1
|
Rajeev R, Singh P, Asmita A, Anand U, Manna TK. Aurora A site specific TACC3 phosphorylation regulates astral microtubule assembly by stabilizing γ-tubulin ring complex. BMC Mol Cell Biol 2019; 20:58. [PMID: 31823729 PMCID: PMC6902513 DOI: 10.1186/s12860-019-0242-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/25/2019] [Indexed: 11/15/2022] Open
Abstract
Background Astral microtubules emanating from the mitotic centrosomes play pivotal roles in defining cell division axis and tissue morphogenesis. Previous studies have demonstrated that human transforming acidic coiled-coil 3 (TACC3), the most conserved TACC family protein, regulates formation of astral microtubules at centrosomes in vertebrate cells by affecting γ-tubulin ring complex (γ-TuRC) assembly. However, the molecular mechanisms underlying such function were not completely understood. Results Here, we show that Aurora A site-specific phosphorylation in TACC3 regulates formation of astral microtubules by stabilizing γ-TuRC assembly in human cells. Mutation of the most conserved Aurora A targeting site, Ser 558 to alanine (S558A) in TACC3 results in robust loss of astral microtubules and disrupts localization of the γ-tubulin ring complex (γ-TuRC) proteins at the spindle poles. Under similar condition, phospho-mimicking S558D mutation retains astral microtubules and the γ-TuRC proteins in a manner similar to control cells expressed with wild type TACC3. Time-lapse imaging reveals that S558A mutation leads to defects in positioning of the spindle-poles and thereby causes delay in metaphase to anaphase transition. Biochemical results determine that the Ser 558- phosphorylated TACC3 interacts with the γ-TuRC proteins and further, S558A mutation impairs the interaction. We further reveal that the mutation affects the assembly of γ-TuRC from the small complex components. Conclusions The results demonstrate that TACC3 phosphorylation stabilizes γ- tubulin ring complex assembly and thereby regulates formation of centrosomal asters. They also implicate a potential role of TACC3 phosphorylation in the functional integrity of centrosomes/spindle poles.
Collapse
Affiliation(s)
- Resmi Rajeev
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India
| | - Puja Singh
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India.,Present Address: Centre for Cellular and Molecular Biology, Uppal Rd, Hyderabad, 500007, India
| | - Ananya Asmita
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India
| | - Ushma Anand
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India
| | - Tapas K Manna
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India.
| |
Collapse
|
2
|
Mills A, Bearce E, Cella R, Kim SW, Selig M, Lee S, Lowery LA. Wolf-Hirschhorn Syndrome-Associated Genes Are Enriched in Motile Neural Crest Cells and Affect Craniofacial Development in Xenopus laevis. Front Physiol 2019; 10:431. [PMID: 31031646 PMCID: PMC6474402 DOI: 10.3389/fphys.2019.00431] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/28/2019] [Indexed: 01/08/2023] Open
Abstract
Wolf-Hirschhorn Syndrome (WHS) is a human developmental disorder arising from a hemizygous perturbation, typically a microdeletion, on the short arm of chromosome four. In addition to pronounced intellectual disability, seizures, and delayed growth, WHS presents with a characteristic facial dysmorphism and varying prevalence of microcephaly, micrognathia, cartilage malformation in the ear and nose, and facial asymmetries. These affected craniofacial tissues all derive from a shared embryonic precursor, the cranial neural crest (CNC), inviting the hypothesis that one or more WHS-affected genes may be critical regulators of neural crest development or migration. To explore this, we characterized expression of multiple genes within or immediately proximal to defined WHS critical regions, across the span of craniofacial development in the vertebrate model system Xenopus laevis. This subset of genes, whsc1, whsc2, letm1, and tacc3, are diverse in their currently-elucidated cellular functions; yet we find that their expression demonstrates shared tissue-specific enrichment within the anterior neural tube, migratory neural crest, and later craniofacial structures. We examine the ramifications of this by characterizing craniofacial development and neural crest migration following individual gene depletion. We observe that several WHS-associated genes significantly impact facial patterning, cartilage formation, neural crest motility in vivo and in vitro, and can separately contribute to forebrain scaling. Thus, we have determined that numerous genes within and surrounding the defined WHS critical regions potently impact craniofacial patterning, suggesting their role in WHS presentation may stem from essential functions during neural crest-derived tissue formation.
