1
|
Xu N, Lin H, Ding X, Wang P, Lin JM. Isotope tracing-assisted chip-based solid-phase extraction mass spectrometry for monitoring metabolic changes and vitamin D3 regulation in cells. Talanta 2025; 288:127754. [PMID: 39970803 DOI: 10.1016/j.talanta.2025.127754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/11/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Cellular metabolism is a dynamic and essential process, with alterations in metabolic pathways serving as hallmark features of cancer. In this study, we developed a chip-based solid-phase extraction mass spectrometry (Chip-SPE-MS) platform for high-sensitivity, high-throughput analysis of cellular metabolites and real-time tracking of metabolic fluxes. The system achieved detection limits ranging from 0.10 to 9.43 μmol/mL for various amino acids and organic acids, with excellent linearity (r ≥ 0.992). By incorporating isotope tracing, the platform enabled derivatization-free, real-time monitoring of 13C-labeled metabolites, such as lactic acid. Our analysis revealed significant metabolic differences between normal (L02) and cancerous (HepG2, HCT116) cells, including enhanced glycolytic activity and elevated lactate production in cancer cells. Furthermore, treatment with 1,25-dihydroxyvitamin D3 was shown to suppress glucose uptake and modulate metabolic activity in HCT116 cells, highlighting the regulatory effects of vitamin D3 on cancer metabolism. This study not only provides novel insights into the metabolic reprogramming associated with cancer but also demonstrates the potential of the Chip-SPE-MS platform as a powerful tool for real-time monitoring of dynamic metabolic processes. The findings have broad implications for cancer therapy and the study of metabolic diseases.
Collapse
Affiliation(s)
- Ning Xu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haifeng Lin
- Department of Bioengineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Xiaodan Ding
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Peilong Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Yang R, Lu B, Li T, Liu Z, Zhao L, Huang S, Ma Q. Calcium and Phosphorus Retention and Excretion in Different Strains of Laying Hens during Brooding Period and Key Genes Regulating Calcium and Phosphate Transport. J Nutr 2025; 155:1099-1107. [PMID: 39987979 DOI: 10.1016/j.tjnut.2025.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND Calcium (Ca) and phosphorus (P) intake during brooding affects laying hens' later production and health, with availability varying among strains, necessitating further investigation of the factors influencing these differences. OBJECTIVES This study aimed to compare the availability of Ca and P and related gene expression among 3 high-yielding layer strains during the first 6 wk and identify genes strongly associated with nutrient absorption. METHODS Ninety pullets (1-d-old, female) from 3 strains [medium size, large egg layer (ML), light size, medium egg layer (LM), and dwarf, small egg layer (DS) weighted 31.533 ± 0.63 g, 39.367 ± 1.40 g, and 34.099 ± 0.64 g, respectively] were randomly assigned to 6 replicates of 15 birds each for 6-wk cage rearing. Feces were collected weekly to track the Ca and P availability. Initial and final body weights and tibial lengths were recorded to determine growth performance. Intestinal samples were collected to determine the gene expression of Ca and P transporters [transient receptor potential cation channel subfamily V member 6, calbindin D28k, Na+/Ca2+ exchanger 1 (NCX1), plasma membrane Ca-ATPase 1b, and sodium-dependent phosphate transporter IIb (NPt2b)] as well as tight junction proteins (claudin-2 and claudin-12). RESULTS ML and LM pullets exhibited significantly greater body weight (443 g, 436 g compared with 319 g, P < 0.001) and tibial length (70.6 mm, 69.6 mm compared with 59.2 mm, P < 0.001) than DS. Notably, during the sixth week, the Ca and P retention in DS (0.847 g/wk compared with 1.648 g/wk, 0.662 g/wk compared with 1.141 g/wk) was significantly lower than that in ML, and in most weeks, DS exhibited the lowest Ca availability among the 3 strains. Gene expression analysis revealed higher expression levels of Ca transporters in the duodenum of ML and LM than in DS, whereas DS demonstrated elevated transporter expression in the jejunum. Furthermore, ML and LM exhibited more pronounced expression of tight junction proteins across most intestinal segments. CONCLUSIONS The study indicated that expression of Ca and P transporter is highest in the duodenum, and duodenal NCX1, NPt2b were the genes most significantly positively correlated with the retention and excretion of Ca and P in pullets.
Collapse
Affiliation(s)
- Ruochen Yang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; Laboratory of Feedgrain Safety and Healthy Poultry Farming, Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing, China
| | - Bowen Lu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; Laboratory of Feedgrain Safety and Healthy Poultry Farming, Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing, China
| | - Tengchuan Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; Laboratory of Feedgrain Safety and Healthy Poultry Farming, Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing, China
| | - Zhonghao Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; Laboratory of Feedgrain Safety and Healthy Poultry Farming, Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing, China
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; Laboratory of Feedgrain Safety and Healthy Poultry Farming, Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing, China
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; Laboratory of Feedgrain Safety and Healthy Poultry Farming, Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; Laboratory of Feedgrain Safety and Healthy Poultry Farming, Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing, China.
| |
Collapse
|
3
|
Wu S, Gao J, Han Y, Zhang W, Li X, Kong D, Wang H, Zuo L. Balancing act: The dual role of claudin-2 in disease. Ann N Y Acad Sci 2025; 1546:75-89. [PMID: 40101185 DOI: 10.1111/nyas.15311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Claudin-2 (CLDN2), a tight junction protein, is predominantly found in leaky epithelial cell layers where it plays a pivotal role in forming paracellular pores necessary for the efficient transport of cations and water. Its abundance is intricately regulated by upstream signals, modulating its synthesis, transport, and localization to adapt to diverse environmental changes. Aberrant expression levels of CLDN2 are observed in numerous pathological conditions including cancer, inflammation, immune disorders, fibrosis, and kidney and biliary stones. Recent advances have uncovered the mechanisms by which the loss or restoration of CLDN2 affects functions such as epithelial barrier, cell proliferation, renewal, migration, invasion, and tissue regeneration. This exerts a dual-directional influence on the pathogenesis, perpetuation, and progression of diseases, indicating the potential to both accelerate and decelerate the course of disease evolution. Here, we discuss these nuanced bidirectional regulatory effects mediated by CLDN2, and how it may contribute to the progression or regression of disease when it becomes unbalanced.
Collapse
Affiliation(s)
- Shanshan Wu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Jia Gao
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yiran Han
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Wenzhe Zhang
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Xue Li
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Derun Kong
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hua Wang
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Zuo
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, China
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Zhao H, Li T, Li C, Xiong Z, Rong W, Cao L, Chen G, Liu Q, Liu Y, Wang X, Liu S. Vitamin C alleviates intestinal damage induced by 17α-methyltestosterone in Carassius auratus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 280:107266. [PMID: 39908712 DOI: 10.1016/j.aquatox.2025.107266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/12/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
17α-Methyltestosterone (MT), an environmental endocrine-disrupting chemical (EDC), is widely present in aquatic environments, posing potential threats to the health of aquatic organisms. This study aimed to explore the protective effects of Vitamin C (VC) against MT-induced intestinal injury in Carassius auratus and evaluate the optimal VC dosage. C. auratus were exposed to 50 ng/L MT with 0, 25, 50, and 150 mg/kg VC for 7, 14, and 21 d. Intestinal pathological changes were assessed using paraffin sections, digestive enzyme activity was measured, RT-qPCR was used to analyze the expression of genes related to the intestinal barrier and inflammation, and 16S rDNA sequencing was conducted to evaluate the intestinal flora. MT exposure caused villus damage, vacuolization, and free lymphocytes. Additionally, it upregulated TNF-α and Claudin-12 expression and downregulated IL-10, Occludin, and Muc2 expression, exacerbating intestinal inflammation, damaging barrier function, and reducing digestive enzyme activity. VC at 25 and 50 mg/kg significantly alleviated MT-induced damage by restoring villus length and mitigating the downregulation of anti-inflammatory factors and tight junction protein-related genes while inhibiting TNF-α mRNA expression. 16S rDNA sequencing revealed that MT disrupted the intestinal flora and increased the abundance of harmful bacteria such as Acinetobacter, whereas VC promoted Lactobacillus production and enhanced digestive enzyme activity. We hypothesize that MT exposure promotes the growth of harmful bacteria in the intestines, leading to inflammation and damage to the mucosal barrier. 25 and 50 mg/kg VC can mitigate MT-induced intestinal injury by regulating the intestinal microbiota and have potential protective effects.
Collapse
Affiliation(s)
- Haiyan Zhao
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Tongyao Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Chenyang Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Zijun Xiong
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Weiya Rong
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Lu Cao
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Gen Chen
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Qing Liu
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Yu Liu
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Xianzong Wang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Shaozhen Liu
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China; Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong, 030801, China.
| |
Collapse
|
5
|
Deluque AL, Dimke H, Alexander RT. Biology of calcium homeostasis regulation in intestine and kidney. Nephrol Dial Transplant 2025; 40:435-445. [PMID: 39257024 PMCID: PMC11879016 DOI: 10.1093/ndt/gfae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Indexed: 09/12/2024] Open
Abstract
Calcium (Ca2+) is an essential divalent cation involved in many bodily functions including bone composition, cell growth and division, blood clotting, and muscle contraction. The bone, intestine and kidneys are important for the maintenance of Ca2+ homeostasis. Ninety-nine percent of body Ca2+ is stored in the skeleton as hydroxyapatite. The small, and to a lesser extent the large intestine absorbs Ca2+ from the diet. Once in the circulation, Ca2+ is filtered by the glomerulus and the majority, >95%, is reabsorbed along the nephron. The remainder is excreted in the urine. Two general (re)absorptive pathways contribute to the vectorial transport of Ca2+ across renal and intestinal epithelia: (i) a paracellular pathway, which is reliant on claudins in the tight junction of epithelium and the electrochemical gradient, and (ii) a transcellular pathway, which requires different influx, intracellular buffering/shuttling and basolateral efflux mechanisms, to actively transport Ca2+ across the epithelial cell. Blood Ca2+ levels are maintained by hormones including parathyroid hormone, 1,25-dihydroxyvitamin D3 and fibroblast growth factor 23, and through effects of Ca2+-sensing receptor (CaSR) signaling. Disruption of Ca2+ homeostasis can result in altered blood Ca2+ levels and/or hypercalciuria, the latter is a phenomenon closely linked to the formation of kidney stones. Genetic alterations affecting renal Ca2+ handling can cause hypercalciuria, an area of expanding investigation. This review explores the molecular mechanisms governing Ca2+ homeostasis by the intestine and kidneys and discusses clinical aspects of genetic disorders associated with Ca2+-based kidney stone disease.
Collapse
Affiliation(s)
- Amanda Lima Deluque
- Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - R Todd Alexander
- Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
6
|
Pouyiourou I, Fromm A, Piontek J, Rosenthal R, Furuse M, Günzel D. Ion permeability profiles of renal paracellular channel-forming claudins. Acta Physiol (Oxf) 2025; 241:e14264. [PMID: 39821681 PMCID: PMC11740656 DOI: 10.1111/apha.14264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/09/2024] [Accepted: 01/01/2025] [Indexed: 01/19/2025]
Abstract
AIM Members of the claudin protein family are the major constituents of tight junction strands and determine the permeability properties of the paracellular pathway. In the kidney, each nephron segment expresses a distinct subset of claudins that form either barriers against paracellular solute transport or charge- and size-selective paracellular channels. It was the aim of the present study to determine and compare the permeation properties of these renal paracellular ion channel-forming claudins. METHODS MDCK II cells, in which the five major claudins had been knocked out (claudin quintupleKO), were stably transfected with individual mouse Cldn2, -4, -8, -10a, -10b, or -15, or with dog Cldn16 or -19, or with a combination of mouse Cldn4 and Cldn8, or dog Cldn16 and Cldn19. Permeation properties were investigated in the Ussing chamber and claudin interactions by FRET assays. RESULTS Claudin-4 and -19 formed barriers against solute permeation. However, at low pH values and in the absence of HCO3 -, claudin-4 conveyed a weak chloride and nitrate permeability. Claudin-8 needed claudin-4 for assembly into TJ strands and abolished this anion preference. Claudin-2, -10a, -10b, -15, -16+19 formed highly permeable channels with distinctive permeation profiles for different monovalent and divalent anions or cations, but barriers against the permeation of ions of opposite charge and of the paracellular tracer fluorescein. CONCLUSION Paracellular ion permeabilities along the nephron are strictly determined by claudin expression patterns. Paracellular channel-forming claudins are specific for certain ions and thus lower transepithelial resistance, yet form barriers against the transport of other solutes.
