1
|
Sarmento MJ, Llorente A, Petan T, Khnykin D, Popa I, Nikolac Perkovic M, Konjevod M, Jaganjac M. The expanding organelle lipidomes: current knowledge and challenges. Cell Mol Life Sci 2023; 80:237. [PMID: 37530856 PMCID: PMC10397142 DOI: 10.1007/s00018-023-04889-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/13/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
Lipids in cell membranes and subcellular compartments play essential roles in numerous cellular processes, such as energy production, cell signaling and inflammation. A specific organelle lipidome is characterized by lipid synthesis and metabolism, intracellular trafficking, and lipid homeostasis in the organelle. Over the years, considerable effort has been directed to the identification of the lipid fingerprints of cellular organelles. However, these fingerprints are not fully characterized due to the large variety and structural complexity of lipids and the great variability in the abundance of different lipid species. The process becomes even more challenging when considering that the lipidome differs in health and disease contexts. This review summarizes the information available on the lipid composition of mammalian cell organelles, particularly the lipidome of the nucleus, mitochondrion, endoplasmic reticulum, Golgi apparatus, plasma membrane and organelles in the endocytic pathway. The lipid compositions of extracellular vesicles and lamellar bodies are also described. In addition, several examples of subcellular lipidome dynamics under physiological and pathological conditions are presented. Finally, challenges in mapping organelle lipidomes are discussed.
Collapse
Affiliation(s)
- Maria J Sarmento
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway
- Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, 0167, Oslo, Norway
- Faculty of Medicine, Centre for Cancer Cell Reprogramming, University of Oslo, Montebello, 0379, Oslo, Norway
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Denis Khnykin
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Iuliana Popa
- Pharmacy Department, Bâtiment Henri Moissan, University Paris-Saclay, 17 Avenue des Sciences, 91400, Orsay, France
| | | | - Marcela Konjevod
- Division of Molecular Medicine, Ruder Boskovic Institute, 10000, Zagreb, Croatia
| | - Morana Jaganjac
- Division of Molecular Medicine, Ruder Boskovic Institute, 10000, Zagreb, Croatia.
| |
Collapse
|
2
|
Nakano A. The Golgi Apparatus and its Next-Door Neighbors. Front Cell Dev Biol 2022; 10:884360. [PMID: 35573670 PMCID: PMC9096111 DOI: 10.3389/fcell.2022.884360] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/28/2022] [Indexed: 12/20/2022] Open
Abstract
The Golgi apparatus represents a central compartment of membrane traffic. Its apparent architecture, however, differs considerably among species, from unstacked and scattered cisternae in the budding yeast Saccharomyces cerevisiae to beautiful ministacks in plants and further to gigantic ribbon structures typically seen in mammals. Considering the well-conserved functions of the Golgi, its fundamental structure must have been optimized despite seemingly different architectures. In addition to the core layers of cisternae, the Golgi is usually accompanied by next-door compartments on its cis and trans sides. The trans-Golgi network (TGN) can be now considered as a compartment independent from the Golgi stack. On the cis side, the intermediate compartment between the ER and the Golgi (ERGIC) has been known in mammalian cells, and its functional equivalent is now suggested for yeast and plant cells. High-resolution live imaging is extremely powerful for elucidating the dynamics of these compartments and has revealed amazing similarities in their behaviors, indicating common mechanisms conserved along the long course of evolution. From these new findings, I would like to propose reconsideration of compartments and suggest a new concept to describe their roles comprehensively around the Golgi and in the post-Golgi trafficking.
Collapse
|
3
|
Nastały P, Maiuri P. Cellular Polarity Transmission to the Nucleus. Results Probl Cell Differ 2022; 70:597-606. [PMID: 36348123 DOI: 10.1007/978-3-031-06573-6_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Polarity is an intrinsic and fundamental property of unicellular organisms and, as well, of single cells in multicellular ones. It can be defined as asymmetric cell organization that is self-reinforced and maintained by appropriate signaling. While cellular polarity is widely studied at the membrane and cytoplasmic level, if and how it is transmitted to the nucleus is still a matter of research and discussion. However, there is growing evidence of polarity transmission from the cell to the nucleus. In this chapter, we discuss recent reports on nuclear polarity and involvement of potential molecular players including emerin, nesprins, and nuclear F-actin which may play a significant role in establishment of this phenomenon.
Collapse
Affiliation(s)
- Paulina Nastały
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy.
- Laboratory of Translational Oncology, Institute of Medical Biotechnology and Experimental Oncology, Medical University of Gdańsk, Gdańsk, Poland.
| | - Paolo Maiuri
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy.
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
4
|
Branched Actin Maintains Acetylated Microtubule Network in the Early Secretory Pathway. Cells 2021; 11:cells11010015. [PMID: 35011578 PMCID: PMC8750537 DOI: 10.3390/cells11010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
In the early secretory pathway, the delivery of anterograde cargoes from the endoplasmic reticulum (ER) exit sites (ERES) to the Golgi apparatus is a multi-step transport process occurring via the ER-Golgi intermediate compartment (IC, also called ERGIC). While the role microtubules in ER-to-Golgi transport has been well established, how the actin cytoskeleton contributes to this process remains poorly understood. Here, we report that Arp2/3 inhibition affects the network of acetylated microtubules around the Golgi and induces the accumulation of unusually long RAB1/GM130-positive carriers around the centrosome. These long carriers are less prone to reach the Golgi apparatus, and arrival of anterograde cargoes to the Golgi is decreased upon Arp2/3 inhibition. Our data suggest that Arp2/3-dependent actin polymerization maintains a stable network of acetylated microtubules, which ensures efficient cargo trafficking at the late stage of ER to Golgi transport.
Collapse
|
5
|
Pavišić V, Mahmutefendić Lučin H, Blagojević Zagorac G, Lučin P. Arf GTPases Are Required for the Establishment of the Pre-Assembly Compartment in the Early Phase of Cytomegalovirus Infection. Life (Basel) 2021; 11:867. [PMID: 34440611 PMCID: PMC8399710 DOI: 10.3390/life11080867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/31/2022] Open
Abstract
Shortly after entering the cells, cytomegaloviruses (CMVs) initiate massive reorganization of cellular endocytic and secretory pathways, which results in the forming of the cytoplasmic virion assembly compartment (AC). We have previously shown that the formation of AC in murine CMV- (MCMV) infected cells begins in the early phase of infection (at 4-6 hpi) with the pre-AC establishment. Pre-AC comprises membranes derived from the endosomal recycling compartment, early endosomes, and the trans-Golgi network, which is surrounded by fragmented Golgi cisterns. To explore the importance of Arf GTPases in the biogenesis of the pre-AC, we infected Balb 3T3 cells with MCMV and analyzed the expression and intracellular localization of Arf proteins in the early phases (up to 16 hpi) of infection and the development of pre-AC in cells with a knockdown of Arf protein expression by small interfering RNAs (siRNAs). Herein, we show that even in the early phase, MCMVs cause massive reorganization of the Arf system of the host cells and induce the over-recruitment of Arf proteins onto the membranes of pre-AC. Knockdown of Arf1, Arf3, Arf4, or Arf6 impaired the establishment of pre-AC. However, the knockdown of Arf1 and Arf6 also abolished the establishment of infection. Our study demonstrates that Arf GTPases are required for different steps of early cytomegalovirus infection, including the establishment of the pre-AC.
Collapse
Affiliation(s)
- Valentino Pavišić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.P.); (H.M.L.); (P.L.)
| | - Hana Mahmutefendić Lučin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.P.); (H.M.L.); (P.L.)
- Nursing Department, University North, University Center Varaždin, Jurja Križanića 31b, 42000 Varaždin, Croatia
| | - Gordana Blagojević Zagorac
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.P.); (H.M.L.); (P.L.)
- Nursing Department, University North, University Center Varaždin, Jurja Križanića 31b, 42000 Varaždin, Croatia
| | - Pero Lučin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.P.); (H.M.L.); (P.L.)
- Nursing Department, University North, University Center Varaždin, Jurja Križanića 31b, 42000 Varaždin, Croatia
| |
Collapse
|
6
|
Kim N, Ullah I, Chung K, Lee D, Cha MJ, Ban H, Choi CS, Kim S, Hwang KC, Kumar P, Lee SK. Targeted Delivery of Recombinant Heat Shock Protein 27 to Cardiomyocytes Promotes Recovery from Myocardial Infarction. Mol Pharm 2020; 17:2034-2043. [PMID: 32364395 DOI: 10.1021/acs.molpharmaceut.0c00192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ischemic heart disease, especially myocardial infarction (MI), is the leading cause of death worldwide. Apoptotic mechanisms are thought to play a significant role in cardiomyocyte death after MI. Increased production of heat shock proteins (Hsps) in cardiomyocytes is a normal response to promote tolerance and to reduce cell damage. Hsp27 is considered to be a therapeutic option for the treatment of ischemic heart disease due to its protective effects on hypoxia-induced apoptosis. Despite its antiapoptotic effects, the lack of strategies to deliver Hsp27 to the heart tissue in vivo limits its clinical applicability. In this study, we utilized an antibody against the angiotensin II type 1 (AT1) receptor, which is expressed immediately after ischemia/reperfusion in the heart of MI rats. To achieve cardiomyocyte-targeted Hsp27 delivery after ischemia/reperfusion, we employed the immunoglobulin-binding dimer ZZ, a modified domain of protein A, in conjunction with the AT1 receptor antibody. Using the AT1 receptor antibody, we achieved systemic delivery of ZZ-TAT-GFP fusion protein into the heart of MI rats. This approach enabled selective delivery of Hsp27 to cardiomyocytes, rescued cells from apoptosis, reduced the area of fibrosis, and improved cardiac function in the rat MI model, thus suggesting its applicability as a cardiomyocyte-targeted protein delivery system to inhibit apoptosis induced by ischemic injury.
