin Cable Assembly. Curr Biol 2016; 26:3230-3237. [PMID: 27866892 DOI: 10.1016/j.cub.2016.09.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/01/2016] [Accepted: 09/26/2016] [Indexed: 01/06/2023]
Abstract
Tropomyosins comprise a large family of actin-binding proteins with critical roles in diverse actin-based processes [1], but our understanding of how they mechanistically contribute to actin filament dynamics has been limited. We addressed this question in S. cerevisiae, where tropomyosins (Tpm1 and Tpm2), profilin (Pfy1), and formins (Bni1 and Bnr1) are required for the assembly of an array of actin cables that facilitate polarized vesicle delivery and daughter cell growth. Formins drive cable formation by promoting actin nucleation and by accelerating actin filament elongation together with profilin [2]. In contrast, how tropomyosins contribute mechanistically to cable formation has been unclear, but genetic studies demonstrate that Tpm1 plays a more important role than Tpm2 [3, 4]. Here, we found that loss of TPM1 in strains lacking BNR1, but not BNI1, leads to severe defects in cable formation, polarized secretion, and cell growth, suggesting that TPM1 function is required for proper Bni1-mediated cable assembly. Furthermore, in vitro total internal reflection fluorescence (TIRF) microscopy demonstrated that Tpm1 strongly enhances Bni1-mediated, but not Bnr1-mediated, actin nucleation without affecting filament elongation rate, whereas Tpm2 has no effects on Bni1 or Bnr1. Tpm1 stimulation of Bni1-mediated nucleation also requires profilin and its interactions with both G-actin and formins. Together, these results demonstrate that yeast Tpm1 works in concert with profilin to promote formin-dependent nucleation of actin cables, thus expanding our understanding of how specific tropomyosin isoforms influence actin dynamics.
Collapse
Affiliation(s)
- Salvatore L Alioto
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Mikael V Garabedian
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Danielle R Bellavance
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
39
|
Juanes MA, Piatti S. The final cut: cell polarity meets cytokinesis at the bud neck in S. cerevisiae. Cell Mol Life Sci 2016; 73:3115-36. [PMID: 27085703 PMCID: PMC4951512 DOI: 10.1007/s00018-016-2220-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/22/2016] [Accepted: 04/05/2016] [Indexed: 02/07/2023]
Abstract
Cell division is a fundamental but complex process that gives rise to two daughter cells. It includes an ordered set of events, altogether called "the cell cycle", that culminate with cytokinesis, the final stage of mitosis leading to the physical separation of the two daughter cells. Symmetric cell division equally partitions cellular components between the two daughter cells, which are therefore identical to one another and often share the same fate. In many cases, however, cell division is asymmetrical and generates two daughter cells that differ in specific protein inheritance, cell size, or developmental potential. The budding yeast Saccharomyces cerevisiae has proven to be an excellent system to investigate the molecular mechanisms governing asymmetric cell division and cytokinesis. Budding yeast is highly polarized during the cell cycle and divides asymmetrically, producing two cells with distinct sizes and fates. Many components of the machinery establishing cell polarization during budding are relocalized to the division site (i.e., the bud neck) for cytokinesis. In this review we recapitulate how budding yeast cells undergo polarized processes at the bud neck for cell division.
Collapse
Affiliation(s)
- Maria Angeles Juanes
- Centre de Recherche en Biologie Cellulaire de Montpellier, 1919 Route de Mende, 34293, Montpellier, France
- Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Simonetta Piatti
- Centre de Recherche en Biologie Cellulaire de Montpellier, 1919 Route de Mende, 34293, Montpellier, France.