Collapse
Affiliation(s)
- Ioanna Pouyiourou
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, RheumatologyCharité–Universitätsmedizin BerlinBerlinGermany
| | - Anja Fromm
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, RheumatologyCharité–Universitätsmedizin BerlinBerlinGermany
| | - Jörg Piontek
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, RheumatologyCharité–Universitätsmedizin BerlinBerlinGermany
| | - Rita Rosenthal
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, RheumatologyCharité–Universitätsmedizin BerlinBerlinGermany
| | - Mikio Furuse
- Division of Cell StructureNational Institute for Physiological SciencesOkazakiJapan
- Physiological Sciences ProgramGraduate Institute for Advanced Studies, SOKENDAIOkazakiJapan
- Nagoya University Graduate School of MedicineNagoyaJapan
| | - Dorothee Günzel
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, RheumatologyCharité–Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
7
|
Stumpff F, Manneck D. Prebiotics as modulators of colonic calcium and magnesium uptake. Acta Physiol (Oxf) 2025; 241:e14262. [PMID: 39803707 PMCID: PMC11726438 DOI: 10.1111/apha.14262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/23/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025]
Abstract
Ca2+ and Mg2+ are essential nutrients, and deficiency can cause serious health problems. Thus, lack of Ca2+ and Mg2+ can lead to osteoporosis, with incidence rising both in absolute and age-specific terms, while Mg2+ deficiency is associated with type II diabetes. Prevention via vitamin D or estrogen is controversial, and the bioavailability of Ca2+ and Mg2+ from supplements is significantly lower than that from milk products. Problems are likely to increase as populations age and the number of people on vegan diets surges. Developing new therapeutic strategies requires a better understanding of the molecular mechanisms involved in absorption by intestinal epithelia. The vitamin-D dependent, active pathway for the uptake of Ca2+ from the upper small intestine involving TRPV6 is highly efficient but only accounts for about 20% of total uptake. Instead, most Ca2+ uptake is thought to occur via passive paracellular diffusion across the ileum, although sufficiently high luminal concentrations are difficult to achieve.. Interestingly, colon and caecum also have a considerable capacity for the active absorption of Ca2+ and Mg2+, the molecular mechanisms of which are unclear. Intriguingly, stimulating fermentation by prebiotics enhances colonic absorption, which can rise from ~10% to ~30% of the total. Notably, fermentation releases protons, which inhibits channels highly selective for Ca2+ and Mg2+ (TRPV6 and TRPM6/TRPM7). Conversely, the non-selective cation channel TRPV3 is stimulated by both intracellular acidification and by numerous herbal compounds. Spicy, fiber-rich food, as traditionally consumed in many cultures, might enhance the uptake of Ca2+ and Mg2+ via this pathway.
Collapse
Affiliation(s)
- Friederike Stumpff
- Institute for Molecular MedicineHealth and Medical University PotsdamPotsdamGermany
| | - David Manneck
- Institute for Molecular MedicineHealth and Medical University PotsdamPotsdamGermany
| |
Collapse
|
8
|
Rizwan M, Cheng K, Gang Y, Hou Y, Wang C. Immunomodulatory Effects of Vitamin D and Zinc on Viral Infection. Biol Trace Elem Res 2025; 203:1-17. [PMID: 38451442 DOI: 10.1007/s12011-024-04139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Several nutrients are crucial in enhancing the immune system and preserving the structural integrity of bodily tissue barriers. Vitamin D (VD) and zinc (Zn) have received considerable interest due to their immunomodulatory properties and ability to enhance the body's immune defenses. Due to their antiviral, anti-inflammatory, antioxidative, and immunomodulatory properties, the two nutritional powerhouses VD and Zn are crucial for innate and adaptive immunity. As observed with COVID-19, deficiencies in these micronutrients impair immune responses, increasing susceptibility to viral infections and severe disease. Ensuring an adequate intake of VD and Zn emerges as a promising strategy for fortifying the immune system. Ongoing clinical trials are actively investigating their potential therapeutic advantages. Beyond the immediate context of the pandemic, these micronutrients offer valuable tools for enhancing immunity and overall well-being, especially in the face of future viral threats. This analysis emphasizes the enduring significance of VD and Zn as both treatment and preventive measures against potential viral challenges beyond the current health crisis. The overview delves into the immunomodulatory potential of VD and Zn in combating viral infections, with particular attention to their effects on animals. It provides a comprehensive summary of current research findings regarding their individual and synergistic impacts on immune function, underlining their potential in treating and preventing viral infections. Overall, this overview underscores the need for further research to understand how VD and Zn can modulate the immune response in combatting viral diseases in animals.
Collapse
Affiliation(s)
- Muhammad Rizwan
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China
| | - Ke Cheng
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China
| | - Yang Gang
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China
| | - Yuntao Hou
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China
| | - Chunfang Wang
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China.
| |
Collapse
|
9
|
Er B. Effects of Magnesium Forms on the Magnesium Balance and Jejunal Transporters in Healthy Rats. Prev Nutr Food Sci 2024; 29:405-413. [PMID: 39759820 PMCID: PMC11699571 DOI: 10.3746/pnf.2024.29.4.405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 01/07/2025] Open
Abstract
Magnesium (Mg) is a mineral necessary for many biological activities in mammals. Here, we compared the effect of two Mg compounds [Mg picolinate (MgPic) to Mg oxide (MgO)] on Mg bioavailability and intestinal Mg and calcium transporter protein levels. Three groups of 21 male Wistar-Albino rats were randomly allocated and fed a standard diet (control) or a 500 mg/kg Mg-supplemented (MgPic or MgO) diet for 8 weeks. The serum and liver Mg levels, Mg absorptivity, and retentivity were augmented in the MgPic group compared with the MgO group (P<0.05). Only MgPic supplementation elevated the expression of the genes encoding CLDN2, CLDN15, CNNM4, NCX1, PMCA1b, NCX2, and Calbindin-D9k in the jejunum by 1.59, 1.58, 1.70, 1.82, 2.02, 2.03, and 2.31 fold, respectively (P<0.05). Compared to the MgO-fed rats, MgPic rats had higher expression of the genes encoding NCX1, NCX2, PMCA1b, and Calbindin-D9k in the jejunum by 1.43, 1.72, 1.54, and 1.69 fold, respectively (P<0.01). These results suggest that MgPic increases Mg absorptivity and retentivity more than Mg bioavailability. In addition, MgPic can improve the paracellular and transcellular cationic mineral transport process. Thus, Mg deficiency disorders might be alleviated by MgPic more effectively than MgO.
Collapse
Affiliation(s)
- Besir Er
- Department of Biology, Faculty of Science, Firat University, Elazig 23100, Türkiye
| |
Collapse
|
10
|
Hu Y, Bikker P, Hendriks WH, van Krimpen MM, van Baal J. Renal expression of calcium and phosphorus transporters: contrasting responses to dietary calcium and microbial phytase in broilers and growing pigs. Br J Nutr 2024; 132:1267-1277. [PMID: 39417344 DOI: 10.1017/s0007114524002332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Enhanced dietary Ca intake linearly increases intestinal Ca absorption in pigs, but not in broilers, suggesting potential differences in whole body Ca homeostasis. To determine the role of kidney in Ca homeostasis in these species, we varied in growing pigs in experiment (Exp) 1, the dietary Ca content 2·0 v. 9·6 g/kg and phytase 0 v. 500 FTU/kg, in broilers, in Exp 2 the dietary Ca/retainable P from 1·3 to 2·8 and phytase 0 v. 1000 FTU/kg, and in Exp 3 dietary Ca/P from 0·50 to 1·75. Increasing dietary Ca reduced renal mRNA expression of Ca-related transporters (TRPV5, TRPV6, CaBP-D28k and NCX1) and tight junctions (CLDN-12 and -16) in pigs, indicating Ca reabsorption was reduced to maintain Ca homeostasis. In broilers (Exp 2), high dietary Ca increased renal TRPV6, CaBP-D28k and CLDN-2 mRNA, indicating an increased capacity for Ca reabsorption. Moreover, the effect of dietary Ca was enhanced by inclusion of dietary phytase in pigs but reduced in broilers. Furthermore, increasing dietary Ca upregulated inorganic phosphate transporter 1 (PiT-1), while phytase downregulated xenotropic and polytropic retrovirus receptor 1 (XPR1) mRNA expression in pigs; in broilers, dietary Ca downregulated renal mRNA expression of Na-dependent phosphate transporter IIa (NaPi-IIa), PiT-1, PiT-2 and XPR1, while phytase downregulated NaPi-IIa but upregulated PiT-2 and XPR1 mRNA expression. In Exp 3, Ca/P effect on transporter mRNA expression was largely consistent with Exp 2. In conclusion of this study, together with previously measured data about Ca and P homeostasis, in pigs the kidneys play a more regulatory role in Ca homeostasis than in broilers where the intestine is more important for regulation.
Collapse
Affiliation(s)
- Yixin Hu
- Wageningen University & Research, Wageningen Livestock Research, Wageningen6700 AH, the Netherlands
- Wageningen University & Research, Animal Nutrition Group, Wageningen6700 AH, the Netherlands
- Current address Global R&D Department, De Heus Animal Nutrition B.V, Ede6717 VE, the Netherlands
| | - Paul Bikker
- Wageningen University & Research, Wageningen Livestock Research, Wageningen6700 AH, the Netherlands
| | - Wouter H Hendriks
- Wageningen University & Research, Animal Nutrition Group, Wageningen6700 AH, the Netherlands
| | - Marinus M van Krimpen
- Wageningen University & Research, Wageningen Livestock Research, Wageningen6700 AH, the Netherlands
| | - Jürgen van Baal
- Wageningen University & Research, Animal Nutrition Group, Wageningen6700 AH, the Netherlands
| |
Collapse
|
11
|
Chankamngoen W, Thammayon N, Suntornsaratoon P, Nammultriputtar K, Kitiyanant N, Donpromma N, Chaichanan J, Supcharoen P, Teerapo K, Teerapornpuntakit J, Rodrat M, Panupinthu N, Svasti S, Wongdee K, Charoenphandhu N. Fibroblast growth factor-21 potentiates the stimulatory effects of 1,25-dihydroxyvitamin D 3 on transepithelial calcium transport and TRPV6 Ca 2+ channel expression. Biochem Biophys Res Commun 2024; 733:150429. [PMID: 39053106 DOI: 10.1016/j.bbrc.2024.150429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Fibroblast growth factor (FGF)-21 is a salient liver-derived endocrine regulator for metabolism of glucose and triglyceride as well as bone remodeling. Previously, certain peptides in the FGF family have been shown to modulate calcium absorption across the intestinal epithelia. Since FGF21 receptor, i.e., FGF receptor-1, is abundantly expressed in the enterocytes, there was a possibility that FGF21 might exert direct actions on the intestine. Herein, a large-scale production of recombinant FGF21 at the multi-gram level was developed in order to minimize variations among various batches. In the oral glucose tolerance test, recombinant FGF21 was found to reduce plasma glucose levels in mice fed high-fat diet. A series of experiments applying radioactive tracer 45Ca in Ussing chamber showed that FGF21 potentiated the stimulatory effect of low-dose 1,25-dihydroxyvitamin D3 [10 nM 1,25(OH)2D3] on the transepithelial calcium transport across intestinal epithelium-like Caco-2 monolayer. FGF21 + 1,25(OH)2D3 also decreased transepithelial resistance, but had no effect on epithelial potential difference or short-circuit current. Furthermore, 1,25(OH)2D3 alone upregulated the Caco-2 mRNA expression of the major apical calcium channels, i.e., transient receptor potential vanilloid subfamily member 6 (TRPV6), which was further elevated by a combination of FGF21 and 1,25(OH)2D3, consistent with the upregulated TRPV6 protein expression in enterocytes of FGF21-treated mice. However, FGF21 was without effects on the mRNA expression of voltage-gated calcium channel 1.3, calbindin-D9k, plasma membrane Ca2+-ATPase 1b, claudin-12 or claudin-15. In conclusion, FGF21 did exert a direct action on the intestinal epithelial cells by potentiating the 1,25(OH)2D3-enhanced calcium transport, presumably through the upregulation of TRPV6 expression.
Collapse
Affiliation(s)
- Wasutorn Chankamngoen
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nithipak Thammayon
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Panan Suntornsaratoon
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ketsaraporn Nammultriputtar
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Narisorn Kitiyanant
- Center for Advanced Therapeutics (CAT), Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Natthida Donpromma
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Center for Advanced Therapeutics (CAT), Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Jirapan Chaichanan
- Establishment of Mahidol University Bio-industrial Development Center, Mahidol University, Nakhon Pathom, Thailand
| | - Promsup Supcharoen
- Mahidol University Frontier Research Facility (MU-FRF), Mahidol University, Nakhon Pathom, Thailand
| | - Kittitat Teerapo
- Mahidol University Frontier Research Facility (MU-FRF), Mahidol University, Nakhon Pathom, Thailand
| | | | - Mayuree Rodrat
- Center for Advanced Therapeutics (CAT), Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Nattapon Panupinthu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Kannikar Wongdee
- Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand.
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand; The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand.
| |
Collapse
|
12
|
Liebing E, Krug SM, Neurath MF, Siegmund B, Becker C. Wall of Resilience: How the Intestinal Epithelium Prevents Inflammatory Onslaught in the Gut. Cell Mol Gastroenterol Hepatol 2024; 19:101423. [PMID: 39461590 PMCID: PMC11720114 DOI: 10.1016/j.jcmgh.2024.101423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
The intestinal epithelium forms the boundary between the intestinal immune system in the lamina propria and the outside world, the intestinal lumen, which contains a diverse array of microbial and environmental antigens. Composed of specialized cells, this epithelial monolayer has an exceptional turnover rate. Differentiated epithelial cells are released into the intestinal lumen within a few days, at the villus tip, a process that requires strict regulation. Dysfunction of the epithelial barrier increases the intestinal permeability and paves the way for luminal antigens to pass into the intestinal serosa. Stem cells at the bottom of Lieberkühn crypts provide a constant supply of mature epithelial cells. Differentiated intestinal epithelial cells exhibit a diverse array of mechanisms that enable communication with surrounding cells, fortification against microorganisms, and orchestration of nutrient absorption and hormonal balance. Furthermore, tight junctions regulate paracellular permeability properties, and their disruption can lead to an impairment of the intestinal barrier, allowing inflammation to develop or further progress. Intestinal epithelial cells provide a communication platform through which they maintain homeostasis with a spectrum of entities including immune cells, neuronal cells, and connective tissue cells. This homeostasis can be disrupted in disease, such as inflammatory bowel disease. Patients suffering from inflammatory bowel disease show an impaired gut barrier, dysregulated cellular communication, and aberrant proliferation and demise of cells. This review summarizes the individual cellular and molecular mechanisms pivotal for upholding the integrity of the intestinal epithelial barrier and shows how these can be disrupted in diseases, such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Eva Liebing
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Susanne M Krug
- Clinical Physiology/Nutritional Medicine, Charité-Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Markus F Neurath
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Britta Siegmund
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christoph Becker
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Erlangen, Germany.
| |
Collapse
|
13
|
Radványi Z, Schnitzbauer U, Pastor-Arroyo EM, Hölker S, Himmerkus N, Bleich M, Müller D, Breiderhoff T, Hernando N, Wagner CA. Absence of claudin-3 does not alter intestinal absorption of phosphate in mice. Pflugers Arch 2024; 476:1597-1612. [PMID: 39115555 PMCID: PMC11381482 DOI: 10.1007/s00424-024-02998-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 09/10/2024]
Abstract
Intestinal absorption of phosphate is bimodal, consisting of a transcellular pathway and a poorly characterized paracellular mode, even though the latter one contributes to the bulk of absorption under normal dietary conditions. Claudin-3 (Cldn3), a tight junction protein present along the whole intestine in mice, has been proposed to tighten the paracellular pathway for phosphate. The aim of this work was to characterize the phosphate-related phenotype of Cldn3-deficient mice. Cldn3-deficient mice and wildtype littermates were fed standard diet or challenged for 3 days with high dietary phosphate. Feces, urine, blood, intestinal segments and kidneys were collected. Measurements included fecal, urinary, and plasma concentrations of phosphate and calcium, plasma levels of phosphate-regulating hormones, evaluation of trans- and paracellular phosphate transport across jejunum and ileum, and analysis of intestinal phosphate and calcium permeabilities. Fecal and urinary excretion of phosphate as well as its plasma concentration was similar in both genotypes, under standard and high-phosphate diet. However, Cldn3-deficient mice challenged with high dietary phosphate had a reduced urinary calcium excretion and increased plasma levels of calcitriol. Intact FGF23 concentration was also similar in both groups, regardless of the dietary conditions. We found no differences either in intestinal phosphate transport (trans- or paracellular) and phosphate and calcium permeabilities between genotypes. The intestinal expression of claudin-7 remained unaltered in Cldn3-deficient mice. Our data do not provide evidence for a decisive role of Cldn3 for intestinal phosphate absorption and phosphate homeostasis. In addition, our data suggest a novel role of Cldn3 in regulating calcitriol levels.