Collapse
Affiliation(s)
- Nahyeon Kim
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 133-791, Korea.,Samsung Bioepis, Incheon 21987, Korea
| | - Irfan Ullah
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 133-791, Korea.,Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| | - Kunho Chung
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 133-791, Korea.,Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| | - Dahye Lee
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 133-791, Korea.,Green Cross Cell Co., Yongin 16924, Korea
| | - Min-Ji Cha
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Incheon 22711, Korea
| | - Hongseok Ban
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 133-791, Korea.,Ildong Pharmaceutical Co., Ltd., Hwaseong 445-710, Korea
| | - Chang Seon Choi
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 133-791, Korea.,Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| | - Sunghwa Kim
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 133-791, Korea.,LG Household & Health Care, Seoul 150-721, Korea
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Incheon 22711, Korea
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| | - Sang-Kyung Lee
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 133-791, Korea
| |
Collapse
|
7
|
Zhang J, Su G, Wu Q, Liu J, Tian Y, Liu X, Zhou J, Gao J, Chen W, Chen D, Zhang Z. Rab11-mediated recycling endosome role in nervous system development and neurodegenerative diseases. Int J Neurosci 2020; 131:1012-1018. [PMID: 32329391 DOI: 10.1080/00207454.2020.1761354] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
STUDY Membrane trafficking process is significant for the complex and precise regulatory of the nervous system. Rab11, as a small GTPase of the Rab superfamily, controls endocytic vesicular trafficking to the cell surface after sorting in recycling endosome (RE), coordinating with its receptors to maintain neurological function. MATERIALS AND METHODS This article reviewed the literature of Rab11 in nervous system. RESULTS Rab11-positive vesicles targeted transport growth-related molecules, such as integrins, protrudin, tropomyosin receptor kinase (Trk) A/B receptor and AMPA receptor (AMPAR) to membrane surface to promote the regeneration capacity of axon and dendrites and maintain synaptic plasticity. In addition, many studies have shown that the expression of Rab11 is decreased in multiple neurodegenerative diseases, which is highly correlated with the process of production, transport and clearance of disease-related pathological proteins. And overexpression or increased activity of Rab11 can greatly improve the defect of membrane trafficking and slow down the disease process. CONCLUSION With increasing research efforts on Rab11-dependent membrane trafficking mechanisms, a potential target for nerve regeneration and neurodegenerative diseases will be provided.
Collapse
Affiliation(s)
- Jiajia Zhang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Gang Su
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Qionghui Wu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Jifei Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Ye Tian
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiaoyan Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Juanping Zhou
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Juan Gao
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Wei Chen
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Deyi Chen
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zhenchang Zhang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
8
|
Saraste J, Prydz K. A New Look at the Functional Organization of the Golgi Ribbon. Front Cell Dev Biol 2019; 7:171. [PMID: 31497600 PMCID: PMC6713163 DOI: 10.3389/fcell.2019.00171] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022] Open
Abstract
A characteristic feature of vertebrate cells is a Golgi ribbon consisting of multiple cisternal stacks connected into a single-copy organelle next to the centrosome. Despite numerous studies, the mechanisms that link the stacks together and the functional significance of ribbon formation remain poorly understood. Nevertheless, these questions are of considerable interest, since there is increasing evidence that Golgi fragmentation – the unlinking of the stacks in the ribbon – is intimately connected not only to normal physiological processes, such as cell division and migration, but also to pathological states, including neurodegeneration and cancer. Challenging a commonly held view that ribbon architecture involves the formation of homotypic tubular bridges between the Golgi stacks, we present an alternative model, based on direct interaction between the biosynthetic (pre-Golgi) and endocytic (post-Golgi) membrane networks and their connection with the centrosome. We propose that the central domains of these permanent pre- and post-Golgi networks function together in the biogenesis and maintenance of the more transient Golgi stacks, and thereby establish “linker compartments” that dynamically join the stacks together. This model provides insight into the reversible fragmentation of the Golgi ribbon that takes place in dividing and migrating cells and its regulation along a cell surface – Golgi – centrosome axis. Moreover, it helps to understand transport pathways that either traverse or bypass the Golgi stacks and the positioning of the Golgi apparatus in differentiated neuronal, epithelial, and muscle cells.
Collapse
Affiliation(s)
- Jaakko Saraste
- Department of Biomedicine and Molecular Imaging Center, University of Bergen, Bergen, Norway
| | - Kristian Prydz
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
9
|
Schoenherr C, Frame MC, Byron A. Trafficking of Adhesion and Growth Factor Receptors and Their Effector Kinases. Annu Rev Cell Dev Biol 2018; 34:29-58. [PMID: 30110558 DOI: 10.1146/annurev-cellbio-100617-062559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell adhesion to macromolecules in the microenvironment is essential for the development and maintenance of tissues, and its dysregulation can lead to a range of disease states, including inflammation, fibrosis, and cancer. The biomechanical and biochemical mechanisms that mediate cell adhesion rely on signaling by a range of effector proteins, including kinases and associated scaffolding proteins. The intracellular trafficking of these must be tightly controlled in space and time to enable effective cell adhesion and microenvironmental sensing and to integrate cell adhesion with, and compartmentalize it from, other cellular processes, such as gene transcription, protein degradation, and cell division. Delivery of adhesion receptors and signaling proteins from the plasma membrane to unanticipated subcellular locales is revealing novel biological functions. Here, we review the expected and unexpected trafficking, and sites of activity, of adhesion and growth factor receptors and intracellular kinase partners as we begin to appreciate the complexity and diversity of their spatial regulation.
Collapse
Affiliation(s)
- Christina Schoenherr
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom;
| | - Margaret C Frame
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom;
| | - Adam Byron
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom;
| |
Collapse
|
10
|
Saraste J, Marie M. Intermediate compartment (IC): from pre-Golgi vacuoles to a semi-autonomous membrane system. Histochem Cell Biol 2018; 150:407-430. [PMID: 30173361 PMCID: PMC6182704 DOI: 10.1007/s00418-018-1717-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2018] [Indexed: 12/19/2022]
Abstract
Despite its discovery more than three decades ago and well-established role in protein sorting and trafficking in the early secretory pathway, the intermediate compartment (IC) has remained enigmatic. The prevailing view is that the IC evolved as a specialized organelle to mediate long-distance endoplasmic reticulum (ER)–Golgi communication in metazoan cells, but is lacking in other eukaryotes, such as plants and fungi. However, this distinction is difficult to reconcile with the high conservation of the core machineries that regulate early secretory trafficking from yeast to man. Also, it has remained unclear whether the pleiomorphic IC components—vacuoles, tubules and vesicles—represent transient transport carriers or building blocks of a permanent pre-Golgi organelle. Interestingly, recent studies have revealed that the IC maintains its compositional, structural and spatial properties throughout the cell cycle, supporting a model that combines the dynamic and stable aspects of the organelle. Moreover, the IC has been assigned novel functions, such as cell signaling, Golgi-independent trafficking and autophagy. The emerging permanent nature of the IC and its connections with the centrosome and the endocytic recycling system encourage reconsideration of its relationship with the Golgi ribbon, role in Golgi biogenesis and ubiquitous presence in eukaryotic cells.
Collapse
Affiliation(s)
- Jaakko Saraste
- Department of Biomedicine and Molecular Imaging Center (MIC), University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| | - Michaël Marie
- Department of Biomedicine and Molecular Imaging Center (MIC), University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| |
Collapse
|
11
|
Bornens M. Cell polarity: having and making sense of direction-on the evolutionary significance of the primary cilium/centrosome organ in Metazoa. Open Biol 2018; 8:180052. [PMID: 30068565 PMCID: PMC6119866 DOI: 10.1098/rsob.180052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022] Open
Abstract
Cell-autonomous polarity in Metazoans is evolutionarily conserved. I assume that permanent polarity in unicellular eukaryotes is required for cell motion and sensory reception, integration of these two activities being an evolutionarily constrained function. Metazoans are unique in making cohesive multicellular organisms through complete cell divisions. They evolved a primary cilium/centrosome (PC/C) organ, ensuring similar functions to the basal body/flagellum of unicellular eukaryotes, but in different cells, or in the same cell at different moments. The possibility that this innovation contributed to the evolution of individuality, in being instrumental in the early specification of the germ line during development, is further discussed. Then, using the example of highly regenerative organisms like planarians, which have lost PC/C organ in dividing cells, I discuss the possibility that part of the remodelling necessary to reach a new higher-level unit of selection in multi-cellular organisms has been triggered by conflicts among individual cell polarities to reach an organismic polarity. Finally, I briefly consider organisms with a sensorimotor organ like the brain that requires exceedingly elongated polarized cells for its activity. I conclude that beyond critical consequences for embryo development, the conservation of cell-autonomous polarity in Metazoans had far-reaching implications for the evolution of individuality.
Collapse
Affiliation(s)
- Michel Bornens
- Institut Curie, PSL Research University, CNRS - UMR 144, 75005 Paris, France
| |
Collapse
|
12
|
Kaczmarek B, Verbavatz JM, Jackson CL. GBF1 and Arf1 function in vesicular trafficking, lipid homoeostasis and organelle dynamics. Biol Cell 2017; 109:391-399. [PMID: 28985001 DOI: 10.1111/boc.201700042] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 01/07/2023]
Abstract
The ADP-ribosylation factor (Arf) small G proteins act as molecular switches to coordinate multiple downstream pathways that regulate membrane dynamics. Their activation is spatially and temporally controlled by the guanine nucleotide exchange factors (GEFs). Members of the evolutionarily conserved GBF/Gea family of Arf GEFs are well known for their roles in formation of coat protein complex I (COPI) vesicles, essential for maintaining the structure and function of the Golgi apparatus. However, studies over the past 10 years have found new functions for these GEFs, along with their substrate Arf1, in lipid droplet metabolism, clathrin-independent endocytosis, signalling at the plasma membrane, mitochondrial dynamics and transport along microtubules. Here, we describe these different functions, focussing in particular on the emerging theme of GFB1 and Arf1 regulation of organelle movement on microtubules.
Collapse
Affiliation(s)
- Beata Kaczmarek
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Paris, F-75013, France
| | - Jean-Marc Verbavatz
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Paris, F-75013, France
| | - Catherine L Jackson
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Paris, F-75013, France
| |
Collapse
|
13
|
Jackson CL, Walch L, Verbavatz JM. Lipids and Their Trafficking: An Integral Part of Cellular Organization. Dev Cell 2017; 39:139-153. [PMID: 27780039 DOI: 10.1016/j.devcel.2016.09.030] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An evolutionarily conserved feature of cellular organelles is the distinct phospholipid composition of their bounding membranes, which is essential to their identity and function. Within eukaryotic cells, two major lipid territories can be discerned, one centered on the endoplasmic reticulum and characterized by membranes with lipid packing defects, the other comprising plasma-membrane-derived organelles and characterized by membrane charge. We discuss how this cellular lipid organization is maintained, how lipid flux is regulated, and how perturbations in cellular lipid homeostasis can lead to disease.