| |
Collapse
|
40
|
Control of Formin Distribution and Actin Cable Assembly by the E3 Ubiquitin Ligases Dma1 and Dma2. Genetics 2016; 204:205-20. [PMID: 27449057 DOI: 10.1534/genetics.116.189258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/18/2016] [Indexed: 11/18/2022] Open
Abstract
Formins are widespread actin-polymerizing proteins that play pivotal roles in a number of processes, such as cell polarity, morphogenesis, cytokinesis, and cell migration. In agreement with their crucial function, formins are prone to a variety of regulatory mechanisms that include autoinhibition, post-translational modifications, and interaction with formin modulators. Furthermore, activation and function of formins is intimately linked to their ability to interact with membranes. In the budding yeast Saccharomyces cerevisiae, the two formins Bni1 and Bnr1 play both separate and overlapping functions in the organization of the actin cytoskeleton. In addition, they are controlled by both common and different regulatory mechanisms. Here we show that proper localization of both formins requires the redundant E3 ubiquitin ligases Dma1 and Dma2, which were previously involved in spindle positioning and septin organization. In dma1 dma2 double mutants, formin distribution at polarity sites is impaired, thus causing defects in the organization of the actin cable network and hypersensitivity to the actin depolymerizer latrunculin B. Expression of a hyperactive variant of Bni1 (Bni1-V360D) rescues these defects and partially restores proper spindle positioning in the mutant, suggesting that the failure of dma1 dma2 mutant cells to position the spindle is partly due to faulty formin activity. Strikingly, Dma1/2 interact physically with both formins, while their ubiquitin-ligase activity is required for formin function and polarized localization. Thus, ubiquitylation of formin or a formin interactor(s) could promote formin binding to membrane and its ability to nucleate actin. Altogether, our data highlight a novel level of formin regulation that further expands our knowledge of the complex and multilayered controls of these key cytoskeleton organizers.
Collapse
|
41
|
Abstract
Cytokinesis is essential for development and survival of all organisms by increasing cell number and diversity. It is a highly regulated process that requires spatiotemporal coordination of hundreds of proteins functioning in the assembly, constriction, and disassembly of a contractile actomyosin ring, targeted vesicle fusion, and localized extracellular matrix remodeling. Cytokinesis has been studied in multiple systems with a wide range of technologies to learn the common principles. In this chapter, we describe the analysis of protein dynamics during cytokinesis in the budding yeast Saccharomyces cerevisiae by several live-cell imaging methods. This, in combination with the power of yeast genetics, has yielded novel insights into the mechanism of cytokinesis. Similar approaches are increasingly used to study this fundamental process in more complex systems.
Collapse
Affiliation(s)
- S Okada
- University of Pennsylvania, Philadelphia, PA, United States; Kyushu University, Fukuoka, Japan
| | - C Wloka
- University of Pennsylvania, Philadelphia, PA, United States; University of Groningen, Groningen, The Netherlands
| | - E Bi
- University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
42
|
Mohapatra L, Goode BL, Jelenkovic P, Phillips R, Kondev J. Design Principles of Length Control of Cytoskeletal Structures. Annu Rev Biophys 2016; 45:85-116. [PMID: 27145876 DOI: 10.1146/annurev-biophys-070915-094206] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cells contain elaborate and interconnected networks of protein polymers, which make up the cytoskeleton. The cytoskeleton governs the internal positioning and movement of vesicles and organelles and controls dynamic changes in cell polarity, shape, and movement. Many of these processes require tight control of the size and shape of cytoskeletal structures, which is achieved despite rapid turnover of their molecular components. Here we review mechanisms by which cells control the size of filamentous cytoskeletal structures, from the point of view of simple quantitative models that take into account stochastic dynamics of their assembly and disassembly. Significantly, these models make experimentally testable predictions that distinguish different mechanisms of length control. Although the primary focus of this review is on cytoskeletal structures, we believe that the broader principles and mechanisms discussed herein will apply to a range of other subcellular structures whose sizes are tightly controlled and are linked to their functions.
Collapse
Affiliation(s)
| | - Bruce L Goode
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454
| | - Predrag Jelenkovic
- Department of Electrical Engineering, Columbia University, New York, NY 10027
| | - Rob Phillips
- Department of Applied Physics and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Jane Kondev
- Department of Physics, Brandeis University, Waltham, Massachusetts 02454;
| |
Collapse
|
43
|
Abstract
Cytokinesis is the final process in the cell cycle that physically divides one cell into two. In budding yeast, cytokinesis is driven by a contractile actomyosin ring (AMR) and the simultaneous formation of a primary septum, which serves as template for cell wall deposition. AMR assembly, constriction, primary septum formation and cell wall deposition are successive processes and tightly coupled to cell cycle progression to ensure the correct distribution of genetic material and cell organelles among the two rising cells prior to cell division. The role of the AMR in cytokinesis and the molecular mechanisms that drive AMR constriction and septation are the focus of current research. This review summarizes the recent progresses in our understanding of how budding yeast cells orchestrate the multitude of molecular mechanisms that control AMR driven cytokinesis in a spatio-temporal manner to achieve an error free cell division.