Collapse
Affiliation(s)
- Zsuzsa Radványi
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Udo Schnitzbauer
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Simone Hölker
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Markus Bleich
- Institute of Physiology, Kiel University, Kiel, Germany
| | - Dominik Müller
- Department of Pediatrics, Division of Gastroenterology, Nephrology and Metabolic Diseases, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tilman Breiderhoff
- Department of Pediatrics, Division of Gastroenterology, Nephrology and Metabolic Diseases, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nati Hernando
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
14
|
He W, Bertram HC, Yin JY, Nie SP. Lactobacilli and Their Fermented Foods as a Promising Strategy for Enhancing Bone Mineral Density: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17730-17745. [PMID: 39078823 DOI: 10.1021/acs.jafc.4c03218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Lactobacilli fermentation possesses special nutritional and health values to food, especially in improving diseases related to the gut microbiota such as osteoporosis risk. Previous research indicates that lactobacilli-fermented foods have the potential to enhance the bone mineral density (BMD), as suggested by some clinical studies. Nonetheless, there is currently a lack of comprehensive summaries of the effects and potential mechanisms of lactobacilli-fermented foods on BMD. This review summarizes findings from preclinical and clinical studies, revealing that lactobacilli possess the potential to mitigate age-related and secondary factor-induced bone loss. Furthermore, these findings imply that lactobacilli are likely mediated through the modulation of bone remodeling via gut inflammation-related pathways. Additionally, lactobacilli fermentation may augment calcium accessibility through directly promoting calcium absorption or modifying food constituents. Considering the escalating global health challenge of bone-related issues among the elderly population, this review may offer a valuable reference for the development of food strategies aimed at preventing osteoporosis.
Collapse
Affiliation(s)
- Weiwei He
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | | | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| |
Collapse
|
15
|
Apostolova D, Apostolov G, Moten D, Batsalova T, Dzhambazov B. Claudin-12: guardian of the tissue barrier or friend of tumor cells. Tissue Barriers 2024:2387408. [PMID: 39087432 DOI: 10.1080/21688370.2024.2387408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/28/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024] Open
Abstract
Tight junctions (TJs) are an important component of cellular connectivity. Claudin family proteins, as a constituent of TJs, determine their barrier properties, cell polarity and paracellular permeability. Claudin-12 is an atypical member of the claudin family, as it belongs to the group of non-classical claudins that lack a PDZ-binding domain. It has been shown that claudin-12 is involved in paracellular Ca2+ transients and it is present in normal and hyperplastic tissues in addition to neoplastic tissues. Dysregulation of claudin-12 expression has been reported in various cancers, suggesting that this protein may play an important role in cancer cell migration, invasion, and metastasis. Some studies have shown that claudin-12 gene functions as a tumor suppressor, but others have reported that overexpression of claudin-12 significantly increases the metastatic properties of various tumor cells. Investigating this dual role of claudin-12 is of utmost importance and should therefore be studied in detail. The aim of this review is to provide an overview of the information available to date on claudin-12, including its structure, expression in various tissues and substances that may affect it, with a final focus on its role in cancer.
Collapse
Affiliation(s)
- Desislava Apostolova
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| | - Georgi Apostolov
- Department of Neurosurgery, Faculty of Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Dzhemal Moten
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| | - Tsvetelina Batsalova
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| | - Balik Dzhambazov
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
16
|
Tenenbaum M, Deracinois B, Dugardin C, Auger J, Baniel A, Boulier A, Flahaut C, Ravallec R, Cudennec B. Digested casein phosphopeptides impact intestinal calcium transport in vitro. Food Funct 2024; 15:8104-8115. [PMID: 39007353 DOI: 10.1039/d4fo01637h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Calcium is the most abundant mineral in the human body and is involved in critical physiological and cellular processes. It is essential for the development, maintenance, and integrity of bone tissue throughout life. Identifying new natural food-grade chelating agents to improve calcium uptake is of increasing interest. Casein phosphopeptides (CPPs), highly phosphorylated peptides obtained after enzymatic hydrolysis of caseins, represent promising calcium-chelating candidates. The aim of this study was to investigate, using cell culture models, the ability of a digested milk matrix enriched in CPPs to regulate calcium transport through the intestinal barrier and elucidate the involved mechanisms. To this end, a CPP-preparation underwent in vitro static digestion and was subsequently incubated with an intestinal barrier model to monitor calcium uptake and transport. Our results demonstrated that the digested CPP preparation enhanced the trans-epithelial calcium transport via paracellular pathways and that CPPs, identified by peptidomics, crossed the intestinal barrier in the same time.
Collapse
Affiliation(s)
- Mathie Tenenbaum
- UMR Transfronalière BioEcoAgro-INRae 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d'Opale, F-59000 Lille, France.
| | - Barbara Deracinois
- UMR Transfronalière BioEcoAgro-INRae 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d'Opale, F-59000 Lille, France.
| | - Camille Dugardin
- UMR Transfronalière BioEcoAgro-INRae 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d'Opale, F-59000 Lille, France.
| | - Julie Auger
- Ingredia S.A., 51 Av. Lobbedez - CS 60946, 62033 Arras Cedex, France
| | - Alain Baniel
- Ingredia S.A., 51 Av. Lobbedez - CS 60946, 62033 Arras Cedex, France
| | - Audrey Boulier
- Ingredia S.A., 51 Av. Lobbedez - CS 60946, 62033 Arras Cedex, France
| | - Christophe Flahaut
- UMR Transfronalière BioEcoAgro-INRae 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d'Opale, F-59000 Lille, France.
| | - Rozenn Ravallec
- UMR Transfronalière BioEcoAgro-INRae 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d'Opale, F-59000 Lille, France.
| | - Benoit Cudennec
- UMR Transfronalière BioEcoAgro-INRae 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d'Opale, F-59000 Lille, France.
| |
Collapse
|
17
|
Pereira F, Fernández-Barral A, Larriba MJ, Barbáchano A, González-Sancho JM. From molecular basis to clinical insights: a challenging future for the vitamin D endocrine system in colorectal cancer. FEBS J 2024; 291:2485-2518. [PMID: 37699548 DOI: 10.1111/febs.16955] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/03/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023]
Abstract
Colorectal cancer (CRC) is one of the most life-threatening neoplasias in terms of incidence and mortality worldwide. Vitamin D deficiency has been associated with an increased risk of CRC. 1α,25-Dihydroxyvitamin D3 [1,25(OH)2D3], the most active vitamin D metabolite, is a pleiotropic hormone that, through its binding to a transcription factor of the nuclear receptor superfamily, is a major regulator of the human genome. 1,25(OH)2D3 acts on colon carcinoma and stromal cells and displays tumor protective actions. Here, we review the variety of molecular mechanisms underlying the effects of 1,25(OH)2D3 in CRC, which affect multiple processes that are dysregulated during tumor initiation and progression. Additionally, we discuss the epidemiological data that associate vitamin D deficiency and CRC, and the most relevant randomized controlled trials of vitamin D3 supplementation conducted in both healthy individuals and CRC patients.
Collapse
Affiliation(s)
- Fábio Pereira
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Servicio de Oncología Radioterápica, Complejo Hospitalario Universitario de Ourense, Spain
| | - Asunción Fernández-Barral
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ (Hospital Universitario La Paz-Universidad Autónoma de Madrid), Spain
| | - María Jesús Larriba
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ (Hospital Universitario La Paz-Universidad Autónoma de Madrid), Spain
| | - Antonio Barbáchano
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ (Hospital Universitario La Paz-Universidad Autónoma de Madrid), Spain
| | - José Manuel González-Sancho
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ (Hospital Universitario La Paz-Universidad Autónoma de Madrid), Spain
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| |
Collapse
|
18
|
Esswein J, Vickers M, Kleinman M, Whitworth J, Corkins M, Riley Pace S. Cause or effect? Undetectable vitamin D in a patient with Crohn's disease. JPGN REPORTS 2024; 5:194-196. [PMID: 38756124 PMCID: PMC11093929 DOI: 10.1002/jpr3.12045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/12/2023] [Accepted: 01/14/2024] [Indexed: 05/18/2024]
Abstract
Crohn's disease has been described as the "great mimicker" with a wide array of presentations. We describe a case of a teenager who presented with tetany and undetectable vitamin D as initial presentation of Crohn's disease. There are reports of adults in tetany due to electrolyte derangements in chronic gastrointestinal diseases secondary to malabsorption. However, the role of deficient vitamin D as it contributes to immune system dysfunction has only begun to be explored. Vitamin D is essential for calcium absorption, immune regulation, and gut epithelial barrier. This case report discusses vitamin D physiology and its potential mediation in the pathogenesis of inflammatory bowel disease.
Collapse
Affiliation(s)
- Julia Esswein
- Division of Internal Medicine and PediatricsUniversity of Tennessee Health Sciences CenterMemphisTennesseeUSA
| | - Maggie Vickers
- Division of GastroenterologyLeBonheur Children's HospitalMemphisTennesseeUSA
| | - Michael Kleinman
- Division of Internal Medicine and PediatricsUniversity of Tennessee Health Sciences CenterMemphisTennesseeUSA
| | - John Whitworth
- Division of GastroenterologyLeBonheur Children's HospitalMemphisTennesseeUSA
| | - Mark Corkins
- Division of GastroenterologyLeBonheur Children's HospitalMemphisTennesseeUSA
| | - S. Riley Pace
- Division of Internal Medicine and PediatricsUniversity of Tennessee Health Sciences CenterMemphisTennesseeUSA
| |
Collapse
|
19
|
Hana C, Thaw Dar NN, Galo Venegas M, Vulfovich M. Claudins in Cancer: A Current and Future Therapeutic Target. Int J Mol Sci 2024; 25:4634. [PMID: 38731853 PMCID: PMC11083183 DOI: 10.3390/ijms25094634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Claudins are a family of 27 proteins that have an important role in the formation of tight junctions. They also have an important function in ion exchange, cell mobility, and the epithelial-to-mesenchymal transition, the latter being very important in cancer invasion and metastasis. Therapeutic targeting of claudins has been investigated to improve cancer outcomes. Recent evidence shows improved outcomes when combining monoclonal antibodies against claudin 18.2 with chemotherapy for patients with gastroesophageal junction cancer. Currently, chimeric antigen receptor T-cells targeting claudin 18 are under investigation. In this review, we will discuss the major functions of claudins, their distribution in the normal as well as cancerous tissues, and their effect in cancer metastasis, with a special focus on the therapeutic targeting of claudins to improve cancer outcomes.