Collapse
Affiliation(s)
- Catherine L Jackson
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| | - Laurence Walch
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Jean-Marc Verbavatz
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| |
Collapse
|
14
|
Saraste J. Spatial and Functional Aspects of ER-Golgi Rabs and Tethers. Front Cell Dev Biol 2016; 4:28. [PMID: 27148530 PMCID: PMC4834429 DOI: 10.3389/fcell.2016.00028] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/23/2016] [Indexed: 12/13/2022] Open
Abstract
Two conserved Rab GTPases, Rab1 and Rab2, play important roles in biosynthetic-secretory trafficking between the endoplasmic reticulum (ER) and the Golgi apparatus in mammalian cells. Both are expressed as two isoforms that regulate anterograde transport via the intermediate compartment (IC) to the Golgi, but are also required for transport in the retrograde direction. Moreover, Rab1 has been implicated in the formation of autophagosomes. Rab1 and Rab2 have numerous effectors or partners that function in membrane tethering, but also have other roles. These include the coiled-coil proteins p115, GM130, giantin, golgin-84, and GMAP-210, as well as the multisubunit COG (conserved oligomeric Golgi) and TRAPP (transport protein particle) tethering complexes. TRAPP also acts as the GTP exchange factor (GEF) in the activation of Rab1. According to the traditional view of the IC elements as motile, transient structures, the functions of the Rabs could take place at the two ends of the ER-Golgi itinerary, i.e., at ER exit sites (ERES) and/or cis-Golgi. However, there is considerable evidence for their specific association with the IC, including its recently identified pericentrosomal domain (pcIC), where many of the effectors turn out to be present, thus being able to exert their functions at the pre-Golgi level. The IC localization of these proteins is of particular interest based on the imaging of Rab1 dynamics, indicating that the IC is a stable organelle that bidirectionally communicates with the ER and Golgi, and is functionally linked to the endosomal system via the pcIC.
Collapse
Affiliation(s)
- Jaakko Saraste
- Department of Biomedicine and Molecular Imaging Center, University of Bergen Bergen, Norway
| |
Collapse
|
15
|
Saraste J, Marie M. Intermediate Compartment: A Sorting Station between the Endoplasmic Reticulum and the Golgi Apparatus. ENCYCLOPEDIA OF CELL BIOLOGY 2016. [PMCID: PMC7150006 DOI: 10.1016/b978-0-12-394447-4.20013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Szakadáti G, Tóth AD, Oláh I, Erdélyi LS, Balla T, Várnai P, Hunyady L, Balla A. Investigation of the fate of type I angiotensin receptor after biased activation. Mol Pharmacol 2015; 87:972-81. [PMID: 25804845 PMCID: PMC4429721 DOI: 10.1124/mol.114.097030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/24/2015] [Indexed: 01/14/2023] Open
Abstract
Biased agonism on the type I angiotensin receptor (AT1-R) can achieve different outcomes via activation of G protein-dependent and -independent cellular responses. In this study, we investigated whether the biased activation of AT1-R can lead to different regulation and intracellular processing of the receptor. We analyzed β-arrestin binding, endocytosis, and subsequent trafficking steps, such as early and late phases of recycling of AT1-R in human embryonic kidney 293 cells expressing wild-type or biased mutant receptors in response to different ligands. We used Renilla luciferase-tagged receptors and yellow fluorescent protein-tagged β-arrestin2, Rab5, Rab7, and Rab11 proteins in bioluminescence resonance energy transfer measurements to follow the fate of the receptor after stimulation. We found that not only is the signaling of the receptor different upon using selective ligands, but the fate within the cells is also determined by the type of the stimulation. β-arrestin binding and the internalization kinetics of the angiotensin II-stimulated AT1-R differed from those stimulated by the biased agonists. Similarly, angiotensin II-stimulated wild-type AT1-R showed differences compared with a biased mutant AT1-R (DRY/AAY AT1-R) with regards to β-arrestin binding and endocytosis. We found that the differences in the internalization kinetics of the receptor in response to biased agonist stimulation are due to the differences in plasma membrane phosphatidylinositol 4,5-bisphosphate depletion. Moreover, the stability of the β-arrestin binding is a major determinant of the later fate of the internalized AT1-R receptor.
Collapse
Affiliation(s)
- Gyöngyi Szakadáti
- Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary (G.S., A.D.T., I.O., L.S.E., P.V., L.H., A.B.), Magyar Tudományos Akadémia-Semmelweis Egyetem Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary (L.S.E., P.V., L.H., A.B.); and Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (T.B.)
| | - András D Tóth
- Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary (G.S., A.D.T., I.O., L.S.E., P.V., L.H., A.B.), Magyar Tudományos Akadémia-Semmelweis Egyetem Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary (L.S.E., P.V., L.H., A.B.); and Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (T.B.)
| | - Ilona Oláh
- Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary (G.S., A.D.T., I.O., L.S.E., P.V., L.H., A.B.), Magyar Tudományos Akadémia-Semmelweis Egyetem Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary (L.S.E., P.V., L.H., A.B.); and Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (T.B.)
| | - László Sándor Erdélyi
- Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary (G.S., A.D.T., I.O., L.S.E., P.V., L.H., A.B.), Magyar Tudományos Akadémia-Semmelweis Egyetem Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary (L.S.E., P.V., L.H., A.B.); and Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (T.B.)
| | - Tamas Balla
- Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary (G.S., A.D.T., I.O., L.S.E., P.V., L.H., A.B.), Magyar Tudományos Akadémia-Semmelweis Egyetem Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary (L.S.E., P.V., L.H., A.B.); and Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (T.B.)
| | - Péter Várnai
- Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary (G.S., A.D.T., I.O., L.S.E., P.V., L.H., A.B.), Magyar Tudományos Akadémia-Semmelweis Egyetem Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary (L.S.E., P.V., L.H., A.B.); and Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (T.B.)
| | - László Hunyady
- Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary (G.S., A.D.T., I.O., L.S.E., P.V., L.H., A.B.), Magyar Tudományos Akadémia-Semmelweis Egyetem Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary (L.S.E., P.V., L.H., A.B.); and Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (T.B.)
| | - András Balla
- Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary (G.S., A.D.T., I.O., L.S.E., P.V., L.H., A.B.), Magyar Tudományos Akadémia-Semmelweis Egyetem Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary (L.S.E., P.V., L.H., A.B.); and Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (T.B.)
| |
Collapse
|
17
|
Caron D, Boutchueng-Djidjou M, Tanguay RM, Faure RL. Annexin A2 is SUMOylated on its N-terminal domain: regulation by insulin. FEBS Lett 2015; 589:985-91. [PMID: 25775977 DOI: 10.1016/j.febslet.2015.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 01/17/2023]
Abstract
Insulin receptor (IR) endocytosis requires a remodelling of the actin cytoskeleton. We show here that ANXA2 is SUMOylated at the K10 located in a non-consensus SUMOylation motif in the N-terminal domain. The Y24F mutation decreased the SUMOylation signal, whereas insulin stimulation increased ANXA2 SUMOylation. A survey of protein SUMOylation in hepatic Golgi/endosome (G/E) fractions after insulin injections revealed the presence of a SUMOylation pattern and confirmed the SUMOylation of ANXA2. The construction of an IR/ANXA2/SUMO network (IRASGEN) in the G/E context reveals the presence of interacting nodes whereby SUMO1 connects ANXA2 to actin and microtubule-mediated changes in membrane topology. Heritable variants associated with type 2 diabetes represent 41% of the IRASGEN thus pointing out the physio-pathological importance of this subnetwork.
Collapse
Affiliation(s)
- Danielle Caron
- Département de Pédiatrie, Laboratoire de biologie cellulaire Centre de recherche du CHU de Québec, Université Laval, Québec, PQ, Canada
| | - Martial Boutchueng-Djidjou
- Département de Pédiatrie, Laboratoire de biologie cellulaire Centre de recherche du CHU de Québec, Université Laval, Québec, PQ, Canada
| | - Robert M Tanguay
- Institut de Biologie Intégrative et des Système (IBIS), Université Laval, Québec, PQ, Canada; Laboratory of Cellular and Developmental Genetics, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, PQ, Canada; PROTEO, Université Laval, Québec, PQ, Canada
| | - Robert L Faure
- Département de Pédiatrie, Laboratoire de biologie cellulaire Centre de recherche du CHU de Québec, Université Laval, Québec, PQ, Canada.
| |
Collapse
|
18
|
Nair-Gupta P, Baccarini A, Tung N, Seyffer F, Florey O, Huang Y, Banerjee M, Overholtzer M, Roche PA, Tampé R, Brown BD, Amsen D, Whiteheart SW, Blander JM. TLR signals induce phagosomal MHC-I delivery from the endosomal recycling compartment to allow cross-presentation. Cell 2015; 158:506-21. [PMID: 25083866 DOI: 10.1016/j.cell.2014.04.054] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 01/08/2014] [Accepted: 04/23/2014] [Indexed: 11/16/2022]
Abstract
Adaptation of the endoplasmic reticulum (ER) pathway for MHC class I (MHC-I) presentation in dendritic cells enables cross-presentation of peptides derived from phagocytosed microbes, infected cells, or tumor cells to CD8 T cells. How these peptides intersect with MHC-I molecules remains poorly understood. Here, we show that MHC-I selectively accumulate within phagosomes carrying microbial components, which engage Toll-like receptor (TLR) signaling. Although cross-presentation requires Sec22b-mediated phagosomal recruitment of the peptide loading complex from the ER-Golgi intermediate compartment (ERGIC), this step is independent of TLR signaling and does not deliver MHC-I. Instead, MHC-I are recruited from an endosomal recycling compartment (ERC), which is marked by Rab11a, VAMP3/cellubrevin, and VAMP8/endobrevin and holds large reserves of MHC-I. While Rab11a activity stocks ERC stores with MHC-I, MyD88-dependent TLR signals drive IκB-kinase (IKK)2-mediated phosphorylation of phagosome-associated SNAP23. Phospho-SNAP23 stabilizes SNARE complexes orchestrating ERC-phagosome fusion, enrichment of phagosomes with ERC-derived MHC-I, and subsequent cross-presentation during infection.
