1
|
Liu Y, Sun W, Liu L, Cheng J, Li J, Huang Z, Ouyang M. Elevated KIF2C Expression Drives Osteosarcoma Progression by Modulating the Wnt/β-Catenin Signaling Pathway and Contributing to an Immunosuppressive Tumor Microenvironment. Cancer Med 2025; 14:e70915. [PMID: 40292920 PMCID: PMC12035763 DOI: 10.1002/cam4.70915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/01/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Although kinesin family member 2C (KIF2C) is implicated in various cancers, its role in osteosarcoma (OS) and the associated inflammatory microenvironment remains unclear. METHODS Publicly available datasets were analyzed to determine KIF2C expression, diagnostic value, and prognostic relevance in OS. In vitro (proliferation, colony formation, apoptosis, migration, invasion) and in vivo assays assessed its biological functions. KEGG enrichment and GSVA explored underlying pathways. ssGSEA, ESTIMATE algorithms, and single-cell sequencing evaluated the immune context, and molecular docking and molecular dynamics identified potential inhibitory compounds. RESULTS KIF2C was significantly overexpressed in OS, effectively distinguishing OS from normal tissues. Elevated KIF2C levels correlated with poor survival outcomes. Silencing KIF2C suppressed OS cell proliferation, migration, invasion, and in vivo tumor growth, while promoting apoptosis; conversely, overexpression of KIF2C had the opposite effect. Mechanistically, co-immunoprecipitation results indicated that KIF2C can bind to β-catenin to regulate the Wnt/β-catenin pathway. Furthermore, high KIF2C expression was associated with an immunosuppressive tumor microenvironment characterized by immune exhaustion. Molecular docking and molecular dynamics suggested butein as a candidate small-molecule inhibitor targeting KIF2C-related oncogenic mechanisms. CONCLUSION KIF2C drives OS progression by enhancing Wnt/β-catenin signaling and fostering an immunosuppressive microenvironment. Targeting KIF2C may offer new therapeutic approaches in managing OS.
Collapse
Affiliation(s)
- Ya‐Yun Liu
- Department of OrthopaedicsJiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical CollegeNanchangPeople's Republic of China
| | - Wu Sun
- Discipline of Chinese and Western Integrative MedicineJiangxi University of Chinese MedicineNanchangPeople's Republic of China
| | - Lin Liu
- Department of NursingJiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical CollegeNanchangPeople's Republic of China
| | - Jin‐Hui Cheng
- Department of OrthopaedicsJiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical CollegeNanchangPeople's Republic of China
| | - Jing‐Tang Li
- Department of OrthopaedicsJiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical CollegeNanchangPeople's Republic of China
| | - Zu‐Tai Huang
- Department of OrthopaedicsJiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical CollegeNanchangPeople's Republic of China
| | - Min Ouyang
- Department of OrthopaedicsJiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical CollegeNanchangPeople's Republic of China
| |
Collapse
|
2
|
Yang Y, Zhang S, Wu Z, Li W, Sun X, Xuan Y, Hang T, Xu L, Chen X. Crystal structures of Kif2A complexed with WDR5 reveal the structural plasticity of WIN-S7 sites. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 40302551 DOI: 10.3724/abbs.2025066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
Chromosome congression and spindle assembly are essential for genomic stability and proper cell division, with deficiencies in these processes linked to tumorigenesis. WD repeat-containing protein 5 (WDR5), a core component of the mixed lineage leukemia (MLL) methyltransferase complex, directly binds to kinesin family member 2A (Kif2A) to regulate these mitotic events. Despite the importance of this interaction, its structural basis for Kif2A recognition by WDR5 remains unclear. Here, we determine the crystal structure of WDR5 in complex with a Kif2A-derived peptide (residues 114-122) at a resolution of 1.85 Å. Structural analysis reveals that Kif2A engages both the WIN and S7 sites of WDR5 via Arg117 and Ser121, with Ser121 forming hydrogen bonds with WDR5 Tyr191 and Lys259, driving Tyr191 rotation and opening the S7 pocket. Additional structures of WDR5 complexed with truncated or mutated Kif2A peptides and a WDR5 Y191F variant highlight the dynamic nature of Tyr191. Notably, anti-WDR5 compounds exhibit a similar binding mode at the WDR5 WIN-S7 site. The results of mutagenesis combined with isothermal titration calorimetry (ITC) assays underscore the critical roles of Arg117 and Ser121 in mediating the binding of Kif2A to WDR5. In summary, our findings provide atomic-level insights into the molecular mechanisms underlying the non-canonical mitotic function of the MLL/WDR5 complex and highlight WIN-S7 sites as promising therapeutic targets for diseases associated with chromosomal instability, such as cancers.
Collapse
Affiliation(s)
- Yang Yang
- School of Life Sciences, Anhui University, Hefei 230601, China
| | - Shuting Zhang
- School of Life Sciences, Anhui University, Hefei 230601, China
| | - Zhangyu Wu
- School of Life Sciences, Anhui University, Hefei 230601, China
| | - Wenwen Li
- School of Life Sciences, Anhui University, Hefei 230601, China
| | - Xuefang Sun
- School of Life Sciences, Anhui University, Hefei 230601, China
| | - Yumi Xuan
- Center for Human Tissues and Organs Degeneration, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 581055, China
| | - Tianrong Hang
- School of Life Sciences, Anhui University, Hefei 230601, China
| | - Li Xu
- Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen 518107, China
| | - Xuemin Chen
- School of Life Sciences, Anhui University, Hefei 230601, China
| |
Collapse
|
3
|
Wang C, Su Y, Shi J, Feng G. KIF2C promotes oral squamous cell carcinoma progression via PLK1 upregulation: implications for biomarker development and therapeutic targeting. J Mol Histol 2025; 56:146. [PMID: 40293559 DOI: 10.1007/s10735-025-10415-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 04/02/2025] [Indexed: 04/30/2025]
Abstract
Oral squamous cell carcinoma (OSCC) is a highly aggressive malignancy with poor prognosis due to late detection, rapid progression, and frequent metastasis, underscoring the urgent need for novel therapeutic targets. This study investigates the roles of kinesin family member 2C (KIF2C) and Polo-like kinase 1 (PLK1) in OSCC progression and their functional interplay. Immunohistochemical and western blot analyses revealed marked upregulation of KIF2C and PLK1 in human OSCC tissues and cell lines (SCC9, SCC25, Cal27). Functional characterization in Cal27 cells (selected for highest KIF2C expression via qPCR/WB) demonstrated that KIF2C knockdown via siRNA transfection suppressed proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT), while inducing apoptosis and G0/G1 cell cycle arrest. Mechanistically, KIF2C silencing downregulated PLK1 expression, concomitantly reducing EMT markers (N-cadherin, vimentin), matrix metalloproteinases (MMP-2/9), and angiogenesis factors (VEGF, α-SMA). Complementary assays (CCK-8, EdU, Transwell, wound healing) and flow cytometry confirmed that KIF2C-PLK1 axis promotes tumor growth by enhancing matrix degradation, angiogenesis, and S-phase proliferation while inhibiting apoptosis. These findings establish KIF2C as a pivotal regulator of OSCC progression through PLK1-mediated signaling, highlighting their dual potential as prognostic biomarkers and therapeutic targets for OSCC management.
Collapse
Affiliation(s)
- Chenfei Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yuyuan Su
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jinlong Shi
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Guijuan Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
4
|
Tian R, Kong J, Zang H, Li S, Liu X, Cheng Y, Ni G, Gong L. Overexpression of KIF2C amplifies tamoxifen resistance and lung metastasis of breast cancer through PLK1/C-Myc pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04040-y. [PMID: 40100379 DOI: 10.1007/s00210-025-04040-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/07/2025] [Indexed: 03/20/2025]
Abstract
We highlighted the importance of KIF2C in the development of resistance to tamoxifen and its role in promoting lung metastasis in breast cancer, as well as the mechanisms that underpin these processes. KIF2C overexpression and knockdown lentiviruses were transfected into MCF-7 and MCF-7/TAM cells. A nude mouse model of MCF-7/TAM tumors and lung metastasis was established. The PLK1 inhibitor BI2536 was used to explore the underlying mechanism. KIF2C is elevated in tamoxifen-resistant breast cancer. KIF2C knockdown MCF7/TAM cells show increased sensitivity to tamoxifen, indicated by fewer cell clones, invasive cells, migration area, and lumen count, as well as a higher rate of cell apoptosis. KIF2C is linked to the PLK1/c-Myc signaling pathway, and BI2536 inhibits its enhancement of tamoxifen resistance. Results from an in situ experiment on breast cancer in mice are consistent with in vitro findings. KIF2C upregulation is linked to greater tamoxifen resistance in breast cancer, facilitating progression and lung metastasis in resistant cases. KIF2C's potential mechanism of action is linked to the PLK1/c-Myc signaling pathway.
Collapse
Affiliation(s)
- Rui Tian
- Department of Breast Surgery, Yantaishan Hospital, No. 10087 Keji Road, Laishan District, Yantai, 264000, Shandong, China
| | - Jilin Kong
- Department of Breast Surgery, Yantaishan Hospital, No. 10087 Keji Road, Laishan District, Yantai, 264000, Shandong, China
| | - Hongyan Zang
- Department of Breast Surgery, Yantaishan Hospital, No. 10087 Keji Road, Laishan District, Yantai, 264000, Shandong, China
| | - Shuyan Li
- Department of Breast Surgery, Yantaishan Hospital, No. 10087 Keji Road, Laishan District, Yantai, 264000, Shandong, China
| | - Xiangjuan Liu
- Department of Breast Surgery, Yantaishan Hospital, No. 10087 Keji Road, Laishan District, Yantai, 264000, Shandong, China
| | - Yan Cheng
- Department of Breast Surgery, Yantaishan Hospital, No. 10087 Keji Road, Laishan District, Yantai, 264000, Shandong, China
| | - Gaofeng Ni
- Department of Breast Surgery, Yantaishan Hospital, No. 10087 Keji Road, Laishan District, Yantai, 264000, Shandong, China
| | - Liguo Gong
- Department of Breast Surgery, Yantaishan Hospital, No. 10087 Keji Road, Laishan District, Yantai, 264000, Shandong, China.
| |
Collapse
|
5
|
Zhang C, Wu BZ, Thu KL. Targeting Kinesins for Therapeutic Exploitation of Chromosomal Instability in Lung Cancer. Cancers (Basel) 2025; 17:685. [PMID: 40002279 PMCID: PMC11853690 DOI: 10.3390/cancers17040685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
New therapeutic approaches that antagonize tumour-promoting phenotypes in lung cancer are needed to improve patient outcomes. Chromosomal instability (CIN) is a hallmark of lung cancer characterized by the ongoing acquisition of genetic alterations that include the gain and loss of whole chromosomes or segments of chromosomes as well as chromosomal rearrangements during cell division. Although it provides genetic diversity that fuels tumour evolution and enables the acquisition of aggressive phenotypes like immune evasion, metastasis, and drug resistance, too much CIN can be lethal because it creates genetic imbalances that disrupt essential genes and induce severe proteotoxic and metabolic stress. As such, sustaining advantageous levels of CIN that are compatible with survival is a fine balance in cancer cells, and potentiating CIN to levels that exceed a tolerable threshold is a promising treatment strategy for inherently unstable tumours like lung cancer. Kinesins are a superfamily of motor proteins with many members having functions in mitosis that are critical for the correct segregation of chromosomes and, consequently, maintaining genomic integrity. Accordingly, inhibition of such kinesins has been shown to exacerbate CIN. Therefore, inhibiting mitotic kinesins represents a promising strategy for amplifying CIN to lethal levels in vulnerable cancer cells. In this review, we describe the concept of CIN as a therapeutic vulnerability and comprehensively summarize studies reporting the clinical and functional relevance of kinesins in lung cancer, with the goal of outlining how kinesin inhibition, or "targeting kinesins", holds great potential as an effective strategy for treating lung cancer.