Collapse
Affiliation(s)
- Caroline Hana
- Hematology/Oncology Department, Memorial Healthcare System, Pembroke Pines, FL 33028, USA; (N.N.T.D.); (M.G.V.)
| | | | | | | |
Collapse
|
20
|
Vieira-Neto A, Lean IJ, Santos JEP. Periparturient Mineral Metabolism: Implications to Health and Productivity. Animals (Basel) 2024; 14:1232. [PMID: 38672379 PMCID: PMC11047658 DOI: 10.3390/ani14081232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Mineral metabolism, in particular Ca, and to a lesser extent phosphorus (P) and magnesium (Mg), is altered with the onset of lactation because of extensive irreversible loss to synthesize colostrum and milk. The transient reduction in the concentration of Ca in blood, particularly when it lasts days, increases the risk of mineral-related disorders such as hypocalcemia and, to a lesser extent, hypophosphatemia. Although the incidence of clinical hypocalcemia can be reduced by prepartum dietary interventions, subclinical hypocalcemia remains prevalent, affecting up to 60% of the dairy cows in the first 3 d postpartum. More importantly, strong associations exist between hypocalcemia and increased susceptibility to other peripartum diseases and impaired reproductive performance. Mechanistic experiments have demonstrated the role of Ca on innate immune response in dairy cows, which presumably predisposes them to other diseases. Hypocalcemia is not related to inadequate Ca intake as prepartum diets marginal to deficient in Ca reduce the risk of the disease. Therefore, the understanding of how Ca homeostasis is regulated, in particular how calciotropic hormones such as parathyroid hormone and 1,25-dihydroxyvitamin D3, affect blood Ca concentrations, gastrointestinal Ca absorption, bone remodeling, and renal excretion of Ca become critical to develop novel strategies to prevent mineral imbalances either by nutritional or pharmacological interventions. A common method to reduce the risk of hypocalcemia is the manipulation of the prepartum dietary cation-anion difference. Feeding acidogenic diets not only improves Ca homeostasis and reduces hypocalcemia, but also reduces the risk of uterine diseases and improves productive performance. Feeding diets that induce a negative Ca balance in the last weeks of gestation also reduce the risk of clinical hypocalcemia, and recent work shows that the incorporation of mineral sequestering agents, presumably by reducing the absorption of P and Ca prepartum, increases blood Ca at calving, although benefits to production and health remain to be shown. Alternative strategies to minimize subclinical hypocalcemia with the use of vitamin D metabolites either fed prepartum or as a pharmacological agent administered immediately after calving have shown promising results in reducing hypocalcemia and altering immune cell function, which might prove efficacious to prevent diseases in early lactation. This review summarizes the current understanding of Ca homeostasis around parturition, the limited knowledge of the exact mechanisms for gastrointestinal Ca absorption in bovine, the implications of hypocalcemia on the health of dairy cows, and discusses the methods to minimize the risk of hypocalcemia and their impacts on productive performance and health in dairy cows.
Collapse
Affiliation(s)
- Achilles Vieira-Neto
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Ian J. Lean
- Scibus, Camden, NSW 2570, Australia;
- Faculty of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia
| | - José Eduardo P. Santos
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA;
- DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
21
|
Sauvé B, Guay F, Létourneau Montminy MP. Impact of deoxynivalenol in a calcium depletion and repletion nutritional strategy in piglets. J Anim Sci 2024; 102:skae099. [PMID: 38613476 PMCID: PMC11056887 DOI: 10.1093/jas/skae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/12/2024] [Indexed: 04/15/2024] Open
Abstract
This study evaluated the effect of dietary calcium (Ca) levels and deoxynivalenol (DON) contamination on Ca and phosphorus (P) utilization and bone mineralization in piglets. During an initial 13-d depletion phase, 64 piglets (15.7 ± 0.7 kg) received a control (DON-) or DON-contaminated treatment (DON+, 2.7 mg DON/kg) with either a low Ca (Ca-, 0.39%) or normal Ca level (Ca+, 0.65%) with a constant digestible P level (0.40%). A second group of 16 piglets received DON- or DON+ treatments for 9 d for gene expression analysis. During the subsequent 14-d repletion phase, all piglets were fed a Ca+ DON- diet containing 0.65% Ca and 0.35% digestible P without DON. After 5 d of the depletion phase, the absorption of P (DON × Ca; P < 0.05) and Ca was increased by the Ca- (P < 0.01) and DON+ (P < 0.01) diet. After 13 d, feed conversion ratio (P < 0.01) and average daily feed intake (P = 0.06) tended to decrease with the Ca- diet. The bone mineral content (BMC) gain was decreased by Ca, especially with Ca- DON + (DON × Ca, P < 0.05). The P absorption was increased by Ca- DON + (DON × Ca, P < 0.01), although the P retention efficiency was only increased by Ca+ DON + (DON × Ca, P < 0.001). The absorption of Ca was increased by DON+ (P < 0.001), and the Ca efficiency was increased by Ca- DON- (DON × Ca, P < 0.01). After 9 d, the gene expression of intestinal claudin 12 (P < 0.01) and CYP24A1 (P < 0.05), femur cortical RANKL (P < 0.05) and OPG (P = 0.06), and renal calbindin D9K (P < 0.05) and Klotho (P = 0.07) were decreased by DON+. The Ca (P = 0.06) and magnesium (P < 0.01) concentrations were decreased by DON+, and the Ca (P = 0.06) and P digestibility (P < 0.01) were increased. After the repletion phase, Ca- piglets recovered their BMC deficit, but not those receiving DON+ (DON × Ca; P = 0.06). The Ca (P < 0.05) and P (P = 0.06) retention efficiency tended to increase with Ca-. The absorption of Ca and P was increased by Ca- and DON+ (DON × Ca, P < 0.05). The results show that piglets increased their Ca and P utilization efficiency, allowing them to recover the BMC deficit caused by Ca-, but not when the piglets were exposed to DON. Pigs previously receiving Ca-deficient diet with DON still have lower body Ca and P, leading to elevated calcitriol concentrations and enhanced Ca and P intestinal absorption. The fact that DON decreased the expression of genes implicated in Ca intestinal and renal transport and P excretion after 9 d can potentially explain the reduced plasma Ca concentration.
Collapse
Affiliation(s)
- Béatrice Sauvé
- Department of Animal Sciences, Université Laval, Québec (QC), CanadaG1V 0A6
| | - Frédéric Guay
- Department of Animal Sciences, Université Laval, Québec (QC), CanadaG1V 0A6
| | | |
Collapse
|
22
|
Ferrer-Mayorga G, Muñoz A, González-Sancho JM. Vitamin D and colorectal cancer. FELDMAN AND PIKE'S VITAMIN D 2024:859-899. [DOI: 10.1016/b978-0-323-91338-6.00039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
23
|
Kim TY, Schafer AL. Bariatric surgery, vitamin D, and bone loss. FELDMAN AND PIKE'S VITAMIN D 2024:161-184. [DOI: 10.1016/b978-0-323-91338-6.00009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Shibamoto A, Kaji K, Nishimura N, Kubo T, Iwai S, Tomooka F, Suzuki J, Tsuji Y, Fujinaga Y, Kawaratani H, Namisaki T, Akahane T, Yoshiji H. Vitamin D deficiency exacerbates alcohol-related liver injury via gut barrier disruption and hepatic overload of endotoxin. J Nutr Biochem 2023; 122:109450. [PMID: 37777163 DOI: 10.1016/j.jnutbio.2023.109450] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/16/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023]
Abstract
Endogenous lipopolysaccharide (LPS) that translocates via the disrupted intestinal barrier plays an essential role in the progression of alcohol-related liver disease (ALD). Vitamin D deficiency is observed in ALD, and it participates in regulating gut barrier function. The current study aimed to examine the association between vitamin D deficiency and endotoxemia in patients with ALD-related cirrhosis. Moreover, the effect of vitamin D deficiency on ethanol (EtOH)- and carbon tetrachloride (CCl4)-induced liver injury relevant to gut barrier disruption in mice was investigated. Patients with ALD-related cirrhosis (Child-Pugh Class A/B/C; n=56/15/7) had lower 25(OH)D levels and higher endotoxin activities than non-drinking healthy controls (n=19). The serum 25(OH)D levels were found to be negatively correlated with endotoxin activity (R=-0.481, P<.0001). The EtOH/CCl4-treated mice developed hepatic inflammation and fibrosis, which were significantly enhanced by vitamin D-deficient diet. Vitamin D deficiency enhanced gut hyperpermeability by inhibiting the intestinal expressions of tight junction proteins including ZO-1, occludin, and claudin-2/5/12/15 in the EtOH/CCl4-treated mice. Consequently, it promoted the accumulation of lipid peroxidases, increased the expression of NADPH oxidases, and induced Kupffer cell infiltration and LPS/toll-like receptor 4 signaling-mediated proinflammatory response. Based on the in vitro assay, vitamin D-mediated vitamin D receptor activation inhibited EtOH-stimulated paracellular permeability and the downregulation of tight junction proteins via the upregulation of caudal-type homeobox 1 in Caco-2 cells. Hence, vitamin D deficiency exacerbates the pathogenesis of ALD via gut barrier disruption and hepatic overload of LPS.
Collapse
Affiliation(s)
- Akihiko Shibamoto
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Kosuke Kaji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan.
| | - Norihisa Nishimura
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Takahiro Kubo
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Satoshi Iwai
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Fumimasa Tomooka
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Junya Suzuki
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Yuki Tsuji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Yukihisa Fujinaga
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Hideto Kawaratani
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Tadashi Namisaki
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Takemi Akahane
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
25
|
Yao N, Feng L, Jiang W, Wu P, Ren H, Shi H, Tang L, Li S, Wu C, Li H, Liu Y, Zhou X. An emerging role of arecoline on growth performance, intestinal digestion and absorption capacities and intestinal structural integrity of adult grass carp ( Ctenopharyngodon idella). ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:173-186. [PMID: 38023377 PMCID: PMC10679820 DOI: 10.1016/j.aninu.2023.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 12/01/2023]
Abstract
Arecoline is an alkaloid with important pharmacological effects in the plant areca nut, which has been demonstrated to be an agonist of muscarinic receptors (M receptor). This study explored the influences of dietary arecoline on growth performance, intestinal digestion and absorption abilities, antioxidant capacity, and the apical junction complex (AJC) of adult grass carp (Ctenopharyngodon idella). Adult grass carp (608 to 1512 g) were fed at 6 graded levels of dietary arecoline (0, 0.5, 1.0, 1.5, 2.0, and 2.5 mg/kg diet) for 9 weeks. The results suggested that appropriate dietary supplementation of arecoline (1.0 mg/kg) increased growth parameters and intestinal growth in adult grass carp (P < 0.05), enhanced digestion and absorption capacities (P < 0.05), up-regulated muscarinic receptor 3 (M3) mRNA level (P < 0.05), increased the content of neuropeptide fish substance P (P < 0.05), improved antioxidant capacity by activating the Keap1a/Nrf2 signaling pathway (P < 0.05), reduced intestinal mucosal permeability (P < 0.05), and increased mRNA levels of tight junction (TJ) and adherent junction AJ-related proteins in fish by inhibiting the RhoA/ROCK signaling pathway (RhoA/ROCK/MLCK/NMII) (P < 0.05). In addition, the appropriate arecoline supplementation for adult grass carp was determined to be 1.20, 1.21, 1.07, and 1.19 mg/kg based on percentage weight gain, lipase activity, serum diamine oxidase, and protein carbonyl, respectively. Overall, to the best of our knowledge, we investigated for the first time the effects and possible mechanisms of dietary arecoline on intestinal digestive and absorptive capacities and structural integrity in fish and evaluated the appropriate level of supplementation.
Collapse
Affiliation(s)
- Na Yao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Hongmei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hequn Shi
- Guangzhou Cohoo Biotech Co., Ltd., Guangzhou, 510663, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, Sichuan, China
| | - Shuwei Li
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, Sichuan, China
| | - Caimei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hua Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| |
Collapse
|
26
|
Schneemann M, Heils L, Moos V, Weiß F, Krug SM, Weiner J, Beule D, Gerhard R, Schulzke JD, Bücker R. A Colonic Organoid Model Challenged with the Large Toxins of Clostridioides difficile TcdA and TcdB Exhibit Deregulated Tight Junction Proteins. Toxins (Basel) 2023; 15:643. [PMID: 37999506 PMCID: PMC10674794 DOI: 10.3390/toxins15110643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Clostridioides difficile toxins TcdA and TcdB are responsible for diarrhea and colitis. Lack of functional studies in organoid models of the gut prompted us to elucidate the toxin's effects on epithelial barrier function and the molecular mechanisms for diarrhea and inflammation. METHODS Human adult colon organoids were cultured on membrane inserts. Tight junction (TJ) proteins and actin cytoskeleton were analyzed for expression via Western blotting and via confocal laser-scanning microscopy for subcellular localization. RESULTS Polarized intestinal organoid monolayers were established from stem cell-containing colon organoids to apply toxins from the apical side and to perform functional measurements in the organoid model. The toxins caused a reduction in transepithelial electrical resistance in human colonic organoid monolayers with sublethal concentrations. Concomitantly, we detected increased paracellular permeability fluorescein and FITC-dextran-4000. Human colonic organoid monolayers exposed to the toxins exhibited redistribution of barrier-forming TJ proteins claudin-1, -4 and tricellulin, whereas channel-forming claudin-2 expression was increased. Perijunctional F-actin cytoskeleton organization was affected. CONCLUSIONS Adult stem cell-derived human colonic organoid monolayers were applicable as a colon infection model for electrophysiological measurements. The TJ changes noted can explain the epithelial barrier dysfunction and diarrhea in patients, as well as increased entry of luminal antigens triggering inflammation.
