1
|
Lee SH, Platt S, Lim CH, Ito M, Myung P. The development of hair follicles and nail. Dev Biol 2024; 513:3-11. [PMID: 38759942 DOI: 10.1016/j.ydbio.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
The hair follicle and nail unit develop and regenerate through epithelial-mesenchymal interactions. Here, we review some of the key signals and molecular interactions that regulate mammalian hair follicle and nail formation during embryonic development and how these interactions are reutilized to promote their regeneration during adult homeostasis and in response to skin wounding. Finally, we highlight the role of some of these signals in mediating human hair follicle and nail conditions.
Collapse
Affiliation(s)
- Soung-Hoon Lee
- The Ronald O. Perelman Department of Dermatology and Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Sarah Platt
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Chae Ho Lim
- The Ronald O. Perelman Department of Dermatology and Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Mayumi Ito
- The Ronald O. Perelman Department of Dermatology and Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Peggy Myung
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Marechal E, Poliard A, Henry K, Moreno M, Legrix M, Macagno N, Mondielli G, Fauquier T, Barlier A, Etchevers HC. Multiple congenital malformations arise from somatic mosaicism for constitutively active Pik3ca signaling. Front Cell Dev Biol 2022; 10:1013001. [PMID: 36353506 PMCID: PMC9637999 DOI: 10.3389/fcell.2022.1013001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
Recurrent missense mutations of the PIK3CA oncogene are among the most frequent drivers of human cancers. These often lead to constitutive activation of its product p110α, a phosphatidylinositol 3-kinase (PI3K) catalytic subunit. In addition to causing a broad range of cancers, the H1047R mutation is also found in affected tissues of a distinct set of congenital tumors and malformations. Collectively termed PIK3CA-related disorders (PRDs), these lead to overgrowth of brain, adipose, connective and musculoskeletal tissues and/or blood and lymphatic vessel components. Vascular malformations are frequently observed in PRD, due to cell-autonomous activation of PI3K signaling within endothelial cells. These, like most muscle, connective tissue and bone, are derived from the embryonic mesoderm. However, important organ systems affected in PRDs are neuroectodermal derivatives. To further examine their development, we drove the most common post-zygotic activating mutation of Pik3ca in neural crest and related embryonic lineages. Outcomes included macrocephaly, cleft secondary palate and more subtle skull anomalies. Surprisingly, Pik3ca-mutant subpopulations of neural crest origin were also associated with widespread cephalic vascular anomalies. Mesectodermal neural crest is a major source of non-endothelial connective tissue in the head, but not the body. To examine the response of vascular connective tissues of the body to constitutive Pik3ca activity during development, we expressed the mutation by way of an Egr2 (Krox20) Cre driver. Lineage tracing led us to observe new lineages that had normally once expressed Krox20 and that may be co-opted in pathogenesis, including vascular pericytes and perimysial fibroblasts. Finally, Schwann cell precursors having transcribed either Krox20 or Sox10 and induced to express constitutively active PI3K were associated with vascular and other tumors. These murine phenotypes may aid discovery of new candidate human PRDs affecting craniofacial and vascular smooth muscle development as well as the reciprocal paracrine signaling mechanisms leading to tissue overgrowth.
Collapse
Affiliation(s)
- Elise Marechal
- INSERM, MMG, U1251, MarMaRa Institute, Aix Marseille University, Marseille, France
| | - Anne Poliard
- URP 2496 Orofacial Pathologies, Imagery and Biotherapies, CNRS, GDR 2031 CREST-NET, Université Paris Cité, Montrouge, France
- School of Dentistry, Université Paris Cité, Montrouge, France
| | - Kilian Henry
- School of Dentistry, Université Paris Cité, Montrouge, France
| | - Mathias Moreno
- INSERM, MMG, U1251, MarMaRa Institute, Aix Marseille University, Marseille, France
| | - Mathilde Legrix
- INSERM, MMG, U1251, MarMaRa Institute, Aix Marseille University, Marseille, France
| | - Nicolas Macagno
- INSERM, MMG, U1251, MarMaRa Institute, Aix Marseille University, Marseille, France
| | - Grégoire Mondielli
- INSERM, MMG, U1251, MarMaRa Institute, Aix Marseille University, Marseille, France
| | - Teddy Fauquier
- INSERM, MMG, U1251, MarMaRa Institute, Aix Marseille University, Marseille, France
| | - Anne Barlier
- INSERM, MMG, U1251, MarMaRa Institute, Aix Marseille University, Marseille, France
- AP-HM, MMG, MarMaRa Institute, La Conception Hospital Laboratory of Molecular Biology, Marseille, France
| | - Heather C. Etchevers
- INSERM, MMG, U1251, CNRS, GDR 2031 CREST-NET, MarMaRa Institute, Aix Marseille University, Marseille, France
- *Correspondence: Heather C. Etchevers,
| |
Collapse
|
3
|
Li Q, Kou X, Qin X, Li Z, Li J, Chen C. BMP-4 impedes endothelial cell migration in neointimal hyperplasia via FoXO-3 specific modulation of reactive oxygen species. Atherosclerosis 2022; 351:9-17. [DOI: 10.1016/j.atherosclerosis.2022.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/24/2022] [Accepted: 05/06/2022] [Indexed: 11/26/2022]
|
4
|
P63 modulates the expression of the WDFY2 gene which is implicated in cancer regulation and limb development. Biosci Rep 2020; 39:221381. [PMID: 31789342 PMCID: PMC6914664 DOI: 10.1042/bsr20192114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/15/2019] [Accepted: 11/29/2019] [Indexed: 12/31/2022] Open
Abstract