Collapse
Affiliation(s)
- Christopher Zhang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
| | - Benson Z. Wu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
| | - Kelsie L. Thu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
6
|
Theotoki EI, Kakoulidis P, Velentzas AD, Nikolakopoulos KS, Angelis NV, Tsitsilonis OE, Anastasiadou E, Stravopodis DJ. TRBP2, a Major Component of the RNAi Machinery, Is Subjected to Cell Cycle-Dependent Regulation in Human Cancer Cells of Diverse Tissue Origin. Cancers (Basel) 2024; 16:3701. [PMID: 39518139 PMCID: PMC11545598 DOI: 10.3390/cancers16213701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Transactivation Response Element RNA-binding Protein (TRBP2) is a double-stranded RNA-binding protein widely known for its critical contribution to RNA interference (RNAi), a conserved mechanism of gene-expression regulation mediated through small non-coding RNA moieties (ncRNAs). Nevertheless, TRBP2 has also proved to be involved in other molecular pathways and biological processes, such as cell growth, organism development, spermatogenesis, and stress response. Mutations or aberrant expression of TRBP2 have been previously associated with diverse human pathologies, including Alzheimer's disease, cardiomyopathy, and cancer, with TRBP2 playing an essential role(s) in proliferation, invasion, and metastasis of tumor cells. METHODS Hence, the present study aims to investigate, via employment of advanced flow cytometry, immunofluorescence, cell transgenesis and bioinformatics technologies, new, still elusive, functions and properties of TRBP2, particularly regarding its cell cycle-specific control during cancer cell division. RESULTS We have identified a novel, mitosis-dependent regulation of TRBP2 protein expression, as clearly evidenced by the lack of its immunofluorescence-facilitated detection during mitotic phases, in several human cancer cell lines of different tissue origin. Notably, the obtained TRBP2-downregulation patterns seem to derive from molecular mechanisms that act independently of oncogenic activities (e.g., malignancy grade), metastatic capacities (e.g., low versus high), and mutational signatures (e.g., p53-/- or p53ΔΥ126) of cancer cells. CONCLUSIONS Taken together, we herein propose that TRBP2 serves as a novel cell cycle-dependent regulator, likely exerting mitosis-suppression functions, and, thus, its mitosis-specific downregulation can hold strong promise to be exploited for the efficient and successful prognosis, diagnosis, and (radio-/chemo-)therapy of diverse human malignancies, in the clinic.
Collapse
Affiliation(s)
- Eleni I. Theotoki
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (E.I.T.); (K.-S.N.)
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 115 27 Athens, Greece;
| | - Panos Kakoulidis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 115 27 Athens, Greece;
- Department of Informatics and Telecommunications, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece
| | - Athanassios D. Velentzas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (E.I.T.); (K.-S.N.)
| | - Konstantinos-Stylianos Nikolakopoulos
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (E.I.T.); (K.-S.N.)
| | - Nikolaos V. Angelis
- Section of Animal and Human Physiology, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (N.V.A.); (O.E.T.)
| | - Ourania E. Tsitsilonis
- Section of Animal and Human Physiology, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (N.V.A.); (O.E.T.)
| | - Ema Anastasiadou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 115 27 Athens, Greece;
- Department of Health Science, Higher Colleges of Technology (HCT), Academic City Campus, Dubai 17155, United Arab Emirates
| | - Dimitrios J. Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (E.I.T.); (K.-S.N.)
| |
Collapse
|
7
|
Bouchenafa R, Johnson de Sousa Brito FM, Piróg KA. Involvement of kinesins in skeletal dysplasia: a review. Am J Physiol Cell Physiol 2024; 327:C278-C290. [PMID: 38646780 PMCID: PMC11293425 DOI: 10.1152/ajpcell.00613.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
Skeletal dysplasias are group of rare genetic diseases resulting from mutations in genes encoding structural proteins of the cartilage extracellular matrix (ECM), signaling molecules, transcription factors, epigenetic modifiers, and several intracellular proteins. Cell division, organelle maintenance, and intracellular transport are all orchestrated by the cytoskeleton-associated proteins, and intracellular processes affected through microtubule-associated movement are important for the function of skeletal cells. Among microtubule-associated motor proteins, kinesins in particular have been shown to play a key role in cell cycle dynamics, including chromosome segregation, mitotic spindle formation, and ciliogenesis, in addition to cargo trafficking, receptor recycling, and endocytosis. Recent studies highlight the fundamental role of kinesins in embryonic development and morphogenesis and have shown that mutations in kinesin genes lead to several skeletal dysplasias. However, many questions concerning the specific functions of kinesins and their adaptor molecules as well as specific molecular mechanisms in which the kinesin proteins are involved during skeletal development remain unanswered. Here we present a review of the skeletal dysplasias resulting from defects in kinesins and discuss the involvement of kinesin proteins in the molecular mechanisms that are active during skeletal development.
Collapse
Affiliation(s)
- Roufaida Bouchenafa
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Katarzyna Anna Piróg
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
8
|
Becker IC, Wilkie AR, Nikols E, Carminita E, Roweth HG, Tilburg J, Sciaudone AR, Noetzli LJ, Fatima F, Couldwell G, Ray A, Mogilner A, Machlus KR, Italiano JE. Cell cycle-dependent centrosome clustering precedes proplatelet formation. SCIENCE ADVANCES 2024; 10:eadl6153. [PMID: 38896608 PMCID: PMC11186502 DOI: 10.1126/sciadv.adl6153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Platelet-producing megakaryocytes (MKs) primarily reside in the bone marrow, where they duplicate their DNA content with each cell cycle resulting in polyploid cells with an intricate demarcation membrane system. While key elements of the cytoskeletal reorganizations during proplatelet formation have been identified, what initiates the release of platelets into vessel sinusoids remains largely elusive. Using a cell cycle indicator, we observed a unique phenomenon, during which amplified centrosomes in MKs underwent clustering following mitosis, closely followed by proplatelet formation, which exclusively occurred in G1 of interphase. Forced cell cycle arrest in G1 increased proplatelet formation not only in vitro but also in vivo following short-term starvation of mice. We identified that inhibition of the centrosomal protein kinesin family member C1 (KIFC1) impaired clustering and subsequent proplatelet formation, while KIFC1-deficient mice exhibited reduced platelet counts. In summary, we identified KIFC1- and cell cycle-mediated centrosome clustering as an important initiator of proplatelet formation from MKs.
Collapse
Affiliation(s)
- Isabelle C. Becker
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Adrian R. Wilkie
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Emma Nikols
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
| | - Estelle Carminita
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Harvey G. Roweth
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Brigham and Women’s Hospital, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Julia Tilburg
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | | | - Leila J. Noetzli
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Brigham and Women’s Hospital, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Farheen Fatima
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
| | | | - Anjana Ray
- Brigham and Women’s Hospital, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
| | - Kellie R. Machlus
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Joseph E. Italiano
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| |
Collapse
|
9
|
Nasimi Shad A, Fanoodi A, Maharati A, Akhlaghipour I, Bina AR, Saburi E, Forouzanfar F, Moghbeli M. Role of microRNAs in tumor progression by regulation of kinesin motor proteins. Int J Biol Macromol 2024; 270:132347. [PMID: 38754673 DOI: 10.1016/j.ijbiomac.2024.132347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Aberrant cell proliferation is one of the main characteristics of tumor cells that can be affected by many cellular processes and signaling pathways. Kinesin superfamily proteins (KIFs) are motor proteins that are involved in cytoplasmic transportations and chromosomal segregation during cell proliferation. Therefore, regulation of the KIF functions as vital factors in chromosomal stability is necessary to maintain normal cellular homeostasis and proliferation. KIF deregulations have been reported in various cancers. MicroRNAs (miRNAs) and signaling pathways are important regulators of KIF proteins. MiRNAs have key roles in regulation of the cell proliferation, migration, and apoptosis. In the present review, we discussed the role of miRNAs in tumor biology through the regulation of KIF proteins. It has been shown that miRNAs have mainly a tumor suppressor function via the KIF targeting. This review can be an effective step to introduce the miRNAs/KIFs axis as a probable therapeutic target in tumor cells.
Collapse
Affiliation(s)
- Arya Nasimi Shad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Fanoodi
- Student Research Committee, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Reza Bina
- Student Research Committee, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Liu JC, Pan ZN, Ju JQ, Zou YJ, Pan MH, Wang Y, Wu X, Sun SC. Kinesin KIF3A regulates meiotic progression and spindle assembly in oocyte meiosis. Cell Mol Life Sci 2024; 81:168. [PMID: 38587639 PMCID: PMC11001723 DOI: 10.1007/s00018-024-05213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
Kinesin family member 3A (KIF3A) is a microtubule-oriented motor protein that belongs to the kinesin-2 family for regulating intracellular transport and microtubule movement. In this study, we characterized the critical roles of KIF3A during mouse oocyte meiosis. We found that KIF3A associated with microtubules during meiosis and depletion of KIF3A resulted in oocyte maturation defects. LC-MS data indicated that KIF3A associated with cell cycle regulation, cytoskeleton, mitochondrial function and intracellular transport-related molecules. Depletion of KIF3A activated the spindle assembly checkpoint, leading to metaphase I arrest of the first meiosis. In addition, KIF3A depletion caused aberrant spindle pole organization based on its association with KIFC1 to regulate expression and polar localization of NuMA and γ-tubulin; and KIF3A knockdown also reduced microtubule stability due to the altered microtubule deacetylation by histone deacetylase 6 (HDAC6). Exogenous Kif3a mRNA supplementation rescued the maturation defects caused by KIF3A depletion. Moreover, KIF3A was also essential for the distribution and function of mitochondria, Golgi apparatus and endoplasmic reticulum in oocytes. Conditional knockout of epithelial splicing regulatory protein 1 (ESRP1) disrupted the expression and localization of KIF3A in oocytes. Overall, our results suggest that KIF3A regulates cell cycle progression, spindle assembly and organelle distribution during mouse oocyte meiosis.
Collapse
Affiliation(s)
- Jing-Cai Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yuan-Jing Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yue Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
11
|
Ruiz-Reig N, Hakanen J, Tissir F. Connecting neurodevelopment to neurodegeneration: a spotlight on the role of kinesin superfamily protein 2A (KIF2A). Neural Regen Res 2024; 19:375-379. [PMID: 37488893 PMCID: PMC10503618 DOI: 10.4103/1673-5374.375298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 07/26/2023] Open
Abstract
Microtubules play a central role in cytoskeletal changes during neuronal development and maintenance. Microtubule dynamics is essential to polarity and shape transitions underlying neural cell division, differentiation, motility, and maturation. Kinesin superfamily protein 2A is a member of human kinesin 13 gene family of proteins that depolymerize and destabilize microtubules. In dividing cells, kinesin superfamily protein 2A is involved in mitotic progression, spindle assembly, and chromosome segregation. In postmitotic neurons, it is required for axon/dendrite specification and extension, neuronal migration, connectivity, and survival. Humans with kinesin superfamily protein 2A mutations suffer from a variety of malformations of cortical development, epilepsy, autism spectrum disorder, and neurodegeneration. In this review, we discuss how kinesin superfamily protein 2A regulates neuronal development and function, and how its deregulation causes neurodevelopmental and neurological disorders.
Collapse
Affiliation(s)
- Nuria Ruiz-Reig
- Université catholique de Louvain, Institute of neuroscience, Brussels, Belgium
| | - Janne Hakanen
- Université catholique de Louvain, Institute of neuroscience, Brussels, Belgium
| | - Fadel Tissir
- Université catholique de Louvain, Institute of neuroscience, Brussels, Belgium
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|
12
|
Hussein D, Saka M, Baeesa S, Bangash M, Alghamdi F, Al Zughaibi T, AlAjmi MF, Haque S, Rehman MT. Structure-based virtual screening and molecular docking approaches to identify potential inhibitors against KIF2C to combat glioma. J Biomol Struct Dyn 2023; 42:13816-13829. [PMID: 37942622 DOI: 10.1080/07391102.2023.2278750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/14/2023] [Indexed: 11/10/2023]
Abstract
Glioma, a kind of malignant brain tumor, is extremely lethal. Kinesin family member 2C (KIF2C) was found to have an aberrant expression in several cancer types, including lung cancer and glioma. KIF2C may therefore be a useful therapeutic target for the treatment of glioma. In the current study, new drug candidates that may function as KIF2C enzyme inhibitors were discovered. MTi OpenScreen was used to carry out the structure-based virtual screening of an inbuilt drug library containing 150,000 compounds. These compounds belong to different classes, such as natural product-based compounds (NP-lib), purchasable approved drugs (Drugs-lib), and food constituents compound collection (FOOD-lib). Based on their binding affinities, a total of 84 compounds were further pushed to calculate ADMET properties. The compounds (16) meeting the ADMET cutoff ranges were then further docked to the receptor to find their plausible binding modes using the Glide tool's standard precision (SP) technique. The docking results were examined using the Glide gscore, and the best binding compounds (Rimacalib and Sarizotan) were chosen to test their stability with KIF2C protein through molecular dynamics (MD) simulation. Similarly, Principal Component Analysis and cross-correlation matrix were also examined. The MM/GBSA binding free energies showed a considerable energy contribution in the binding of hits with the KIF2C. Collectively, these findings strongly suggest the potential of the lead compounds to inhibit the biological function of KIF2C, emphasizing the need for further investigation in this area.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Deema Hussein
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamad Saka
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saleh Baeesa
- Division of Neurosurgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Bangash
- Division of Neurosurgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad Alghamdi
- Pathology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Torki Al Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
13
|
Henkin G, Brito C, Thomas C, Surrey T. The minus-end depolymerase KIF2A drives flux-like treadmilling of γTuRC-uncapped microtubules. J Cell Biol 2023; 222:e202304020. [PMID: 37615667 PMCID: PMC10450741 DOI: 10.1083/jcb.202304020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 08/25/2023] Open
Abstract
During mitosis, microtubules in the spindle turn over continuously. At spindle poles, where microtubule minus ends are concentrated, microtubule nucleation and depolymerization, the latter required for poleward microtubule flux, happen side by side. How these seemingly antagonistic processes of nucleation and depolymerization are coordinated is not understood. Here, we reconstitute this coordination in vitro combining different pole-localized activities. We find that the spindle pole-localized kinesin-13 KIF2A is a microtubule minus-end depolymerase, in contrast to its paralog MCAK. Due to its asymmetric activity, KIF2A still allows microtubule nucleation from the γ-tubulin ring complex (γTuRC), which serves as a protective cap shielding the minus end against KIF2A binding. Efficient γTuRC uncapping requires the combined action of KIF2A and a microtubule severing enzyme, leading to treadmilling of the uncapped microtubule driven by KIF2A. Together, these results provide insight into the molecular mechanisms by which a minimal protein module coordinates microtubule nucleation and depolymerization at spindle poles consistent with their role in poleward microtubule flux.