Collapse
Affiliation(s)
- Alexandra Mills
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Elizabeth Bearce
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Rachael Cella
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Seung Woo Kim
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Megan Selig
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Sangmook Lee
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Laura Anne Lowery
- Biology Department, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
3
|
Vemu A, Szczesna E, Zehr EA, Spector JO, Grigorieff N, Deaconescu AM, Roll-Mecak A. Severing enzymes amplify microtubule arrays through lattice GTP-tubulin incorporation. Science 2018; 361:eaau1504. [PMID: 30139843 PMCID: PMC6510489 DOI: 10.1126/science.aau1504] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/18/2018] [Indexed: 12/16/2022]
Abstract
Spastin and katanin sever and destabilize microtubules. Paradoxically, despite their destructive activity they increase microtubule mass in vivo. We combined single-molecule total internal reflection fluorescence microscopy and electron microscopy to show that the elemental step in microtubule severing is the generation of nanoscale damage throughout the microtubule by active extraction of tubulin heterodimers. These damage sites are repaired spontaneously by guanosine triphosphate (GTP)-tubulin incorporation, which rejuvenates and stabilizes the microtubule shaft. Consequently, spastin and katanin increase microtubule rescue rates. Furthermore, newly severed ends emerge with a high density of GTP-tubulin that protects them against depolymerization. The stabilization of the newly severed plus ends and the higher rescue frequency synergize to amplify microtubule number and mass. Thus, severing enzymes regulate microtubule architecture and dynamics by promoting GTP-tubulin incorporation within the microtubule shaft.
Collapse
Affiliation(s)
- Annapurna Vemu
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Ewa Szczesna
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Elena A Zehr
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Jeffrey O Spector
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Nikolaus Grigorieff
- Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454, USA
| | - Alexandra M Deaconescu
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02903, USA
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA.
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Ding ZM, Huang CJ, Jiao XF, Wu D, Huo LJ. The role of TACC3 in mitotic spindle organization. Cytoskeleton (Hoboken) 2017; 74:369-378. [PMID: 28745816 DOI: 10.1002/cm.21388] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 07/04/2017] [Accepted: 07/21/2017] [Indexed: 12/31/2022]
Abstract
TACC3 regulates spindle organization during mitosis and also regulates centrosome-mediated microtubule nucleation by affecting γ-Tubulin ring complexes. In addition, it interacts with different proteins (such as ch-TOG, clathrin and Aurora-A) to function in mitotic spindle assembly and stability. By forming the TACC3/ch-TOG complex, TACC3 acts as a plus end-tracking protein to promote microtubule elongation. The TACC3/ch-TOG/clathrin complex is formed to stabilize kinetochore fibers by crosslinking adjacent microtubules. Furthermore, the phosphorylation of TACC3 by Aurora-A is important for the formation of TACC3/ch-TOG/clathrin and its recruitment to kinetochore fibers. Recently, the aberrant expression of TACC3 in a variety of human cancers has been linked with mitotic defects. Thus, in this review, we will discuss our current understanding of the biological roles of TACC3 in mitotic spindle organization.
Collapse
Affiliation(s)
- Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| | - Chun-Jie Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| | - Xiao-Fei Jiao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| | - Di Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| |
Collapse
|
5
|
Alfaro-Aco R, Thawani A, Petry S. Structural analysis of the role of TPX2 in branching microtubule nucleation. J Cell Biol 2017; 216:983-997. [PMID: 28264915 PMCID: PMC5379942 DOI: 10.1083/jcb.201607060] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 11/03/2016] [Accepted: 01/09/2017] [Indexed: 12/14/2022] Open
Abstract
TPX2 is required for microtubule nucleation in mitosis, but the mechanism underlying its function is unclear. Alfaro-Aco et al. analyze the domains of TPX2 necessary for its activity and identify the minimal region required for branching microtubule nucleation. The mitotic spindle consists of microtubules (MTs), which are nucleated by the γ-tubulin ring complex (γ-TuRC). How the γ-TuRC gets activated at the right time and location remains elusive. Recently, it was uncovered that MTs nucleate from preexisting MTs within the mitotic spindle, which requires the protein TPX2, but the mechanism basis for TPX2 action is unknown. Here, we investigate the role of TPX2 in branching MT nucleation. We establish the domain organization of Xenopus laevis TPX2 and define the minimal TPX2 version that stimulates branching MT nucleation, which we find is unrelated to TPX2’s ability to nucleate MTs in vitro. Several domains of TPX2 contribute to its MT-binding and bundling activities. However, the property necessary for TPX2 to induce branching MT nucleation is contained within newly identified γ-TuRC nucleation activator motifs. Separation-of-function mutations leave the binding of TPX2 to γ-TuRC intact, whereas branching MT nucleation is abolished, suggesting that TPX2 may activate γ-TuRC to promote branching MT nucleation.