Collapse
|
44
|
Orii M, Kono K, Wen HI, Nakanishi M. PP1-Dependent Formin Bnr1 Dephosphorylation and Delocalization from a Cell Division Site. PLoS One 2016; 11:e0146941. [PMID: 26771880 PMCID: PMC4714816 DOI: 10.1371/journal.pone.0146941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/23/2015] [Indexed: 02/07/2023] Open
Abstract
Cell cycle ends with cytokinesis that is the physical separation of a cell into two daughter cells. For faithful cytokinesis, cells integrate multiple processes, such as actomyosin ring formation, contraction and plasma membrane closure, into coherent responses. Linear actin assembly by formins is essential for formation and maintenance of actomyosin ring. Although budding yeast’s two formins, Bni1 and Bnr1, are known to switch their subcellular localization at the division site prior to cytokinesis, the underlying mechanisms were not completely understood. Here, we provide evidence showing that Bnr1 is dephosphorylated concomitant with its release from the division site. Impaired PP1/Glc7 activity delayed Bnr1 release and dephosphorylation, Bni1 recruitment and actomyosin ring formation at the division site. These results suggest the involvement of Glc7 in this regulation. Further, we identified Ref2 as the PP1 regulatory subunit responsible for this regulation. Taken together, Glc7 and Ref2 may have a role in actomyosin ring formation by modulating the localization of formins during cytokinesis.
Collapse
Affiliation(s)
- Minami Orii
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467–8601, Japan
| | - Keiko Kono
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467–8601, Japan
- * E-mail: (MN); (KK)
| | - Hsin-I Wen
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467–8601, Japan
| | - Makoto Nakanishi
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467–8601, Japan
- * E-mail: (MN); (KK)
| |
Collapse
|
45
|
Eskin JA, Rankova A, Johnston AB, Alioto SL, Goode BL. Common formin-regulating sequences in Smy1 and Bud14 are required for the control of actin cable assembly in vivo. Mol Biol Cell 2016; 27:828-37. [PMID: 26764093 PMCID: PMC4803308 DOI: 10.1091/mbc.e15-09-0639] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023] Open
Abstract
Formins comprise a large family of proteins with diverse roles in remodeling the actin cytoskeleton. However, the spatiotemporal mechanisms used by cells to control formin activities are only beginning to be understood. Here we dissected Smy1, which has dual roles in regulating formins and myosin. Using mutagenesis, we identified specific sequences in Smy1 critical for its in vitro inhibitory effects on the FH2 domain of the formin Bnr1. By integrating smy1 alleles targeting those sequences, we genetically uncoupled Smy1's functions in regulating formins and myosin. Quantitative imaging analysis further demonstrated that the ability of Smy1 to directly control Bnr1 activity is crucial in vivo for proper actin cable length, shape, and velocity and, in turn, efficient secretory vesicle transport. A Smy1-like sequence motif was also identified in a different Bnr1 regulator, Bud14, and found to be essential for Bud14 functions in regulating actin cable architecture and function in vivo. Together these observations reveal unanticipated mechanistic ties between two distinct formin regulators. Further, they emphasize the importance of tightly controlling formin activities in vivo to generate specialized geometries and dynamics of actin structures tailored to their physiological roles.