Collapse
Affiliation(s)
- Gil Henkin
- Centre for Genomic Regulation(CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Cláudia Brito
- Centre for Genomic Regulation(CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | - Thomas Surrey
- Centre for Genomic Regulation(CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
14
|
Zhou AS, Tucker JB, Scribano CM, Lynch AR, Carlsen CL, Pop-Vicas ST, Pattaswamy SM, Burkard ME, Weaver BA. Diverse microtubule-targeted anticancer agents kill cells by inducing chromosome missegregation on multipolar spindles. PLoS Biol 2023; 21:e3002339. [PMID: 37883329 PMCID: PMC10602348 DOI: 10.1371/journal.pbio.3002339] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023] Open
Abstract
Microtubule-targeted agents are commonly used for cancer treatment, though many patients do not benefit. Microtubule-targeted drugs were assumed to elicit anticancer activity via mitotic arrest because they cause cell death following mitotic arrest in cell culture. However, we recently demonstrated that intratumoral paclitaxel concentrations are insufficient to induce mitotic arrest and rather induce chromosomal instability (CIN) via multipolar mitotic spindles. Here, we show in metastatic breast cancer and relevant human cellular models that this mechanism is conserved among clinically useful microtubule poisons. While multipolar divisions typically produce inviable progeny, multipolar spindles can be focused into near-normal bipolar spindles at any stage of mitosis. Using a novel method to quantify the rate of CIN, we demonstrate that cell death positively correlates with net loss of DNA. Spindle focusing decreases CIN and causes resistance to diverse microtubule poisons, which can be counteracted by addition of a drug that increases CIN without affecting spindle polarity. These results demonstrate conserved mechanisms of action and resistance for diverse microtubule-targeted agents. Trial registration: clinicaltrials.gov, NCT03393741.
Collapse
Affiliation(s)
- Amber S. Zhou
- Molecular and Cellular Pharmacology Graduate Training Program, University of Wisconsin, Madison, Wisconsin, United States of America
| | - John B. Tucker
- Cancer Biology Graduate Training Program, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Christina M. Scribano
- Molecular and Cellular Pharmacology Graduate Training Program, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Andrew R. Lynch
- Cellular and Molecular Pathology Graduate Training Program, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Caleb L. Carlsen
- Cellular and Molecular Biology Graduate Training Program, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Sophia T. Pop-Vicas
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Srishrika M. Pattaswamy
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Mark E. Burkard
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, United States of America
- Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Beth A. Weaver
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, United States of America
- Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
15
|
Zheng R, Xu FX, Zhou L, Xu J, Shen Y, Hao K, Wang XT, Deng J. Ablation of KIF2C in Purkinje cells impairs metabotropic glutamate receptor trafficking and motor coordination in male mice. J Physiol 2023; 601:3905-3920. [PMID: 37431690 DOI: 10.1113/jp284214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/27/2023] [Indexed: 07/12/2023] Open
Abstract
Kinesin family member 2C (KIF2C)/mitotic centromere-associated kinesin (MCAK), is thought to be oncogenic as it is involved in tumour progression and metastasis. Moreover, it also plays a part in neurodegenerative conditions like Alzheimer's disease and psychiatric disorders such as suicidal schizophrenia. Our previous study conducted on mice demonstrated that KIF2C is widely distributed in various regions of the brain, and is localized in synaptic spines. Additionally, it regulates microtubule dynamic properties through its own microtubule depolymerization activity, thereby affecting AMPA receptor transport and cognitive behaviour in mice. In this study, we show that KIF2C regulates the transport of mGlu1 receptors in Purkinje cells by binding to Rab8. KIF2C deficiency in Purkinje cells results in abnormal gait, reduced balance ability and motor incoordination in male mice. These data suggest that KIF2C is essential for maintaining normal transport and synaptic function of mGlu1 and motor coordination in mice. KEY POINTS: KIF2C is localized in synaptic spines of hippocampus neurons, and regulates excitatory transmission, synaptic plasticity and cognitive behaviour. KIF2C is extensively expressed in the cerebellum, and we investigated its functions in development and synaptic transmission of cerebellar Purkinje cells. KIF2C deficiency in Purkinje cells alters the expression of metabotropic glutamate receptor 1 (mGlu1) and the AMPA receptor GluA2 subunit at Purkinje cell synapses, and changes excitatory synaptic transmission, but not inhibitory transmission. KIF2C regulates the transport of mGlu1 receptors in Purkinje cells by binding to Rab8. KIF2C deficiency in Purkinje cells affects motor coordination, but not social behaviour in male mice.
Collapse
Affiliation(s)
- Rui Zheng
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Fang-Xiao Xu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, Hangzhou Normal University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Lin Zhou
- NHC and CAMS Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Junyu Xu
- NHC and CAMS Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Ying Shen
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ke Hao
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xin-Tai Wang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, Hangzhou Normal University, Hangzhou, China
| | - Junjie Deng
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| |
Collapse
|
16
|
Smith JC, Husted S, Pilrose J, Ems-McClung SC, Stout JR, Carpenter RL, Walczak CE. MCAK Inhibitors Induce Aneuploidy in Triple-Negative Breast Cancer Models. Cancers (Basel) 2023; 15:3309. [PMID: 37444419 PMCID: PMC10340532 DOI: 10.3390/cancers15133309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Standard of care for triple-negative breast cancer (TNBC) involves the use of microtubule poisons such as paclitaxel, which are proposed to work by inducing lethal levels of aneuploidy in tumor cells. While these drugs are initially effective in treating cancer, dose-limiting peripheral neuropathies are common. Unfortunately, patients often relapse with drug-resistant tumors. Identifying agents against targets that limit aneuploidy may be a valuable approach for therapeutic development. One potential target is the microtubule depolymerizing kinesin, MCAK, which limits aneuploidy by regulating microtubule dynamics during mitosis. Using publicly available datasets, we found that MCAK is upregulated in triple-negative breast cancer and is associated with poorer prognoses. Knockdown of MCAK in tumor-derived cell lines caused a two- to five-fold reduction in the IC50 for paclitaxel, without affecting normal cells. Using FRET and image-based assays, we screened compounds from the ChemBridge 50 k library and discovered three putative MCAK inhibitors. These compounds reproduced the aneuploidy-inducing phenotype of MCAK loss, reduced clonogenic survival of TNBC cells regardless of taxane-resistance, and the most potent of the three, C4, sensitized TNBC cells to paclitaxel. Collectively, our work shows promise that MCAK may serve as both a biomarker of prognosis and as a therapeutic target.
Collapse
Affiliation(s)
- John C. Smith
- Medical Sciences, Indiana School of Medicine—Bloomington, Bloomington, IN 47405, USA; (J.C.S.); (S.C.E.-M.); (J.R.S.); (R.L.C.)
| | - Stefan Husted
- LabCorp Drug Development Indianapolis, Indianapolis, IN 46214, USA;
| | - Jay Pilrose
- Catalent Pharma Solutions Bloomington, Bloomington, IN 47403, USA;
| | - Stephanie C. Ems-McClung
- Medical Sciences, Indiana School of Medicine—Bloomington, Bloomington, IN 47405, USA; (J.C.S.); (S.C.E.-M.); (J.R.S.); (R.L.C.)
| | - Jane R. Stout
- Medical Sciences, Indiana School of Medicine—Bloomington, Bloomington, IN 47405, USA; (J.C.S.); (S.C.E.-M.); (J.R.S.); (R.L.C.)
| | - Richard L. Carpenter
- Medical Sciences, Indiana School of Medicine—Bloomington, Bloomington, IN 47405, USA; (J.C.S.); (S.C.E.-M.); (J.R.S.); (R.L.C.)
| | - Claire E. Walczak
- Medical Sciences, Indiana School of Medicine—Bloomington, Bloomington, IN 47405, USA; (J.C.S.); (S.C.E.-M.); (J.R.S.); (R.L.C.)
| |
Collapse
|
17
|
Smith JC, Husted S, Pilrose J, Ems-McClung SC, Stout JR, Carpenter RL, Walczak CE. MCAK Inhibitors Induce Aneuploidy in Triple Negative Breast Cancer Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543118. [PMID: 37397990 PMCID: PMC10312595 DOI: 10.1101/2023.05.31.543118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Standard of care for triple negative breast cancer (TNBC) involves the use of microtubule poisons like paclitaxel, which are proposed to work by inducing lethal levels of aneuploidy in tumor cells. While these drugs are initially effective in treating cancer, dose-limiting peripheral neuropathies are common. Unfortunately, patients often relapse with drug resistant tumors. Identifying agents against targets that limit aneuploidy may be a valuable approach for therapeutic development. One potential target is the microtubule depolymerizing kinesin, MCAK, which limits aneuploidy by regulating microtubule dynamics during mitosis. Using publicly available datasets, we found that MCAK is upregulated in triple negative breast cancer and is associated with poorer prognoses. Knockdown of MCAK in tumor-derived cell lines caused a two- to five-fold reduction in the IC 50 for paclitaxel, without affecting normal cells. Using FRET and image-based assays, we screened compounds from the ChemBridge 50k library and discovered three putative MCAK inhibitors. These compounds reproduced the aneuploidy-inducing phenotype of MCAK loss, reduced clonogenic survival of TNBC cells regardless of taxane-resistance, and the most potent of the three, C4, sensitized TNBC cells to paclitaxel. Collectively, our work shows promise that MCAK may serve as both a biomarker of prognosis and as a therapeutic target. Simple Summary Triple negative breast cancer (TNBC) is the most lethal breast cancer subtype with few treatment options available. Standard of care for TNBC involves the use of taxanes, which are initially effective, but dose limiting toxicities are common, and patients often relapse with resistant tumors. Specific drugs that produce taxane-like effects may be able to improve patient quality of life and prognosis. In this study we identify three novel inhibitors of the Kinesin-13 MCAK. MCAK inhibition induces aneuploidy; similar to cells treated with taxanes. We demonstrate that MCAK is upregulated in TNBC and is associated with poorer prognoses. These MCAK inhibitors reduce the clonogenic survival of TNBC cells, and the most potent of the three inhibitors, C4, sensitizes TNBC cells to taxanes, similar to the effects of MCAK knockdown. This work will expand the field of precision medicine to include aneuploidy-inducing drugs that have the potential to improve patient outcomes.