Collapse
Affiliation(s)
| | - Akanksha Thawani
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
6
|
Cavazza T, Peset I, Vernos I. From meiosis to mitosis - the sperm centrosome defines the kinetics of spindle assembly after fertilization in Xenopus. J Cell Sci 2016; 129:2538-47. [PMID: 27179073 DOI: 10.1242/jcs.183624] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 05/06/2016] [Indexed: 11/20/2022] Open
Abstract
Bipolar spindle assembly in the vertebrate oocyte relies on a self-organization chromosome-dependent pathway. Upon fertilization, the male gamete provides a centrosome, and the first and subsequent embryonic divisions occur in the presence of duplicated centrosomes that act as dominant microtubule organizing centres (MTOCs). The transition from meiosis to embryonic mitosis involves a necessary adaptation to integrate the dominant chromosome-dependent pathway with the centrosomes to form the bipolar spindle. Here, we took advantage of the Xenopus laevis egg extract system to mimic in vitro the assembly of the first embryonic spindle and investigate the respective contributions of the centrosome and the chromosome-dependent pathway to the kinetics of the spindle bipolarization. We found that centrosomes control the transition from the meiotic to the mitotic spindle assembly mechanism. By defining the kinetics of spindle bipolarization, the centrosomes ensure their own positioning to each spindle pole and thereby their essential correct inheritance to the two first daughter cells of the embryo for the development of a healthy organism.
Collapse
Affiliation(s)
- Tommaso Cavazza
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Doctor Aiguader, 88 Barcelona 08003, Spain Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, Barcelona 08003, Spain
| | - Isabel Peset
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Doctor Aiguader, 88 Barcelona 08003, Spain Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, Barcelona 08003, Spain
| | - Isabelle Vernos
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Doctor Aiguader, 88 Barcelona 08003, Spain Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, Barcelona 08003, Spain Institució Catalana de Recerca I Estudis Avançats (ICREA), Passeig de Lluis Companys 23, Barcelona 08010, Spain
| |
Collapse
|
7
|
King M, Petry S. Visualizing and Analyzing Branching Microtubule Nucleation Using Meiotic Xenopus Egg Extracts and TIRF Microscopy. Methods Mol Biol 2016; 1413:77-85. [PMID: 27193844 DOI: 10.1007/978-1-4939-3542-0_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitotic and meiotic spindles consist primarily of microtubules, which originate from centrosomes and within the vicinity of chromatin. Indirect evidence suggested that microtubules also originate throughout the spindle, but the high microtubule density within the spindle precludes the direct observation of this phenomenon. By using meiotic Xenopus laevis egg extract and employing total internal reflection (TIRF) microscopy, microtubule nucleation from preexisting microtubules could be demonstrated and analyzed. Branching microtubule nucleation is an ideal mechanism to assemble and maintain a mitotic spindle, because microtubule numbers are amplified while preserving their polarity. Here, we describe the assays that made these findings possible and the experiments that helped identify the key molecular players involved.
Collapse
Affiliation(s)
- Matthew King
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ, 08544, USA.
| |
Collapse
|
8
|
Jiang F, Kuang B, Que Y, Lin Z, Yuan L, Xiao W, Peng R, Zhang X, Zhang X. The clinical significance of transforming acidic coiled-coil protein 3 expression in non-small cell lung cancer. Oncol Rep 2015; 35:436-46. [PMID: 26531241 DOI: 10.3892/or.2015.4373] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/23/2015] [Indexed: 11/06/2022] Open
Abstract
The relationship between TACC3, a member of the transforming acidic coiled-coil proteins (TACCs) family, and lung carcinoma remains unclear. The present study was designed to explore the prognostic and clinical significance of TACC3 in non-small cell lung cancer (NSCLC). An immunohistochemistry (IHC) assay was performed to analyze the expression of TACC3 in 195 lung cancer cases. The mRNA and protein levels of TACC3 were examined by quantitative reverse transcription-PCR or western blotting. The correlation between TACC3 expression and clinicopathological factors was analyzed by χ2 analysis and Fisher's exact test. Kaplan-Meier analysis and the Cox proportional hazards model were used to examine the correlation of prognostic outcomes with TACC3. The results showed that the levels of TACC3 mRNA and total protein were higher in lung cancer lesions than paired non-cancerous tissues. IHC analysis revealed that TACC3 was highly expressed in 94 (48.2%) cases. The expression of TACC3 was strongly correlated with smoking status, histological classification, differentiation, cytokeratin 19 fragment levels, T stage and the clinical stage of NSCLC patients. Univariate and multivariate analyses demonstrated that TACC3 is a useful biomarker for NSCLC prognosis. The low TACC3 expression group exhibited better progression-free survival (PFS) among patients who received anti-microtubule chemotherapy. In conclusion, the results showed that a high level of TACC3 expression was correlated with advanced clinicopathological classifications, poor overall survival (OS) and poor recurrence-free survival (RFS) in NSCLC patients. Our findings indicate that TACC3 is a potential prognostic marker and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Feng Jiang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Bohua Kuang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Yi Que
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Zhirui Lin
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Li Yuan
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Wei Xiao
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Ruiqing Peng
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Xiaoshi Zhang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Xing Zhang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| |
Collapse
|
9
|