Collapse
Affiliation(s)
- Martina Schneemann
- Clinical Physiology, Nutritional Medicine, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Lucas Heils
- Clinical Physiology, Nutritional Medicine, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Verena Moos
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Franziska Weiß
- Clinical Physiology, Nutritional Medicine, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Susanne M. Krug
- Clinical Physiology, Nutritional Medicine, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - January Weiner
- Core Unit Bioinformatics (CUBI), Berlin Institute of Health at Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics (CUBI), Berlin Institute of Health at Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Ralf Gerhard
- Institute of Toxicology, Hannover Medical School, 30625 Hannover, Germany
| | - Jörg-Dieter Schulzke
- Clinical Physiology, Nutritional Medicine, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Roland Bücker
- Clinical Physiology, Nutritional Medicine, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| |
Collapse
|
27
|
Levai E, Marinovic I, Bartosova M, Zhang C, Schaefer B, Jenei H, Du Z, Drozdz D, Klaus G, Arbeiter K, Romero P, Schwenger V, Schwab C, Szabo AJ, Zarogiannis SG, Schmitt CP. Human peritoneal tight junction, transporter and channel expression in health and kidney failure, and associated solute transport. Sci Rep 2023; 13:17429. [PMID: 37833387 PMCID: PMC10575882 DOI: 10.1038/s41598-023-44466-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023] Open
Abstract
Next to the skin, the peritoneum is the largest human organ, essentially involved in abdominal health and disease states, but information on peritoneal paracellular tight junctions and transcellular channels and transporters relative to peritoneal transmembrane transport is scant. We studied their peritoneal localization and quantity by immunohistochemistry and confocal microscopy in health, in chronic kidney disease (CKD) and on peritoneal dialysis (PD), with the latter allowing for functional characterizations, in a total of 93 individuals (0-75 years). Claudin-1 to -5, and -15, zonula occludens-1, occludin and tricellulin, SGLT1, PiT1/SLC20A1 and ENaC were consistently detected in mesothelial and arteriolar endothelial cells, with age dependent differences for mesothelial claudin-1 and arteriolar claudin-2/3. In CKD mesothelial claudin-1 and arteriolar claudin-2 and -3 were more abundant. Peritonea from PD patients exhibited increased mesothelial and arteriolar claudin-1 and mesothelial claudin-2 abundance and reduced mesothelial and arteriolar claudin-3 and arteriolar ENaC. Transperitoneal creatinine and glucose transport correlated with pore forming arteriolar claudin-2 and mesothelial claudin-4/-15, and creatinine transport with mesothelial sodium/phosphate cotransporter PiT1/SLC20A1. In multivariable analysis, claudin-2 independently predicted the peritoneal transport rates. In conclusion, tight junction, transcellular transporter and channel proteins are consistently expressed in peritoneal mesothelial and endothelial cells with minor variations across age groups, specific modifications by CKD and PD and distinct associations with transperitoneal creatinine and glucose transport rates. The latter deserve experimental studies to demonstrate mechanistic links.Clinical Trial registration: The study was performed according to the Declaration of Helsinki and is registered at www.clinicaltrials.gov (NCT01893710).
Collapse
Affiliation(s)
- Eszter Levai
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- Pediatric Center, MTA Center of Excellence, Semmelweis University, Budapest, Hungary
- HUNREN SE Pediatrics and Nephrology Research Group, Budapest, Hungary
| | - Iva Marinovic
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Maria Bartosova
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Conghui Zhang
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Betti Schaefer
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Hanna Jenei
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Zhiwei Du
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Dorota Drozdz
- Jagiellonian University Medical College, Krakow, Poland
| | | | - Klaus Arbeiter
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Philipp Romero
- Division of Pediatric Surgery, Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Vedat Schwenger
- Department of Nephrology, Klinikum der Landeshauptstadt Stuttgart, Stuttgart, Germany
| | | | - Attila J Szabo
- Pediatric Center, MTA Center of Excellence, Semmelweis University, Budapest, Hungary
- HUNREN SE Pediatrics and Nephrology Research Group, Budapest, Hungary
| | - Sotirios G Zarogiannis
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- Department of Physiology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Claus Peter Schmitt
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
| |
Collapse
|
28
|
Burman A, Kaji I. Breast Milk Epidermal Growth Factor Confers Paracellular Calcium Absorption in the Infant Small Intestine. FUNCTION 2023; 4:zqad057. [PMID: 37860264 PMCID: PMC10583193 DOI: 10.1093/function/zqad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023] Open
Affiliation(s)
- Andreanna Burman
- Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Izumi Kaji
- Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Epithelial Biology Center, Section of Surgical Sciences, VUMC, Nashville, TN 37232, USA
| |
Collapse
|
29
|
Song WX, Yu ZH, Ren XF, Chen JH, Chen X. Role of micronutrients in inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2023; 31:711-731. [DOI: 10.11569/wcjd.v31.i17.711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an autoimmune intestinal disease that includes ulcerative colitis, Crohn's disease, and indeterminate colitis. Patients with IBD are often at risk for malnutrition, including micronutrient deficiencies, due to dietary restrictions and poor intestinal absorption. Micronutrients, including vitamins and minerals, play an important role in the human body's metabolism and maintenance of tissue functions. This article reviews the role of micronutrients in IBD. Micronutrients can affect the occurrence and progression of IBD by regulating immunity, intestinal flora, oxidative stress, intestinal barrier function, and other aspects. Monitoring and timely supplementation of micronutrients are important to delay progression and improve clinical symptoms in IBD patients.
Collapse
Affiliation(s)
- Wen-Xuan Song
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zi-Han Yu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiang-Feng Ren
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ji-Hua Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
30
|
Abstract
Sequential expression of claudins, a family of tight junction proteins, along the nephron mirrors the sequential expression of ion channels and transporters. Only by the interplay of transcellular and paracellular transport can the kidney efficiently maintain electrolyte and water homeostasis in an organism. Although channel and transporter defects have long been known to perturb homeostasis, the contribution of individual tight junction proteins has been less clear. Over the past two decades, the regulation and dysregulation of claudins have been intensively studied in the gastrointestinal tract. Claudin expression patterns have, for instance, been found to be affected in infection and inflammation, or in cancer. In the kidney, a deeper understanding of the causes as well as the effects of claudin expression alterations is only just emerging. Little is known about hormonal control of the paracellular pathway along the nephron, effects of cytokines on renal claudin expression or relevance of changes in paracellular permeability to the outcome in any of the major kidney diseases. By summarizing current findings on the role of specific claudins in maintaining electrolyte and water homeostasis, this Review aims to stimulate investigations on claudins as prognostic markers or as druggable targets in kidney disease.
Collapse
Affiliation(s)
- Luca Meoli
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dorothee Günzel
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
31
|
Chen JTC, Hu X, Otto IUC, Schürger C, von Bieberstein BR, Doppler K, Krug SM, Hankir MK, Blasig R, Sommer C, Brack A, Blasig IE, Rittner HL. Myelin barrier breakdown, mechanical hypersensitivity, and painfulness in polyneuropathy with claudin-12 deficiency. Neurobiol Dis 2023; 185:106246. [PMID: 37527762 DOI: 10.1016/j.nbd.2023.106246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/25/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND The blood-nerve and myelin barrier shield peripheral neurons and their axons. These barriers are sealed by tight junction proteins, which control the passage of potentially noxious molecules including proinflammatory cytokines via paracellular pathways. Peripheral nerve barrier breakdown occurs in various neuropathies, such as chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) and traumatic neuropathy. Here, we studied the functional role of the tight junction protein claudin-12 in regulating peripheral nerve barrier integrity and CIDP pathogenesis. METHODS Sections from sural nerve biopsies from 23 patients with CIDP and non-inflammatory idiopathic polyneuropathy (PNP) were analyzed for claudin-12 and -19 immunoreactivity. Cldn12-KO mice were generated and subjected to the chronic constriction injury (CCI) model of neuropathy. These mice were then characterized using a battery of barrier and behavioral tests, histology, immunohistochemistry, and mRNA/protein expression. In phenotype rescue experiments, the proinflammatory cytokine TNFα was neutralized with the anti-TNFα antibody etanercept; the peripheral nerve barrier was stabilized with the sonic hedgehog agonist smoothened (SAG). RESULTS Compared to those without pain, patients with painful neuropathy exhibited reduced claudin-12 expression independently of fiber loss. Accordingly, global Cldn12-KO in male mice, but not fertile female mice, selectively caused mechanical allodynia associated with a leaky myelin barrier, increased TNFα, decreased sonic hedgehog (SHH), and loss of small axons accompanied by reduced peripheral myelin protein 22 (Pmp22). Other barriers and neurological functions remained intact. The Cldn12-KO phenotype could be rescued either by neutralizing TNFα with etanercept or stabilizing the barrier with SAG, which both also upregulated the Schwann cell barrier proteins Cldn19 and Pmp22. CONCLUSION These results point to a critical role for claudin-12 in maintaining the myelin barrier presumably via Pmp22 and highlight restoration of the hedgehog pathway as a potential treatment strategy for painful inflammatory neuropathy.
Collapse
Affiliation(s)
- Jeremy Tsung-Chieh Chen
- University Hospital Würzburg, Center for Interdisciplinary Pain Medicine, Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, 97080 Würzburg, Germany
| | - Xiawei Hu
- University Hospital Würzburg, Center for Interdisciplinary Pain Medicine, Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, 97080 Würzburg, Germany
| | - Isabel U C Otto
- University Hospital Würzburg, Center for Interdisciplinary Pain Medicine, Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, 97080 Würzburg, Germany
| | - Christina Schürger
- University Hospital Würzburg, Center for Interdisciplinary Pain Medicine, Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, 97080 Würzburg, Germany
| | - Bruno Rogalla von Bieberstein
- University Hospital Würzburg, Center for Interdisciplinary Pain Medicine, Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, 97080 Würzburg, Germany
| | - Kathrin Doppler
- University Hospital Würzburg, Department of Neurology, 97080 Würzburg, Germany
| | - Susanne M Krug
- Charité-Universitätsmedizin Berlin, Clinical Physiology/Nutritional Medicine, 13125 Berlin, Germany
| | - Mohammed K Hankir
- University Hospital Würzburg, Department of General, Transplantation, Visceral, Vascular and Pediatric Surgery, 97080 Würzburg, Germany
| | - Rosel Blasig
- Leibnitz Institute of Molecular Pharmacology, Departments of Molecular Physiology and Cell Biology, 13125 Berlin, Germany
| | - Claudia Sommer
- University Hospital Würzburg, Department of Neurology, 97080 Würzburg, Germany
| | - Alexander Brack
- University Hospital Würzburg, Center for Interdisciplinary Pain Medicine, Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, 97080 Würzburg, Germany
| | - Ingolf E Blasig
- Leibnitz Institute of Molecular Pharmacology, Departments of Molecular Physiology and Cell Biology, 13125 Berlin, Germany
| | - Heike L Rittner
- University Hospital Würzburg, Center for Interdisciplinary Pain Medicine, Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, 97080 Würzburg, Germany.
| |
Collapse
|
32
|
Nyimanu D, Behm C, Choudhury S, Yu ASL. The role of claudin-2 in kidney function and dysfunction. Biochem Soc Trans 2023; 51:1437-1445. [PMID: 37387353 DOI: 10.1042/bst20220639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023]
Abstract
Claudin-2 is a tight junction protein expressed in leaky epithelia where it forms paracellular pores permeable to cations and water. The paracellular pore formed by claudin-2 is important in energy-efficient cation and water transport in the proximal tubules of the kidneys. Mounting evidence now suggests that claudin-2 may modulate cellular processes often altered in disease, including cellular proliferation. Also, dysregulation of claudin-2 expression has been linked to various diseases, including kidney stone disease and renal cell carcinoma. However, the mechanisms linking altered claudin-2 expression and function to disease are poorly understood and require further investigation. The aim of this review is to discuss the current understanding of the role of claudin-2 in kidney function and dysfunction. We provide a general overview of the claudins and their organization in the tight junction, the expression, and function of claudin-2 in the kidney, and the evolving evidence for its role in kidney disease.
Collapse
Affiliation(s)
- Duuamene Nyimanu
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, U.S.A
| | - Christine Behm
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, U.S.A
| | - Sonali Choudhury
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, U.S.A
| | - Alan S L Yu
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, U.S.A
| |
Collapse
|
33
|
Alexander RT. Kidney stones, hypercalciuria, and recent insights into proximal tubule calcium reabsorption. Curr Opin Nephrol Hypertens 2023; 32:359-365. [PMID: 37074688 DOI: 10.1097/mnh.0000000000000892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
PURPOSE OF REVIEW Most kidney stones are composed of calcium, and the greatest risk factor for kidney stone formation is hypercalciuria. Patients who form kidney stones often have reduced calcium reabsorption from the proximal tubule, and increasing this reabsorption is a goal of some dietary and pharmacological treatment strategies to prevent kidney stone recurrence. However, until recently, little was known about the molecular mechanism that mediates calcium reabsorption from the proximal tubule. This review summarizes newly uncovered key insights and discusses how they may inform the treatment of kidney stone formers. RECENT FINDINGS Studies examining claudin-2 and claudin-12 single and double knockout mice, combined with cell culture models, support complementary independent roles for these tight junction proteins in contributing paracellular calcium permeability to the proximal tubule. Moreover, a family with a coding variation in claudin-2 causing hypercalciuria and kidney stones have been reported, and reanalysis of Genome Wide Association Study (GWAS) data demonstrates an association between noncoding variations in CLDN2 and kidney stone formation. SUMMARY The current work begins to delineate the molecular mechanisms whereby calcium is reabsorbed from the proximal tubule and suggests a role for altered claudin-2 mediated calcium reabsorption in the pathogenesis of hypercalciuria and kidney stone formation.
Collapse
Affiliation(s)
- R Todd Alexander
- Department of Pediatrics
- Department of Physiology, University of Alberta
- The Women's & Children's Health Research Institute, Edmonton, Alberta, Canada
| |
Collapse
|
34
|
Beggs MR, Young K, Plain A, O'Neill DD, Raza A, Flockerzi V, Dimke H, Alexander RT. Maternal Epidermal Growth Factor Promotes Neonatal Claudin-2 Dependent Increases in Small Intestinal Calcium Permeability. FUNCTION 2023; 4:zqad033. [PMID: 37575484 PMCID: PMC10413934 DOI: 10.1093/function/zqad033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 08/15/2023] Open
Abstract
A higher concentration of calcium in breast milk than blood favors paracellular calcium absorption enabling growth during postnatal development. We aimed to determine whether suckling animals have greater intestinal calcium permeability to maximize absorption and to identify the underlying molecular mechanism. We examined intestinal claudin expression at different ages in mice and in human intestinal epithelial (Caco-2) cells in response to hormones or human milk. We also measured intestinal calcium permeability in wildtype, Cldn2 and Cldn12 KO mice and Caco-2 cells in response to hormones or human milk. Bone mineralization in mice was assessed by μCT. Calcium permeability across the jejunum and ileum of mice were 2-fold greater at 2 wk than 2 mo postnatal age. At 2 wk, Cldn2 and Cldn12 expression were greater, but only Cldn2 KO mice had decreased calcium permeability compared to wildtype. This translated to decreased bone volume, cross-sectional thickness, and tissue mineral density of femurs. Weaning from breast milk led to a 50% decrease in Cldn2 expression in the jejunum and ileum. Epidermal growth factor (EGF) in breast milk specifically increased only CLDN2 expression and calcium permeability in Caco-2 cells. These data support intestinal permeability to calcium, conferred by claudin-2, being greater in suckling mice and being driven by EGF in breast milk. Loss of the CLDN2 pathway leads to suboptimal bone mineralization at 2 wk of life. Overall, EGF-mediated control of intestinal claudin-2 expression contributes to maximal intestinal calcium absorption in suckling animals.