Collapse
|
18
|
Liu S, Ye Z, Xue VW, Sun Q, Li H, Lu D. KIF2C is a prognostic biomarker associated with immune cell infiltration in breast cancer. BMC Cancer 2023; 23:307. [PMID: 37016301 PMCID: PMC10071625 DOI: 10.1186/s12885-023-10788-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/29/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND The kinesin-13 family member 2C (KIF2C) is a versatile protein participating in many biological processes. KIF2C is frequently up-regulated in multiple types of cancer and is associated with cancer development. However, the role of KIF2C in immune cell infiltration of tumor microenvironment and immunotherapy in breast cancer remains unclear. METHODS The expression of KIF2C was analyzed using Tumor Immune Estimation Resource (TIMER) database and further verified by immunohistochemical staining in human breast cancer tissues. The correlation between KIF2C expression and clinical parameters, the impact of KIF2C on clinical prognosis and independent prognostic factors were analyzed by using TCGA database, the Kaplan-Meier plotter, and Univariate and multivariate Cox analyses, respectively. The nomograms were constructed according to independent prognostic factors and validated with C-index, calibration curves, ROC curves, and decision curve analysis. A gene set enrichment analysis (GSEA) was performed to explore the underlying molecular mechanisms of KIF2C. The degree of immune infiltration was assessed by the Estimation of Stromal and Immune cells in Malignant Tumor tissues using the Expression (ESTIMATE) algorithm and the single sample GSEA (ssGSEA). The Tumor mutational burden and Tumor Immune Dysfunction and Rejection (TIDE) were used to analyze immunotherapeutic efficiency. Finally, the KIF2C-related competing endogenous RNA (ceRNA) network was constructed to predict the putative regulatory mechanisms of KIF2C. RESULTS KIF2C was remarkably up-regulated in 18 different types of cancers, including breast cancer. Kaplan-Meier survival analysis showed that high KIF2C expression was associated with poor overall survival (OS). KIF2C expression was associated with clinical parameters such as age, TMN stage, T status, and molecular subtypes. We identified age, stage, estrogen receptor (ER) and KIF2C expression as OS-related independent prognosis factors for breast cancer. An OS-related nomogram was developed based on these independent prognosis factors and displayed good predicting ability for OS of breast cancer patients. Finally, our results revealed that KIF2C was significantly related to immune cell infiltration, tumor mutational burden, and immunotherapy in patients with breast cancer. CONCLUSION KIF2C was overexpressed in breast cancer and was positively correlated with immune cell infiltration and immunotherapy response. Therefore, KIF2C can serve as a potential biomarker for prognosis and immunotherapy in breast cancer.
Collapse
Affiliation(s)
- Shanshan Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology, Carson International Cancer Center, Shenzhen University Medical School, Shenzhen, Guangdong, 518055, China
| | - Ziwei Ye
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology, Carson International Cancer Center, Shenzhen University Medical School, Shenzhen, Guangdong, 518055, China
| | - Vivian Weiwen Xue
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology, Carson International Cancer Center, Shenzhen University Medical School, Shenzhen, Guangdong, 518055, China
| | - Qi Sun
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology, Carson International Cancer Center, Shenzhen University Medical School, Shenzhen, Guangdong, 518055, China
| | - Huan Li
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology, Carson International Cancer Center, Shenzhen University Medical School, Shenzhen, Guangdong, 518055, China
| | - Desheng Lu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology, Carson International Cancer Center, Shenzhen University Medical School, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
19
|
Ding J, Tang D, Zhang Y, Gao X, Du C, Shen W, Jin S, Zhu J. Transcriptomes of Testes at Different Developmental Stages in the Opsariichthys bidens Predict Key Genes for Testis Development and Spermatogenesis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:123-139. [PMID: 36520355 DOI: 10.1007/s10126-022-10186-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Testis development is a complex process involving multiple genes, and the molecular mechanisms underlying testis development in Opsariichthys bidens remain unclear. We performed transcriptome sequencing analysis on a total of 12 samples of testes from stages II, III, IV, and V of O. bidens and obtained a total of 79.52 Gb clean data, as well as 288,573 transcripts and 116,215 unigenes. Differential expression analysis showed that 22,857 differentially expressed genes (DEGs) were screened in six comparison groups (III vs. II, IV vs. II, V vs. II, IV vs. III, V vs. III, and V vs. IV). Kyoto Encyclopedia of Genes and Genomes enrichment analysis of DEGs showed that six comparison groups were significantly enriched for a total of 20 significantly up- or down-regulated pathways, including six pathways related to signal transduction, three pathways related to energy metabolism, five pathways related to disease, and two pathways related to ribosomes. Furthermore, our investigation revealed that DEGs were enriched in several important functional pathways, such as Huntington's disease signaling pathway, TGF-β signaling pathway, and ribosome signaling pathway. Protein-protein interaction network analysis of DEGs identified 63 up-regulated hub genes, including 9 kinesin genes and 2 cytoplasmic dynein genes, and 39 down-regulated hub genes, including 13 ribosomal protein genes. This result contributes to the knowledge of spermatogenesis and testis development in O. bidens.
Collapse
Affiliation(s)
- Jie Ding
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, 315832, Zhejiang, China
- Ningbo Academy of Oceanology and Fishery, Ningbo, 315103, Zhejiang, China
| | - Daojun Tang
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, 315832, Zhejiang, China
| | - Yibo Zhang
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, 315832, Zhejiang, China
- Ningbo Academy of Oceanology and Fishery, Ningbo, 315103, Zhejiang, China
| | - Xinming Gao
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, 315832, Zhejiang, China
| | - Chen Du
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, 315832, Zhejiang, China
| | - Weiliang Shen
- Ningbo Academy of Oceanology and Fishery, Ningbo, 315103, Zhejiang, China
| | - Shan Jin
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, 315832, Zhejiang, China
| | - Junquan Zhu
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, 315832, Zhejiang, China.
| |
Collapse
|
20
|
Tierno D, Grassi G, Zanconati F, Bortul M, Scaggiante B. An Overview of Circulating Cell-Free Nucleic Acids in Diagnosis and Prognosis of Triple-Negative Breast Cancer. Int J Mol Sci 2023; 24:1799. [PMID: 36675313 PMCID: PMC9864244 DOI: 10.3390/ijms24021799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer due to its molecular heterogeneity and poor clinical outcomes. Analysis of circulating cell-free tumor nucleic acids (ctNAs) can improve our understanding of TNBC and provide efficient and non-invasive clinical biomarkers that may be representative of tumor heterogeneity. In this review, we summarize the potential of ctNAs to aid TNBC diagnosis and prognosis. For example, tumor fraction of circulating cell-free DNA (TFx) may be useful for molecular prognosis of TNBC: high TFx levels after neoadjuvant chemotherapy have been associated with shorter progression-free survival and relapse-free survival. Mutations and copy number variations of TP53 and PIK3CA/AKT genes in plasma may be important markers of TNBC onset, progression, metastasis, and for clinical follow-up. In contrast, the expression profile of circulating cell-free tumor non-coding RNAs (ctncRNAs) can be predictive of molecular subtypes of breast cancer and thus aid in the identification of TBNC. Finally, dysregulation of some circulating cell-free tumor miRNAs (miR17, miR19a, miR19b, miR25, miR93, miR105, miR199a) may have a predictive value for chemotherapy resistance. In conclusion, a growing number of efforts are highlighting the potential of ctNAs for future clinical applications in the diagnosis, prognosis, and follow-up of TNBC.
Collapse
Affiliation(s)
- Domenico Tierno
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Gabriele Grassi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical and Surgical Sciences, Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy
| | - Marina Bortul
- Department of Medical and Surgical Sciences, Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy
| | - Bruna Scaggiante
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
21
|
Belsham HR, Alghamdi HM, Dave N, Rathbone AJ, Wickstead B, Friel CT. A synthetic ancestral kinesin-13 depolymerizes microtubules faster than any natural depolymerizing kinesin. Open Biol 2022; 12:220133. [PMID: 36043268 PMCID: PMC9428548 DOI: 10.1098/rsob.220133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The activity of a kinesin is largely determined by the approximately 350 residue motor domain, and this region alone is sufficient to classify a kinesin as a member of a particular family. The kinesin-13 family are a group of microtubule depolymerizing kinesins and are vital regulators of microtubule length. Kinesin-13s are critical to spindle assembly and chromosome segregation in both mitotic and meiotic cell division and play crucial roles in cilium length control and neuronal development. To better understand the evolution of microtubule depolymerization activity, we created a synthetic ancestral kinesin-13 motor domain. This phylogenetically inferred ancestral motor domain is the sequence predicted to have existed in the common ancestor of the kinesin-13 family. Here we show that the ancestral kinesin-13 motor depolymerizes stabilized microtubules faster than any previously tested depolymerase. This potent activity is more than an order of magnitude faster than the most highly studied kinesin-13, MCAK and allows the ancestral kinesin-13 to depolymerize doubly stabilized microtubules and cause internal breaks within microtubules. These data suggest that the ancestor of the kinesin-13 family was a 'super depolymerizer' and that members of the kinesin-13 family have evolved away from this extreme depolymerizing activity to provide more controlled microtubule depolymerization activity in extant cells.
Collapse
Affiliation(s)
- Hannah R Belsham
- School of Life Sciences, University of Nottingham, Medical School, QMC, Nottingham NG7 2UH, UK
| | - Hanan M Alghamdi
- School of Life Sciences, University of Nottingham, Medical School, QMC, Nottingham NG7 2UH, UK.,Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nikita Dave
- School of Life Sciences, University of Nottingham, Medical School, QMC, Nottingham NG7 2UH, UK
| | - Alexandra J Rathbone
- School of Life Sciences, University of Nottingham, Medical School, QMC, Nottingham NG7 2UH, UK
| | - Bill Wickstead
- School of Life Sciences, University of Nottingham, Medical School, QMC, Nottingham NG7 2UH, UK
| | - Claire T Friel
- School of Life Sciences, University of Nottingham, Medical School, QMC, Nottingham NG7 2UH, UK
| |
Collapse
|
22
|
cGAS-STING drives the IL-6-dependent survival of chromosomally instable cancers. Nature 2022; 607:366-373. [PMID: 35705809 DOI: 10.1038/s41586-022-04847-2] [Citation(s) in RCA: 196] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 05/10/2022] [Indexed: 12/14/2022]
Abstract
Chromosomal instability (CIN) drives cancer cell evolution, metastasis and therapy resistance, and is associated with poor prognosis1. CIN leads to micronuclei that release DNA into the cytoplasm after rupture, which triggers activation of inflammatory signalling mediated by cGAS and STING2,3. These two proteins are considered to be tumour suppressors as they promote apoptosis and immunosurveillance. However, cGAS and STING are rarely inactivated in cancer4, and, although they have been implicated in metastasis5, it is not known why loss-of-function mutations do not arise in primary tumours4. Here we show that inactivation of cGAS-STING signalling selectively impairs the survival of triple-negative breast cancer cells that display CIN. CIN triggers IL-6-STAT3-mediated signalling, which depends on the cGAS-STING pathway and the non-canonical NF-κB pathway. Blockade of IL-6 signalling by tocilizumab, a clinically used drug that targets the IL-6 receptor (IL-6R), selectively impairs the growth of cultured triple-negative breast cancer cells that exhibit CIN. Moreover, outgrowth of chromosomally instable tumours is significantly delayed compared with tumours that do not display CIN. Notably, this targetable vulnerability is conserved across cancer types that express high levels of IL-6 and/or IL-6R in vitro and in vivo. Together, our work demonstrates pro-tumorigenic traits of cGAS-STING signalling and explains why the cGAS-STING pathway is rarely inactivated in primary tumours. Repurposing tocilizumab could be a strategy to treat cancers with CIN that overexpress IL-6R.
Collapse
|
23
|
Zeeshan M, Rashpa R, Ferguson DJP, Abel S, Chahine Z, Brady D, Vaughan S, Moores CA, Le Roch KG, Brochet M, Holder AA, Tewari R. Genome-wide functional analysis reveals key roles for kinesins in the mammalian and mosquito stages of the malaria parasite life cycle. PLoS Biol 2022; 20:e3001704. [PMID: 35900985 PMCID: PMC9333250 DOI: 10.1371/journal.pbio.3001704] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022] Open
Abstract
Kinesins are microtubule (MT)-based motors important in cell division, motility, polarity, and intracellular transport in many eukaryotes. However, they are poorly studied in the divergent eukaryotic pathogens Plasmodium spp., the causative agents of malaria, which manifest atypical aspects of cell division and plasticity of morphology throughout the life cycle in both mammalian and mosquito hosts. Here, we describe a genome-wide screen of Plasmodium kinesins, revealing diverse subcellular locations and functions in spindle assembly, axoneme formation, and cell morphology. Surprisingly, only kinesin-13 is essential for growth in the mammalian host while the other 8 kinesins are required during the proliferative and invasive stages of parasite transmission through the mosquito vector. In-depth analyses of kinesin-13 and kinesin-20 revealed functions in MT dynamics during apical cell polarity formation, spindle assembly, and axoneme biogenesis. These findings help us to understand the importance of MT motors and may be exploited to discover new therapeutic interventions against malaria.