TP63 is a member of the TP53 gene family, sharing a common gene structure that produces two groups of mRNAs' encoding proteins with different N-terminal regions (ΔN and TA isoforms); both transcripts are also subjected to alternative splicing mechanisms at C-terminus, generating a variety of isoforms. p63 is a master regulator of epidermal development and homoeostasis as well as an important player in tumorigenesis and cancer progression with both oncogenic and tumour suppressive roles. A number of studies have aimed at the identification of p63 target genes, allowing the dissection of the molecular pathways orchestrated by the different isoforms. In the present study we investigated in more detail the p63 responsiveness of the WDFY2 (WD repeat and FYVE domain containing 2) gene, encoding for an endosomal protein identified as a binding partner of the PI-3K/AKT signalling pathway. We showed that overexpression of different p63 isoforms was able to induce WDFY2 expression in TP53-null cells. The p63-dependent transcriptional activation was associated with specific response elements (REs) that have been identified by a bioinformatics tool and validated by yeast- and mammal-based assays. Interestingly, to confirm that WDFY2 belongs to the p63 network of cancer regulation, we analysed the impact of WDFY2 alterations, by showing its frequent deletion in different types of tumours and suggesting its expression level as a prognostic biomarker. Lastly, we identified a chromosomal translocation involving the WDFY2 locus in a patient affected by a rare congenital limb anomaly, indicating WDFY2 as a possible susceptibility gene placed downstream p63 in the network of limb development.
Collapse
|
5
|
Lindhurst MJ, Brinster LR, Kondolf HC, Shwetar JJ, Yourick MR, Shiferaw H, Keppler-Noreuil KM, Elliot G, Rivas C, Garrett L, Gomez-Rodriguez J, Sebire NJ, Hewitt SM, Schwartzberg PL, Biesecker LG. A mouse model of Proteus syndrome. Hum Mol Genet 2020; 28:2920-2936. [PMID: 31194862 DOI: 10.1093/hmg/ddz116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 01/29/2023] Open
Abstract
Proteus syndrome is a mosaic, progressive overgrowth disorder caused by a somatic activating variant c.49G > A p.(E17K) in AKT1. The presentation in affected individuals is variable, with a diversity of tissues demonstrating abnormalities. Common manifestations include skin and bony overgrowth, vascular malformations (VMs), cysts and benign tumors. We used two methods to create mouse models that had endogenously-regulated mosaic expression of the Proteus syndrome variant. Variant allele fractions (VAFs) ranged from 0% to 50% across numerous tissues in 44 Proteus syndrome mice. Mice were phenotypically heterogeneous with lesions rarely observed before 12 months of age. VMs were the most frequent finding with a total of 69 found in 29 of 44 Proteus syndrome mice. Twenty-eight cysts and ectasia, frequently biliary, were seen in 22 of 44 Proteus syndrome mice. Varying levels of mammary hyperplasia were seen in 10 of 16 female Proteus syndrome mice with other localized regions of hyperplasia and stromal expansion noted in several additional animals. Interestingly, 27 of 31 Proteus syndrome animals had non-zero blood VAF that is in contrast to the human disorder where it is rarely seen in peripheral blood. Identification of variant-positive cells by green fluorescent protein (GFP) staining in chimeric Proteus syndrome mice showed that in some lesions, hyperplastic cells were predominantly GFP/Akt1E17K-positive and showed increased pAKT signal compared to GFP-negative cells. However, hyperplastic mammary epithelium was a mixture of GFP/Akt1E17K-positive and negative cells with some GFP/Akt1E17K-negative cells also having increased pAKT signal suggesting that the variant-positive cells can induce lesion formation in a non-cell autonomous manner.
Collapse
Affiliation(s)
- Marjorie J Lindhurst
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Lauren R Brinster
- Division of Veterinary Resources, Office of Research Services, NIH, Bethesda, MD, USA
| | - Hannah C Kondolf
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Jasmine J Shwetar
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Miranda R Yourick
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Henoke Shiferaw
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Kim M Keppler-Noreuil
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Gene Elliot
- Genetic Disease Research Branch, NHGRI, NIH, Bethesda, MD, USA
| | - Cecilia Rivas
- Genetic Disease Research Branch, NHGRI, NIH, Bethesda, MD, USA
| | - Lisa Garrett
- Genetic Disease Research Branch, NHGRI, NIH, Bethesda, MD, USA
| | | | - Neil J Sebire
- Histopathology Department, Great Ormond Street Hospital NIHR Biomedical Research Centre, London, UK
| | - Stephen M Hewitt
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, MD, USA
| | | | - Leslie G Biesecker
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
6
|
Hypertrichotic patches as a mosaic manifestation of Proteus syndrome. J Am Acad Dermatol 2020; 84:415-424. [PMID: 32035943 DOI: 10.1016/j.jaad.2020.01.078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Proteus syndrome is an overgrowth disorder caused by a mosaic activating AKT1 variant. Hair abnormalities in Proteus syndrome have rarely been reported, and frequencies of such findings have not been elucidated. OBJECTIVE To define the types and frequencies of hair findings in individuals with Proteus syndrome. METHODS A cross-sectional study was conducted of individuals with clinical features of Proteus syndrome and a confirmed pathogenic variant in AKT1 evaluated between November 1996 and June 2019 at the National Institutes of Health Clinical Center. Medical records were reviewed for patterning, density, and color of hair on the body and scalp. RESULTS Of 45 individuals evaluated, 29 (64%) had asymmetric hypertrichosis on the body. This included unilateral blaschkoid hypertrichotic patches overlying normal skin or epidermal nevi in 16 (36%), unilateral nonblaschkoid hypertrichotic patches in 11 (24%), and unilateral limb hypertrichosis in 10 (22%). Diffuse, scattered, or patchy changes in scalp hair density or color were present in 11 individuals (24%). LIMITATIONS The retrospective, observational design, and limited longitudinal follow-up. CONCLUSIONS Asymmetric variations in hair distribution, thickness, length, and color contribute to the overall mosaic appearance of the skin in Proteus syndrome, an observation that provides novel insights into the role of phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) signaling in skin appendage development.