Collapse
Affiliation(s)
- Megan R Beggs
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
- The Women's & Children's Health Research Institute, Edmonton, AB T6G 1C9, Canada
| | - Kennedi Young
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Allen Plain
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Debbie D O'Neill
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ahsan Raza
- Experimentelle und Klinische Pharmakologie und Toxikologie, Saarland University, 66421 Homburg, Germany
| | - Veit Flockerzi
- Experimentelle und Klinische Pharmakologie und Toxikologie, Saarland University, 66421 Homburg, Germany
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C DK-5000, Demark
- Department of Nephrology, Odense University Hospital, 5000 Odense C, Denmark
| | - R Todd Alexander
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
- The Women's & Children's Health Research Institute, Edmonton, AB T6G 1C9, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
| |
Collapse
|
35
|
Álvarez-Delgado C, Ruedas-Torres I, Sánchez-Carvajal JM, Priego-Capote F, Castillo-Peinado L, Galán-Relaño Á, Moreno PJ, Díaz-Bueno E, Lozano-Buenestado B, Rodríguez-Gómez IM, Carrasco L, Pallarés FJ, Gómez-Laguna J. Impact of supplementation with dihydroxylated vitamin D 3 on performance parameters and gut health in weaned Iberian piglets under indoor/outdoor conditions. Porcine Health Manag 2023; 9:15. [PMID: 37316951 DOI: 10.1186/s40813-023-00307-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/02/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Vitamin D may improve innate antimicrobial response and the integrity of the intestinal mucosal barrier representing an alternative to antibiotics for improving pig health. Therefore, benefits of dietary supplementation with a product based on vitamin D3 metabolite-rich plant extracts were assessed in 252 purebred Iberian piglets for a period of 60 days. The study group received 1,25 dihydroxyvitamin D (1,25(OH)2D) (100 ppm) in the conventional feed, which already included vitamin D (2000 IU in the starter and 1000 IU in the adaptation diets, respectively). Average daily gain (ADG), feed conversion ratio (FCR) and coefficient of variation of body weight (CV-BW) were assessed along the study. Blood samples, from 18 animals of the study group and 14 animals of the control group, were collected at selected time points to determine white blood cell count, concentration of vitamin D3 and its metabolites, and IgA and IgG in serum. Histopathology, morphometry, and immunohistochemistry (IgA and FoxP3) from small intestine samples were performed on days 30 and 60 of the study from 3 animals per group and time point. RESULTS The ADG (493 vs 444 g/day) and FCR (2.3 vs 3.02) showed an improved performance in the supplemented animals. Moreover, the lower CV-BW indicated a greater homogeneity in the treated batches (13.17 vs 26.23%). Furthermore, a mild increase of IgA and in the number of regulatory T cells in the small intestine were observed in treated pigs. CONCLUSIONS These results highlight the benefits of this supplementation and encourage to develop further studies along other production stages.
Collapse
Affiliation(s)
- Carmen Álvarez-Delgado
- Department of Anatomy and Comparative Pathology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, Campus of Rabanales, 14071, Cordoba, Spain.
| | - Inés Ruedas-Torres
- Department of Anatomy and Comparative Pathology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, Campus of Rabanales, 14071, Cordoba, Spain
| | - José M Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, Campus of Rabanales, 14071, Cordoba, Spain
- Institute of Virology and Immunology (IVI), Bern, Switzerland
| | - Feliciano Priego-Capote
- Department of Analytical Chemistry, Nanochemistry University Institute (IUNAN), Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, Campus of Rabanales, 14071, Córdoba, Spain
| | - Laura Castillo-Peinado
- Department of Analytical Chemistry, Nanochemistry University Institute (IUNAN), Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, Campus of Rabanales, 14071, Córdoba, Spain
| | - Ángela Galán-Relaño
- Department of Animal Health, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, Campus of Rabanales, 14071, Cordoba, Spain
| | | | | | | | - Irene M Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, Campus of Rabanales, 14071, Cordoba, Spain
| | - Librado Carrasco
- Department of Anatomy and Comparative Pathology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, Campus of Rabanales, 14071, Cordoba, Spain
| | - Francisco J Pallarés
- Department of Anatomy and Comparative Pathology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, Campus of Rabanales, 14071, Cordoba, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, Campus of Rabanales, 14071, Cordoba, Spain
| |
Collapse
|
36
|
Sauvé B, Chorfi Y, Montminy MPL, Guay F. Vitamin D Supplementation Impacts Calcium and Phosphorus Metabolism in Piglets Fed a Diet Contaminated with Deoxynivalenol and Challenged with Lipopolysaccharides. Toxins (Basel) 2023; 15:394. [PMID: 37368695 DOI: 10.3390/toxins15060394] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Using alternative feed ingredients in pig diets can lead to deoxynivalenol (DON) contamination. DON has been shown to induce anorexia, inflammation, and-more recently-alterations in the vitamin D, calcium, and phosphorus metabolisms. Adding vitamin D supplementation in the form of vitamin D3 and 25-OH-D3 to the feed could modify the effects of DON in piglets. In this study, vitamin D3 or 25-OH-D3 supplementation was used in a control or DON-contaminated treatment. A repetitive exposure over 21 days to DON in the piglets led to disruptions in the vitamin D, calcium, and phosphorus metabolisms, resulting in a decreased growth performance, increased bone mineralization, and the downregulation of genes related to calcium and to phosphorus intestinal and renal absorption. The DON challenge also decreased blood concentrations of 25-OH-D3, 1,25-(OH)2-D3, and phosphate. The DON contamination likely decreased the piglets' vitamin D status indirectly by modifying the calcium metabolism response. Vitamin D supplementations did not restore vitamin D status or bone mineralization. After a lipopolysaccharide-induced inflammatory stimulation, feeding a 25-OH-D3 supplementation increased 25-OH-D3 concentration and 1,25-(OH)2-D3 regulations during the DON challenge. DON contamination likely induced a Ca afflux by altering the intestinal barrier, which resulted in hypercalcemia and hypovitaminosis D. The vitamin D supplementation could increase the calcitriol production to face the combined LPS and DON challenge.
Collapse
Affiliation(s)
- Béatrice Sauvé
- Department of Animal Sciences, Laval University, Quebec, QC G1V 0A6, Canada
| | - Younes Chorfi
- Department of Veterinary Biomedicine, Montreal University, Saint-Hyacinthe, QC J2S 2M2, Canada
| | | | - Frédéric Guay
- Department of Animal Sciences, Laval University, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
37
|
Haussler MR, Haussler CA, Jurutka PW. Genomically anchored vitamin D receptor mediates an abundance of bioprotective actions elicited by its 1,25-dihydroxyvitamin D hormonal ligand. VITAMINS AND HORMONES 2023; 123:313-383. [PMID: 37717990 DOI: 10.1016/bs.vh.2022.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The nuclear vitamin D receptor (VDR) mediates the actions of its physiologic 1,25-dihydroxyvitamin D3 (1,25D) ligand produced in kidney and at extrarenal sites during times of physiologic and cellular stress. The ligand-receptor complex transcriptionally controls genes encoding factors that regulate calcium and phosphate sensing/transport, bone remodeling, immune function, and nervous system maintenance. With the aid of parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23), 1,25D/VDR primarily participates in an intricate network of feedback controls that govern extracellular calcium and phosphate concentrations, mainly influencing bone formation and mineralization, ectopic calcification, and indirectly supporting many fundamental roles of calcium. Beyond endocrine and intracrine effects, 1,25D/VDR signaling impacts multiple biochemical phenomena that potentially affect human health and disease, including autophagy, carcinogenesis, cell growth/differentiation, detoxification, metabolic homeostasis, and oxidative stress mitigation. Several health advantages conferred by 1,25D/VDR appear to be promulgated by induction of klotho, an anti-aging renal peptide hormone which functions as a co-receptor for FGF23 and, like 1,25D, regulates nrf2, foxo, mTOR and other cellular protective pathways. Among hundreds of genes for which expression is modulated by 1,25D/VDR either primarily or secondarily in a cell-specific manner, the resulting gene products (in addition to those expressed in the classic skeletal mineral regulatory tissues kidney, intestine, and bone), fall into multiple biochemical categories including apoptosis, cholesterol homeostasis, glycolysis, hypoxia, inflammation, p53 signaling, unfolded protein response and xenobiotic metabolism. Thus, 1,25D/VDR is a bone mineral control instrument that also signals the maintenance of multiple cellular processes in the face of environmental and genetic challenges.
Collapse
Affiliation(s)
- Mark R Haussler
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, United States.
| | - Carol A Haussler
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Peter W Jurutka
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, United States
| |
Collapse
|
38
|
Rodrat M, Wongdee K, Chankamngoen W, Teerapornpuntakit J, Thongbunchoo J, Tanramluk D, Charoenphandhu N. Modulation of fibroblast growth factor-23 expression and transepithelial calcium absorption in Caco-2 monolayer by calcium-sensing receptor and calcineurin under calcium hyperabsorptive state. Biochem Biophys Res Commun 2023; 659:105-112. [PMID: 37060830 DOI: 10.1016/j.bbrc.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/20/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023]
Abstract
Fibroblast growth factor (FGF)-23 and calcium-sensing receptor (CaSR) have previously been postulated to be parts of a negative feedback regulation of the intestinal calcium absorption to prevent excessive calcium uptake and its toxicity. However, the underlying mechanism of this feedback regulation remained elusive, especially whether it required transcription of FGF-23. Herein, we induced calcium hyperabsorptive state (CHS) by exposing intestinal epithelium-like Caco-2 monolayer to 30 mM CaCl2 and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] after which FGF-23 mRNA levels and transepithelial calcium flux were determined. We found that CHS upregulated FGF-23 transcription, which was reverted by CaSR inhibitors (Calhex-231 and NPS2143) but without effect on CaSR transcription. Although 10 nM 1,25(OH)2D3 was capable of enhancing transepithelial calcium flux, the higher-than-normal calcium inundation as in CHS led to a decrease in calcium flux, consistent with an increase in FGF-23 protein expression. Administration of inhibitors (≤10 μM CN585 and cyclosporin A) of calcineurin, a mediator of CaSR action to control transcription and production of its target proteins, was found to partially prevent FGF-23 protein production and the negative effect of CHS on calcium transport, while having no effect on FGF-23 mRNA expression. Direct exposure to FGF-23, but not FGF-23 + PD173074 (FGFR1/3 inhibitor), also completely abolished the 1,25(OH)2D3-enhanced calcium transport in Caco-2 monolayer. Nevertheless, CHS and CaSR inhibitors had no effect on the mRNA levels of calcineurin (PPP3CB) or its targets (i.e., NFATc1-4). In conclusion, exposure to CHS induced by high apical calcium and 1,25(OH)2D3 triggered a negative feedback mechanism to prevent further calcium uptake. CaSR and its downstream mediator, calcineurin, possibly contributed to the regulatory process, in part by enhancing FGF-23 production to inhibit calcium transport. Our study, therefore, corroborated the physiological significance of CaSR-autocrine FGF-23 axis as a local feedback loop for prevention of excessive calcium uptake.
Collapse
Affiliation(s)
- Mayuree Rodrat
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand; Center of Research and Development for Biomedical Instrumentation, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Kannikar Wongdee
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Wasutorn Chankamngoen
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand; Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Jirawan Thongbunchoo
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Duangrudee Tanramluk
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand; Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, Thailand
| | - Narattaphol Charoenphandhu
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand; Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand; The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand.
| |
Collapse
|
39
|
Hu Y, van Baal J, Hendriks WH, Resink JW, Liesegang A, van Krimpen MM, Bikker P. High dietary Ca and microbial phytase reduce the expression of Ca transporters while enhancing claudins involved in paracellular Ca absorption in the porcine jejunum and colon. Br J Nutr 2023; 129:1127-1135. [PMID: 35912696 PMCID: PMC10011584 DOI: 10.1017/s0007114522002239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 11/06/2022]
Abstract
Expression levels of genes (RT-qPCR) related to Ca and P homeostasis (transporters and claudins (CLDN)) were determined in porcine jejunal and colonic mucosa. Forty growing pigs (BW 30·4 (sem 1·3) kg) received a low and high Ca content (2·0 and 9·6 g/kg, respectively) diet with or without microbial phytase (500 FTU/kg) for 21 d. Dietary Ca intake enhanced serum Ca and alkaline phosphatase concentration and reduced P, 1,25(OH)2D3, and parathyroid hormone concentration. Jejunal transient receptor potential vanilloid 5 (TRPV5) mRNA expression was decreased (32%) with phytase inclusion only, while colonic TRPV5 mRNA was reduced by dietary Ca (34%) and phytase (44%). Both jejunal and colonic TRPV6 mRNA expression was reduced (30%) with microbial phytase. Calbindin-D9k mRNA expression was lower in colonic but not jejunal mucosa with high dietary Ca (59%) and microbial phytase (37%). None of the mRNAs encoding the Na-P cotransporters (NaPi-IIc, PiT-1, PiT-2) were affected. Jejunal, but not colonic expression of the phosphate transporter XPR1, was slightly downregulated with dietary Ca. Dietary Ca downregulated colonic CLDN-4 (20%) and CLDN-10 (40%) expression while CLDN-7 was reduced by phytase inclusion in pigs fed low dietary Ca. Expression of colonic CLDN-12 tended to be increased by phytase. In jejunal mucosa, dietary Ca increased CLDN-2 expression (48%) and decreased CLDN-10 (49%) expression, while phytase slightly upregulated CLDN-12 expression. In conclusion, compared with a Ca-deficient phytase-free diet, high dietary Ca and phytase intake in pigs downregulate jejunal and colonic genes related to transcellular Ca absorption and upregulate Ca pore-forming claudins.