Collapse
Affiliation(s)
- Mohammad Zeeshan
- University of Nottingham, School of Life Sciences, Nottingham, United Kingdom
| | - Ravish Rashpa
- University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | - David J P Ferguson
- Oxford Brookes University, Department of Biological and Medical Sciences, Oxford, United Kingdom
- University of Oxford, John Radcliffe Hospital, Nuffield Department of Clinical Laboratory Science, Oxford, United Kingdom
| | - Steven Abel
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Zeinab Chahine
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Declan Brady
- University of Nottingham, School of Life Sciences, Nottingham, United Kingdom
| | - Sue Vaughan
- Oxford Brookes University, Department of Biological and Medical Sciences, Oxford, United Kingdom
| | - Carolyn A Moores
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, United Kingdom
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Mathieu Brochet
- University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | - Anthony A Holder
- The Francis Crick Institute, Malaria Parasitology Laboratory, London, United Kingdom
| | - Rita Tewari
- University of Nottingham, School of Life Sciences, Nottingham, United Kingdom
| |
Collapse
|
24
|
Kim JM. Molecular Link between DNA Damage Response and Microtubule Dynamics. Int J Mol Sci 2022; 23:ijms23136986. [PMID: 35805981 PMCID: PMC9266319 DOI: 10.3390/ijms23136986] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Microtubules are major components of the cytoskeleton that play important roles in cellular processes such as intracellular transport and cell division. In recent years, it has become evident that microtubule networks play a role in genome maintenance during interphase. In this review, we highlight recent advances in understanding the role of microtubule dynamics in DNA damage response and repair. We first describe how DNA damage checkpoints regulate microtubule organization and stability. We then highlight how microtubule networks are involved in the nuclear remodeling following DNA damage, which leads to changes in chromosome organization. Lastly, we discuss how microtubule dynamics participate in the mobility of damaged DNA and promote consequent DNA repair. Together, the literature indicates the importance of microtubule dynamics in genome organization and stability during interphase.
Collapse
Affiliation(s)
- Jung Min Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 58128, Korea
| |
Collapse
|
25
|
Park EA, Kim J, Shin MY, Park SJ. Kinesin-13, a Motor Protein, is Regulated by Polo-like Kinase in Giardia lamblia. THE KOREAN JOURNAL OF PARASITOLOGY 2022; 60:163-172. [PMID: 35772734 PMCID: PMC9256289 DOI: 10.3347/kjp.2022.60.3.163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Kinesin-13 (Kin-13), a depolymerizer of microtubule (MT), has been known to affect the length of Giardia. Giardia Kin-13 (GlKin-13) was localized to axoneme, flagellar tips, and centrosomes, where phosphorylated forms of Giardia polo-like kinase (GlPLK) were distributed. We observed the interaction between GlKin-13 and GlPLK via co-immunoprecipitation using transgenic Giardia cells expressing Myc-tagged GlKin-13, hemagglutinin-tagged GlPLK, and in vitro-synthesized GlKin-13 and GlPLK proteins. In vitro-synthesized GlPLK was demonstrated to auto-phosphorylate and phosphorylate GlKin-13 upon incubation with [γ-32P]ATP. Morpholino-mediated depletion of both GlKin-13 and GlPLK caused an extension of flagella and a decreased volume of median bodies in Giardia trophozoites. Our results suggest that GlPLK plays a pertinent role in formation of flagella and median bodies by modulating MT depolymerizing activity of GlKin-13.
Collapse
|
26
|
Zhang Y, Dong G, Chen F, Xiong E, Liu H, Jiang Y, Xiong G, Ruan B, Qian Q, Zeng D, Ma D, Yu Y, Wu L. The kinesin-13 protein BR HYPERSENSITIVE 1 is a negative brassinosteroid signaling component regulating rice growth and development. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1751-1766. [PMID: 35258682 DOI: 10.1007/s00122-022-04067-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Phytohormones performed critical roles in regulating plant architecture and thus determine grain yield in rice. However, the roles of brassinosteroids (BRs) compared to other phytohormones in shaping rice architecture are less studied. In this study, we report that BR hypersensitive1 (BHS1) plays a negative role in BR signaling and regulate rice architecture. BHS1 encodes the kinesin-13a protein and regulates grain length. We found that bhs1 was hypersensitive to BR, while BHS1-overexpression was less sensitive to BR compare to WT. BHS1 was down-regulated at RNA and protein level upon exogenous BR treatment, and proteasome inhibitor MG132 delayed the BHS1 degradation, indicating that both the transcriptional and posttranscriptional regulation machineries are involved in BHS1-mediated regulation of plant growth and development. Furthermore, we found that the BR-induced degradation of BHS1 was attenuated in Osbri1 and Osbak1 mutants, but not in Osbzr1 and Oslic mutants. Together, these results suggest that BHS1 is a novel component which is involved in negative regulation of the BR signaling downstream player of BRI1.
Collapse
Affiliation(s)
- Yanli Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Guojun Dong
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Fei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Erhui Xiong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Huijie Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Yaohuang Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Guosheng Xiong
- Plant Phenomics Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Banpu Ruan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Qian Qian
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Dali Zeng
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Dianrong Ma
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yanchun Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China.
| | - Limin Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China.
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou, 310036, China.
| |
Collapse
|
27
|
Yan X, Liu SM, Liu C. Clinical Applications of Aneuploidies in Evolution of NSCLC Patients: Current Status and Application Prospect. Onco Targets Ther 2022; 15:1355-1368. [PMID: 36388157 PMCID: PMC9662021 DOI: 10.2147/ott.s380016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/22/2022] [Indexed: 11/11/2022] Open
Abstract
As one of the first characteristics of cancer cells, chromosomal aberrations during cell division have been well documented. Aneuploidy is a feature of most cancer cells accompanied by an elevated rate of mis-segregation of chromosomes, called chromosome instability (CIN). Aneuploidy causes ongoing karyotypic changes that contribute to tumor heterogeneity, drug resistance, and treatment failure, which are considered predictors of poor prognosis. Lung cancer (LC) is the leading cause of cancer-related deaths worldwide, and its genome map shows extensive aneuploid changes. Elucidating the role of aneuploidy in the pathogenesis of LC will reveal information about the key factors of tumor occurrence and development, help to predict the prognosis of cancer, clarify tumor evolution, metastasis, and drug response, and may promote the development of precision oncology. In this review, we describe many possible causes of aneuploidy and provide evidence of the role of aneuploidy in the evolution of LC, providing a basis for future biological and clinical research.
Collapse
Affiliation(s)
- Xing Yan
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, People's Republic of China
| | - Shan Mei Liu
- Inner Mongolia Medical University, Hohhot, 150110, People's Republic of China
| | - Changhong Liu
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, People's Republic of China
| |
Collapse
|
28
|
Collier KA, Asad S, Tallman D, Jenison J, Rajkovic A, Mardis ER, Parsons HA, Tolaney SM, Winer EP, Lin NU, Ha G, Adalsteinsson VA, Stover DG. Association of 17q22 Amplicon Via Cell-Free DNA With Platinum Chemotherapy Response in Metastatic Triple-Negative Breast Cancer. JCO Precis Oncol 2021; 5:PO.21.00104. [PMID: 34849445 PMCID: PMC8624042 DOI: 10.1200/po.21.00104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/11/2021] [Accepted: 10/06/2021] [Indexed: 12/21/2022] Open
Abstract
PURPOSE To determine whether specific somatic copy-number alterations detectable in circulating tumor DNA (ctDNA) from patients with metastatic triple-negative breast cancer (mTNBC) are associated with sensitivity to platinum chemotherapy. MATERIALS AND METHODS In this secondary analysis of a large cohort of patients with mTNBC whose ctDNA underwent ultralow-pass whole-genome sequencing, tumor fraction and somatic copy-number alterations were derived with the ichorCNA algorithm. Seventy-two patients were identified who had received a platinum-based chemotherapy regimen in the metastatic setting. Gene-level copy-number analyses were performed with GISTIC2.0. Cytobands were associated with progression-free survival (PFS) to platinum chemotherapy using Cox proportional hazards models. The Cancer Genome Atlas and Molecular Taxonomy of Breast Cancer International Consortium data sets were interrogated for frequency of significant cytobands in primary triple-negative breast cancer (pTNBC) tumors. RESULTS Among 71 evaluable patients, 17q21 and 17q22 amplifications were most strongly associated with improved PFS with platinum chemotherapy. There were no significant differences in clinicopathologic features or (neo)adjuvant chemotherapy among patients with 17q22 amplification. Patients with 17q22 amplification (n = 17) had longer median PFS with platinum (7.0 v 3.8 months; log-rank P = .015) than patients without 17q22 amplification (n = 54), an effect that remained significant in multivariable analyses (PFS hazard ratio 0.37; 95% CI, 0.16 to 0.84; P = .02). Among 39 patients who received the nonplatinum chemotherapy agent capecitabine, there was no association between 17q22 amplification and capecitabine PFS (log-rank P = .69). In The Cancer Genome Atlas and Molecular Taxonomy of Breast Cancer International Consortium, 17q22 amplification occurred in more than 20% of both pTNBC and mTNBC tumors, whereas 17q21 was more frequently amplified in mTNBC relative to pTNBC (16% v 8.1%, P = .015). CONCLUSION The 17q22 amplicon, detected by ctDNA, is associated with improved PFS with platinum chemotherapy in patients with mTNBC and warrants further investigation.
Collapse
Affiliation(s)
- Katharine A. Collier
- Division of Medical Oncology, The Ohio State University College of Medicine, Columbus, OH
| | - Sarah Asad
- Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - David Tallman
- Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Janet Jenison
- Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Andrei Rajkovic
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH
| | - Elaine R. Mardis
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH
| | - Heather A. Parsons
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Sara M. Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Eric P. Winer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Nancy U. Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Gavin Ha
- Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | - Daniel G. Stover
- Division of Medical Oncology, The Ohio State University College of Medicine, Columbus, OH
- Ohio State University Comprehensive Cancer Center, Columbus, OH
- Stefanie Spielman Comprehensive Breast Center, Columbus, OH
| |
Collapse
|
29
|
Downregulation of KIF2C and TEKT2 is associated with male infertility and testicular carcinoma. Aging (Albany NY) 2021; 13:22898-22911. [PMID: 34591790 PMCID: PMC8544317 DOI: 10.18632/aging.203583] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022]
Abstract
Background: Genetic factors are important in spermatogenesis and fertility maintenance, and are potentially significant biomarkers for the early detection of infertility. However, further understanding of these biological processes is required. Methods: In the present study, we sought to identify associated genes by reanalyzing separate studies from Gene Expression Omnibus datasets (GSE45885, GSE45887 and GSE9210) and validation datasets (GSE4797, 145467, 108886, 6872). The differential genes were used the limma package in R language. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed by the clusterprofier package. The protein-protein interaction network was constructed by the STRING database. The interaction between mRNA and TF was predicted by miRWalk web. At last, The Cancer Genome Atlas data were used to identify hub gene expression levels in GEPIA web. Results: The results showed that 27 shared genes associated with spermatogenesis. We effectively screen out two genes (KIF2C and TEKT2) and both validated by GSE4797, 145467, 108886 and 6872. Among 27 shared genes, KIF2C and TEKT2 both down-regulated in spermatogenesis. The network of TF-miRNA-target gene was established, we found KIF2C-miRNAs (has-miR-3154, 6075, 6760-5p, 1251-5p, 186-sp)-TFs (EP300, SP1) might work in spermatogenesis. Conclusions: Our study might help to improve our understanding of the mechanisms in spermatogenesis and provide diagnostic biomarkers and therapeutics targets.
Collapse
|
30
|
Schweiggert J, Habeck G, Hess S, Mikus F, Beloshistov R, Meese K, Hata S, Knobeloch K, Melchior F. SCF Fbxw5 targets kinesin-13 proteins to facilitate ciliogenesis. EMBO J 2021; 40:e107735. [PMID: 34368969 PMCID: PMC8441365 DOI: 10.15252/embj.2021107735] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 11/23/2022] Open
Abstract
Microtubule depolymerases of the kinesin-13 family play important roles in various cellular processes and are frequently overexpressed in different cancer types. Despite the importance of their correct abundance, remarkably little is known about how their levels are regulated in cells. Using comprehensive screening on protein microarrays, we identified 161 candidate substrates of the multi-subunit ubiquitin E3 ligase SCFFbxw5 , including the kinesin-13 member Kif2c/MCAK. In vitro reconstitution assays demonstrate that MCAK and its closely related orthologs Kif2a and Kif2b become efficiently polyubiquitylated by neddylated SCFFbxw5 and Cdc34, without requiring preceding modifications. In cells, SCFFbxw5 targets MCAK for proteasomal degradation predominantly during G2 . While this seems largely dispensable for mitotic progression, loss of Fbxw5 leads to increased MCAK levels at basal bodies and impairs ciliogenesis in the following G1 /G0 , which can be rescued by concomitant knockdown of MCAK, Kif2a or Kif2b. We thus propose a novel regulatory event of ciliogenesis that begins already within the G2 phase of the preceding cell cycle.