Yun M, Rong J, Lin ZR, He YL, Zhang JX, Peng ZW, Tang LQ, Zeng MS, Zhong Q, Ye S. High expression of transforming acidic coiled coil-containing protein 3 strongly correlates with aggressive characteristics and poor prognosis of gastric cancer. Oncol Rep 2015; 34:1397-405. [PMID: 26133271 DOI: 10.3892/or.2015.4093] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 05/05/2015] [Indexed: 11/06/2022] Open
Abstract
Transforming acidic coiled coil-containing protein 3 (TACC3) is well understood to regulate mitotic spindle dynamics and centrosome integrity during mitosis. TACC3 has been suggested to be deregulated in a variety of human malignancies and may be involved in the process of cancer progression. The aim of the present study was to determine the status of TACC3 expression in gastric cancer (GC) and to clarify its clinical/prognostic significance. In the present study, we applied quantitative PCR (qPCR) and western blotting to examine TACC3 mRNA/protein expression in paired GC tissues and matched adjacent non-malignant tissues. Immunohistochemistry (IHC) was performed on a large cohort of 186 postoperative GC samples. Chi-square test, Kaplan-Meier analysis and Cox regression modelling were used to analyse the data. Upregulated mRNA and protein expression levels of TACC3 were observed in the majority of the GC tissues based on qPCR and western blotting compared to the adjacent non-cancerous gastric tissues. Specific IHC staining for TACC3 was predominantly identified in the cytoplasm of the cancer cells. A high expression of TACC3 was detected in 102 of the 186 (54.8%) tissue samples and was significantly associated with the extracapsular extension of the tumour (P<0.001), tumour relapse (P<0.001) and shortened overall survival in GC (P<0.001). Further analysis demonstrated that the TACC3 expression level stratified the patient outcome in stage II (P=0.040), stage III (P<0.001), T3/4 (P<0.001), N positive (P<0.001) and poorly differentiated/undifferentiated tumour subgroups (P<0.001). The Cox regression analysis suggested that a high expression of TACC3 was an independent prognostic factor for GC patients. The measurement of TACC3 protein expression may be beneficial for predicting clinical outcomes for GC patients.
Collapse
Affiliation(s)
- Miao Yun
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Jian Rong
- Department of Extracorporeal Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Zhi-Rui Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‑sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Yu-Long He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Jia-Xing Zhang
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Zhen-Wei Peng
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Lin-Quan Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‑sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‑sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‑sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Sheng Ye
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
10
|
Benkhalifa M, Madkour A, Louanjli N, Bouamoud N, Saadani B, Kaarouch I, Chahine H, Sefrioui O, Merviel P, Copin H. From global proteome profiling to single targeted molecules of follicular fluid and oocyte: contribution to embryo development and IVF outcome. Expert Rev Proteomics 2015; 12:407-23. [DOI: 10.1586/14789450.2015.1056782] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Hood FE, Royle SJ. Pulling it together: The mitotic function of TACC3. BIOARCHITECTURE 2014; 1:105-109. [PMID: 21922039 DOI: 10.4161/bioa.1.3.16518] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 05/13/2011] [Indexed: 12/29/2022]
Abstract
Transforming acidic coiled coil 3 (TACC3) is a non-motor microtubule-associated protein (MAP) that is important for mitotic spindle stability and organization. The exact mechanism by which TACC3 acts at microtubules to stabilize the spindle has been unclear. However, several recent studies identified that the TACC3 complex at microtubules contains clathrin in addition to its previously identified binding partner, colonic and hepatic tumor overexpressed gene (ch-TOG). In this complex, phosphorylated TACC3 interacts directly with both ch-TOG and clathrin heavy chain, promoting accumulation of all complex members at the mitotic spindle. This complex stabilizes kinetochore fibers within the spindle by forming cross-bridges that link adjacent microtubules in these bundles. So, TACC3 is an adaptor that recruits ch-TOG and clathrin to mitotic microtubules, in an Aurora A kinase-regulated manner. In this mini-review we will describe the recent advances in the understanding of TACC 3 function and present a model that pulls together these new data with previous observations.
Collapse
Affiliation(s)
- Fiona E Hood
- The Physiological Laboratory; University of Liverpool; Liverpool, UK
| | | |
Collapse
|
12
|
TACC3 deregulates the DNA damage response and confers sensitivity to radiation and PARP inhibition. Oncogene 2014; 34:1667-78. [PMID: 24769898 DOI: 10.1038/onc.2014.105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 02/28/2014] [Accepted: 03/12/2014] [Indexed: 12/21/2022]
Abstract
Deregulation of the transforming acidic coiled-coil protein 3 (TACC3), an important factor in the centrosome-microtubule system, has been linked to a variety of human cancer types. We have recently reported on the oncogenic potential of TACC3; however, the molecular mechanisms by which TACC3 mediates oncogenic function remain to be elucidated. In this study, we show that high levels of TACC3 lead to the accumulation of DNA double-strand breaks (DSBs) and disrupt the normal cellular response to DNA damage, at least in part, by negatively regulating the expression of ataxia telangiectasia mutated (ATM) and the subsequent DNA damage response (DDR) signaling cascade. Cells expressing high levels of TACC3 display defective checkpoints and DSB-mediated homologous recombination (HR) and non-homologous end joining (NHEJ) repair systems, leading to genomic instability. Importantly, high levels of TACC3 confer cellular sensitization to radiation and poly(ADP-ribose) polymerase (PARP) inhibition. Overall, our findings provide critical information regarding the mechanisms by which TACC3 contributes to genomic instability, potentially leading to cancer development, and suggest a novel prognostic, diagnostic and therapeutic strategy for the treatment of cancer types expressing high levels of TACC3.