Collapse
Affiliation(s)
- Priyanka Nair-Gupta
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alessia Baccarini
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Navpreet Tung
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fabian Seyffer
- Institute of Biochemistry, Biocenter, Cluster of Excellence-Macromolecular Complexes, Goethe-University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Oliver Florey
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yunjie Huang
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Meenakshi Banerjee
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Michael Overholtzer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Paul A Roche
- Experimental Cell Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Cluster of Excellence-Macromolecular Complexes, Goethe-University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Brian D Brown
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Derk Amsen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Plesmanlaan 125, 1066CX Amsterdam, the Netherlands
| | - Sidney W Whiteheart
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - J Magarian Blander
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
19
|
Abstract
The Arf small G proteins regulate protein and lipid trafficking in eukaryotic cells through a regulated cycle of GTP binding and hydrolysis. In their GTP-bound form, Arf proteins recruit a specific set of protein effectors to the membrane surface. These effectors function in vesicle formation and tethering, non-vesicular lipid transport and cytoskeletal regulation. Beyond fundamental membrane trafficking roles, Arf proteins also regulate mitosis, plasma membrane signaling, cilary trafficking and lipid droplet function. Tight spatial and temporal regulation of the relatively small number of Arf proteins is achieved by their guanine nucleotide-exchange factors (GEFs) and GTPase-activating proteins (GAPs), which catalyze GTP binding and hydrolysis, respectively. A unifying function of Arf proteins, performed in conjunction with their regulators and effectors, is sensing, modulating and transporting the lipids that make up cellular membranes. In this Cell Science at a Glance article and the accompanying poster, we discuss the unique features of Arf small G proteins, their functions in vesicular and lipid trafficking in cells, and how these functions are modulated by their regulators, the GEFs and GAPs. We also discuss how these Arf functions are subverted by human pathogens and disease states.
Collapse
Affiliation(s)
- Catherine L Jackson
- Membrane Dynamics and Intracellular Trafficking, Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75013 Paris, France
| | - Samuel Bouvet
- Membrane Dynamics and Intracellular Trafficking, Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75013 Paris, France
| |
Collapse
|
20
|
Hullin-Matsuda F, Taguchi T, Greimel P, Kobayashi T. Lipid compartmentalization in the endosome system. Semin Cell Dev Biol 2014; 31:48-56. [DOI: 10.1016/j.semcdb.2014.04.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 11/15/2022]
|
21
|
Chung S, Andrew DJ. Cadherin 99C regulates apical expansion and cell rearrangement during epithelial tube elongation. Development 2014; 141:1950-60. [PMID: 24718992 DOI: 10.1242/dev.104166] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Apical and basolateral determinants specify and maintain membrane domains in epithelia. Here, we identify new roles for two apical surface proteins - Cadherin 99C (Cad99C) and Stranded at Second (SAS) - in conferring apical character in Drosophila tubular epithelia. Cad99C, the Drosophila ortholog of human Usher protocadherin PCDH15, is expressed in several embryonic tubular epithelial structures. Through loss-of-function and overexpression studies, we show that Cad99C is required to regulate cell rearrangement during salivary tube elongation. We further show that overexpression of either Cad99C or SAS causes a dramatic increase in apical membrane at the expense of other membrane domains, and that both proteins can do this independently of each other and independently of mislocalization of the apical determinant Crumbs (Crb). Overexpression of Cad99C or SAS results in similar, but distinct effects, suggesting both shared and unique roles for these proteins in conferring apical identity.
Collapse
Affiliation(s)
- Seyeon Chung
- Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2196, USA
| | | |
Collapse
|
22
|
Jin RU, Mills JC. RAB26 coordinates lysosome traffic and mitochondrial localization. J Cell Sci 2014; 127:1018-32. [PMID: 24413166 PMCID: PMC3937772 DOI: 10.1242/jcs.138776] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 12/04/2013] [Indexed: 12/29/2022] Open
Abstract
As they mature, professional secretory cells like pancreatic acinar and gastric chief cells induce the transcription factor MIST1 (also known as BHLHA15) to substantially scale up production of large secretory granules in a process that involves expansion of apical cytoplasm and redistribution of lysosomes and mitochondria. How a scaling factor like MIST1 rearranges cellular architecture simply by regulating expression levels of its transcriptional targets is unknown. RAB26 is a MIST1 target whose role in MIST1-mediated secretory cell maturation is also unknown. Here, we confirm that RAB26 expression, unlike most Rabs which are ubiquitously expressed, is tissue specific and largely confined to MIST1-expressing secretory tissues. Surprisingly, functional studies showed that RAB26 predominantly associated with LAMP1/cathepsin D lysosomes and not directly with secretory granules. Moreover, increasing RAB26 expression - by inducing differentiation of zymogen-secreting cells or by direct transfection - caused lysosomes to coalesce in a central, perinuclear region. Lysosome clustering in turn caused redistribution of mitochondria into distinct subcellular neighborhoods. The data elucidate a novel function for RAB26 and suggest a mechanism for how cells could increase transcription of key effectors to reorganize subcellular compartments during differentiation.
Collapse
Affiliation(s)
- Ramon U. Jin
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jason C. Mills
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
23
|
Landry MC, Champagne C, Boulanger MC, Jetté A, Fuchs M, Dziengelewski C, Lavoie JN. A functional interplay between the small GTPase Rab11a and mitochondria-shaping proteins regulates mitochondrial positioning and polarization of the actin cytoskeleton downstream of Src family kinases. J Biol Chem 2013; 289:2230-49. [PMID: 24302731 DOI: 10.1074/jbc.m113.516351] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
It is believed that mitochondrial dynamics is coordinated with endosomal traffic rates during cytoskeletal remodeling, but the mechanisms involved are largely unknown. The adenovirus early region 4 ORF4 protein (E4orf4) subverts signaling by Src family kinases (SFK) to perturb cellular morphology, membrane traffic, and organellar dynamics and to trigger cell death. Using E4orf4 as a model, we uncovered a functional connection between mitochondria-shaping proteins and the small GTPase Rab11a, a key regulator of polarized transport via recycling endosomes. We found that E4orf4 induced dramatic changes in the morphology of mitochondria along with their mobilization at the vicinity of a polarized actin network typifying E4orf4 action, in a manner controlled by SFK and Rab11a. Mitochondrial remodeling was associated with increased proximity between Rab11a and mitochondrial membranes, changes in fusion-fission dynamics, and mitochondrial relocalization of the fission factor dynamin-related protein 1 (Drp1), which was regulated by the Rab11a effector protein FIP1/RCP. Knockdown of FIP1/RCP or inhibition of Drp1 markedly impaired mitochondrial remodeling and actin assembly, involving Rab11a-mediated mitochondrial dynamics in E4orf4-induced signaling. A similar mobilization of mitochondria near actin-rich structures was mediated by Rab11 and Drp1 in viral Src-transformed cells and contributed to the biogenesis of podosome rosettes. These findings suggest a role for Rab11a in the trafficking of Drp1 to mitochondria upon SFK activation and unravel a novel functional interplay between Rab11a and mitochondria during reshaping of the cell cytoskeleton, which would facilitate mitochondria redistribution near energy-requiring actin-rich structures.
Collapse
Affiliation(s)
- Marie-Claude Landry
- From the Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Axe Oncologie, Québec G1R 3S3 and
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Dendritic arborization of neurons is regulated by brain-derived neurotrophic factor (BDNF) together with its receptor, TrkB. Endocytosis is required for dendritic branching and regulates TrkB signaling, but how postendocytic trafficking determines the neuronal response to BDNF is not well understood. The monomeric GTPase Rab11 regulates the dynamics of recycling endosomes and local delivery of receptors to specific dendritic compartments. We investigated whether Rab11-dependent trafficking of TrkB in dendrites regulates BDNF-induced dendritic branching in rat hippocampal neurons. We report that TrkB in dendrites is a cargo for Rab11 endosomes and that both Rab11 and its effector, MyoVb, are required for BDNF/TrkB-induced dendritic branching. In addition, BDNF induces the accumulation of Rab11-positive endosomes and GTP-bound Rab11 in dendrites and the expression of a constitutively active mutant of Rab11 is sufficient to increase dendritic branching by increasing TrkB localization in dendrites and enhancing sensitization to endogenous BDNF. We propose that Rab11-dependent dendritic recycling provides a mechanism to retain TrkB in dendrites and to increase local signaling to regulate arborization.
Collapse
|
25
|
Russo R, Esposito MR, Iolascon A. Inherited hematological disorders due to defects in coat protein (COP)II complex. Am J Hematol 2013; 88:135-40. [PMID: 22764119 DOI: 10.1002/ajh.23292] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 05/28/2012] [Accepted: 06/07/2012] [Indexed: 11/10/2022]
Abstract
Many diseases attributed to trafficking defects are primary disorders of protein folding and assembly. However, an increasing number of disease states are directly attributable to defects in trafficking machinery. In this context, the cytoplasmic coat protein (COP)II complex plays a pivotal role: it mediates the anterograde transport of correctly folded secretory cargo from the endoplasmic reticulum towards the Golgi apparatus. This review attempts to describe the involvement of COPII complex alteration in the pathogenesis of human genetic disorders; particularly, we will focus on two disorders, the Congenital Dyserythropoietic Anemia type II and the Combined Deficiency of Factor V and VIII.
Collapse
Affiliation(s)
- Roberta Russo
- CEINGE Biotecnologie Avanzate; University Federico II of Naples; Naples; Italy
| | | | | |
Collapse
|
26
|
Bigay J, Antonny B. Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity. Dev Cell 2013; 23:886-95. [PMID: 23153485 DOI: 10.1016/j.devcel.2012.10.009] [Citation(s) in RCA: 387] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Whereas some rare lipids contribute to the identity of cell organelles, we focus on the abundant lipids that form the matrix of organelle membranes. Observations using bioprobes and peripheral proteins, notably sensors of membrane curvature, support the prediction that the cell contains two broad membrane territories: the territory of loose lipid packing, where cytosolic proteins take advantage of membrane defects, and the territory of electrostatics, where proteins are attracted by negatively charged lipids. The contrasting features of these territories provide specificity for reactions occurring along the secretory pathway, on the plasma membrane, and also on lipid droplets and autophagosomes.