Collapse
|
7
|
Barber AG, Castillo-Martin M, Bonal DM, Jia AJ, Rybicki BA, Christiano AM, Cordon-Cardo C. PI3K/AKT pathway regulates E-cadherin and Desmoglein 2 in aggressive prostate cancer. Cancer Med 2015; 4:1258-71. [PMID: 26033689 PMCID: PMC4559037 DOI: 10.1002/cam4.463] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/13/2015] [Accepted: 03/17/2015] [Indexed: 12/30/2022] Open
Abstract
Reduced expression of both classical and desmosomal cadherins has been associated with different types of carcinomas, including prostate cancer. This study aims to provide a comprehensive view of the role and regulation of cell-cell adhesion in prostate cancer aggressiveness by examining the functional implications of both E-cadherin and Desmoglein 2 (DSG2). E-cadherin expression was first examined using immunofluorescence in 50 normal prostate tissues and in a cohort of 414 prostate cancer patients. Correlation and survival analyses were performed to assess its clinical significance. In primary prostate cancer patients, reduced expression of both E-cadherin and DSG2 is significantly associated with an earlier biochemical recurrence. Transgenic DU145 E-cadherin knockdown and constitutively active AKT overexpression lines were generated. Functional implications of such genetic alterations were analyzed in vitro and in vivo, the latter by using tumorigenesis as well as extravasation and metastatic tumor formation assays. We observed that loss of E-cadherin leads to impaired primary and metastatic tumor formation in vivo, suggesting a tumor promoter role for E-cadherin in addition to its known role as a tumor suppressor. Activation of AKT leads to a significant reduction in E-cadherin expression and nuclear localization of Snail, suggesting a role for the PI3K/AKT signaling pathway in the transient repression of E-cadherin. This reduced expression may be regulated by separate mechanisms as neither the loss of E-cadherin nor activation of AKT significantly affected DSG2 expression. In conclusion, these findings illustrate the critical role of cell-cell adhesion in the progression to aggressive prostate cancer, through regulation by the PI3K pathway.
Collapse
Affiliation(s)
- Alison G Barber
- Department of Genetics and Development, Columbia University, New York City, New York
| | - Mireia Castillo-Martin
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Dennis M Bonal
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Angela J Jia
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York City, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York City, New York
| | - Benjamin A Rybicki
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan
| | - Angela M Christiano
- Department of Genetics and Development, Columbia University, New York City, New York.,Department of Dermatology, Columbia University, New York City, New York
| | - Carlos Cordon-Cardo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York City, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York City, New York.,Department of Pathology and Cell Biology, Columbia University, New York City, New York.,Department of Urology, Columbia University, New York City, New York
| |
Collapse
|
8
|
Segrelles C, García-Escudero R, Garín MI, Aranda JF, Hernández P, Ariza JM, Santos M, Paramio JM, Lorz C. Akt signaling leads to stem cell activation and promotes tumor development in epidermis. Stem Cells 2015; 32:1917-28. [PMID: 24504902 DOI: 10.1002/stem.1669] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 01/18/2014] [Indexed: 01/25/2023]
Abstract
Hair follicle stem cells (HF-SCs) alternate between periods of quiescence and proliferation, to finally differentiate into all the cell types that constitute the hair follicle. Also, they have been recently identified as cells of origin in skin cancer. HF-SCs localize in a precise region of the hair follicle, the bulge, and molecular markers for this population have been established. Thus, HF-SCs are good model to study the potential role of oncogenic activations on SC physiology. Expression of a permanently active form of Akt (myrAkt) in basal cells leads to Akt hyperactivation specifically in the CD34(+)Itga6(H) population. This activation causes bulge stem cells to exit from quiescence increasing their response to proliferative stimuli and affecting some functions such as cell migration. HF-SC identity upon Akt activation is preserved; in this sense, increased proliferation does not result in stem cell exhaustion with age suggesting that Akt activation does not affect self-renewal an important aspect for normal tissue maintenance and cancer development. Genome-wide transcriptome analysis of HF-SC isolated from myrAkt and wild-type epidermis underscores changes in metabolic pathways characteristic of cancer cells. These differences manifest during a two-step carcinogenesis protocol in which Akt activation in HF-SCs results in increased tumor development and malignant transformation.
