1
|
Arthur CM, Hollenhorst M, Wu SC, Jajosky R, Nakahara H, Jan HM, Zheng L, Covington M, Rakoff-Nahoum S, Yeung M, Lane W, Josephson C, Cummings RD, Stowell SR. ABO blood groups and galectins: Implications in transfusion medicine and innate immunity. Semin Immunol 2024; 74-75:101892. [PMID: 39405833 PMCID: PMC11808837 DOI: 10.1016/j.smim.2024.101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/05/2024] [Accepted: 10/05/2024] [Indexed: 11/18/2024]
Abstract
ABO blood group antigens, which are complex carbohydrate moieties, and the first human polymorphisms identified, are critical in transfusion medicine and transplantation. Despite their discovery over a century ago, significant questions remain about the development of anti-ABO antibodies and the structural features of ABO antigens that cause hemolytic transfusion reactions. Anti-ABO antibodies develop naturally during the first few months of life, in contrast to other red blood cell (RBC) alloantibodies which form after allogeneic RBC exposure. Anti-ABO antibodies are the most common immune barrier to transfusion and transplantation, but the factors driving their formation are incompletely understood. Some studies suggest that microbes that express glycans similar in structure to the blood group antigens could play a role in anti-blood group antibody formation. While the role of these microbes in clinically relevant anti-blood group antibody formation remains to be defined, the presence of these microbes raises questions about how blood group-positive individuals protect themselves against blood group molecular mimicry. Recent studies suggest that galectins can bind and kill microbes that mimic blood group antigens, suggesting a unique host defense mechanism against microbial molecular mimicry. However, new models are needed to fully define the impact of microbes, galectins, or other factors on the development of clinically relevant naturally occurring anti-blood group antibodies.
Collapse
Affiliation(s)
- Connie M Arthur
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Medical School Center for Glycosciences, USA
| | - Marie Hollenhorst
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ryan Jajosky
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hirotomo Nakahara
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hau-Ming Jan
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Leon Zheng
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mischa Covington
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Melissa Yeung
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - William Lane
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Richard D Cummings
- Harvard Medical School Center for Glycosciences, USA; Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Medical School Center for Glycosciences, USA.
| |
Collapse
|
2
|
Tarrad NAF, Shaker OG, Elbanna RMH, AbdelKawy M. "Outcome of non-surgical periodontal treatment on Gal-1 and Gal-3 GCF levels in periodontitis patients: a case-control study". Clin Oral Investig 2024; 28:309. [PMID: 38743248 PMCID: PMC11093871 DOI: 10.1007/s00784-024-05688-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
OBJECTIVES This study aimed to explore the effect of nonsurgical periodontal treatment on Galectin-1 and -3 GCF levels in gingivitis and periodontitis stage III compared to periodontally healthy individuals, to determine whether they could serve as diagnostic markers / therapeutic targets for periodontitis and revealing their possible role in periodontal disease. MATERIALS AND METHODS Forty-five systemically healthy participants were included and equally subdivided into three groups: gingivitis, periodontitis (stage III), and a periodontally healthy control group. The clinical parameters were recorded. Galectin-1 and -3 GCF levels were evaluated (before and after non-surgical treatment for periodontitis) using an enzyme linked immune-sorbent assay (ELISA) kit. Receiver operating characteristic (ROC) curve was performed to reveal sensitivity, specificity, predictive value, and diagnostic accuracy of both markers. RESULTS The study showed statistical significance between different groups regarding Galectin-3 with higher values in periodontitis and the lowest values in healthy control. Also, Galectin-1 was significantly higher in the periodontitis/gingivitis groups than in the control group. Moreover, non-surgical periodontal treatment in periodontitis patients caused a statistical reduction in clinical parameters and biomarkers. ROC analysis revealed excellent diagnostic ability of both biomarkers in discriminating periodontitis/gingivitis against healthy individuals (100% diagnostic accuracy for Galectin-1 and 93% for Galectin-3, AUC > 0.9) and acceptable diagnostic ability between periodontitis participants against gingivitis (73% diagnostic accuracy for Gal-1 and 80% for Gal-3, AUC > 0.7). CONCLUSIONS Both Galectin-1 and Galectin-3 seem to have outstanding diagnostic accuracy for the identification of periodontal disease, an acceptable ability to measure periodontal disease activity and the severity of inflammatory status. Additionally, they could serve as therapeutic targets to monitor treatment efficiency. CLINICALTRIAL GOV REGISTRATION NUMBER: (NCT06038812).