Collapse
Affiliation(s)
- Joëlle Bigay
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia Antipolis et CNRS, 06560 Valbonne, France
| | | |
Collapse
|
27
|
Abstract
The compartmentalization of cellular functions in complex membranous organelles is a key feature of eukaryotic cells. To cope with the enormous complexity of trafficking pathways that connect these compartments, new approaches need to be considered and introduced into the field of cell biology. We exploit the advantages of the "micropatterning technique," which is to bring cells to adopt a highly reproducible shape, and probabilistic density mapping, which quantifies spatial organization of trafficking compartments, to study regulatory mechanisms of intracellular trafficking. Here, we provide a protocol to analyze and quantify alterations in trafficking compartments upon cellular manipulation. We demonstrate how this approach can be employed to study the regulation of Rab6-labeled transport carriers by the cytoskeleton.
Collapse
|
28
|
Prydz K, Tveit H, Vedeler A, Saraste J. Arrivals and departures at the plasma membrane: direct and indirect transport routes. Cell Tissue Res 2012; 352:5-20. [DOI: 10.1007/s00441-012-1409-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/14/2012] [Indexed: 12/21/2022]
|
29
|
Andrulis ED. Theory of the origin, evolution, and nature of life. Life (Basel) 2011; 2:1-105. [PMID: 25382118 PMCID: PMC4187144 DOI: 10.3390/life2010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 12/10/2011] [Accepted: 12/13/2011] [Indexed: 12/22/2022] Open
Abstract
Life is an inordinately complex unsolved puzzle. Despite significant theoretical progress, experimental anomalies, paradoxes, and enigmas have revealed paradigmatic limitations. Thus, the advancement of scientific understanding requires new models that resolve fundamental problems. Here, I present a theoretical framework that economically fits evidence accumulated from examinations of life. This theory is based upon a straightforward and non-mathematical core model and proposes unique yet empirically consistent explanations for major phenomena including, but not limited to, quantum gravity, phase transitions of water, why living systems are predominantly CHNOPS (carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur), homochirality of sugars and amino acids, homeoviscous adaptation, triplet code, and DNA mutations. The theoretical framework unifies the macrocosmic and microcosmic realms, validates predicted laws of nature, and solves the puzzle of the origin and evolution of cellular life in the universe.
Collapse
Affiliation(s)
- Erik D Andrulis
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Wood Building, W212, Cleveland, OH 44106, USA.
| |
Collapse
|
30
|
van Weering JRT, Verkade P, Cullen PJ. SNX-BAR-mediated endosome tubulation is co-ordinated with endosome maturation. Traffic 2011; 13:94-107. [PMID: 21973056 DOI: 10.1111/j.1600-0854.2011.01297.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Endosomal sorting is essential for cell homeostasis. Proteins targeted for degradation are retained in the maturing endosome vacuole while others are recycled to the cell surface or sorted to the biosynthetic pathway via tubular transport carriers. Sorting nexin (SNX) proteins containing a BAR (for Bin-Amphiphysin-Rvs) domain are key regulators of phosphoinositide-mediated, tubular-based endosomal sorting, but how such sorting is co-ordinated with endosomal maturation is not known. Here, using well-defined Rab GTPases as endosomal compartment markers, we have analyzed the localization of SNX1 [endosome-to-trans-Golgi network (TGN) transport as part of the SNX-BAR-retromer complex], SNX4 (cargo-recycling from endosomes to the plasma membrane) and SNX8 (endosomes-to-TGN trafficking in a retromer-independent manner). We show that these SNX-BARs are primarily localized to early endosomes, but display the highest frequency of tubule formation at the moment of early-to-late endosome transition: the Rab5-to-Rab7 switch. Perturbing this switch shifts SNX-BAR tubulation to early endosomes, resulting in SNX1-decorated tubules that lack retromer components VPS26 and VPS35, suggesting that both early and late endosomal characteristics of the endosome are important for SNX-BAR-retromer-tubule formation. We also establish that SNX4, but not SNX1 and SNX8, is associated with the Rab11-recycling endosomes and that a high frequency of SNX4-mediated tubule formation is observed as endosomes undergo Rab4-to-Rab11 transition. Our study therefore provides evidence for fine-tuning between the processes of endosomal maturation and the formation of endosomal tubules. As tubulation is required for SNX1-, SNX4- and SNX8-mediated sorting, these data reveal a previously unrecognized co-ordination between maturation and tubular-based sorting.
Collapse
Affiliation(s)
- Jan R T van Weering
- Henry Wellcome Integrated Signalling Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, UK
| | | | | |
Collapse
|
31
|
Interaction between the triglyceride lipase ATGL and the Arf1 activator GBF1. PLoS One 2011; 6:e21889. [PMID: 21789191 PMCID: PMC3138737 DOI: 10.1371/journal.pone.0021889] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 06/14/2011] [Indexed: 02/07/2023] Open
Abstract
The Arf1 exchange factor GBF1 (Golgi Brefeldin A resistance factor 1) and its effector COPI are required for delivery of ATGL (adipose triglyceride lipase) to lipid droplets (LDs). Using yeast two hybrid, co-immunoprecipitation in mammalian cells and direct protein binding approaches, we report here that GBF1 and ATGL interact directly and in cells, through multiple contact sites on each protein. The C-terminal region of ATGL interacts with N-terminal domains of GBF1, including the catalytic Sec7 domain, but not with full-length GBF1 or its entire N-terminus. The N-terminal lipase domain of ATGL (called the patatin domain) interacts with two C-terminal domains of GBF1, HDS (Homology downstream of Sec7) 1 and HDS2. These two domains of GBF1 localize to lipid droplets when expressed alone in cells, but not to the Golgi, unlike the full-length GBF1 protein, which localizes to both. We suggest that interaction of GBF1 with ATGL may be involved in the membrane trafficking pathway mediated by GBF1, Arf1 and COPI that contributes to the localization of ATGL to lipid droplets.
Collapse
|
32
|
Gou L, Wang W, Tong A, Yao Y, Zhou Y, Yi C, Yang J. Proteomic identification of RhoA as a potential biomarker for proliferation and metastasis in hepatocellular carcinoma. J Mol Med (Berl) 2011; 89:817-27. [PMID: 21475975 DOI: 10.1007/s00109-011-0753-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 03/20/2011] [Accepted: 03/21/2011] [Indexed: 02/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies in the world, and there is an urgent need to discover novel factors that can act as biomarkers for prognostic assessment and therapeutic targets of HCC. In this study, highly purified plasma membrane proteins from clinical tissue samples were obtained using a strategy combining sucrose density gradient centrifugation and subsequent phase partition. Using a two-dimensional gel electrophoresis and MALDI-Q-TOF MS/MS-based proteomics approach, we identified 13 plasma membrane-associated proteins that were differentially expressed in HCC and normal liver tissues. Of those, RhoA was one of the most significantly upregulated proteins in HCC, and its overexpression was confirmed using Western blotting. Immunohistochemistry suggested a link between RhoA expression and poor differentiation and clinicopathologic stage. Suppression of RhoA expression in HepG2 and Hep3B cells by RNA interference led to significant inhibition of cell growth, induction of apoptosis, and a decrease in migration. Our data suggest that RhoA may serve as a potential biomarker and an attractive therapeutic target for HCC.
Collapse
Affiliation(s)
- Lantu Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
33
|
Saslowsky DE, Cho JA, Chinnapen H, Massol RH, Chinnapen DJF, Wagner JS, De Luca HE, Kam W, Paw BH, Lencer WI. Intoxication of zebrafish and mammalian cells by cholera toxin depends on the flotillin/reggie proteins but not Derlin-1 or -2. J Clin Invest 2011; 120:4399-4409. [PMID: 21041954 DOI: 10.1172/jci42958] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 09/15/2010] [Indexed: 02/06/2023] Open
Abstract
Cholera toxin (CT) causes the massive secretory diarrhea associated with epidemic cholera. To induce disease, CT enters the cytosol of host cells by co-opting a lipid-based sorting pathway from the plasma membrane, through the trans-Golgi network (TGN), and into the endoplasmic reticulum (ER). In the ER, a portion of the toxin is unfolded and retro- translocated to the cytosol. Here, we established zebrafish as a genetic model of intoxication and examined the Derlin and flotillin proteins, which are thought to be usurped by CT for retro-translocation and lipid sorting, respectively. Using antisense morpholino oligomers and siRNA, we found that depletion of Derlin-1, a component of the Hrd-1 retro-translocation complex, was dispensable for CT-induced toxicity. In contrast, the lipid raft-associated proteins flotillin-1 and -2 were required. We found that in mammalian cells, CT intoxication was dependent on the flotillins for trafficking between plasma membrane/endosomes and two pathways into the ER, only one of which appears to intersect the TGN. These results revise current models for CT intoxication and implicate protein scaffolding of lipid rafts in the endo-somal sorting of the toxin-GM1 complex.
Collapse
Affiliation(s)
- David E Saslowsky
- Division of Gastroenterology, Children's Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yin H, Li Q, Qian G, Wang Y, Li Y, Wu G, Wang G. Rab1 GTPase regulates phenotypic modulation of pulmonary artery smooth muscle cells by mediating the transport of angiotensin II type 1 receptor under hypoxia. Int J Biochem Cell Biol 2010; 43:401-8. [PMID: 21095238 DOI: 10.1016/j.biocel.2010.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 11/03/2010] [Accepted: 11/14/2010] [Indexed: 12/30/2022]
Abstract
Previous studies have demonstrated that Rab1 is involved in the export of angiotensin II (Ang II) type 1 receptor (AT1R) to the cell surface in endothelial cells and cardiomyocytes. The aim of this study was to evaluate whether the modification of Rab1-mediated endoplasmic reticulum (ER) to the Golgi body transport alters the cell surface expression and function of endogenous AT1R and AT1R-mediated phenotypic modulation in primary cultures of pulmonary artery smooth muscle cells (PASMCs). Lentiviral expression of wild-type Rab1 (Rab1WT) significantly increased cell surface expression of endogenous AT1R. However, Rab1 siRNA had the opposite effect, and attenuated downregulation of the expression of PASMCs phenotype markers, α smooth muscle actin (α-SMA) and vimentin (VIM) in rat pulmonary artery smooth muscle cells (RPASMCs) during hypoxia. Analysis of the subcellular localization of AT1R revealed that Rab1 regulated AT1R transport from the ER to the Golgi in PASMCs. Consistent with their effects on AT1R export, Rab1 modified the AT1R-mediated cell growth and the phosphorylation of signal transducing activator of transcription 3 (STAT3) during hypoxia. We found that hypoxia promoted Rab1 expression and strongly correlated with the repressed expression of PASMC phenotype markers in RPASMCs. These data strongly indicate that Rab1 modulates PASMCs function by manipulating AT1R traffic from the ER to the Golgi and provide the first evidence implicating ER-to-Golgi transport as a regulatory step for the control of RPASMCs growth.