Collapse
Affiliation(s)
- Yixin Hu
- Wageningen University and Research, Wageningen Livestock Research, Wageningen, 6700, the Netherlands
- Wageningen University and Research, Animal Nutrition Group, Wageningen, the Netherlands
| | - Jurgen van Baal
- Wageningen University and Research, Animal Nutrition Group, Wageningen, the Netherlands
| | - Wouter H. Hendriks
- Wageningen University and Research, Animal Nutrition Group, Wageningen, the Netherlands
| | | | - Annette Liesegang
- University of Zurich, Institute of Animal Nutrition, Vetsuisse Faculty, Zürich, Switzerland
| | - Marinus M. van Krimpen
- Wageningen University and Research, Wageningen Livestock Research, Wageningen, 6700, the Netherlands
| | - Paul Bikker
- Wageningen University and Research, Wageningen Livestock Research, Wageningen, 6700, the Netherlands
| |
Collapse
|
40
|
Giustina A, di Filippo L, Allora A, Bikle DD, Cavestro GM, Feldman D, Latella G, Minisola S, Napoli N, Trasciatti S, Uygur M, Bilezikian JP. Vitamin D and malabsorptive gastrointestinal conditions: A bidirectional relationship? Rev Endocr Metab Disord 2023; 24:121-138. [PMID: 36813995 PMCID: PMC9946876 DOI: 10.1007/s11154-023-09792-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Abstract
This paper is one of the outcomes of the 5th International Conference "Controversies in Vitamin D" held in Stresa, Italy from 15 to 18 September 2021 as part of a series of annual meetings which was started in 2017. The scope of these meetings is to discuss controversial issues about vitamin D. Publication of the outcomes of the meeting in international journals allows a wide sharing of the most recent data with the medical and academic community. Vitamin D and malabsorptive gastrointestinal conditions was one of the topics discussed at the meeting and focus of this paper. Participants to the meeting were invited to review available literature on selected issues related to vitamin D and gastrointestinal system and to present their topic to all participants with the aim to initiate a discussion on the main outcomes of which are reported in this document. The presentations were focused on the possible bidirectional relationship between vitamin D and gastrointestinal malabsorptive conditions such as celiac disease, inflammatory bowel diseases (IBDs) and bariatric surgery. In fact, on one hand the impact of these conditions on vitamin D status was examined and on the other hand the possible role of hypovitaminosis D on pathophysiology and clinical course of these conditions was also evaluated. All examined malabsorptive conditions severely impair vitamin D status. Since vitamin D has known positive effects on bone this in turn may contribute to negative skeletal outcomes including reduced bone mineral density, and increased risk of fracture which may be mitigated by vitamin D supplementation. Due to the immune and metabolic extra-skeletal effects there is the possibility that low levels of vitamin D may negatively impact on the underlying gastrointestinal conditions worsening its clinical course or counteracting the effect of treatment. Therefore, vitamin D status assessment and supplementation should be routinely considered in all patients affected by these conditions. This concept is strengthened by the existence of a possible bidirectional relationship through which poor vitamin D status may negatively impact on clinical course of underlying disease. Sufficient elements are available to estimate the desired threshold vitamin D level above which a favourable impact on the skeleton in these conditions may be obtained. On the other hand, ad hoc controlled clinical trials are needed to better define this threshold for obtaining a positive effect of vitamin D supplementation on occurrence and clinical course of malabsorptive gastrointestinal diseases.
Collapse
Affiliation(s)
- Andrea Giustina
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milan, Italy.
- Division of Endocrinology, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy.
| | - Luigi di Filippo
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Agnese Allora
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Daniel D Bikle
- Veterans Affairs Medical Center, University of California San Francisco, 1700 Owens St, San Francisco, CA, 94158, USA
| | - Giulia Martina Cavestro
- Gastroenterology and Gastrointestinal Endoscopy Unit, Università Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milan, Italy
| | - David Feldman
- Stanford University School of Medicine, Stanford, CA, USA
| | - Giovanni Latella
- Gastroenterology, Hepatology and Nutrition Division, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Salvatore Minisola
- Department of Clinical, Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Nicola Napoli
- Department of Medicine, Unit of Endocrinology and Diabetes, Università Campus Bio-Medico Di Roma, Rome, Italy
| | | | - Melin Uygur
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milan, Italy
- Department of Endocrinology and Metabolism Disease, RTE University School of Medicine, Rize, Turkey
| | - John P Bilezikian
- Department of Medicine, Vagelos College of Physicians and Surgeons, New York City, NY, USA
| |
Collapse
|
41
|
Houillier P, Lievre L, Hureaux M, Prot-Bertoye C. Mechanisms of paracellular transport of magnesium in intestinal and renal epithelia. Ann N Y Acad Sci 2023; 1521:14-31. [PMID: 36622354 DOI: 10.1111/nyas.14953] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Magnesium is the fourth most abundant cation in the body. It plays a critical role in many biological processes, including the process of energy release. Paracellular transport of magnesium is mandatory for magnesium homeostasis. In addition to intestinal absorption that occurs in part across the paracellular pathway, magnesium is reabsorbed by the kidney tubule. The bulk of magnesium is reabsorbed through the paracellular pathway in the proximal tubule and the thick ascending limb of the loop of Henle. The finding that rare genetic diseases due to pathogenic variants in genes encoding specific claudins (CLDNs), proteins located at the tight junction that determine the selectivity and the permeability of the paracellular pathway, led to an awareness of their importance in magnesium homeostasis. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis is caused by a loss of function of CLDN16 or CLDN19. Pathogenic CLDN10 variants cause HELIX syndrome, which is associated with a severe renal loss of sodium chloride and hypermagnesemia. The present review summarizes the current knowledge of the mechanisms and factors involved in paracellular magnesium permeability. The review also highlights some of the unresolved questions that need to be addressed.
Collapse
Affiliation(s)
- Pascal Houillier
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS ERL 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| | - Loïc Lievre
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS ERL 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Marguerite Hureaux
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France
- Paris Centre de Recherche Cardio-vasculaire, INSERM, Université Paris Cité, Paris, France
| | - Caroline Prot-Bertoye
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS ERL 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| |
Collapse
|
42
|
Guo Y, Li X, Geng C, Song S, Xie X, Wang C. Vitamin D receptor involves in the protection of intestinal epithelial barrier function via up-regulating SLC26A3. J Steroid Biochem Mol Biol 2023; 227:106231. [PMID: 36462760 DOI: 10.1016/j.jsbmb.2022.106231] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 05/13/2022] [Accepted: 07/15/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Vitamin D receptor (VDR) and SLC26A3 (DRA) have been identified as pivotal protective factors in maintaining gut homeostasis in IBD patients. However, the specific mechanism underlying the increased intestinal susceptibility to inflammation induced by the loss of VDR and whether DRA participates in the role of VDR regulating intestinal epithelial barrier function are undefined. AIM The current study is undertaken to elucidate the regulatory effects of VDR on DRA and VDR prevents intestinal epithelial barrier dysfunction via up-regulating the expression of DRA. METHODS WT and VDR-/- mice are used as models for intestinal epithelial response. Paracellular permeability is measured by TEER and FD-4 assays. Immunohistochemistry, immunofluorescence, qPCR and immunoblotting are performed to determine the effects of VDR and DRA on gut epithelial barrier function. RESULTS VDR-/- mice exhibits significant hyperpermeability of intestine with greatly decreased levels of ZO-1 and Claudin1 proteins. DRA is located on the intestinal epithelial apical membrane and is tightly modulated by VDR in vivo and in vitro via activating ERK1/2 MAPK signaling pathway. Notably, the current study for the first time demonstrates that VDR maintains intestinal epithelial barrier integrity via up-regulating DRA expression and the lack of DRA induced by VDR knockdown leads to a more susceptive condition for intestine to DSS-induced colitis. CONCLUSION Our study provides evidence and deep comprehension regarding the role of VDR in modulating DRA expression in gut homeostasis and makes novel contributions to better generally understanding the links between VDR, DRA and intestinal epithelial barrier function.
Collapse
Affiliation(s)
- Yaoyu Guo
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chong Geng
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Shuailing Song
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoxi Xie
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chunhui Wang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
43
|
Poindexter MB, Zimpel R, Vieira-Neto A, Husnain A, Silva ACM, Faccenda A, Sanches de Avila A, Celi P, Cortinhas C, Santos JEP, Nelson CD. Effect of source and amount of vitamin D on serum concentrations and retention of calcium, magnesium, and phosphorus in dairy cows. J Dairy Sci 2023; 106:954-973. [PMID: 36543649 DOI: 10.3168/jds.2022-22386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/25/2022] [Indexed: 12/24/2022]
Abstract
The objectives of the experiment were to determine the effects of supplementing 2 amounts of 25-hydroxyvitamin D3 (calcidiol; CAL) compared with equal amounts of vitamin D3 (cholecalciferol; CHOL) on serum concentrations, absorptions, and retentions of Ca, Mg, and P in periparturient dairy cows. One hundred seventy-seven (133 parous and 44 nulliparous) pregnant Holstein cows were enrolled in the experiment. Cows were blocked by parity and previous lactation milk yield (parous) or genetic merit for energy-corrected milk yield (nulliparous) and assigned randomly to receive 1 or 3 mg/d of CAL or CHOL in a 2 × 2 factorial arrangement of treatments. Treatments were provided to individual cows as a top-dress to the prepartum diet from 250 d gestation until parturition. The prepartum diet had a dietary cation-anion difference of -128 mEq/kg of dry matter. All cows were fed a common postpartum diet containing 46 μg of vitamin D3/kg of dry matter without further supplementation of treatments. Concentrations of vitamin D metabolites, Ca, Mg, and P in serum were measured pre- and postpartum, in addition to total-tract digestibility and urinary excretion of Ca, Mg, and P in the prepartum period. Feeding 3 mg compared with 1 mg of CAL increased serum 25-hydroxyvitamin D3 (CAL1 = 94 vs. CAL3 = 173 ± 3 ng/mL). In comparison, the increment in serum 25-hydroxyvitamin D3 from feeding 3 mg compared with 1 mg of CHOL was small (CHOL1 = 58 vs. CHOL3 = 64 ± 3 ng/mL). Feeding CAL increased prepartum concentration of P in serum compared with CHOL (CHOL = 1.87 vs. CAL = 2.01 ± 0.02 mM), regardless of the amount fed, but neither source nor amount affected prepartum Ca or Mg in serum. Feeding CAL increased serum Ca and P for the first 11 d postpartum compared with CHOL (CHOL = 2.12 vs. CAL = 2.16 ± 0.01 mM serum Ca; CHOL = 1.70 vs. CAL = 1.78 ± 0.02 mM serum P) but the amount of vitamin D did not affect postpartum concentrations of Ca, Mg, and P in serum. Feeding CAL increased prepartum apparent digestibility of Ca compared with CHOL (CHOL = 26.6 vs. CAL = 33.5 ± 2.8%) but treatments did not affect Ca retention prepartum. Neither source nor amount of vitamin D affected Mg and P apparent digestibility, but CAL decreased the concentration of P excreted in urine during the prepartum period (CHOL = 1.8 vs. CAL = 0.8 ± 0.3 g/d). Calcidiol tended to increase the amount of Ca secreted in colostrum (CHOL = 9.1 vs. CAL = 11.2 ± 0.9 g/d) and Ca excreted in urine postpartum (CHOL = 0.4 vs. CAL = 0.6 ± 0.1 g/d) compared with CHOL. Collectively, feeding CAL at 1 or 3 mg/d compared with CHOL in the last 24 d of gestation is an effective way to increase periparturient serum P concentration and postpartum serum Ca of dairy cows fed a prepartum diet with negative DCAD.
Collapse
Affiliation(s)
- M B Poindexter
- Animal Molecular and Cellular Biology Program, University of Florida, Gainesville 32611
| | - R Zimpel
- Animal Molecular and Cellular Biology Program, University of Florida, Gainesville 32611
| | - A Vieira-Neto
- Animal Molecular and Cellular Biology Program, University of Florida, Gainesville 32611
| | - A Husnain
- Animal Molecular and Cellular Biology Program, University of Florida, Gainesville 32611
| | - A C M Silva
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - A Faccenda
- Department of Animal Sciences, University of Florida, Gainesville 32611; Department of Animal Science, State University of Western Paraná, Marechal Condido Rondon, PR 85960-000, Brazil
| | - A Sanches de Avila
- Department of Animal Sciences, University of Florida, Gainesville 32611; Department of Animal Science, State University of Western Paraná, Marechal Condido Rondon, PR 85960-000, Brazil
| | - P Celi
- DSM Nutritional Products, Columbia, MD 21045; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, Australia
| | - C Cortinhas
- DSM Nutritional Products, Columbia, MD 21045
| | - J E P Santos
- Animal Molecular and Cellular Biology Program, University of Florida, Gainesville 32611; Department of Animal Sciences, University of Florida, Gainesville 32611
| | - C D Nelson
- Animal Molecular and Cellular Biology Program, University of Florida, Gainesville 32611; Department of Animal Sciences, University of Florida, Gainesville 32611.
| |
Collapse
|
44
|
Expression of phosphate and calcium transporters and their regulators in parotid glands of mice. Pflugers Arch 2023; 475:203-216. [PMID: 36274099 PMCID: PMC9849193 DOI: 10.1007/s00424-022-02764-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 02/01/2023]
Abstract
The concentration of inorganic phosphate (Pi) in plasma is under hormonal control, with deviations from normal values promptly corrected to avoid hyper- or hypophosphatemia. Major regulators include parathyroid hormone (PTH), fibroblast growth factor 23 (FGF-23), and active vitamin D3 (calcitriol). This control is achieved by mechanisms largely dependent on regulating intestinal absorption and renal excretion, whose combined actions stabilise plasma Pi levels at around 1-2 mM. Instead, Pi concentrations up to 13 and 40 mM have been measured in saliva from humans and ruminants, respectively, suggesting that salivary glands have the capacity to concentrate Pi. Here we analysed the transcriptome of parotid glands, ileum, and kidneys of mice, to investigate their potential differences regarding the expression of genes responsible for epithelial transport of Pi as well as their known regulators. Given that Pi and Ca2+ homeostasis are tightly connected, the expression of genes involved in Ca2+ homeostasis was also included. In addition, we studied the effect of vitamin D3 treatment on the expression of Pi and Ca2+ regulating genes in the three major salivary glands. We found that parotid glands are equipped preferentially with Slc20 rather than with Slc34 Na+/Pi cotransporters, are suited to transport Ca2+ through the transcellular and paracellular route and are potential targets for PTH and vitamin D3 regulation.