Collapse
Affiliation(s)
| | - Olfat Gamil Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Maha AbdelKawy
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
3
|
Hale RC, Morais D, Chou J, Stowell SR. The role of glycosylation in clinical allergy and immunology. J Allergy Clin Immunol 2024; 153:55-66. [PMID: 37717626 PMCID: PMC10872775 DOI: 10.1016/j.jaci.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
While glycans are among the most abundant macromolecules on the cell with widespread functions, their role in immunity has historically been challenging to study. This is in part due to difficulties assimilating glycan analysis into routine approaches used to interrogate immune cell function. Despite this, recent developments have illuminated fundamental roles for glycans in host immunity. The growing field of glycoimmunology continues to leverage new tools and approaches to uncover the function of glycans and glycan-binding proteins in immunity. Here we utilize clinical vignettes to examine key roles of glycosylation in allergy, inborn errors of immunity, and autoimmunity. We will discuss the diverse functions of glycans as epitopes, as modulators of antibody function, and as regulators of immune cell function. Finally, we will highlight immune modulatory therapies that harness the critical role of glycans in the immune system.
Collapse
Affiliation(s)
- Rebecca C Hale
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass; Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Dominique Morais
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass.
| | - Sean R Stowell
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Harvard Glycomics Center, Harvard Medical School, Boston, Mass.
| |
Collapse
|
4
|
Matteucci C, Nepravishta R, Argaw-Denboba A, Mandaliti W, Giovinazzo A, Petrone V, Balestrieri E, Sinibaldi-Vallebona P, Pica F, Paci M, Garaci E. Thymosin α1 interacts with Galectin-1 modulating the β-galactosides affinity and inducing alteration in the biological activity. Int Immunopharmacol 2023; 118:110113. [PMID: 37028279 DOI: 10.1016/j.intimp.2023.110113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 04/09/2023]
Abstract
The study of mechanism of action of Thymosin alpha 1 (Tα1) and the basis of the pleiotropic effect in health and disease, is one of the main focus of our ongoing research. Tα1 is a thymic peptide that demonstrates a peculiar ability to restore homeostasis in different physiological and pathological conditions (i.e., infections, cancer, immunodeficiency, vaccination, and aging) acting as multitasking protein depending on the host state of inflammation or immune dysfunction. However, few are the information about mechanisms of action mediated by specific Tα1-target protein interaction that could explain its pleiotropic effect. We investigated the interaction of Tα1 with Galectin-1 (Gal-1), a protein belonging to an oligosaccharide binding protein family involved in a variety of biological and pathological processes, including immunoregulation, infections, cancer progression and aggressiveness. Using molecular and cellular methodological approaches, we demonstrated the interaction between these two proteins. Tα1 specifically inhibited the hemagglutination activity of Gal-1, the Gal-1 dependent in vitro formation of endothelial cell tubular structures, and the migration of cancer cells in wound healing assay. Physico-chemical methods revealed the details of the molecular interaction of Tα1 with Gal-1. Hence, the study allowed the identification of the not known until now specific interaction between Tα1 and Gal-1, and unraveled a novel mechanism of action of Tα1 that could support understanding of its pleiotropic activity.
Collapse
Affiliation(s)
- Claudia Matteucci
- Department of Experimental Medicine, University of Tor Vergata, Rome 00133, Italy.