Collapse
Affiliation(s)
- Hongjin Yin
- Institute of Respiratory Diseases, the Second Affiliated Hospital of the Third Military Medical University, Chongqing 400037, PR China
| | | | | | | | | | | | | |
Collapse
|
35
|
Husebye H, Aune MH, Stenvik J, Samstad E, Skjeldal F, Halaas Ø, Nilsen NJ, Stenmark H, Latz E, Lien E, Mollnes TE, Bakke O, Espevik T. The Rab11a GTPase controls Toll-like receptor 4-induced activation of interferon regulatory factor-3 on phagosomes. Immunity 2010; 33:583-96. [PMID: 20933442 PMCID: PMC10733841 DOI: 10.1016/j.immuni.2010.09.010] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 06/22/2010] [Accepted: 09/15/2010] [Indexed: 02/06/2023]
Abstract
Toll-like receptor 4 (TLR4) is indispensable for recognition of Gram-negative bacteria. We described a trafficking pathway for TLR4 from the endocytic recycling compartment (ERC) to E. coli phagosomes. We found a prominent colocalization between TLR4 and the small GTPase Rab11a in the ERC, and Rab11a was involved in the recruitment of TLR4 to phagosomes in a process requiring TLR4 signaling. Also, Toll-receptor-associated molecule (TRAM) and interferon regulatory factor-3 (IRF3) localized to E. coli phagosomes and internalization of E. coli was required for a robust interferon-β induction. Suppression of Rab11a reduced TLR4 in the ERC and on phagosomes leading to inhibition of the IRF3 signaling pathway induced by E. coli, whereas activation of the transcription factor NF-κB was unaffected. Moreover, Rab11a silencing reduced the amount of TRAM on phagosomes. Thus, Rab11a is an important regulator of TLR4 and TRAM transport to E. coli phagosomes thereby controlling IRF3 activation from this compartment.
Collapse
Affiliation(s)
- Harald Husebye
- Norwegian University of Science and Technology, Department of Cancer Research and Molecular Medicine, N-7489 Trondheim, Norway
- These authors contributed equally to this work
| | - Marie Hjelmseth Aune
- Norwegian University of Science and Technology, Department of Cancer Research and Molecular Medicine, N-7489 Trondheim, Norway
- These authors contributed equally to this work
| | - Jørgen Stenvik
- Norwegian University of Science and Technology, Department of Cancer Research and Molecular Medicine, N-7489 Trondheim, Norway
- These authors contributed equally to this work
| | - Eivind Samstad
- Norwegian University of Science and Technology, Department of Cancer Research and Molecular Medicine, N-7489 Trondheim, Norway
| | - Frode Skjeldal
- Department of Molecular Biosciences, Centre for Immune Regulation, University of Oslo, N-0316 Oslo, Norway
| | - Øyvind Halaas
- Norwegian University of Science and Technology, Department of Cancer Research and Molecular Medicine, N-7489 Trondheim, Norway
| | - Nadra J. Nilsen
- Norwegian University of Science and Technology, Department of Cancer Research and Molecular Medicine, N-7489 Trondheim, Norway
| | - Harald Stenmark
- Norwegian University of Science and Technology, Department of Cancer Research and Molecular Medicine, N-7489 Trondheim, Norway
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, N-0310 Oslo, Norway
| | - Eicke Latz
- Norwegian University of Science and Technology, Department of Cancer Research and Molecular Medicine, N-7489 Trondheim, Norway
- Institute of Innate Immunity, Biomedical Center, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Egil Lien
- Norwegian University of Science and Technology, Department of Cancer Research and Molecular Medicine, N-7489 Trondheim, Norway
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Tom Eirik Mollnes
- Institute of Immunology, Rikshospitalet University Hospital, University of Oslo, N-0027 Oslo, Norway
| | - Oddmund Bakke
- Department of Molecular Biosciences, Centre for Immune Regulation, University of Oslo, N-0316 Oslo, Norway
- The Gade Institute, University of Bergen, 5021 Bergen, Norway
| | - Terje Espevik
- Norwegian University of Science and Technology, Department of Cancer Research and Molecular Medicine, N-7489 Trondheim, Norway
- St. Olavs Hospital, N-7489 Trondheim, Norway
| |
Collapse
|
36
|
Naughtin MJ, Sheffield DA, Rahman P, Hughes WE, Gurung R, Stow JL, Nandurkar HH, Dyson JM, Mitchell CA. The myotubularin phosphatase MTMR4 regulates sorting from early endosomes. J Cell Sci 2010; 123:3071-83. [PMID: 20736309 DOI: 10.1242/jcs.060103] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Phosphatidylinositol 3-phosphate [PtdIns(3)P] regulates endocytic trafficking and the sorting of receptors through early endosomes, including the rapid recycling of transferrin (Tfn). However, the phosphoinositide phosphatase that selectively opposes this function is unknown. The myotubularins are a family of eight catalytically active and six inactive enzymes that hydrolyse PtdIns(3)P to form PtdIns. However, the role each myotubularin family member plays in regulating endosomal PtdIns(3)P and thereby endocytic trafficking is not well established. Here, we identify the myotubularin family member MTMR4, which localizes to early endosomes and also to Rab11- and Sec15-positive recycling endosomes. In cells with MTMR4 knockdown, or following expression of the catalytically inactive MTMR4, MTMR4(C407A), the number of PtdIns(3)P-decorated endosomes significantly increased. MTMR4 overexpression delayed the exit of Tfn from early endosomes and its recycling to the plasma membrane. By contrast, expression of MTMR4(C407A), which acts as a dominant-negative construct, significantly accelerated Tfn recycling. However, in MTMR4 knockdown cells Tfn recycling was unchanged, suggesting that other MTMs might also contribute to recycling. MTMR4 regulated the subcellular distribution of Rab11 and, in cells with RNAi-mediated knockdown of MTMR4, Rab11 was directed away from the pericentriolar recycling compartment. The subcellular distribution of VAMP3, a v-SNARE protein that resides in recycling endosomes and endosome-derived transport vesicles, was also regulated by MTMR4. Therefore, MTMR4 localizes at the interface of early and recycling endosomes to regulate trafficking through this pathway.
Collapse
Affiliation(s)
- Monica J Naughtin
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton 3800, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Segretain D, Gilleron J, Carette D, Denizot JP, Pointis G. Differential time course of FSH/FSH receptor complex endocytosis within sertoli and germ cells during rat testis development. Dev Dyn 2010; 239:1113-23. [PMID: 20201104 DOI: 10.1002/dvdy.22261] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Follicle-stimulating hormone (FSH) is required for initiation and maintenance of spermatogenesis, a dynamic process of cell proliferation and maturation. By using FSH-gold particles and pulse-chase experiments, we analyzed the kinetics of FSH endocytosis in Sertoli and germ cells during development. Ultrastructural time-dependent analysis demonstrates that FSH was first located on plasma membrane, before being accumulated within the endosomal compartment, in the early endosomes, identified by morphological criteria and Rab-5 colocalization. Thereafter, FSH-gold was routed to the degradation pathway. The FSH endocytosis kinetic was similar in Sertoli cells, spermatogonia and spermatocytes. However, quantitative analysis of gold particles revealed differences in the dynamic of FSH accumulation in the endosomes between immature and mature rats. This age-dependent kinetic of FSH endocytosis, mostly detectable by ultrastructural analysis associated with quantitative data, argues for a potential new regulatory mechanism of the FSH signalling pathway that could occur during maturation of testicular cells.
Collapse
|
38
|
Lavoie JN, Landry MC, Faure RL, Champagne C. Src-family kinase signaling, actin-mediated membrane trafficking and organellar dynamics in the control of cell fate: lessons to be learned from the adenovirus E4orf4 death factor. Cell Signal 2010; 22:1604-14. [PMID: 20417707 DOI: 10.1016/j.cellsig.2010.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 04/15/2010] [Indexed: 12/15/2022]
Abstract
Evidence has accumulated that there are different modes of regulated cell death, which share overlapping signaling pathways. Cytoskeletal-dependent inter-organellar communication as a result of protein and lipid trafficking in and out of organelles has emerged as a common, key issue in the regulation of cell death modalities. The movement of proteins and lipids between cell compartments is believed to relay death signals in part through modifications of organelles dynamics. Little is known, however, regarding how trafficking is integrated within stress signaling pathways directing organelle-specific remodeling events. In this review, we discuss emerging evidence supporting a role for regulated changes in actin dynamics and intracellular membrane flow. Based on recent findings using the adenovirus E4orf4 death factor as a probing tool to tackle the mechanistic underpinnings that control alternative modes of cell death, we propose the existence of multifunctional platforms at the endosome-Golgi interface regulated by SFK-signaling. These endosomal platforms could be mobilized during cell activation processes to reorganize cellular membranes and promote inter-organelle signaling.