Collapse
Affiliation(s)
- Carmen Segrelles
- Molecular Oncology Unit and, Department of Basic Research, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Rho O, Kiguchi K, Jiang G, DiGiovanni J. Impact of mTORC1 inhibition on keratinocyte proliferation during skin tumor promotion in wild-type and BK5.AktWT mice. Mol Carcinog 2013; 53:871-82. [PMID: 24114993 DOI: 10.1002/mc.22046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/03/2013] [Accepted: 04/17/2013] [Indexed: 01/22/2023]
Abstract
In this study, we examined the impact of rapamycin on mTORC1 signaling during 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced keratinocyte proliferation and skin tumor promotion in both wild-type (FVB/N) and BK5.Akt(WT) mice. TPA activated mTORC1 signaling in a time-dependent manner in cultured primary mouse keratinocytes and a mouse keratinocyte cell line. Early activation (15-30 min) of mTORC1 signaling induced by TPA was mediated in part by PKC activation, whereas later activation (2-4 h) was mediated by activation of EGFR and Akt. BK5.Akt(WT) transgenic mice, where Akt1 is overexpressed in basal epidermis, are highly sensitive to TPA-induced epidermal proliferation and two-stage skin carcinogenesis. Targeting mTORC1 with rapamycin effectively inhibited TPA-induced epidermal hyperplasia and hyperproliferation as well as tumor promotion in a dose-dependent manner in both wild-type and BK5.Akt(WT) mice. A significant expansion (∼threefold) of the label retaining cell (LRC) population per hair follicle was observed in BK5.Akt(WT) mice compared to FVB/N mice. There was also a significant increase in K15 expressing cells in the hair follicle of transgenic mice that coincided with expression of phospho-Akt, phospho-S6K, and phospho-PRAS40, suggesting an important role of mTORC1 signaling in bulge-region keratinocyte stem cell (KSC) homeostasis. After 2 weeks of TPA treatment, LRCs had moved upward into the interfollicular epidermis from the bulge region of both wild-type and BK5.Akt(WT) mice. TPA-mediated LRC proliferation and migration was significantly inhibited by rapamycin. Collectively, the current data indicate that signaling through mTORC1 contributes significantly to the process of skin tumor promotion through effects on proliferation of the target cells for tumor development.
Collapse
Affiliation(s)
- Okkyung Rho
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, Texas
| | | | | | | |
Collapse
|
10
|
Costa C, Santos M, Segrelles C, Dueñas M, Lara MF, Agirre X, Prosper F, García-Escudero R, Paramio JM. A novel tumor suppressor network in squamous malignancies. Sci Rep 2012; 2:828. [PMID: 23145321 PMCID: PMC3494016 DOI: 10.1038/srep00828] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/05/2012] [Indexed: 11/24/2022] Open
Abstract
The specific ablation of Rb1 gene in stratified epithelia (RbF/F;K14cre) promotes proliferation and altered differentiation but is insufficient to produce spontaneous tumors. The pRb relative, p107, compensates some of the functions of pRb in these tissues; however, RbF/F;K14cre;p107−/− mice die postnatally. Here we show, using an inducible mouse model (RbF/F;K14creERTM), that p107 exerts specific tumor suppressor functions in the absence of pRb in stratified epithelia. The simultaneous absence of pRb and p107 produces impaired p53 transcriptional functions and reduction of Pten expression, allowing spontaneous squamous carcinoma development. These tumors display significant overlap with human squamous carcinomas, supporting that RbF/F;K14creERTM;p107−/− mice might constitute a new model for these malignancies. Remarkably tumor development in vivo is partially alleviated by mTOR inhibition. These data demonstrate the existence of a previously unreported functional connection between pRb, Pten and p53 tumor suppressors, through p107, of a particular relevance in squamous tumor development.
Collapse
Affiliation(s)
- Clotilde Costa
- Molecular Oncology Unit, Department of Basic Research, CIEMAT (Ed 70A), Ave Complutense 40. 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The specific ablation of Rb1 gene in epidermis (Rb(F/F);K14cre) promotes proliferation and altered differentiation but does not produce spontaneous tumour development. These phenotypic changes are associated with increased expression of E2F members and E2F-dependent transcriptional activity. Here, we have focused on the possible dependence on E2F1 gene function. We have generated mice that lack Rb1 in epidermis in an inducible manner (Rb(F/F);K14creER(TM)). These mice are indistinguishable from those lacking pRb in this tissue in a constitutive manner (Rb(F/F);K14cre). In an E2F1-null background (Rb(F/F);K14creER(TM); and E2F1(-/-) mice), the phenotype due to acute Rb1 loss is not ameliorated by E2F1 loss, but rather exacerbated, indicating that pRb functions in epidermis do not rely solely on E2F1. On the other hand, Rb(F/F);K14creER(TM);E2F1(-/-) mice develop spontaneous epidermal tumours of hair follicle origin with high incidence. These tumours, which retain a functional p19(arf)/p53 axis, also show aberrant activation of β-catenin/Wnt pathway. Gene expression studies revealed that these tumours display relevant similarities with specific human tumours. These data demonstrate that the Rb/E2F1 axis exerts essential functions not only in maintaining epidermal homoeostasis, but also in suppressing tumour development in epidermis, and that the disruption of this pathway may induce tumour progression through specific alteration of developmental programs.