Collapse
Affiliation(s)
- Julian A Eskin
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454
| | - Aneliya Rankova
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454
| | - Adam B Johnston
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454
| | - Salvatore L Alioto
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454
| |
Collapse
|
46
|
Tang H, Bidone TC, Vavylonis D. Computational model of polarized actin cables and cytokinetic actin ring formation in budding yeast. Cytoskeleton (Hoboken) 2015; 72:517-33. [PMID: 26538307 DOI: 10.1002/cm.21258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/16/2015] [Accepted: 09/25/2015] [Indexed: 01/23/2023]
Abstract
The budding yeast actin cables and contractile ring are important for polarized growth and division, revealing basic aspects of cytoskeletal function. To study these formin-nucleated structures, we built a three-dimensional (3D) computational model with actin filaments represented as beads connected by springs. Polymerization by formins at the bud tip and bud neck, crosslinking, severing, and myosin pulling, are included. Parameter values were estimated from prior experiments. The model generates actin cable structures and dynamics similar to those of wild type and formin deletion mutant cells. Simulations with increased polymerization rate result in long, wavy cables. Simulated pulling by type V myosin stretches actin cables. Increasing the affinity of actin filaments for the bud neck together with reduced myosin V pulling promotes the formation of a bundle of antiparallel filaments at the bud neck, which we suggest as a model for the assembly of actin filaments to the contractile ring.
Collapse
Affiliation(s)
- Haosu Tang
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania, 18105, USA
| | - Tamara C Bidone
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania, 18105, USA
| | - Dimitrios Vavylonis
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania, 18105, USA
| |
Collapse
|
47
|
Antenna Mechanism of Length Control of Actin Cables. PLoS Comput Biol 2015; 11:e1004160. [PMID: 26107518 PMCID: PMC4480850 DOI: 10.1371/journal.pcbi.1004160] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 01/23/2015] [Indexed: 01/02/2023] Open
Abstract
Actin cables are linear cytoskeletal structures that serve as tracks for myosin-based intracellular transport of vesicles and organelles in both yeast and mammalian cells. In a yeast cell undergoing budding, cables are in constant dynamic turnover yet some cables grow from the bud neck toward the back of the mother cell until their length roughly equals the diameter of the mother cell. This raises the question: how is the length of these cables controlled? Here we describe a novel molecular mechanism for cable length control inspired by recent experimental observations in cells. This “antenna mechanism” involves three key proteins: formins, which polymerize actin, Smy1 proteins, which bind formins and inhibit actin polymerization, and myosin motors, which deliver Smy1 to formins, leading to a length-dependent actin polymerization rate. We compute the probability distribution of cable lengths as a function of several experimentally tuneable parameters such as the formin-binding affinity of Smy1 and the concentration of myosin motors delivering Smy1. These results provide testable predictions of the antenna mechanism of actin-cable length control. Based on published cell experiments, we propose a novel mechanism of length control of actin cables in budding yeast cells. The key feature of this “antenna mechanism” is negative feedback of the cable length on the activity of formins, which are proteins that attach to the growing ends of actin filaments and catalyse their polymerization. We recently showed that the protein Smy1 is critical for maintaining proper cable length in yeast cells. Smy1 proteins are delivered to the formins by directed motion of myosin motors toward the growing end, and they transiently inhibit actin cable polymerization when bound to the formins. This provides negative feedback resulting in an average rate of cable assembly that diminishes with cable length. Here we incorporate this antenna mechanism into a physical model of cable polymerization and provide experimentally testable predictions for the dependence of the length distribution of cables on the concentration of Smy1, and on mutations that affect its affinity to formins.
Collapse
|
48
|
The Carboxy-Terminal Tails of Septins Cdc11 and Shs1 Recruit Myosin-II Binding Factor Bni5 to the Bud Neck in Saccharomyces cerevisiae. Genetics 2015; 200:843-62. [PMID: 25971666 DOI: 10.1534/genetics.115.176503] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/08/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Septins are a conserved family of GTP-binding proteins that form heterooctameric complexes that assemble into higher-order structures. In yeast, septin superstructure at the bud neck serves as a barrier to separate a daughter cell from its mother and as a scaffold to recruit the proteins that execute cytokinesis. However, how septins recruit specific factors has not been well characterized. In the accompanying article in this issue, (Finnigan et al. 2015), we demonstrated that the C-terminal extensions (CTEs) of the alternative terminal subunits of septin heterooctamers, Cdc11 and Shs1, share a role required for optimal septin function in vivo. Here we describe our use of unbiased genetic approaches (both selection of dosage suppressors and analysis of synthetic interactions) that pinpointed Bni5 as a protein that interacts with the CTEs of Cdc11 and Shs1. Furthermore, we used three independent methods-construction of chimeric proteins, noncovalent tethering mediated by a GFP-targeted nanobody, and imaging by fluorescence microscopy-to confirm that a physiologically important function of the CTEs of Cdc11 and Shs1 is optimizing recruitment of Bni5 and thereby ensuring efficient localization at the bud neck of Myo1, the type II myosin of the actomyosin contractile ring.Related article in GENETICS Finnigan, G. C. et al., 2015 Comprehensive Genetic Analysis of Paralogous Terminal Septin Subunits Shs1 and Cdc11 in Saccharomyces cerevisiae. Genetics 200: 841-861.