Collapse
Affiliation(s)
- Jörg Schweiggert
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH)University of HeidelbergDKFZ ‐ ZMBH AllianceHeidelbergGermany
| | - Gregor Habeck
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH)University of HeidelbergDKFZ ‐ ZMBH AllianceHeidelbergGermany
| | - Sandra Hess
- Institute of NeuropathologyFaculty of MedicineUniversity of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Felix Mikus
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH)University of HeidelbergDKFZ ‐ ZMBH AllianceHeidelbergGermany
| | - Roman Beloshistov
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH)University of HeidelbergDKFZ ‐ ZMBH AllianceHeidelbergGermany
| | - Klaus Meese
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH)University of HeidelbergDKFZ ‐ ZMBH AllianceHeidelbergGermany
| | - Shoji Hata
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH)University of HeidelbergDKFZ ‐ ZMBH AllianceHeidelbergGermany
| | | | - Frauke Melchior
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH)University of HeidelbergDKFZ ‐ ZMBH AllianceHeidelbergGermany
| |
Collapse
|
31
|
Gao Z, Jia H, Yu F, Guo H, Li B. KIF2C promotes the proliferation of hepatocellular carcinoma cells in vitro and in vivo. Exp Ther Med 2021; 22:1094. [PMID: 34504548 PMCID: PMC8383772 DOI: 10.3892/etm.2021.10528] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies with high mortality and morbidity rates. In recent years, HCC targeted therapy has gained increasing attention. Due to the heterogeneity and high metastasis of HCC, more effective therapeutic targets are needed. Kinesin family member 2C (KIF2C), also known as mitotic centromere-associated kinesin, is a microtubule-based motor protein which is involved in a variety of important cellular processes, such as mitosis. The effects of KIF2C on cancer progression and development have been widely studied; however, its potential effects on HCC remains unclear. In the present study, high expression of KIF2C in human HCC tissues was demonstrated using The Cancer Genome Atlas database and immunohistochemistry assays. KIF2C expression was associated with HCC prognosis, including overall survival and disease-free survival. KIF2C expression was also associated with clinical pathological characteristics including the number of tumor nodes (P=0.015) and tumor size (P=0.009). KIF2C knockdown inhibited the proliferation of HCC cells in vitro, confirmed by MTT and colony formation assays, and suppressed tumor growth in mice which was confirmed by a xenograft mouse model. Together, the results suggested that KIF2C may serve as a promising therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Zhenya Gao
- Department of Clinical Medicine, School of Medicine, Xuchang University, Xuchang, Henan 461000, P.R. China
| | - Huanxia Jia
- Department of Clinical Medicine, School of Medicine, Xuchang University, Xuchang, Henan 461000, P.R. China
| | - Fang Yu
- Department of Clinical Medicine, School of Medicine, Xuchang University, Xuchang, Henan 461000, P.R. China
| | - Hongfang Guo
- Department of Clinical Medicine, School of Medicine, Xuchang University, Xuchang, Henan 461000, P.R. China
| | - Baoyu Li
- Department of General Surgery, The Secondary Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
32
|
Wnt signaling recruits KIF2A to the spindle to ensure chromosome congression and alignment during mitosis. Proc Natl Acad Sci U S A 2021; 118:2108145118. [PMID: 34417301 DOI: 10.1073/pnas.2108145118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Canonical Wnt signaling plays critical roles in development and tissue renewal by regulating β-catenin target genes. Recent evidence showed that β-catenin-independent Wnt signaling is also required for faithful execution of mitosis. However, the targets and specific functions of mitotic Wnt signaling still remain uncharacterized. Using phosphoproteomics, we identified that Wnt signaling regulates the microtubule depolymerase KIF2A during mitosis. We found that Dishevelled recruits KIF2A via its N-terminal and motor domains, which is further promoted upon LRP6 signalosome formation during cell division. We show that Wnt signaling modulates KIF2A interaction with PLK1, which is critical for KIF2A localization at the spindle. Accordingly, inhibition of basal Wnt signaling leads to chromosome misalignment in somatic cells and pluripotent stem cells. We propose that Wnt signaling monitors KIF2A activity at the spindle poles during mitosis to ensure timely chromosome alignment. Our findings highlight a function of Wnt signaling during cell division, which could have important implications for genome maintenance, notably in stem cells.
Collapse
|
33
|
Regulation of microtubule dynamics, mechanics and function through the growing tip. Nat Rev Mol Cell Biol 2021; 22:777-795. [PMID: 34408299 DOI: 10.1038/s41580-021-00399-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Microtubule dynamics and their control are essential for the normal function and division of all eukaryotic cells. This plethora of functions is, in large part, supported by dynamic microtubule tips, which can bind to various intracellular targets, generate mechanical forces and couple with actin microfilaments. Here, we review progress in the understanding of microtubule assembly and dynamics, focusing on new information about the structure of microtubule tips. First, we discuss evidence for the widely accepted GTP cap model of microtubule dynamics. Next, we address microtubule dynamic instability in the context of structural information about assembly intermediates at microtubule tips. Three currently discussed models of microtubule assembly and dynamics are reviewed. These are considered in the context of established facts and recent data, which suggest that some long-held views must be re-evaluated. Finally, we review structural observations about the tips of microtubules in cells and describe their implications for understanding the mechanisms of microtubule regulation by associated proteins, by mechanical forces and by microtubule-targeting drugs, prominently including cancer chemotherapeutics.
Collapse
|
34
|
Abstract
During anaphase, a microtubule-containing structure called the midzone forms between the segregating chromosomes. The midzone is composed of an antiparallel array of microtubules and numerous microtubule-associated proteins that contribute to midzone formation and function. In many cells, the midzone is an important source of signals that specify the location of contractile ring assembly and constriction. The midzone also contributes to the events of anaphase by generating forces that impact chromosome segregation and spindle elongation; some midzone components contribute to both processes. The results of recent experiments have increased our understanding of the importance of the midzone, a microtubule array that has often been overlooked. This Journal of Cell Science at a Glance article will review, and illustrate on the accompanying poster, the organization, formation and dynamics of the midzone, and discuss open questions for future research.
Collapse
Affiliation(s)
- Patricia Wadsworth
- Department of Biology, Morrill Science Center, University of Massachusetts, 611 N. Pleasant Street, Amherst 01003, USA
| |
Collapse
|
35
|
α-Fodrin in Cytoskeletal Organization and the Activity of Certain Key Microtubule Kinesins. Genes (Basel) 2021; 12:genes12050750. [PMID: 34067543 PMCID: PMC8156673 DOI: 10.3390/genes12050750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
Cortical cytoskeletal proteins are significant in controlling various cellular mechanisms such as migration, cell adhesion, intercellular attachment, cellular signaling, exo- and endocytosis and plasma membrane integrity, stability and flexibility. Our earlier studies involving in vitro and ex vivo approaches led us to identify certain undiscovered characteristics of α-fodrin, a prominent cortical protein. The conventional functions attributed to this protein mainly support the plasma membrane. In the present study, we utilized a global protein expression analysis approach to detect underexplored functions of this protein. We report that downregulation of α-fodrin in glioblastoma cells, U-251 MG, results in upregulation of genes affecting the regulation of the cytoskeleton, cell cycle and apoptosis. Interestingly, certain key microtubule kinesins such as KIF23, KIF2B and KIF3C are downregulated upon α-fodrin depletion, as validated by real-time PCR studies.
Collapse
|
36
|
Xu L, Zhang X, Wang Z, Zhao X, Zhao L, Hu Y. Kinesin family member 2A promotes cancer cell viability, mobility, stemness, and chemoresistance to cisplatin by activating the PI3K/AKT/VEGF signaling pathway in non-small cell lung cancer. Am J Transl Res 2021; 13:2060-2076. [PMID: 34017375 PMCID: PMC8129315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/01/2020] [Indexed: 06/12/2023]
Abstract
Kinesin family member 2A (KIF2A), a member of the kinesin-13 protein family that functions as a regulator in mitosis, neuron branch extension, etc., is reported to be involved in the pathogenesis of multiple cancers. This study assessed KIF2A effects on cancer cell functions and sensitivity to chemotherapy and its interaction with PI3K/AKT/VEGF signaling when mediating cancer cell functions, and chemosensitivity in non-small cell lung cancer (NSCLC). Human bronchial epithelial cell line BEAS-2B and human NSCLC cell lines NCI-H1299, NCI-H385, NCI-H1650, and A549 were used. The KIF2A and negative control (NC) overexpression plasmids were transfected into A549 cells; KIF2A and NC knock-down plasmids were transfected into NCI-H1299 cells. Rescue experiments were conducted by transfecting PI3K and NC knock-down plasmids into KIF2A overexpression A549 cells and transfecting PI3K and NC overexpression plasmids into KIF2A knock-down NCI-H1299 cells. Proliferation, apoptosis, migration, invasion, CD133+ proportion, sensitivity to chemotherapeutics, and PI3K/AKT/VEGF pathway were assessed. KIF2A mRNA and protein expression levels were elevated in NCI-H1299, NCI-H385, NCI-H1650, and A549 cells compared to BEAS-2B cells. KIF2A overexpression elevated proliferation, migration, invasion, stemness, and resistance to cisplatin but did not affect apoptosis or resistance to pemetrexed in A549 cells. Furthermore, KIF2A knock-down repressed proliferation, migration, invasion, stemness, and resistance to cisplatin, but not to pemetrexed, and it enhanced apoptosis in NCI-H1299 cells. Rescue experiments showed that the PI3K/AKT/VEGF pathway compensated for KIF2A effects on cell functions and sensitivity to cisplatin in A549 and NCI-H1299 cells. In conclusion, KIF2A advocates NSCLC cell viability, mobility, stemness, and chemoresistance to cisplatin by activating the PI3K/AKT/VEGF signaling pathway.
Collapse
Affiliation(s)
- Liwei Xu
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical UniversityShenyang, China
| | - Xiaochun Zhang
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical UniversityShenyang, China
| | - Zanfeng Wang
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical UniversityShenyang, China
| | - Xinyang Zhao
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical UniversityShenyang, China
| | - Li Zhao
- Department of Radiology, The First Hospital of China Medical UniversityShenyang, China
| | - Yue Hu
- Department of Outpatient, The First Hospital of China Medical UniversityShenyang, China
| |
Collapse
|
37
|
Gao H, Zhang Y, Li Y, Lin X. KIF2A regulates ovarian development via modulating cell cycle progression and vitollogenin levels. INSECT MOLECULAR BIOLOGY 2021; 30:165-175. [PMID: 33251618 DOI: 10.1111/imb.12685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/17/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
The kinesin superfamily of proteins (KIFs) are microtubule motor proteins that use the hydrolysis of ATP to power directional movement along microtubules. KIFs induce microtubule depolymerization to regulate the length and dynamics of microtubules in a variety of cell processes and structures, including the mitotic and meiotic spindles and centriole and interphase microtubules. KIF plays a significant role in the transport of organelles, protein complexes and mRNAs. The brown planthopper (Nilaparvata lugens) is a major insect pest in rice paddy fields. Ovarian development is regulated by multiple factors, including endocrine factors. The role of KIFs in brown planthopper ovarian development remains unknown. We found that downregulation of KIF2A significantly compromised the development and eclosion of the brown planthopper, delayed ovarian cell cycle progression, disrupted ovarian development, reduced the expression of MCM genes required for DNA replication and significantly reduced the number of nuclei in the follicles. We also found a significant reduction in Vg mRNA and protein levels. We conclude that downregulation of KIF2A disrupts the cell cycle progression of cells. Alternatively, the ovarian phenotype could be an indirect effect of a compromised trophic cord. In summary, KIF2A regulates ovarian development via modulating cell cycle progression and/or vitollogenin transportation.
Collapse
Affiliation(s)
- H Gao
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Y Zhang
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Y Li
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - X Lin
- College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
38
|
McIntosh JR. Anaphase A. Semin Cell Dev Biol 2021; 117:118-126. [PMID: 33781672 DOI: 10.1016/j.semcdb.2021.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
Anaphase A is the motion of recently separated chromosomes to the spindle pole they face. It is accompanied by the shortening of kinetochore-attached microtubules. The requisite tubulin depolymerization may occur at kinetochores, at poles, or both, depending on the species and/or the time in mitosis. These depolymerization events are local and suggest that cells regulate microtubule dynamics in specific places, presumably by the localization of relevant enzymes and microtubule-associated proteins to specific loci, such as pericentriolar material and outer kinetochores. Motor enzymes can contribute to anaphase A, both by altering microtubule stability and by pushing or pulling microtubules through the cell. The generation of force on chromosomes requires couplings that can both withstand the considerable force that spindles can generate and simultaneously permit tubulin addition and loss. This chapter reviews literature on the molecules that regulate anaphase microtubule dynamics, couple dynamic microtubules to kinetochores and poles, and generate forces for microtubule and chromosome motion.