Collapse
|
12
|
Oda Y, Hu L, Bul V, Elalieh H, Reddy JK, Bikle DD. Coactivator MED1 ablation in keratinocytes results in hair-cycling defects and epidermal alterations. J Invest Dermatol 2011; 132:1075-83. [PMID: 22189783 PMCID: PMC3400544 DOI: 10.1038/jid.2011.430] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The transcriptional coactivator complex Mediator facilitates transcription of nuclear hormone receptors and other transcription factors. We have previously isolated the Mediator complex from primary keratinocytes as the vitamin D receptor interacting protein complex. We identified a role for Mediator in keratinocyte proliferation and differentiation in cultured keratinocytes. Here, we investigated the in vivo role of Mediator by generating conditional null mice, where a critical subunit of the Mediator complex, MED1, is deleted from their keratinocytes. The MED1 ablation resulted in aberrant hair differentiation and cycling leading to hair loss. During the first hair follicle cycle, MED1 deletion resulted in a rapid regression of the hair follicles. Hair differentiation was reduced, and β-catenin/vitamin D receptor (VDR) regulated gene expression was dramatically decreased. In the subsequent adult hair cycle, MED1 ablation activated the initiation of hair follicle cycling. Shh signaling was increased, but terminal differentiation was not sufficient. Deletion of MED1 also caused hyper-proliferation of interfollicular epidermal keratinocytes, and increased the expression of epidermal differentiation markers. These results indicate that MED1 plays a critical role in regulating hair/epidermal proliferation and differentiation.
Collapse
Affiliation(s)
- Yuko Oda
- Department of Medicine and Endocrinology, University of California, San Francisco and Veterans Affairs Medical Center San Francisco, San Francisco, California 94121, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Lindhurst MJ, Sapp JC, Teer JK, Johnston JJ, Finn EM, Peters K, Turner J, Cannons JL, Bick D, Blakemore L, Blumhorst C, Brockmann K, Calder P, Cherman N, Deardorff MA, Everman DB, Golas G, Greenstein RM, Kato BM, Keppler-Noreuil KM, Kuznetsov SA, Miyamoto RT, Newman K, Ng D, O'Brien K, Rothenberg S, Schwartzentruber DJ, Singhal V, Tirabosco R, Upton J, Wientroub S, Zackai EH, Hoag K, Whitewood-Neal T, Robey PG, Schwartzberg PL, Darling TN, Tosi LL, Mullikin JC, Biesecker LG. A mosaic activating mutation in AKT1 associated with the Proteus syndrome. N Engl J Med 2011; 365:611-9. [PMID: 21793738 PMCID: PMC3170413 DOI: 10.1056/nejmoa1104017] [Citation(s) in RCA: 609] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND The Proteus syndrome is characterized by the overgrowth of skin, connective tissue, brain, and other tissues. It has been hypothesized that the syndrome is caused by somatic mosaicism for a mutation that is lethal in the nonmosaic state. METHODS We performed exome sequencing of DNA from biopsy samples obtained from patients with the Proteus syndrome and compared the resultant DNA sequences with those of unaffected tissues obtained from the same patients. We confirmed and extended an observed association, using a custom restriction-enzyme assay to analyze the DNA in 158 samples from 29 patients with the Proteus syndrome. We then assayed activation of the AKT protein in affected tissues, using phosphorylation-specific antibodies on Western blots. RESULTS Of 29 patients with the Proteus syndrome, 26 had a somatic activating mutation (c.49G→A, p.Glu17Lys) in the oncogene AKT1, encoding the AKT1 kinase, an enzyme known to mediate processes such as cell proliferation and apoptosis. Tissues and cell lines from patients with the Proteus syndrome harbored admixtures of mutant alleles that ranged from 1% to approximately 50%. Mutant cell lines showed greater AKT phosphorylation than did control cell lines. A pair of single-cell clones that were established from the same starting culture and differed with respect to their mutation status had different levels of AKT phosphorylation. CONCLUSIONS The Proteus syndrome is caused by a somatic activating mutation in AKT1, proving the hypothesis of somatic mosaicism and implicating activation of the PI3K-AKT pathway in the characteristic clinical findings of overgrowth and tumor susceptibility in this disorder. (Funded by the Intramural Research Program of the National Human Genome Research Institute.).
Collapse
|
14
|
Cai J, Ma L. Msx2 and Foxn1 regulate nail homeostasis. Genesis 2011; 49:449-59. [PMID: 21387539 PMCID: PMC3115482 DOI: 10.1002/dvg.20744] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 02/10/2011] [Accepted: 02/19/2011] [Indexed: 01/16/2023]
Abstract
Epithelial-mesenchymal interactions underlie the foundation for ectodermal appendage formation. Signal molecules such as BMPs and WNTs mediate crosstalk between the two tissue layers and coordinate both the induction and morphogenesis of ectodermal appendages. Here, we analyzed the function of two BMP downstream transcription factors, Msx2 and Foxn1, in nail differentiation. First, we show that Msx2 function is required during onychocyte (nail cell) terminal differentiation. Second, the Msx2/Foxn1/hair keratin pathway controlling hair differentiation is also conserved during onychocyte differentiation. Finally, the Msx2-/-; Foxn1-/- double-mutant nails exhibit a more severe phenotype than either single mutant including nail bed hyperplasia. Together, our data implicate important functions for Msx2 and Foxn1 in regulating differentiation of the keratogenous zone, proliferation of distal nail matrix cells, and organization of the nail bed.