Collapse
|
13
|
Thakur HC, Singh M, Nagel-Steger L, Kremer J, Prumbaum D, Fansa EK, Ezzahoini H, Nouri K, Gremer L, Abts A, Schmitt L, Raunser S, Ahmadian MR, Piekorz RP. The centrosomal adaptor TACC3 and the microtubule polymerase chTOG interact via defined C-terminal subdomains in an Aurora-A kinase-independent manner. J Biol Chem 2013; 289:74-88. [PMID: 24273164 DOI: 10.1074/jbc.m113.532333] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cancer-associated, centrosomal adaptor protein TACC3 (transforming acidic coiled-coil 3) and its direct effector, the microtubule polymerase chTOG (colonic and hepatic tumor overexpressed gene), play a crucial function in centrosome-driven mitotic spindle assembly. It is unclear how TACC3 interacts with chTOG. Here, we show that the C-terminal TACC domain of TACC3 and a C-terminal fragment adjacent to the TOG domains of chTOG mediate the interaction between these two proteins. Interestingly, the TACC domain consists of two functionally distinct subdomains, CC1 (amino acids (aa) 414-530) and CC2 (aa 530-630). Whereas CC1 is responsible for the interaction with chTOG, CC2 performs an intradomain interaction with the central repeat region of TACC3, thereby masking the TACC domain before effector binding. Contrary to previous findings, our data clearly demonstrate that Aurora-A kinase does not regulate TACC3-chTOG complex formation, indicating that Aurora-A solely functions as a recruitment factor for the TACC3-chTOG complex to centrosomes and proximal mitotic spindles. We identified with CC1 and CC2, two functionally diverse modules within the TACC domain of TACC3 that modulate and mediate, respectively, TACC3 interaction with chTOG required for spindle assembly and microtubule dynamics during mitotic cell division.
Collapse
Affiliation(s)
- Harish C Thakur
- From the Institut für Biochemie und Molekularbiologie II, Medizinische Fakultät der Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhapparova ON, Fokin AI, Vorobyeva NE, Bryantseva SA, Nadezhdina ES. Ste20-like protein kinase SLK (LOSK) regulates microtubule organization by targeting dynactin to the centrosome. Mol Biol Cell 2013; 24:3205-14. [PMID: 23985322 PMCID: PMC3806656 DOI: 10.1091/mbc.e13-03-0137] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The protein kinase SLK (LOSK) phosphorylates the 1A isoform of the p150Glued subunit of dynactin and targets it to the centrosome, where it maintains microtubule radial organization. In addition, dynactin phosphorylation is involved in Golgi reorientation in polarized cells. The microtubule- and centrosome-associated Ste20-like kinase (SLK; long Ste20-like kinase [LOSK]) regulates cytoskeleton organization and cell polarization and spreading. Its inhibition causes microtubule disorganization and release of centrosomal dynactin. The major function of dynactin is minus end–directed transport along microtubules in a complex with dynein motor. In addition, dynactin is required for maintenance of the microtubule radial array in interphase cells, and depletion of its centrosomal pool entails microtubule disorganization. Here we demonstrate that SLK (LOSK) phosphorylates the p150Glued subunit of dynactin and thus targets it to the centrosome, where it maintains microtubule radial organization. We show that phosphorylation is required only for centrosomal localization of p150Glued and does not affect its microtubule-organizing properties: artificial targeting of nonphosphorylatable p150Glued to the centrosome restores microtubule radial array in cells with inhibited SLK (LOSK). The phosphorylation site is located in a microtubule-binding region that is variable for two isoforms (1A and 1B) of p150Glued expressed in cultured fibroblast-like cells (isoform 1B lacks 20 amino acids in the basic microtubule-binding domain). The fact that SLK (LOSK) phosphorylates only a minor isoform 1A of p150Glued suggests that transport and microtubule-organizing functions of dynactin are distinctly divided between the two isoforms. We also show that dynactin phosphorylation is involved in Golgi reorientation in polarized cells.