Collapse
Affiliation(s)
- Josée N Lavoie
- Centre de Recherche en Cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, CRCHUQ, Québec, Canada.
| | | | | | | |
Collapse
|
39
|
Li Y, Wang G, Lin K, Yin H, Zhou C, Liu T, Wu G, Qian G. Rab1 GTPase promotes expression of beta-adrenergic receptors in rat pulmonary microvascular endothelial cells. Int J Biochem Cell Biol 2010; 42:1201-1209. [PMID: 20417717 DOI: 10.1016/j.biocel.2010.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 04/05/2010] [Accepted: 04/16/2010] [Indexed: 12/12/2022]
Abstract
It is known that Rab1 regulates the expression and function of beta-adrenoceptors (beta-ARs) in many cells. However, the effect of these changes in rat pulmonary microvascular endothelial cells (RPMVECs) is not known. In the present study, we investigated the role of Rab1, a Ras-like GTPase that coordinates protein transport from the endoplasmic reticulum (ER) to the Golgi body and regulates the cell-surface targeting and function of endogenous beta-ARs in RPMVECs in the presence of lipopolysaccharide (LPS). We found that lentivirus-driven expression of wild-type Rab1 (Rab1WT) in RPMVECs strongly enhanced the amount of beta-ARs on the cell surface, whereas the dominant-negative mutant Rab1N124I significantly attenuated beta-ARs expression on the cell surface. In addition, LPS stimulation significantly reduced beta-ARs expression on the cell surface in RPMVECs; however, this effect was reversed by over-expression of wild-type Rab1WT. Fluorescent microscopy analysis demonstrated that expression of Rab1N124I and Rab1 small interfering RNA (siRNA) significantly induced the accumulation of green fluorescent protein (GFP)-tagged beta(2)-AR in the ER. Consistent with their effects on beta-ARs export, Rab1WT and Rab1N124I differentially modified the beta-AR-mediated activation of extracellular signal-regulated kinase1/2 (ERK1/2). Importantly, over-expression of Rab1WT markedly reduced LPS-induced hyper-permeability of RPMVECs by increasing the expression of beta(2)-AR on the cell surface. These data reveal that beta-ARs function in RPMVECs could be modulated by manipulating beta-ARs traffic from the ER to the Golgi body. We propose the ER-to-Golgi transport as a regulatory site for control of permeability of RPMVECs.
Collapse
Affiliation(s)
- Yuncheng Li
- Institute of Respiratory Diseases, the Second Affiliated Hospital of the Third Military Medical University, Chongqing 400037, PR China
| | - Guansong Wang
- Institute of Respiratory Diseases, the Second Affiliated Hospital of the Third Military Medical University, Chongqing 400037, PR China
| | - Kexiong Lin
- Institute of Respiratory Diseases, the Second Affiliated Hospital of the Third Military Medical University, Chongqing 400037, PR China
| | - Hongjin Yin
- Institute of Respiratory Diseases, the Second Affiliated Hospital of the Third Military Medical University, Chongqing 400037, PR China
| | - Changxi Zhou
- Institute of Respiratory Diseases, the Second Affiliated Hospital of the Third Military Medical University, Chongqing 400037, PR China
| | - Ting Liu
- Institute of Respiratory Diseases, the Second Affiliated Hospital of the Third Military Medical University, Chongqing 400037, PR China
| | - Guangyu Wu
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences center, New Orleans., LA 70112, United States
| | - Guisheng Qian
- Institute of Respiratory Diseases, the Second Affiliated Hospital of the Third Military Medical University, Chongqing 400037, PR China
| |
Collapse
|
40
|
Krzyzaniak MA, Mach M, Britt WJ. HCMV-encoded glycoprotein M (UL100) interacts with Rab11 effector protein FIP4. Traffic 2010; 10:1439-57. [PMID: 19761540 DOI: 10.1111/j.1600-0854.2009.00967.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The envelope of human cytomegalovirus (HCMV) consists of a large number of glycoproteins. The most abundant glycoprotein in the HCMV envelope is the glycoprotein M (UL100), which together with glycoprotein N (UL73) form the gM/gN protein complex. Using yeast two-hybrid screening, we found that the gM carboxy-terminal cytoplasmic tail (gM-CT) interacts with FIP4, a Rab11-GTPase effector protein. Depletion of FIP4 expression in HCMV-infected cells resulted in a decrease in infectious virus production that was also associated with an alteration of the HCMV assembly compartment (AC) phenotype. A similar phenotype was also observed in HCMV-infected cells that expressed dominant negative Rab11(S25N). Recently, it has been shown that FIP4 interactions with Rab11 and additionally with Arf6/Arf5 are important for the vesicular transport of proteins in the endosomal recycling compartment (ERC) and during cytokinesis. Surprisingly, FIP4 interaction with gM-CT limited binding of FIP4 with Arf5/Arf6; however, FIP4 interaction with gM-CT did not prevent recruitment of Rab11 into the ternary complex. These data argued for a contribution of the ERC during cytoplasmic envelopment of HCMV and showed a novel FIP4 function independent of Arf5 or Arf6 activity.
Collapse
Affiliation(s)
- Magdalena A Krzyzaniak
- Department of Microbiology, University of Alabama at Birmingham, CHB160, Birmingham, AL 35233, USA
| | | | | |
Collapse
|
41
|
Abstract
The endomembrane system of eukaryotic cells uses membrane-enclosed carriers to move diverse macromolecules among different membrane-bound compartments, a requirement for cells to secrete and take up molecules from their environment. Two recycling pathways-biosynthetic and endocytic, each with specific lipid components-make up this system, with the Golgi apparatus mediating transport between the two. Here, we integrate lipid-based mechanisms into the description of this system. A partitioning model of the Golgi apparatus is discussed as a working hypothesis to explain how membrane lipids and proteins that are segregated based on lateral lipid partitioning support the unique composition of the biosynthetic and endocytic recycling pathways in the face of constant trafficking of molecular constituents. We further discuss how computational modeling can allow for interpretation of experimental findings and provide mechanistic insight into these important cellular pathways.
Collapse
Affiliation(s)
| | - Robert D. Phair
- Integrative Bioinformatics Inc., Los Altos, California 94024
| |
Collapse
|
42
|
Saraste J, Dale HA, Bazzocco S, Marie M. Emerging new roles of the pre-Golgi intermediate compartment in biosynthetic-secretory trafficking. FEBS Lett 2009; 583:3804-10. [PMID: 19887068 DOI: 10.1016/j.febslet.2009.10.084] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 10/21/2009] [Accepted: 10/30/2009] [Indexed: 12/30/2022]
Abstract
The intermediate compartment (IC) between the endoplasmic reticulum (ER) and the Golgi apparatus appears to constitute an autonomous organelle composed of spatially and functionally distinct, but interconnected, vacuolar and tubular subdomains. In mammalian cells the IC network is stably anchored at the cell center, communicating directly with the endocytic pathway via a pericentrosomal membrane system (PCMS). This finding suggests that the secretory pathway divides at the level of the IC, which functions as a sorting station both in Golgi-dependent and -independent trafficking. The tubular subdomain of the IC is capable of expansion in accordance with its proposed biosynthetic functions such as cholesterol synthesis.
Collapse
Affiliation(s)
- Jaakko Saraste
- Department of Biomedicine and Molecular Imaging Center, University of Bergen, Jonas Lies Vei 91, N-5009 Bergen, Norway.
| | | | | | | |
Collapse
|
43
|
Marie M, Dale HA, Sannerud R, Saraste J. The function of the intermediate compartment in pre-Golgi trafficking involves its stable connection with the centrosome. Mol Biol Cell 2009; 20:4458-70. [PMID: 19710425 PMCID: PMC2762134 DOI: 10.1091/mbc.e08-12-1229] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 08/18/2009] [Accepted: 08/19/2009] [Indexed: 01/03/2023] Open
Abstract
Because the functional borders of the intermediate compartment (IC) are not well defined, the spatial map of the transport machineries operating between the endoplasmic reticulum (ER) and the Golgi apparatus remains incomplete. Our previous studies showed that the IC consists of interconnected vacuolar and tubular parts with specific roles in pre-Golgi trafficking. Here, using live cell imaging, we demonstrate that the tubules containing the GTPase Rab1A create a long-lived membrane compartment around the centrosome. Separation of this pericentrosomal domain of the IC from the Golgi ribbon, due to centrosome motility, revealed that it contains a distinct pool of COPI coats and acts as a temperature-sensitive way station in post-ER trafficking. However, unlike the Golgi, the pericentrosomal IC resists the disassembly of COPI coats by brefeldin A, maintaining its juxtaposition with the endocytic recycling compartment, and operation as the focal point of a dynamic tubular network that extends to the cell periphery. These results provide novel insight into the compartmental organization of the secretory pathway and Golgi biogenesis. Moreover, they reveal a direct functional connection between the IC and the endosomal system, which evidently contributes to unconventional transport of the cystic fibrosis transmembrane conductance regulator to the cell surface.
Collapse
Affiliation(s)
- Michaël Marie
- Department of Biomedicine and Molecular Imaging Center, University of Bergen, N-5009 Bergen, Norway
| | | | | | | |
Collapse
|
44
|
Landry MC, Sicotte A, Champagne C, Lavoie JN. Regulation of cell death by recycling endosomes and golgi membrane dynamics via a pathway involving Src-family kinases, Cdc42 and Rab11a. Mol Biol Cell 2009; 20:4091-106. [PMID: 19641023 DOI: 10.1091/mbc.e09-01-0057] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Actin dynamics and membrane trafficking influence cell commitment to programmed cell death through largely undefined mechanisms. To investigate how actin and recycling endosome (RE) trafficking can engage death signaling, we studied the death program induced by the adenovirus early region 4 open reading frame 4 (E4orf4) protein as a model. We found that in the early stages of E4orf4 expression, Src-family kinases (SFKs), Cdc42, and actin perturbed the organization of the endocytic recycling compartment and promoted the transport of REs to the Golgi apparatus, while inhibiting recycling of protein cargos to the plasma membrane. The resulting changes in Golgi membrane dynamics that relied on actin-regulated Rab11a membrane trafficking triggered scattering of Golgi membranes and contributed to the progression of cell death. A similar mobilization of RE traffic mediated by SFKs, Cdc42 and Rab11a also contributed to Golgi fragmentation and to cell death progression in response to staurosporine, in a caspase-independent manner. Collectively, these novel findings suggest that diversion of RE trafficking to the Golgi complex through a pathway involving SFKs, Cdc42, and Rab11a plays a general role in death signaling by mediating regulated changes in Golgi dynamics.