Collapse
Affiliation(s)
- Jing Cai
- Division of Dermatology, Department of Medicine and Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Liang Ma
- Division of Dermatology, Department of Medicine and Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
15
|
Contreras-Jurado C, García-Serrano L, Gómez-Ferrería M, Costa C, Paramio JM, Aranda A. The thyroid hormone receptors as modulators of skin proliferation and inflammation. J Biol Chem 2011; 286:24079-88. [PMID: 21566120 DOI: 10.1074/jbc.m111.218487] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We have analyzed the role of the thyroid hormone receptors (TRs) in epidermal homeostasis. Reduced keratinocyte proliferation is found in interfollicular epidermis of mice lacking the thyroid hormone binding isoforms TRα1 and TRβ (KO mice). Similar results were obtained in hypothyroid animals, showing the important role of the liganded TRs in epidermal proliferation. In addition, KO and hypothyroid animals display decreased hyperplasia in response to 12-O-tetradecanolyphorbol-13-acetate. Both receptor isoforms play overlapping functional roles in the skin because mice lacking individually TRα1 or TRβ also present a proliferative defect but not as marked as that found in double KO mice. Defective proliferation in KO mice is associated with reduction of cyclin D1 expression and up-regulation of the cyclin-dependent kinase inhibitors p19 and p27. Paradoxically, ERK and AKT activity and expression of downstream targets, such as AP-1 components, are increased in KO mice. Increased p65/NF-κB and STAT3 phosphorylation and, as a consequence, augmented expression of chemokines and proinflammatory cytokines is also found in these animals. These results show that thyroid hormones and their receptors are important mediators of skin proliferation and demonstrate that TRs act as endogenous inhibitors of skin inflammation, most likely due to interference with AP-1, NF-κB, and STAT3 activation.
Collapse
Affiliation(s)
- Constanza Contreras-Jurado
- Instituto de Investigaciones Biomédicas de Madrid, Consejo Superior de Investigaciones Científicas, and Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
16
|
Segrelles C, Holguín A, Hernández P, Ariza JM, Paramio JM, Lorz C. Establishment of a murine epidermal cell line suitable for in vitro and in vivo skin modelling. BMC DERMATOLOGY 2011; 11:9. [PMID: 21510892 PMCID: PMC3113952 DOI: 10.1186/1471-5945-11-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 04/21/2011] [Indexed: 11/29/2022]
Abstract
Background Skin diseases are a major health problem. Some of the most severe conditions involve genetic disorders, including cancer. Several of these human diseases have been modelled in genetically modified mice, thus becoming a highly valuable preclinical tool for the treatment of these pathologies. However, development of three-dimensional models of skin using keratinocytes from normal and/or genetically modified mice has been hindered by the difficulty to subculture murine epidermal keratinocytes. Methods We have generated a murine epidermal cell line by serially passaging keratinocytes isolated from the back skin of adult mice. We have termed this cell line COCA. Cell culture is done in fully defined media and does not require feeder cells or any other coating methods. Results COCA retained its capacity to differentiate and stratify in response to increased calcium concentration in the cell culture medium for more than 75 passages. These cells, including late passage, can form epidermis-like structures in three-dimensional in vitro models with a well-preserved pattern of proliferation and differentiation. Furthermore, these cells form epidermis in grafting assays in vivo, and do not develop tumorigenic ability. Conclusions We propose that COCA constitutes a good experimental system for in vitro and in vivo skin modelling. Also, cell lines from genetically modified mice of interest in skin biology could be established using the method we have developed. COCA keratinocytes would be a suitable control, within a similar background, when studying the biological implications of these alterations.
Collapse
Affiliation(s)
- Carmen Segrelles
- Molecular Oncology Unit, Epithelial Biomedicine Division, Basic Research Department, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid 28040, Spain
| | | | | | | | | | | |
Collapse
|
17
|
Defining the origins of Ras/p53-mediated squamous cell carcinoma. Proc Natl Acad Sci U S A 2011; 108:7425-30. [PMID: 21502519 DOI: 10.1073/pnas.1012670108] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The precise identity of cancer cells of origin and the molecular events of tumor initiation in epidermal squamous cell carcinoma (SCC) are unknown. Here we show that malignancy potential is related to the developmental capacity of the initiating cancer cell in a genetically defined, intact, and inducible in vivo model. Specifically, these data demonstrate that SCCs can originate from inside the hair follicle stem cell (SC) niche or from immediate progenitors, whereas more developmentally restricted progeny, the transit amplifying (TA) cells, are unable to generate even benign tumors in the same genetic context. Using a temporal model of tumorigenesis in situ, we highlight the phenotypes of cancer progression from the hair follicle SC niche, including hyperplasia, epithelial to mesenchymal transition, and SCC formation. Furthermore, we provide insights into the inability of hair follicle TA cells to respond to tumorigenic stimuli.
Collapse
|
18
|
Rothem DE, Rothem L, Dahan A, Eliakim R, Soudry M. Nicotinic modulation of gene expression in osteoblast cells, MG-63. Bone 2011; 48:903-9. [PMID: 21168537 DOI: 10.1016/j.bone.2010.12.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 10/18/2010] [Accepted: 12/09/2010] [Indexed: 12/26/2022]
Abstract
Exposure to nicotine causes a broad range of biological and molecular effects on osteoblasts which are known to play a crucial role in bone metabolism and fracture healing. Most effects of nicotine on the osteoblasts are long-term adaptations at the genomic level. To identify the nicotine-regulated genes, the Agilent technologies whole human genome gene expression microarray was performed on RNA samples from osteoblast-like cells, MG-63, exposed to 100 μM nicotine. Repeat and cross-controlled microarray analyses revealed 842 genes whose expression was consistently altered at P<0.05 level following nicotine treatment. Gene ontology analysis suggested effects of nicotine on various biological and cellular processes which were associated with survival, proliferation, differentiation and apoptosis processes within the cell. Quantitative real-time reverse transcriptase PCR analysis confirmed altered expression in 7 out of 9 genes tested. The identified genes tested in the current study support our previous report that nicotine regulates the expression of genes that promote osteoblast proliferation and/or anti-apoptosis processes. Furthermore, using nicotinic acetylcholine receptor antagonists blocked the majority of the nicotine effects, indicating that these changes are dependent on nAChR activation. These results established a novel and consistent nicotinic activation of nAChR in osteoblast cells which has a broad role affecting cellular physiology through modulation of gene expression.