Collapse
Affiliation(s)
- Olga N Zhapparova
- A. N. Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia Institute of Protein Research, Russian Academy of Sciences, Moscow 117334, Russia
| | | | | | | | | |
Collapse
|
15
|
Ha GH, Kim JL, Breuer EKY. TACC3 is essential for EGF-mediated EMT in cervical cancer. PLoS One 2013; 8:e70353. [PMID: 23936413 PMCID: PMC3731346 DOI: 10.1371/journal.pone.0070353] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/17/2013] [Indexed: 12/20/2022] Open
Abstract
The third member of transforming acidic coiled-coil protein (TACC) family, TACC3, has been shown to be an important player in the regulation of centrosome/microtubule dynamics during mitosis and found to be deregulated in a variety of human malignancies. Our previous studies have suggested that TACC3 may be involved in cervical cancer progression and chemoresistance, and its overexpression can induce epithelial-mesenchymal transition (EMT) by activating the phosphatidylinositol 3-kinase (PI3K)/Akt and extracellular signal-regulated protein kinases (ERKs) signal transduction pathways. However, the upstream mechanisms of TACC3-mediated EMT and its functional/clinical importance in human cervical cancer remain elusive. Epidermal growth factor (EGF) has been shown to be a potent inducer of EMT in cervical cancer and associated with tumor invasion and metastasis. In this study, we found that TACC3 is overexpressed in cervical cancer and can be induced upon EGF stimulation. The induction of TACC3 by EGF is dependent on the tyrosine kinase activity of the EGF receptor (EGFR). Intriguingly, depletion of TACC3 abolishes EGF-mediated EMT, suggesting that TACC3 is required for EGF/EGFR-driven EMT process. Moreover, Snail, a key player in EGF-mediated EMT, is found to be correlated with the expression of TACC3 in cervical cancer. Collectively, our study highlights a novel function for TACC3 in EGF-mediated EMT process and suggests that targeting of TACC3 may be an attractive strategy to treat cervical cancers driven by EGF/EGFR signaling pathways.
Collapse
Affiliation(s)
- Geun-Hyoung Ha
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Jung-Lye Kim
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Eun-Kyoung Yim Breuer
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, United States of America
- * E-mail:
| |
Collapse
|
16
|
Ha GH, Kim JL, Breuer EKY. Transforming acidic coiled-coil proteins (TACCs) in human cancer. Cancer Lett 2013; 336:24-33. [PMID: 23624299 DOI: 10.1016/j.canlet.2013.04.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/11/2013] [Accepted: 04/16/2013] [Indexed: 10/26/2022]
Abstract
Fine-tuned regulation of the centrosome/microtubule dynamics during mitosis is essential for faithful cell division. Thus, it is not surprising that deregulations in this dynamic network can contribute to genomic instability and tumorigenesis. Indeed, centrosome loss or amplification, spindle multipolarity and aneuploidy are often found in a majority of human malignancies, suggesting that defects in centrosome and associated microtubules may be directly or indirectly linked to cancer. Therefore, future research to identify and characterize genes required for the normal centrosome function and microtubule dynamics may help us gain insight into the complexity of cancer, and further provide new avenues for prognostic, diagnostics and therapeutic interventions. Members of the transforming acidic coiled-coil proteins (TACCs) family are emerging as important players of centrosome and microtubule-associated functions. Growing evidence indicates that TACCs are involved in the progression of certain solid tumors. Here, we will discuss our current understanding of the biological function of TACCs, their relevance to human cancer and possible implications for cancer management.
Collapse
Affiliation(s)
- Geun-Hyoung Ha
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | |
Collapse
|
17
|
Repeats in Transforming Acidic Coiled-Coil (TACC) Genes. Biochem Genet 2013; 51:458-73. [DOI: 10.1007/s10528-013-9577-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 12/30/2012] [Indexed: 02/04/2023]
|
18
|
Ha GH, Park JS, Breuer EKY. TACC3 promotes epithelial-mesenchymal transition (EMT) through the activation of PI3K/Akt and ERK signaling pathways. Cancer Lett 2013; 332:63-73. [PMID: 23348690 DOI: 10.1016/j.canlet.2013.01.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/04/2013] [Accepted: 01/08/2013] [Indexed: 12/16/2022]
Abstract
Transforming acidic coiled-coil protein 3 (TACC3) is a member of the TACC family, essential for mitotic spindle dynamics and centrosome integrity during mitosis. Mounting evidence suggests that deregulation of TACC3 is associated with various types of human cancer. However, the molecular mechanisms by which TACC3 contributes to the development of cancer remain largely unknown. Here, we propose a novel mechanism by which TACC3 regulates epithelial-mesenchymal transition (EMT). By modulating the expression of TACC3, we found that overexpression of TACC3 leads to changes in cell morphology, proliferation, transforming capability, migratory/invasive behavior as well as the expression of EMT-related markers. Moreover, phosphatidylinositol 3-kinase (PI3K)/Akt and extracellular signal-regulated protein kinases (ERKs) signaling pathways are critical for TACC3-mediated EMT process. Notably, depletion of TACC3 is sufficient to suppress EMT phenotype. Collectively, our findings identify TACC3 as a driver of tumorigenesis as well as an inducer of oncogenic EMT and highlight its overexpression as a potential therapeutic target for preventing EMT-associated tumor progression and invasion.