Collapse
Affiliation(s)
- J Richard McIntosh
- Dept. of Molecular, Cellular, and Developmental Biology University of Colorado, Boulder, CO 80309-0347, USA.
| |
Collapse
|
39
|
Akkaya C, Atak D, Kamacioglu A, Akarlar BA, Guner G, Bayam E, Taskin AC, Ozlu N, Ince-Dunn G. Roles of developmentally regulated KIF2A alternative isoforms in cortical neuron migration and differentiation. Development 2021; 148:dev.192674. [PMID: 33531432 DOI: 10.1242/dev.192674] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/18/2021] [Indexed: 11/20/2022]
Abstract
KIF2A is a kinesin motor protein with essential roles in neural progenitor division and axonal pruning during brain development. However, how different KIF2A alternative isoforms function during development of the cerebral cortex is not known. Here, we focus on three Kif2a isoforms expressed in the developing cortex. We show that Kif2a is essential for dendritic arborization in mice and that the functions of all three isoforms are sufficient for this process. Interestingly, only two of the isoforms can sustain radial migration of cortical neurons; a third isoform, lacking a key N-terminal region, is ineffective. By proximity-based interactome mapping for individual isoforms, we identify previously known KIF2A interactors, proteins localized to the mitotic spindle poles and, unexpectedly, also translation factors, ribonucleoproteins and proteins that are targeted to organelles, prominently to the mitochondria. In addition, we show that a KIF2A mutation, which causes brain malformations in humans, has extensive changes to its proximity-based interactome, with depletion of mitochondrial proteins identified in the wild-type KIF2A interactome. Our data raises new insights about the importance of alternative splice variants during brain development.
Collapse
Affiliation(s)
- Cansu Akkaya
- Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Turkey
| | - Dila Atak
- Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Turkey
| | - Altug Kamacioglu
- Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Turkey
| | - Busra Aytul Akarlar
- Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Turkey
| | - Gokhan Guner
- Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Turkey
| | - Efil Bayam
- Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Turkey
| | - Ali Cihan Taskin
- Embryo Manipulation Laboratory, Animal Research Facility, Translational Medicine Research Center, Koç University, 34450 Istanbul, Turkey
| | - Nurhan Ozlu
- Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Turkey
| | - Gulayse Ince-Dunn
- Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Turkey .,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
40
|
Fu X, Cheng S, Wang W, Shi O, Gao F, Li Y, Wang Q. TCGA dataset screening for genes implicated in endometrial cancer using RNA-seq profiling. Cancer Genet 2021; 254-255:40-47. [PMID: 33588182 DOI: 10.1016/j.cancergen.2021.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/12/2021] [Accepted: 01/28/2021] [Indexed: 01/20/2023]
Abstract
The molecular basis of the mechanism and the potential biomarkers of endometrial cancer (EC) remain to be studied. In the present study, we hypothesized that the comprehensive characterization of transcriptional changes in EC could help achieve this aim. By taking advantage of RNA-seq data from The Cancer Genome Atlas, we determined the profile of differently expressed genes (DEGs) between EC tumor tissues and normal samples. On this basis, we performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways enrichment analyses. The interacting partners for each of the DEGs were explored and a protein-protein interaction network was constructed. Consequently, 10 hub genes were identified and their association with mortality in EC patients was investigated. The genes, AURKA, CENPA, and KIF2C, were found to be potential biomarkers for EC with a significant prognostic effect. Our work provided a basis for EC studies in both biological and clinical settings.
Collapse
Affiliation(s)
- Xiaoli Fu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shuai Cheng
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China; The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou 450001, China
| | - Wei Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China; The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou 450001, China
| | - Oumin Shi
- Health Science Center, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518020, China
| | - Fuxiao Gao
- China Canada Medical and Health Science Association, Toronto L3R 1A3, Canada
| | - Yong Li
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Qi Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China; China Canada Medical and Health Science Association, Toronto L3R 1A3, Canada.
| |
Collapse
|
41
|
Nehlig A, Seiler C, Steblyanko Y, Dingli F, Arras G, Loew D, Welburn J, Prigent C, Barisic M, Nahmias C. Reciprocal regulation of Aurora kinase A and ATIP3 in the control of metaphase spindle length. Cell Mol Life Sci 2021; 78:1765-1779. [PMID: 32789689 PMCID: PMC11072152 DOI: 10.1007/s00018-020-03614-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/18/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022]
Abstract
Maintaining the integrity of the mitotic spindle in metaphase is essential to ensure normal cell division. We show here that depletion of microtubule-associated protein ATIP3 reduces metaphase spindle length. Mass spectrometry analyses identified the microtubule minus-end depolymerizing kinesin Kif2A as an ATIP3 binding protein. We show that ATIP3 controls metaphase spindle length by interacting with Kif2A and its partner Dda3 in an Aurora kinase A-dependent manner. In the absence of ATIP3, Kif2A and Dda3 accumulate at spindle poles, which is consistent with reduced poleward microtubule flux and shortening of the spindle. ATIP3 silencing also limits Aurora A localization to the poles. Transfection of GFP-Aurora A, but not kinase-dead mutant, rescues the phenotype, indicating that ATIP3 maintains Aurora A activity on the poles to control Kif2A targeting and spindle size. Collectively, these data emphasize the pivotal role of Aurora kinase A and its mutual regulation with ATIP3 in controlling spindle length.
Collapse
Affiliation(s)
- Anne Nehlig
- Inserm U981, Department of Molecular Medicine, Gustave Roussy Cancer Center, 114 rue Edouard Vaillant, 94800, Villejuif, France
- LabEx LERMIT, Université Paris Saclay, 92296, Châtenay-Malabry, France
- Institut Gustave Roussy, Inserm, Biomarqueurs prédictifs et nouvelles stratégies thérapeutiques en oncologie, Université Paris-Saclay, 94800, Villejuif, France
| | - Cynthia Seiler
- Inserm U981, Department of Molecular Medicine, Gustave Roussy Cancer Center, 114 rue Edouard Vaillant, 94800, Villejuif, France
- LabEx LERMIT, Université Paris Saclay, 92296, Châtenay-Malabry, France
- Institut Gustave Roussy, Inserm, Biomarqueurs prédictifs et nouvelles stratégies thérapeutiques en oncologie, Université Paris-Saclay, 94800, Villejuif, France
| | - Yulia Steblyanko
- Cell Division Laboratory, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Florent Dingli
- Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, PSL Research University, 75248, Paris Cedex 05, France
| | - Guillaume Arras
- Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, PSL Research University, 75248, Paris Cedex 05, France
| | - Damarys Loew
- Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, PSL Research University, 75248, Paris Cedex 05, France
| | - Julie Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - Claude Prigent
- Institut de Génétique et Développement de Rennes (IGDR), Unité CNRS, UMR 6290, Université de Rennes, 35043, Rennes, France
| | - Marin Barisic
- Cell Division Laboratory, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Clara Nahmias
- Inserm U981, Department of Molecular Medicine, Gustave Roussy Cancer Center, 114 rue Edouard Vaillant, 94800, Villejuif, France.
- LabEx LERMIT, Université Paris Saclay, 92296, Châtenay-Malabry, France.
- Institut Gustave Roussy, Inserm, Biomarqueurs prédictifs et nouvelles stratégies thérapeutiques en oncologie, Université Paris-Saclay, 94800, Villejuif, France.
| |
Collapse
|
42
|
Shen P, Xu A, Hou Y, Wang H, Gao C, He F, Yang D. Conserved paradoxical relationships among the evolutionary, structural and expressional features of KRAB zinc-finger proteins reveal their special functional characteristics. BMC Mol Cell Biol 2021; 22:7. [PMID: 33482715 PMCID: PMC7821633 DOI: 10.1186/s12860-021-00346-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/13/2021] [Indexed: 12/03/2022] Open
Abstract
Background One striking feature of the large KRAB domain-containing zinc finger protein (KZFP) family is its rapid evolution, leading to hundreds of member genes with various origination time in a certain mammalian genome. However, a comprehensive genome-wide and across-taxa analysis of the structural and expressional features of KZFPs with different origination time is lacking. This type of analysis will provide valuable clues about the functional characteristics of this special family. Results In this study, we found several conserved paradoxical phenomena about this issue. 1) Ordinary young domains/proteins tend to be disordered, but most of KRAB domains are completely structured in 64 representative species across the superclass of Sarcopterygii and most of KZFPs are also highly structured, indicating their rigid and unique structural and functional characteristics; as exceptions, old-zinc-finger-containing KZFPs have relatively disordered KRAB domains and linker regions, contributing to diverse interacting partners and functions. 2) In general, young or highly structured proteins tend to be spatiotemporal specific and have low abundance. However, by integrated analysis of 29 RNA-seq datasets, including 725 samples across early embryonic development, embryonic stem cell differentiation, embryonic and adult organs, tissues in 7 mammals, we found that KZFPs tend to express ubiquitously with medium abundance regardless of evolutionary age and structural disorder degree, indicating the wide functional requirements of KZFPs in various states. 3) Clustering and correlation analysis reveal that there are differential expression patterns across different spatiotemporal states, suggesting the specific-high-expression KZFPs may play important roles in the corresponding states. In particular, part of young-zinc-finger-containing KZFPs are highly expressed in early embryonic development and ESCs differentiation into endoderm or mesoderm. Co-expression analysis revealed that young-zinc-finger-containing KZFPs are significantly enriched in five co-expression modules. Among them, one module, including 13 young-zinc-finger-containing KZFPs, showed an ‘early-high and late-low’ expression pattern. Further functional analysis revealed that they may function in early embryonic development and ESC differentiation via participating in cell cycle related processes. Conclusions This study shows the conserved and special structural, expressional features of KZFPs, providing new clues about their functional characteristics and potential causes of their rapid evolution. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00346-w.
Collapse
Affiliation(s)
- Pan Shen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Aishi Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.,Animal Sciences College of Jilin University, Changchun, 130062, China
| | - Yushan Hou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Huqiang Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Chao Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Dong Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| |
Collapse
|
43
|
Zheng L, Li L, Xie J, Jin H, Zhu N. Six Novel Biomarkers for Diagnosis and Prognosis of Esophageal squamous cell carcinoma: validated by scRNA-seq and qPCR. J Cancer 2021; 12:899-911. [PMID: 33403046 PMCID: PMC7778544 DOI: 10.7150/jca.50443] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/16/2020] [Indexed: 12/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers worldwide. ESCC has a generally poor prognosis and there is a lack of available biomarkers for diagnosis and prognosis. The aim of the study was to identify novel biomarkers for ESCC. We screened the overlapping differentially expressed genes (DEGs) acquired from six Gene Expression Omnibus (GEO) ESCC datasets and The Cancer Genome Atlas (TCGA) ESCC datasets. Subsequently, protein-protein interaction network analysis was performed to identify the key hub genes. Then, Kaplan Meier survival and receiver operating curve (ROC) analysis were utilized to clarify the diagnostic and prognostic role of these hub genes. The UALCAN database, single cell RNA sequencing (scRNA-seq) and real-time quantitative PCR (qPCR) were performed to confirm the expression levels of identified hub genes. Finally, immune infiltration analysis was conducted to investigate the role of these genes in the pathogenesis of ESCC. The results showed that PBK, KIF2C, NUF2, KIF20A, RAD51AP1, and DEPDC1 effectively distinguish ESCC tissues from normal samples, and all of them were significantly correlated with overall survival. The results of scRNA-seq and qPCR indicated that the expression levels of hub genes in ESCC were significantly higher than in normal cells or tissues. Further immune infiltration analysis showed that infiltration of dendritic cells was significantly negatively correlated with PBK, KIF2C, NUF2, RAD51AP1, and DEPDC1 expression levels. In conclusion, our results suggest that PBK, KIF2C, NUF2, KIF20A, RAD51AP1 and DEPDC1 are all potential biomarkers for ESCC diagnosis and prognosis may also be potential therapeutic targets for ESCC.