Collapse
Affiliation(s)
- David E Rothem
- Department of Orthopaedic Surgery A, Rambam Health Care Campus, Haifa, Israel.
| | | | | | | | | |
Collapse
|
19
|
A functional role of RB-dependent pathway in the control of quiescence in adult epidermal stem cells revealed by genomic profiling. Stem Cell Rev Rep 2010; 6:162-77. [PMID: 20376578 PMCID: PMC2887512 DOI: 10.1007/s12015-010-9139-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Continuous cell renewal in mouse epidermis is at the expense of a pool of pluripotent cells that lie in a well defined niche in the hair follicle known as the bulge. To identify mechanisms controlling hair follicle stem cell homeostasis, we developed a strategy to isolate adult bulge stem cells in mice and to define their transcriptional profile. We observed that a large number of transcripts are underexpressed in hair follicle stem cells when compared to non-stem cells. Importantly, the majority of these downregulated genes are involved in cell cycle. Using bioinformatics tools, we identified the E2F transcription factor family as a potential element involved in the regulation of these transcripts. To determine their functional role, we used engineered mice lacking Rb gene in epidermis, which showed increased expression of most E2F family members and increased E2F transcriptional activity. Experiments designed to analyze epidermal stem cell functionality (i.e.: hair regrowth and wound healing) imply a role of the Rb-E2F axis in the control of stem cell quiescence in epidermis.
Collapse
|
20
|
Moral M, Segrelles C, Martínez-Cruz AB, Lorz C, Santos M, García-Escudero R, Lu J, Buitrago A, Costa C, Saiz C, Ariza JM, Dueñas M, Rodriguez-Peralto JL, Martinez-Tello FJ, Rodriguez-Pinilla M, Sanchez-Cespedes M, DiGiovanni J, Paramio JM. Transgenic mice expressing constitutively active Akt in oral epithelium validate KLFA as a potential biomarker of head and neck squamous cell carcinoma. In Vivo 2009; 23:653-660. [PMID: 19779097 PMCID: PMC2909848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a common human neoplasia, of poor prognosis and survival, which frequently displays Akt overactivation. Previously, we reported that mice expressing high levels of constitutively Akt activity (myrAkt) in oral epithelia develop lesions and tumors in the oral cavity. MATERIALS AND METHODS Functional genomics of primary keratinocytes from different transgenic mouse lines and immunostaining of mouse and human samples were performed in order to identify and validate putative biomarkers of oral cancer progression. RESULTS The expression of KLF4 was found to be increased only in tumor prone samples from mice bearing overactivation of Akt. Such increased expression was confirmed in oral dysplasias and tumors arising in those mice. Tissue microarray analysis of human samples confirmed the association between active Akt and increased KLF4 expression. CONCLUSION These data support the notion that KLF4 is potentially a reliable marker of HNSCC, and that myrAkt transgenic mice are valuable tools for preclinical research of HNSCC.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Disease Models, Animal
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/metabolism
- Head and Neck Neoplasms/pathology
- Humans
- Kruppel-Like Factor 4
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Transgenic
- Mouth Mucosa/metabolism
- Mouth Mucosa/pathology
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Messenger/metabolism
- Tissue Array Analysis
- Up-Regulation
Collapse
Affiliation(s)
- Marta Moral
- Molecular Oncology Unit. Division of Biomedicine, CIEMAT. Ave. Complutense 22, E-28040 Madrid, Spain
| | - Carmen Segrelles
- Molecular Oncology Unit. Division of Biomedicine, CIEMAT. Ave. Complutense 22, E-28040 Madrid, Spain
| | - Ana Belén Martínez-Cruz
- Molecular Oncology Unit. Division of Biomedicine, CIEMAT. Ave. Complutense 22, E-28040 Madrid, Spain
| | - Corina Lorz
- Molecular Oncology Unit. Division of Biomedicine, CIEMAT. Ave. Complutense 22, E-28040 Madrid, Spain
| | - Mirentxu Santos
- Molecular Oncology Unit. Division of Biomedicine, CIEMAT. Ave. Complutense 22, E-28040 Madrid, Spain
| | - Ramón García-Escudero
- Molecular Oncology Unit. Division of Biomedicine, CIEMAT. Ave. Complutense 22, E-28040 Madrid, Spain
| | - Jerry Lu
- Department of Carcinogenesis, Science Park-Research Division, University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Agueda Buitrago
- Molecular Oncology Unit. Division of Biomedicine, CIEMAT. Ave. Complutense 22, E-28040 Madrid, Spain
| | - Clotilde Costa
- Molecular Oncology Unit. Division of Biomedicine, CIEMAT. Ave. Complutense 22, E-28040 Madrid, Spain
| | - Cristina Saiz
- Molecular Oncology Unit. Division of Biomedicine, CIEMAT. Ave. Complutense 22, E-28040 Madrid, Spain