Collapse
Affiliation(s)
- Geun-Hyoung Ha
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | |
Collapse
|
19
|
Ludueña RF. A Hypothesis on the Origin and Evolution of Tubulin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:41-185. [DOI: 10.1016/b978-0-12-407699-0.00002-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Augmin promotes meiotic spindle formation and bipolarity in Xenopus egg extracts. Proc Natl Acad Sci U S A 2011; 108:14473-8. [PMID: 21844347 DOI: 10.1073/pnas.1110412108] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Female meiotic spindles in many organisms form in the absence of centrosomes, the organelle typically associated with microtubule (MT) nucleation. Previous studies have proposed that these meiotic spindles arise from RanGTP-mediated MT nucleation in the vicinity of chromatin; however, whether this process is sufficient for spindle formation is unknown. Here, we investigated whether a recently proposed spindle-based MT nucleation pathway that involves augmin, an 8-subunit protein complex, also contributes to spindle morphogenesis. We used an assay system in which hundreds of meiotic spindles can be observed forming around chromatin-coated beads after introduction of Xenopus egg extracts. Spindles forming in augmin-depleted extracts showed reduced rates of MT formation and were predominantly multipolar, revealing a function of augmin in stabilizing the bipolar shape of the acentrosomal meiotic spindle. Our studies also have uncovered an apparent augmin-independent MT nucleation process from acentrosomal poles, which becomes increasingly active over time and appears to partially rescue the spindle defects that arise from augmin depletion. Our studies reveal that spatially and temporally distinct MT generation pathways from chromatin, spindle MTs, and acentrosomal poles all contribute to robust bipolar spindle formation in meiotic extracts.
Collapse
|
21
|
Sumigray KD, Chen H, Lechler T. Lis1 is essential for cortical microtubule organization and desmosome stability in the epidermis. ACTA ACUST UNITED AC 2011; 194:631-42. [PMID: 21844209 PMCID: PMC3160577 DOI: 10.1083/jcb.201104009] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Desmoplakin recruits the centrosomal protein Lis1 to the epidermal cell cortex, where it regulates cortical microtubule organization and desmosome stability. Desmosomes are cell–cell adhesion structures that integrate cytoskeletal networks. In addition to binding intermediate filaments, the desmosomal protein desmoplakin (DP) regulates microtubule reorganization in the epidermis. In this paper, we identify a specific subset of centrosomal proteins that are recruited to the cell cortex by DP upon epidermal differentiation. These include Lis1 and Ndel1, which are centrosomal proteins that regulate microtubule organization and anchoring in other cell types. This recruitment was mediated by a region of DP specific to a single isoform, DPI. Furthermore, we demonstrate that the epidermal-specific loss of Lis1 results in dramatic defects in microtubule reorganization. Lis1 ablation also causes desmosomal defects, characterized by decreased levels of desmosomal components, decreased attachment of keratin filaments, and increased turnover of desmosomal proteins at the cell cortex. This contributes to loss of epidermal barrier activity, resulting in completely penetrant perinatal lethality. This work reveals essential desmosome-associated components that control cortical microtubule organization and unexpected roles for centrosomal proteins in epidermal function.
Collapse
Affiliation(s)
- Kaelyn D Sumigray
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
22
|
Samereier M, Baumann O, Meyer I, Gräf R. Analysis of Dictyostelium TACC reveals differential interactions with CP224 and unusual dynamics of Dictyostelium microtubules. Cell Mol Life Sci 2011; 68:275-87. [PMID: 20658257 PMCID: PMC11114971 DOI: 10.1007/s00018-010-0453-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 06/22/2010] [Accepted: 07/01/2010] [Indexed: 11/26/2022]
Abstract
We have localized TACC to the microtubule-nucleating centrosomal corona and to microtubule plus ends. Using RNAi we proved that Dictyostelium TACC promotes microtubule growth during interphase and mitosis. For the first time we show in vivo that both TACC and XMAP215 family proteins can be differentially localized to microtubule plus ends during interphase and mitosis and that TACC is mainly required for recruitment of an XMAP215-family protein to interphase microtubule plus ends but not for recruitment to centrosomes and kinetochores. Moreover, we have now a marker to study dynamics and behavior of microtubule plus ends in living Dictyostelium cells. In a combination of live cell imaging of microtubule plus ends and fluorescence recovery after photobleaching (FRAP) experiments of GFP-α-tubulin cells we show that Dictyostelium microtubules are dynamic only in the cell periphery, while they remain stable at the centrosome, which also appears to harbor a dynamic pool of tubulin dimers.