Collapse
Affiliation(s)
- Liuhai Zheng
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Linzhi Li
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jun Xie
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Hai Jin
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Naishuo Zhu
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
44
|
Ferreira LT, Orr B, Rajendraprasad G, Pereira AJ, Lemos C, Lima JT, Guasch Boldú C, Ferreira JG, Barisic M, Maiato H. α-Tubulin detyrosination impairs mitotic error correction by suppressing MCAK centromeric activity. J Cell Biol 2020; 219:133849. [PMID: 32328631 PMCID: PMC7147099 DOI: 10.1083/jcb.201910064] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/30/2019] [Accepted: 02/04/2020] [Indexed: 12/30/2022] Open
Abstract
Incorrect kinetochore–microtubule attachments during mitosis can lead to chromosomal instability, a hallmark of human cancers. Mitotic error correction relies on the kinesin-13 MCAK, a microtubule depolymerase whose activity in vitro is suppressed by α-tubulin detyrosination—a posttranslational modification enriched on long-lived microtubules. However, whether and how MCAK activity required for mitotic error correction is regulated by α-tubulin detyrosination remains unknown. Here we found that detyrosinated α-tubulin accumulates on correct, more stable, kinetochore–microtubule attachments. Experimental manipulation of tubulin tyrosine ligase (TTL) or carboxypeptidase (Vasohibins-SVBP) activities to constitutively increase α-tubulin detyrosination near kinetochores compromised efficient error correction, without affecting overall kinetochore microtubule stability. Rescue experiments indicate that MCAK centromeric activity was required and sufficient to correct the mitotic errors caused by excessive α-tubulin detyrosination independently of its global impact on microtubule dynamics. Thus, microtubules are not just passive elements during mitotic error correction, and the extent of α-tubulin detyrosination allows centromeric MCAK to discriminate correct vs. incorrect kinetochore–microtubule attachments, thereby promoting mitotic fidelity.
Collapse
Affiliation(s)
- Luísa T Ferreira
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigacão e Inovacão em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Bernardo Orr
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigacão e Inovacão em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Girish Rajendraprasad
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - António J Pereira
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigacão e Inovacão em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Carolina Lemos
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,UnIGENe, i3S - Instituto de Investigacão e Inovacão em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Joana T Lima
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigacão e Inovacão em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Clàudia Guasch Boldú
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jorge G Ferreira
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigacão e Inovacão em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Cell Division Group, Experimental Biology Unit, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helder Maiato
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigacão e Inovacão em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Cell Division Group, Experimental Biology Unit, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| |
Collapse
|
45
|
Identification of Kinesin Family Member 2A (KIF2A) as a Promising Therapeutic Target for Osteosarcoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7102757. [PMID: 33204709 PMCID: PMC7655250 DOI: 10.1155/2020/7102757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/07/2019] [Accepted: 08/12/2020] [Indexed: 12/30/2022]
Abstract
Background Osteosarcoma is known as a type of common human bone malignancy, and more therapeutic targets are still required to combat this disease. In recent years, the involvement of KIF2A in cancer progression has been widely revealed; however, its potential effect on osteosarcoma development remains unknown. This study is to assess the KIF2A expression levels in human osteosarcoma tissues and explore its potential role in osteosarcoma development. Methods Immunohistochemical (IHC) assays were conducted to evaluate the expression levels of KIF2A in a total of 74 samples of osteosarcoma tissues and adjacent nontumor tissues. According to the staining intensity in tumor tissues, patients were divided into highly expressed and low expression KIF2A groups. The possible links between the KIF2A expression and the clinical pathological features were explored and analyzed, and the effects of KIF2A on osteosarcoma cell proliferation, migration, and invasion were detected through colony formation assay, MTT assay, wound closure assay, and transwell assay, respectively. The effects of KIF2A on tumor growth and metastasis were detected by the use of animal models. Results KIF2A was highly expressed in human osteosarcoma tissues. Meanwhile, KIF2A was obviously correlated to the tumor size (P = 0.001∗) and clinical stage (P = 0.014∗) of osteosarcoma patients. Our results also revealed that the ablation of KIF2A dramatically blocked the proliferation, migration, and invasion capacity of osteosarcoma cells in vitro and blocked tumor growth and metastasis in mice. Conclusions We investigated the involvement of KIF2A in the development and metastasis of osteosarcoma and therefore thought KIF2A as a promising therapeutic target for osteosarcoma treatment.
Collapse
|
46
|
Hadders MA, Hindriksen S, Truong MA, Mhaskar AN, Wopken JP, Vromans MJM, Lens SMA. Untangling the contribution of Haspin and Bub1 to Aurora B function during mitosis. J Cell Biol 2020; 219:133700. [PMID: 32027339 PMCID: PMC7054988 DOI: 10.1083/jcb.201907087] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/26/2019] [Accepted: 12/12/2019] [Indexed: 12/18/2022] Open
Abstract
Aurora B kinase is essential for faithful chromosome segregation during mitosis. During (pro)metaphase, Aurora B is concentrated at the inner centromere by the kinases Haspin and Bub1. However, how Haspin and Bub1 collaborate to control Aurora B activity at centromeres remains unclear. Here, we show that either Haspin or Bub1 activity is sufficient to recruit Aurora B to a distinct chromosomal locus. Moreover, we identified a small, Bub1 kinase–dependent Aurora B pool that supported faithful chromosome segregation in otherwise unchallenged cells. Joined inhibition of Haspin and Bub1 activities fully abolished Aurora B accumulation at centromeres. While this impaired the correction of erroneous KT–MT attachments, it did not compromise the mitotic checkpoint, nor the phosphorylation of the Aurora B kinetochore substrates Hec1, Dsn1, and Knl1. This suggests that Aurora B substrates at the kinetochore are not phosphorylated by centromere-localized pools of Aurora B, and calls for a reevaluation of the current spatial models for how tension affects Aurora B–dependent kinetochore phosphorylation.
Collapse
Affiliation(s)
- Michael A Hadders
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sanne Hindriksen
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - My Anh Truong
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Aditya N Mhaskar
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - J Pepijn Wopken
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Martijn J M Vromans
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Susanne M A Lens
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
47
|
Cai Z, Li H. Circular RNAs and Bladder Cancer. Onco Targets Ther 2020; 13:9573-9586. [PMID: 33061440 PMCID: PMC7535116 DOI: 10.2147/ott.s268859] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Bladder cancer (BC) is the most common urinary system malignancy and is a serious threat to human health. Circular RNAs (circRNAs) are members of a newly defined class of noncoding RNAs (ncRNAs) that can regulate gene expression at the transcriptional or posttranscriptional level. Studies have shown that circRNAs are related to the clinicopathological characteristics, prognosis, and chemosensitivity of BC, and basic research has further confirmed that changes in the expression of circRNAs in BC are closely related to various tumor biological functions. CircRNAs promote tumor development by interacting with miRNAs to regulate transcription factors and both classical and nonclassical tumor signaling pathways. The nonclassical signaling pathways are related to cell cycle progression, epithelial–mesenchymal transition (EMT), extracellular matrix maintenance, and tumor stem cell maintenance. In this article, the relationships between circRNAs and the clinical characteristics of BC are reviewed, and the molecular mechanisms by which circRNAs promote tumor development are explored.
Collapse
Affiliation(s)
- Zhonglin Cai
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Hongjun Li
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
48
|
Xu Y, Wang W, Chen J, Mao H, Liu Y, Gu S, Liu Q, Xi Q, Shi W. High neuropilin and tolloid-like 1 expression associated with metastasis and poor survival in epithelial ovarian cancer via regulation of actin cytoskeleton. J Cell Mol Med 2020; 24:9114-9124. [PMID: 32638511 PMCID: PMC7417683 DOI: 10.1111/jcmm.15547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/01/2020] [Accepted: 06/07/2020] [Indexed: 12/19/2022] Open
Abstract
Abnormal expression of neuropilin and tolloid‐like 1 (NETO1) has been detected in some human carcinomas. However, the expression of NETO1 and the underlying mechanism in epithelial ovarian cancer (EOC) remain unknown. In this study, we found that a higher NETO1 expression in EOC tissue samples compared to normal ovarian tissue samples was significantly correlated with worse overall survival. Additionally, Cox regression analysis suggested that NETO 1 was independently associated with overall survival. NETO1 overexpression enhanced the EOC cells’ migration and invasion capability in vitro via regulation of actin cytoskeleton. Mechanistically, silencing NETO1 reduced the expression of β‐tubulin, F‐actin and KIF2A. In conclusion, our results demonstrated the critical role of NETO1 in EOC invasion, and therapies aimed at inhibiting its expression or activity might significantly control EOC growth, invasion and metastatic dissemination.
Collapse
Affiliation(s)
- Yunzhao Xu
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Wang
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, China
| | - Jinling Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Haixia Mao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuanlin Liu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| | - Shuting Gu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| | - Qinqin Liu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| | - Qinghua Xi
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| | - Wenyu Shi
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
49
|
Li D, Sun H, Meng L, Li D. The Overexpression of Kinesin Superfamily Protein 2A (KIF2A) was Associated with the Proliferation and Prognosis of Esophageal Squamous Cell Carcinoma. Cancer Manag Res 2020; 12:3731-3739. [PMID: 32547209 PMCID: PMC7246320 DOI: 10.2147/cmar.s248008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022] Open
Abstract
Aim Kinesin family member 2A (KIF2A) is a member of the kinesin-13 superfamily protein. KIF2A played a role in the development of many tumors. However, the role of KIF2A in esophageal squamous cell carcinoma (ESCC) remains unclear. In this study, we aimed to investigate the role of KIF2A in ESCC. Methods We used bioinformatics analysis to study the expression levels and prognosis of KIF2A in ESCC and normal tissues. We also used our own samples to verify the results by immunohistochemistry. Then, the biological functions of KIF2A in ESCC was studied by cell experiments and animal experiments. Results Both the TCGA database and our samples showed that KIF2A was relatively highly expressed in ESCC tissues and was significantly associated with disease-free survival (P =0.037) in TCGA database. Colony formation assay, CCK8 and Western blotting results showed that knockdown of KIF2A can significantly reduce colony forming ability and proliferation ability. The results of animal experiments showed that knocking down KIF2A can significantly reduce the tumor volume of mice. Conclusion KIF2A might be used as a prognostic factor for ESCC, and knockdown of KIF2A could inhibit ESCC proliferation in vitro and in vivo, respectively. KIF2A could serve as a potential prognostic biomarker and therapeutic target for future ESCC.
Collapse
Affiliation(s)
- Demao Li
- Department of Thoracic Surgery, Xingtai People's Hospital, Xingtai City, Hebei 054000, People's Republic of China
| | - Huijie Sun
- Department of Pharmacy, Xingtai Medical College, Xingtai City, Hebei 054000, People's Republic of China
| | - Linglei Meng
- Department of CT/MR, Xingtai People's Hospital, Xingtai City, Hebei 054000, People's Republic of China
| | - Deshang Li
- Department of Laboratory, Xingtai People's Hospital, Xingtai City, Hebei 054000, People's Republic of China
| |
Collapse
|
50
|
Guo X, Mu H, Yan S, Wei J. Exploring the molecular disorder and dysfunction mechanism of human dental pulp cells under hypoxia by comprehensive multivariate analysis. Gene 2020; 735:144332. [PMID: 31972310 DOI: 10.1016/j.gene.2020.144332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 01/01/2020] [Accepted: 01/06/2020] [Indexed: 12/21/2022]
Abstract
Dental pulp cells (DPCs) are multipotent cells, which can differentiate into various tissues and have the potential to treat many diseases. However, little is known about the molecular disorder mechanism. To explore the mechanism of molecular disorders and dysfunction of DPCs under hypoxia, we investigated the molecular effects of two hypoxic time lengths on DPCs. Differential analysis, protein interaction network (PPI), enrichment analysis and coupling analysis were further synthesized to identify human dental pulp cell dysfunction modules under hypoxic conditions. Based on the module aggregation of 579 genes, 13 dental pulp cell dysfunction modules were obtained. Importantly, we found that up to 12 modules were significantly involved in positive regulation of neurogenesis, positive regulation of nervous system development. Based on the predictive analysis of regulators, we identified a series of ncRNAs (including CRNDE, MALAT1, microRNA-140-5p, microRNA-300 and microRNA-30a-5p) and transcription factors (including E2F1). Based on the comprehensive functional module analysis, we identified the dysfunction module of human dental pulp cells (HDPCs) under hypoxia. The results suggest that nerve regulation plays an important role in regulating the dysfunction module of DPCs. These prominent pivotal regulators in the module were used as an important part of the molecular disorders of DPCs, may be an important part of the subnetwork of the manipulation module and affect the molecular dysregulation mechanism of DPCs. This study provides new directions and potential targets for further research.
Collapse
Affiliation(s)
- Xiangjun Guo
- Stomatology Clinic of Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Hong Mu
- Stomatology Clinic of Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Shixia Yan
- Stomatology Clinic of Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Jianming Wei
- Stomatology Clinic of Cangzhou Central Hospital, Cangzhou, Hebei Province, China.
| |
Collapse
|