| | - José M. Ariza
- Molecular Oncology Unit. Division of Biomedicine, CIEMAT. Ave. Complutense 22, E-28040 Madrid, Spain
| | - Marta Dueñas
- Molecular Oncology Unit. Division of Biomedicine, CIEMAT. Ave. Complutense 22, E-28040 Madrid, Spain
| | - Jose L Rodriguez-Peralto
- Pathology Department, Hospital Universitario 12 de Octubre, Crta. Andalucía, 5,4 28041 Madrid. Spain
| | | | - Maria Rodriguez-Pinilla
- Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernandez Almagro, 3. 28029 Madrid, Spain
| | | | - John DiGiovanni
- Department of Carcinogenesis, Science Park-Research Division, University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | | |
Collapse
|
21
|
Moral M, Segrelles C, Lara MF, Martinez-Cruz AB, Lorz C, Santos M, Garcia-Escudero R, Lu J, Kiguchi K, Buitrago A, Costa C, Saiz C, Rodriguez-Peralto JL, Martinez-Tello FJ, Rodriguez-Pinilla M, Sanchez-Cespedes M, Garin M, Grande T, Bravo A, DiGiovanni J, Paramio JM. Akt activation synergizes with Trp53 loss in oral epithelium to produce a novel mouse model for head and neck squamous cell carcinoma. Cancer Res 2009; 69:1099-108. [PMID: 19176372 PMCID: PMC2914485 DOI: 10.1158/0008-5472.can-08-3240] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a common human neoplasia with poor prognosis and survival that frequently displays Akt overactivation. Here we show that mice displaying constitutive Akt activity (myrAkt) in combination with Trp53 loss in stratified epithelia develop oral cavity tumors that phenocopy human HNSCC. The myrAkt mice develop oral lesions, making it a possible model of human oral dysplasia. The malignant conversion of these lesions, which is hampered due to the induction of premature senescence, is achieved by the subsequent ablation of Trp53 gene in the same cells in vivo. Importantly, mouse oral tumors can be followed by in vivo imaging, show metastatic spreading to regional lymph nodes, and display activation of nuclear factor-kappaB and signal transducer and activator of transcription-3 pathways and decreased transforming growth factor-beta type II receptor expression, thus resembling human counterparts. In addition, malignant conversion is associated with increased number of putative tumor stem cells. These data identify activation of Akt and p53 loss as a major mechanism of oral tumorigenesis in vivo and suggest that blocking these signaling pathways could have therapeutic implications for the management of HNSCC.
Collapse
Affiliation(s)
- Marta Moral
- Molecular Oncology Unit. Division of Biomedicine, CIEMAT. Ave. Complutense 22, E-28040 Madrid, Spain
| | - Carmen Segrelles
- Molecular Oncology Unit. Division of Biomedicine, CIEMAT. Ave. Complutense 22, E-28040 Madrid, Spain
| | | | - Ana Belen Martinez-Cruz
- Molecular Oncology Unit. Division of Biomedicine, CIEMAT. Ave. Complutense 22, E-28040 Madrid, Spain
| | - Corina Lorz
- Molecular Oncology Unit. Division of Biomedicine, CIEMAT. Ave. Complutense 22, E-28040 Madrid, Spain
| | - Mirentxu Santos
- Molecular Oncology Unit. Division of Biomedicine, CIEMAT. Ave. Complutense 22, E-28040 Madrid, Spain
| | - Ramon Garcia-Escudero
- Molecular Oncology Unit. Division of Biomedicine, CIEMAT. Ave. Complutense 22, E-28040 Madrid, Spain
| | - Jerry Lu
- Department of Carcinogenesis, Science Park-Research Division, University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Kaoru Kiguchi
- Department of Carcinogenesis, Science Park-Research Division, University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Agueda Buitrago
- Molecular Oncology Unit. Division of Biomedicine, CIEMAT. Ave. Complutense 22, E-28040 Madrid, Spain
| | - Clotilde Costa
- Molecular Oncology Unit. Division of Biomedicine, CIEMAT. Ave. Complutense 22, E-28040 Madrid, Spain
| | - Cristina Saiz
- Molecular Oncology Unit. Division of Biomedicine, CIEMAT. Ave. Complutense 22, E-28040 Madrid, Spain
| | - Jose L Rodriguez-Peralto
- Pathology Department, Hospital Universitario 12 de Octubre, Crta. Andalucía, 5,4 28041 Madrid. Spain
| | | | - Maria Rodriguez-Pinilla
- Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernandez Almagro, 3. 28029 Madrid, Spain
| | | | - Marina Garin
- Division of Hematopoiesis and Gene Therapy, CIEMAT. Ave. Complutense 22, E-28040 Madrid, Spain
| | - Teresa Grande
- Unit of Medical Applications, CIEMAT. Ave. Complutense 22, E-28040 Madrid, Spain
| | - Ana Bravo
- Department of Veterinary Clinical Sciences, Veterinary Pathology Unit, Veterinary Faculty, University of Santiago de Compostela, E-27002 Lugo, Spain
| | - John DiGiovanni
- Department of Carcinogenesis, Science Park-Research Division, University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Jesus M. Paramio
- Molecular Oncology Unit. Division of Biomedicine, CIEMAT. Ave. Complutense 22, E-28040 Madrid, Spain
| |
Collapse
|