Collapse
|
49
|
Feng Z, Okada S, Cai G, Zhou B, Bi E. Myosin‑II heavy chain and formin mediate the targeting of myosin essential light chain to the division site before and during cytokinesis. Mol Biol Cell 2015; 26:1211-24. [PMID: 25631819 PMCID: PMC4454170 DOI: 10.1091/mbc.e14-09-1363] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
MLC1 is a haploinsufficient gene encoding the essential light chain for Myo1, the sole myosin‑II heavy chain in the budding yeast Saccharomyces cerevisiae. Mlc1 defines an essential hub that coordinates actomyosin ring function, membrane trafficking, and septum formation during cytokinesis by binding to IQGAP, myosin‑II, and myosin‑V. However, the mechanism of how Mlc1 is targeted to the division site during the cell cycle remains unsolved. By constructing a GFP‑tagged MLC1 under its own promoter control and using quantitative live‑cell imaging coupled with yeast mutants, we found that septin ring and actin filaments mediate the targeting of Mlc1 to the division site before and during cytokinesis, respectively. Both mechanisms contribute to and are collectively required for the accumulation of Mlc1 at the division site during cytokinesis. We also found that Myo1 plays a major role in the septin‑dependent Mlc1 localization before cytokinesis, whereas the formin Bni1 plays a major role in the actin filament-dependent Mlc1 localization during cytokinesis. Such a two‑tiered mechanism for Mlc1 localization is presumably required for the ordered assembly and robustness of cytokinesis machinery and is likely conserved across species.
Collapse
Affiliation(s)
- Zhonghui Feng
- School of Life Sciences, Tsinghua University, Beijing 100084, China Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Satoshi Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Guoping Cai
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bing Zhou
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
50
|
Cvrčková F, Oulehlová D, Žárský V. Formins: linking cytoskeleton and endomembranes in plant cells. Int J Mol Sci 2014; 16:1-18. [PMID: 25546384 PMCID: PMC4307232 DOI: 10.3390/ijms16010001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/17/2014] [Indexed: 02/07/2023] Open
Abstract
The cytoskeleton plays a central part in spatial organization of the plant cytoplasm, including the endomebrane system. However, the mechanisms involved are so far only partially understood. Formins (FH2 proteins), a family of evolutionarily conserved proteins sharing the FH2 domain whose dimer can nucleate actin, mediate the co-ordination between actin and microtubule cytoskeletons in multiple eukaryotic lineages including plants. Moreover, some plant formins contain transmembrane domains and participate in anchoring cytoskeletal structures to the plasmalemma, and possibly to other membranes. Direct or indirect membrane association is well documented even for some fungal and metazoan formins lacking membrane insertion motifs, and FH2 proteins have been shown to associate with endomembranes and modulate their dynamics in both fungi and metazoans. Here we summarize the available evidence suggesting that formins participate in membrane trafficking and endomembrane, especially ER, organization also in plants. We propose that, despite some methodological pitfalls inherent to in vivo studies based on (over)expression of truncated and/or tagged proteins, formins are beginning to emerge as candidates for the so far somewhat elusive link between the plant cytoskeleton and the endomembrane system.
Collapse
Affiliation(s)
- Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, 128 43 Prague 2, Czech Republic.
| | - Denisa Oulehlová
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, 128 43 Prague 2, Czech Republic.
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, 128 43 Prague 2, Czech Republic.
| |
Collapse
|