Collapse
Affiliation(s)
- Marie-Claude Landry
- Centre de Recherche en Cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, Centre de Recherche du Centre Hospitalier Universitaire de Quebec, Québec G1R 2J6, Canada
| | | | | | | |
Collapse
|
45
|
At the crossroads of homoeostasis and disease: roles of the PACS proteins in membrane traffic and apoptosis. Biochem J 2009; 421:1-15. [PMID: 19505291 DOI: 10.1042/bj20081016] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The endomembrane system in mammalian cells has evolved over the past two billion years from a simple endocytic pathway in a single-celled primordial ancestor to complex networks supporting multicellular structures that form metazoan tissue and organ systems. The increased organellar complexity of metazoan cells requires additional trafficking machinery absent in yeast or other unicellular organisms to maintain organ homoeostasis and to process the signals that control proliferation, differentiation or the execution of cell death programmes. The PACS (phosphofurin acidic cluster sorting) proteins are one such family of multifunctional membrane traffic regulators that mediate organ homoeostasis and have important roles in diverse pathologies and disease states. This review summarizes our current knowledge of the PACS proteins, including their structure and regulation in cargo binding, their genetics, their roles in secretory and endocytic pathway traffic, interorganellar communication and how cell-death signals reprogramme the PACS proteins to regulate apoptosis. We also summarize our current understanding of how PACS genes are dysregulated in cancer and how viral pathogens ranging from HIV-1 to herpesviruses have evolved to usurp the PACS sorting machinery to promote virus assembly, viral spread and immunoevasion.
Collapse
|
46
|
Casbon AJ, Allen LAH, Dunn KW, Dinauer MC. Macrophage NADPH oxidase flavocytochrome B localizes to the plasma membrane and Rab11-positive recycling endosomes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:2325-39. [PMID: 19201887 PMCID: PMC2666390 DOI: 10.4049/jimmunol.0803476] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Flavocytochrome b(558), the catalytic core of the phagocytic NADPH oxidase, mediates the transfer of electrons from NADPH to molecular oxygen to generate superoxide for host defense. Flavocytochrome b is a membrane heterodimer consisting of a large subunit gp91(phox) (NOX2) and a smaller subunit, p22(phox). Although in neutrophils flavocytochrome b has been shown to localize to the plasma membrane and specific granules, little is known about its distribution in macrophages. Using immunofluorescent staining and live cell imaging of fluorescently tagged gp91(phox) and p22(phox), we demonstrate in a Chinese hamster ovary cell model system and in RAW 264.7 and primary murine bone marrow-derived macrophages that flavocytochrome b is found in the Rab11-positive recycling endocytic compartment, as well as in Rab5-positive early endosomes and plasma membrane. Additionally, we show that unassembled p22(phox) and gp91(phox) subunits localize to the endoplasmic reticulum, which redistribute to the cell surface and endosomal compartments following heterodimer formation. These studies show for the first time that flavocytochrome b localizes to intracellular compartments in macrophages that recycle to the plasma membrane, which may act as a reservoir to deliver flavocytochrome b to the cell surface and phagosome membranes.
Collapse
Affiliation(s)
- Amy-Jo Casbon
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics (Hematology/Oncology), James Whitcomb Riley Hospital for Children, Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Lee-Ann H. Allen
- Inflammation Program, Departments of Medicine and Microbiology, University of Iowa and the Veterans Affairs Medical Center, Coralville, IA 52241
| | - Kenneth W. Dunn
- Department of Medicine, Division of Nephrology, Indiana University Medical Center, Indianapolis, IN 46202
| | - Mary C. Dinauer
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics (Hematology/Oncology), James Whitcomb Riley Hospital for Children, Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
47
|
Milstein ML, Houle TD, Cala SE. Calsequestrin isoforms localize to different ER subcompartments: Evidence for polymer and heteropolymer-dependent localization. Exp Cell Res 2009; 315:523-34. [DOI: 10.1016/j.yexcr.2008.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Revised: 11/11/2008] [Accepted: 11/11/2008] [Indexed: 11/25/2022]
|
48
|
Agop-Nersesian C, Naissant B, Rached FB, Rauch M, Kretzschmar A, Thiberge S, Menard R, Ferguson DJP, Meissner M, Langsley G. Rab11A-controlled assembly of the inner membrane complex is required for completion of apicomplexan cytokinesis. PLoS Pathog 2009; 5:e1000270. [PMID: 19165333 PMCID: PMC2622761 DOI: 10.1371/journal.ppat.1000270] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 12/15/2008] [Indexed: 12/22/2022] Open
Abstract
The final step during cell division is the separation of daughter cells, a process that requires the coordinated delivery and assembly of new membrane to the cleavage furrow. While most eukaryotic cells replicate by binary fission, replication of apicomplexan parasites involves the assembly of daughters (merozoites/tachyzoites) within the mother cell, using the so-called Inner Membrane Complex (IMC) as a scaffold. After de novo synthesis of the IMC and biogenesis or segregation of new organelles, daughters bud out of the mother cell to invade new host cells. Here, we demonstrate that the final step in parasite cell division involves delivery of new plasma membrane to the daughter cells, in a process requiring functional Rab11A. Importantly, Rab11A can be found in association with Myosin-Tail-Interacting-Protein (MTIP), also known as Myosin Light Chain 1 (MLC1), a member of a 4-protein motor complex called the glideosome that is known to be crucial for parasite invasion of host cells. Ablation of Rab11A function results in daughter parasites having an incompletely formed IMC that leads to a block at a late stage of cell division. A similar defect is observed upon inducible expression of a myosin A tail-only mutant. We propose a model where Rab11A-mediated vesicular traffic driven by an MTIP-Myosin motor is necessary for IMC maturation and to deliver new plasma membrane to daughter cells in order to complete cell division. Apicomplexan parasites are unusual in that they replicate by assembling daughter parasites within the mother cell. This involves the ordered assembly of an Inner Membrane Complex (IMC), a scaffold consisting of flattened membrane cisternae and a subpellicular network made up of microtubules and scaffold proteins. The IMC begins to form at the onset of replication, but its maturation occurs at the final stage of cytokinesis (the last step during cell division) upon the addition of motor (glideosome) components such as GAP45 (Glideosome Associated Protein), Myosin A (MyoA), and Myosin-Tail-Interacting-Protein (MTIP, also known as Myosin Light Chain 1) that are necessary to drive the gliding motility required for parasite invasion. We demonstrate that Rab11A regulates not only delivery of new plasmamembrane to daughter cells, but, importantly, also correct IMC formation. We show that Rab11A physically interacts with MTIP/MLC1, implicating unconventional myosin(s) in both cytokinesis and IMC maturation, and, consistently, overexpression of a MyoA tail-only mutant generates a default similar to that which we observe upon Rab11A ablation. We propose a model where Rab11A-mediated vesicular traffic is required for the delivery of new plasma membrane to daughter cells and for the maturation of the IMC in order to complete cell division.
Collapse
Affiliation(s)
- Carolina Agop-Nersesian
- Hygieneinstitut, Department of Parasitology, University Hospital Heidelberg, Heidelberg, Germany
| | - Bernina Naissant
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Department of Infectious Diseases, Institut Cochin, Inserm U567, CNRS UMR 8104, Faculté de Médecine Paris V – Hôpital Cochin, Paris, France
| | - Fathia Ben Rached
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Department of Infectious Diseases, Institut Cochin, Inserm U567, CNRS UMR 8104, Faculté de Médecine Paris V – Hôpital Cochin, Paris, France
| | - Manuel Rauch
- Hygieneinstitut, Department of Parasitology, University Hospital Heidelberg, Heidelberg, Germany
| | - Angelika Kretzschmar
- Hygieneinstitut, Department of Parasitology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sabine Thiberge
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, Paris, France
| | - Robert Menard
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, Paris, France
| | - David J. P. Ferguson
- Nuffield Department of Pathology, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Markus Meissner
- Hygieneinstitut, Department of Parasitology, University Hospital Heidelberg, Heidelberg, Germany
- * E-mail: (MM); (GL)
| | - Gordon Langsley
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Department of Infectious Diseases, Institut Cochin, Inserm U567, CNRS UMR 8104, Faculté de Médecine Paris V – Hôpital Cochin, Paris, France
- * E-mail: (MM); (GL)
| |
Collapse
|
49
|
Chapter 5: rab proteins and their interaction partners. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 274:235-74. [PMID: 19349039 DOI: 10.1016/s1937-6448(08)02005-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Ras superfamily consists of over 150 low molecular weight proteins that cycle between an inactive guanosine diphosphate (GDP)-bound state and an active guanosine triphosphate (GTP)-bound state. They are involved in a variety of signal transduction pathways that regulate cell growth, intracellular trafficking, cell migration, and apoptosis. Several methods have been devised to detect and characterize the interacting partners of small GTPases with the aim of better understanding their physiological function in normal cells and tumor cells. The Rab (Ras analog in brain) proteins form the largest family within the Ras superfamily. Rab proteins regulate vesicular trafficking pathways, behaving as membrane-associated molecular switches. The guanine nucleotide-binding status of Rab proteins is modulated by three different classes of regulatory proteins, which have been extensively studied for the Rab molecules but also for other subfamilies of the Ras superfamily. Furthermore, numerous effector molecules have been isolated especially for the Rab subfamily of proteins, which interact via a Rab-binding domain (RBD) and are recruited afterwards to specific sub-cellular compartments by the Rab proteins.
Collapse
|
50
|
Kleine-Vehn J, Friml J. Polar targeting and endocytic recycling in auxin-dependent plant development. Annu Rev Cell Dev Biol 2008; 24:447-73. [PMID: 18837671 DOI: 10.1146/annurev.cellbio.24.110707.175254] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant development is characterized by a profound phenotypic plasticity that often involves redefining of the developmental fate and polarity of cells within differentiated tissues. The plant hormone auxin and its directional intercellular transport play a major role in these processes because they provide positional information and link cell polarity with tissue patterning. This plant-specific mechanism of transport-dependent auxin gradients depends on subcellular dynamics of auxin transport components, in particular on endocytic recycling and polar targeting. Recent insights into these cellular processes in plants have revealed important parallels to yeast and animal systems, including clathrin-dependent endocytosis, retromer function, and transcytosis, but have also emphasized unique features of plant cells such as diversity of polar targeting pathways; integration of environmental signals into subcellular trafficking; and the link between endocytosis, cell polarity, and cell fate specification. We review these advances and focus on the translation of the subcellular dynamics to the regulation of whole-plant development.
Collapse
Affiliation(s)
- Jürgen Kleine-Vehn
- Department of Plant Systems Biology, VIB, and Department of Molecular Genetics, Ghent University, 9052 Ghent, Belgium
| | | |
Collapse
|