Collapse
Affiliation(s)
- Matthias Samereier
- Department of Cell Biology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Haus 26, 14476 Potsdam-Golm, Germany
| | - Otto Baumann
- Department of Animal Physiology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Haus 26, 14476 Potsdam-Golm, Germany
| | - Irene Meyer
- Department of Cell Biology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Haus 26, 14476 Potsdam-Golm, Germany
| | - Ralph Gräf
- Department of Cell Biology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Haus 26, 14476 Potsdam-Golm, Germany
| |
Collapse
|
23
|
A critical role of integrin-linked kinase, ch-TOG and TACC3 in centrosome clustering in cancer cells. Oncogene 2010; 30:521-34. [PMID: 20838383 DOI: 10.1038/onc.2010.431] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many cancer cells contain more than two centrosomes, which imposes a potential for multipolar mitoses, leading to cell death. To circumvent this, cancer cells develop mechanisms to cluster supernumerary centrosomes to form bipolar spindles, enabling successful mitosis. Disruption of centrosome clustering thus provides a selective means of killing supernumerary centrosome-harboring cancer cells. Although the mechanisms of centrosome clustering are poorly understood, recent genetic analyses have identified requirements for both actin and tubulin regulating proteins. In this study, we demonstrate that the integrin-linked kinase (ILK), a protein critically involved in actin and mitotic microtubule organization, is required for centrosome clustering. Inhibition of ILK expression or activity inhibits centrosome clustering in several breast and prostate cancer cell lines that have centrosome amplification. Furthermore, cancer cells with supernumerary centrosomes are significantly more sensitive to ILK inhibition than cells with two centrosomes, demonstrating that inhibiting ILK offers a selective means of targeting cancer cells. Live cell analysis shows ILK perturbation leads cancer cells to undergo multipolar anaphases, mitotic arrest and cell death in mitosis. We also show that ILK performs its centrosome clustering activity in a focal adhesion-independent, but centrosome-dependent, manner through the microtubule regulating proteins TACC3 and ch-TOG. In addition, we identify a specific TACC3 phosphorylation site that is required for centrosome clustering and demonstrate that ILK regulates this phosphorylation in an Aurora-A-dependent manner.
Collapse
|
24
|
Yurttas P, Morency E, Coonrod SA. Use of proteomics to identify highly abundant maternal factors that drive the egg-to-embryo transition. Reproduction 2010; 139:809-23. [DOI: 10.1530/rep-09-0538] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
As IVF becomes an increasingly popular method for human reproduction, it is more critical than ever to understand the unique molecular composition of the mammalian oocyte. DNA microarray studies have successfully provided valuable information regarding the identity and dynamics of factors at the transcriptional level. However, the oocyte transcribes and stores a large amount of material that plays no obvious role in oogenesis, but instead is required to regulate embryogenesis. Therefore, an accurate picture of the functional state of the oocyte requires both transcriptional profiling and proteomics. Here, we summarize our previous studies of the oocyte proteome, and present new panels of oocyte proteins that we recently identified in screens of metaphase II-arrested mouse oocytes. Importantly, our studies indicate that several abundant oocyte proteins are not, as one might predict, ubiquitous housekeeping proteins, but instead are unique to the oocyte. Furthermore, mouse studies indicate that a number of these factors arise from maternal effect genes (MEGs). One of the identified MEG proteins, peptidylarginine deiminase 6, localizes to and is required for the formation of a poorly characterized, highly abundant cytoplasmic structure: the oocyte cytoplasmic lattices. Additionally, a number of other MEG-derived abundant proteins identified in our proteomic screens have been found by others to localize to another unique oocyte feature: the subcortical maternal complex. Based on these observations, we put forth the hypothesis that the mammalian oocyte contains several unique storage structures, which we have named maternal effect structures, that facilitate the oocyte-to-embryo transition.
Collapse
|
25
|
Wiese C, Mayers JR, Albee AJ. Analysis of centrosome function and microtubule dynamics by time-lapse microscopy in Xenopus egg extracts. Methods Mol Biol 2009; 586:89-113. [PMID: 19768426 DOI: 10.1007/978-1-60761-376-3_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Centrosomes are essential organelles that organize the microtubule cytoskeleton during interphase and mitosis. Centrosomes are assembled from tens to hundreds of proteins, but how these proteins are organized into functional microtubule nucleating and organizing centers is not yet clear. An important step in understanding the role of individual proteins in centrosome function is to understand whether they are involved in forming, stabilizing, or anchoring microtubules. It is becoming increasingly clear that the analysis of fixed samples is inadequate for a true understanding of the dynamics that drive cell biological processes. In this chapter we focus on methods to analyze microtubule nucleation, organization, and dynamics using assays based on mitotic Xenopus egg extracts and in vitro reactions. These methods can easily be adapted to the study of interphase processes, or to the study of other cytoskeletal proteins and their dynamics.
Collapse
Affiliation(s)
- Christiane Wiese
- Department of Biochemistry, University of Wisconsin - Madison, Madison, WI, USA
| | | | | |
Collapse
|