Collapse
|
45
|
Walker V, Vuister GW. Biochemistry and pathophysiology of the Transient Potential Receptor Vanilloid 6 (TRPV6) calcium channel. Adv Clin Chem 2023; 113:43-100. [PMID: 36858649 DOI: 10.1016/bs.acc.2022.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
TRPV6 is a Transient Receptor Potential Vanilloid (TRPV) cation channel with high selectivity for Ca2+ ions. First identified in 1999 in a search for the gene which mediates intestinal Ca2+ absorption, its far more extensive repertoire as a guardian of intracellular Ca2+ has since become apparent. Studies on TRPV6-deficient mice demonstrated additional important roles in placental Ca2+ transport, fetal bone development and male fertility. The first reports of inherited deficiency in newborn babies appeared in 2018, revealing its physiological importance in humans. There is currently strong evidence that TRPV6 also contributes to the pathogenesis of some common cancers. The recently reported association of TRPV6 deficiency with non-alcoholic chronic pancreatitis suggests a role in normal pancreatic function. Over time and with greater awareness of TRPV6, other disease-associations are likely to emerge. Powerful analytical tools have provided invaluable insights into the structure and operation of TRPV6. Its roles in Ca2+ signaling and carcinogenesis, and the use of channel inhibitors in cancer treatment are being intensively investigated. This review first briefly describes the biochemistry and physiology of the channel, and analytical methods used to investigate these. The focus subsequently shifts to the clinical disorders associated with abnormal expression and the underlying pathophysiology. The aims of this review are to increase awareness of this channel, and to draw together findings from a wide range of sources which may help to formulate new ideas for further studies.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton, United Kingdom.
| | - Geerten W Vuister
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
46
|
Alexander RT, Dimke H. Molecular mechanisms underlying paracellular calcium and magnesium reabsorption in the proximal tubule and thick ascending limb. Ann N Y Acad Sci 2022; 1518:69-83. [PMID: 36200584 DOI: 10.1111/nyas.14909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Calcium and magnesium are the most abundant divalent cations in the body. The plasma level is controlled by coordinated interaction between intestinal absorption, reabsorption in the kidney, and, for calcium at least, bone storage and exchange. The kidney adjusts urinary excretion of these ions in response to alterations in their systemic concentration. Free ionized and anion-complexed calcium and magnesium are filtered at the glomerulus. The majority (i.e., >85%) of filtered divalent cations are reabsorbed via paracellular pathways from the proximal tubule and thick ascending limb (TAL) of the loop of Henle. Interestingly, the largest fraction of filtered calcium is reabsorbed from the proximal tubule (65%), while the largest fraction of filtered magnesium is reclaimed from the TAL (60%). The paracellular pathways mediating these fluxes are composed of tight junctional pores formed by claudins. In the proximal tubule, claudin-2 and claudin-12 confer calcium permeability, while the exact identity of the magnesium pore remains to be determined. Claudin-16 and claudin-19 contribute to the calcium and magnesium permeable pathway in the TAL. In this review, we discuss the data supporting these conclusions and speculate as to why there is greater fractional calcium reabsorption from the proximal tubule and greater fractional magnesium reabsorption from the TAL.
Collapse
Affiliation(s)
- R Todd Alexander
- Departments of Physiology & Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Women's and Children's Health Institute, Edmonton, Alberta, Canada
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Demark.,Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
47
|
Kumar S, S. Moodithaya S, K. A, Kumar Chatterjee P. Micronutrients- The crucial dietary elements in Covid-19 pandemic: A review. Biomedicine (Taipei) 2022. [DOI: 10.51248/.v42i5.1967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The mutation of the SARS-CoV-2 virus, which cause person-to-person transmission, is the pivotal reason for the pandemic outbreak in the year 2020. Infection symptoms include fever, dry cough, lethargy, severe pneumonia, respiratory distress syndrome, and death. COVID-19 induces a systemic inflammatory reaction that impairs the immune system, commonly known as cytokine release syndrome. Pro-inflammatory cytokines and chemokines are abundant in COVID-19 sufferers' bodies. COVID-19 has a disproportionate impact on the elderly, both directly and through several comorbidities associated with age. Nutrition is without hesitation, a crucial factor in maintaining good health. Some nutrients are essential for the immune system's health and function, exhibiting synergistic actions in critical immune response steps. Vitamin D, C, and Zinc stand out among these nutrients because they have immunomodulatory properties and help to maintain physical tissue barriers. Considering the viability of the virus, nutrients that boost the immunity henceforth the severity of viral infections declines with improved prognosis become important. As a result, the purpose of this review is to provide a complete outline of vitamins D, C, and zinc's involvement during the immune response towards infection, and to enlighten their commensal action of maintaining physical barriers including integument and mucous membrane. Appropriate vitamin D, C, and zinc consumption may represent a feasible pharmacological intervention during the COVID-19 pandemic due to the high surge in population interaction and the commencement of inflammation.
Collapse
|
48
|
Minisola S, Arnold A, Belaya Z, Brandi ML, Clarke BL, Hannan FM, Hofbauer LC, Insogna KL, Lacroix A, Liberman U, Palermo A, Pepe J, Rizzoli R, Wermers R, Thakker RV. Epidemiology, Pathophysiology, and Genetics of Primary Hyperparathyroidism. J Bone Miner Res 2022; 37:2315-2329. [PMID: 36245271 PMCID: PMC10092691 DOI: 10.1002/jbmr.4665] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 11/11/2022]
Abstract
In this narrative review, we present data gathered over four decades (1980-2020) on the epidemiology, pathophysiology and genetics of primary hyperparathyroidism (PHPT). PHPT is typically a disease of postmenopausal women, but its prevalence and incidence vary globally and depend on a number of factors, the most important being the availability to measure serum calcium and parathyroid hormone levels for screening. In the Western world, the change in presentation to asymptomatic PHPT is likely to occur, over time also, in Eastern regions. The selection of the population to be screened will, of course, affect the epidemiological data (ie, general practice as opposed to tertiary center). Parathyroid hormone has a pivotal role in regulating calcium homeostasis; small changes in extracellular Ca++ concentrations are detected by parathyroid cells, which express calcium-sensing receptors (CaSRs). Clonally dysregulated overgrowth of one or more parathyroid glands together with reduced expression of CaSRs is the most important pathophysiologic basis of PHPT. The spectrum of skeletal disease reflects different degrees of dysregulated bone remodeling. Intestinal calcium hyperabsorption together with increased bone resorption lead to increased filtered load of calcium that, in addition to other metabolic factors, predispose to the appearance of calcium-containing kidney stones. A genetic basis of PHPT can be identified in about 10% of all cases. These may occur as a part of multiple endocrine neoplasia syndromes (MEN1-MEN4), or the hyperparathyroidism jaw-tumor syndrome, or it may be caused by nonsyndromic isolated endocrinopathy, such as familial isolated PHPT and neonatal severe hyperparathyroidism. DNA testing may have value in: confirming the clinical diagnosis in a proband; eg, by distinguishing PHPT from familial hypocalciuric hypercalcemia (FHH). Mutation-specific carrier testing can be performed on a proband's relatives and identify where the proband is a mutation carrier, ruling out phenocopies that may confound the diagnosis; and potentially prevention via prenatal/preimplantation diagnosis. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Salvatore Minisola
- Department of Clinical, Internal, Anaesthesiologic and Cardiovascular Sciences, 'Sapienza', Rome University, Rome, Italy
| | - Andrew Arnold
- Center for Molecular Oncology and Division of Endocrinology & Metabolism, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Zhanna Belaya
- Department of Neuroendocrinology and Bone Disease, The National Medical Research Centre for Endocrinology, Moscow, Russia
| | - Maria Luisa Brandi
- F.I.R.M.O. Italian Foundation for the Research on Bone Diseases, Florence, Italy
| | - Bart L Clarke
- Mayo Clinic Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - Fadil M Hannan
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Oxford, UK.,Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Lorenz C Hofbauer
- Division of Endocrinology, Diabetes, and Bone Diseases & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Karl L Insogna
- Yale Bone Center Yale School of Medicine, Yale University, New Haven, CT, USA
| | - André Lacroix
- Division of Endocrinology, Department of Medicine and Research Center, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Canada
| | - Uri Liberman
- Department of Physiology and Pharmacology, Tel Aviv University School of Medicine, Tel Aviv, Israel
| | - Andrea Palermo
- Unit of Metabolic Bone and Thyroid Disorders, Fondazione Policlinico Universitario Campus Bio-Medico and Unit of Endocrinology and Diabetes, Campus Bio-Medico University, Rome, Italy
| | - Jessica Pepe
- Department of Clinical, Internal, Anaesthesiologic and Cardiovascular Sciences, 'Sapienza', Rome University, Rome, Italy
| | - René Rizzoli
- Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Robert Wermers
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition and Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Oxford, UK.,Oxford National Institute for Health Research (NIHR) Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
49
|
Chen X, An Z, Wei L, Zhang J, Li J, Wang Z, Gao C, Wei D. Vitamin D 3 Metabolic Enzymes in Plateau Zokor ( Myospalax baileyi) and Plateau Pika ( Ochotona curzoniae): Expression and Response to Hypoxia. Animals (Basel) 2022; 12:ani12182371. [PMID: 36139230 PMCID: PMC9495108 DOI: 10.3390/ani12182371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Vitamin D3 (D3) is produced endogenously from 7-dehydrocholesterol by irradiation and is an important secosteroid for the absorption of calcium and phosphate. Lithocholic acid (LCA) increases intestinal paracellular calcium absorption in a vitamin D receptor-dependent manner in vitamin D-deficient rats. The plateau zokor (Myospalax baileyi), a strictly subterranean species, and plateau pika are endemic to the Qinghai-Tibet Plateau. To verify whether the zokors were deficient in D3 and reveal the effects of hypoxia on D3 metabolism in the zokors and pikas, we measured the levels of 25(OH)D3, calcium, and LCA, and quantified the expression levels of D3 metabolism-related genes. The results showed an undetectable serum level of 25(OH)D3 and a significantly higher concentration of LCA in the serum of plateau zokor, but its calcium concentration was within the normal range compared with that of plateau pika and Sprague-Dawley rats. With increasing altitude, the serum 25(OH)D3 levels in plateau pika decreased significantly, and the mRNA and protein levels of CYP2R1 (in the liver) and CYP27B1 (in the kidney) in plateau pika decreased significantly. Our results indicate that plateau zokors were deficient in D3 and abundant in LCA, which might be a substitution of D3 in the zokor. Furthermore, hypoxia suppresses the metabolism of D3 by down-regulating the expression of CYP2R1 and CYP27B1 in plateau pika.
Collapse
Affiliation(s)
- Xiaoqi Chen
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Zhifang An
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Linna Wei
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Jiayu Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Jimei Li
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Zhijie Wang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Conghui Gao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Dengbang Wei
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Correspondence: ; Tel.: +86-971-531-0695
| |
Collapse
|
50
|
An J, Zhang Y, Ying Z, Li H, Liu W, Wang J, Liu X. The Formation, Structural Characteristics, Absorption Pathways and Bioavailability of Calcium–Peptide Chelates. Foods 2022; 11:foods11182762. [PMID: 36140890 PMCID: PMC9497609 DOI: 10.3390/foods11182762] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 12/04/2022] Open
Abstract
Calcium is one of the most important mineral elements in the human body and is closely related to the maintenance of human health. To prevent calcium deficiency, various calcium supplements have been developed, but their application tends to be limited by low calcium content and highly irritating effects on the stomach, among other side effects. Recently, calcium–peptide chelates, which have excellent stability and are easily absorbed, have received attention as an alternative emerging calcium supplement. Calcium-binding peptides (CaBP) are usually obtained via the hydrolysis of animal or plant proteins, and calcium-binding capacity (CaBC) can be further improved through chromatographic purification techniques. In calcium ions, the phosphate group, carboxylic group and nitrogen atom in the peptide are the main binding sites, and the four modes of combination are the unidentate mode, bidentate mode, bridging mode and α mode. The stability and safety of calcium–peptide chelates are discussed in this paper, the intestinal absorption pathways of calcium elements and peptides are described, and the bioavailability of calcium–peptide chelates, both in vitro and in vivo, is also introduced. This review of the research status of calcium–peptide chelates aims to provide a reasonable theoretical basis for their application as calcium supplementation products.
Collapse
Affiliation(s)
- Jiulong An
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yinxiao Zhang
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Zhiwei Ying
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - He Li
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Correspondence: (H.L.); (X.L.); Tel.: +86-10-68984481 (H.L.)
| | - Wanlu Liu
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Junru Wang
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Correspondence: (H.L.); (X.L.); Tel.: +86-10-68984481 (H.L.)
| |
Collapse
|