| | - Ridvan Nepravishta
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Rome 00133, Italy
| | - Ayele Argaw-Denboba
- Department of Experimental Medicine, University of Tor Vergata, Rome 00133, Italy; European Molecular Biology Laboratory, EMBL, Monterotondo, Rome 00015, Italy
| | - Walter Mandaliti
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Rome 00133, Italy
| | - Alessandro Giovinazzo
- Department of Experimental Medicine, University of Tor Vergata, Rome 00133, Italy; Institute of Biochemistry and Cell Biology, IBBC-CNR, Monterotondo, Rome 00015, Italy
| | - Vita Petrone
- Department of Experimental Medicine, University of Tor Vergata, Rome 00133, Italy
| | - Emanuela Balestrieri
- Department of Experimental Medicine, University of Tor Vergata, Rome 00133, Italy
| | - Paola Sinibaldi-Vallebona
- Department of Experimental Medicine, University of Tor Vergata, Rome 00133, Italy; Institute of Translational Pharmacology, National Research Council, Rome 00133, Italy
| | - Francesca Pica
- Department of Experimental Medicine, University of Tor Vergata, Rome 00133, Italy
| | - Maurizio Paci
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Rome 00133, Italy
| | - Enrico Garaci
- IRCCS San Raffaele and IRCCS San Raffaele, Rome 00163, Italy; Medical and Experimental BioImaging Center, MEBIC Consortium, Rome 00166, Italy
| |
Collapse
|
5
|
Yu X, Qian J, Ding L, Yin S, Zhou L, Zheng S. Galectin-1: A Traditionally Immunosuppressive Protein Displays Context-Dependent Capacities. Int J Mol Sci 2023; 24:ijms24076501. [PMID: 37047471 PMCID: PMC10095249 DOI: 10.3390/ijms24076501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Galectin–Carbohydrate interactions are indispensable to pathogen recognition and immune response. Galectin-1, a ubiquitously expressed 14-kDa protein with an evolutionarily conserved β-galactoside binding site, translates glycoconjugate recognition into function. That galectin-1 is demonstrated to induce T cell apoptosis has led to substantial attention to the immunosuppressive properties of this protein, such as inducing naive immune cells to suppressive phenotypes, promoting recruitment of immunosuppressing cells as well as impairing functions of cytotoxic leukocytes. However, only in recent years have studies shown that galectin-1 appears to perform a pro-inflammatory role in certain diseases. In this review, we describe the anti-inflammatory function of galectin-1 and its possible mechanisms and summarize the existing therapies and preclinical efficacy relating to these agents. In the meantime, we also discuss the potential causal factors by which galectin-1 promotes the progression of inflammation.
Collapse
|
6
|
Cinkir U, Bir LS, Tekin S, Karagulmez AM, Avci Cicek E, Senol H. Investigation of anti-galectin-8 levels in patients with multiple sclerosis: A consort-clinical study. Medicine (Baltimore) 2023; 102:e32621. [PMID: 36607856 PMCID: PMC9829274 DOI: 10.1097/md.0000000000032621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Galectins are a family of endogenous mammalian lectins involved in pathogen recognition, killing, and facilitating the entry of microbial pathogens and parasites into the host. They are the intermediators that decipher glycan-containing information about the host immune cells and microbial structures to modulate signaling events that cause cellular proliferation, chemotaxis, cytokine secretion, and cell-to-cell communication. They have subgroups that take place in different roles in the immune system. The effect of galectin-8 on multiple sclerosis disease (MS) has been studied in the literature, but the results seemed unclear. In this study, we aimed to determine anti-galectin-8 (anti-Gal-8) levels in MS and their potential use as biomarkers. METHODS In this experimental study, 45 MS patients diagnosed according to McDonald criteria were included in the patient group. The healthy control group contained 45 people without MS diagnosis and any risk factors. Demographic data, height, weight, body mass index, blood glucose, thyroid-stimulating hormone, alanine transaminase, aspartate transaminase, creatinine, low-density lipoprotein, anti-Gal-8 levels, the prevalence of hypertension, diabetes mellitus and coronary artery disease were recorded. In addition, the expanded disability status scale and disease duration were evaluated in the patient group. Data were presented as mean ± standard deviations. RESULTS The mean blood anti-galectin-8 value of the patient group was 4.84 ± 4.53 ng/mL, while it was 4.67 ± 3.40 ng/mL in the control group, and the difference in these values was found statistically insignificant (P > .05). Moreover, body mass index, glucose, alanine transaminase, aspartate transaminase, thyroid-stimulating hormone, and low-density lipoprotein levels were also statistically insignificant (P > .05). CONCLUSION This study examined anti-Gal-8 levels in MS patients. The relationship between MS and galectin-8 and anti-Gal-8 levels in patients needs further clarification. As a result, the study's results could help elucidate the pathogenesis of MS and give more evidence for diagnosis.
Collapse
Affiliation(s)
- Ufuk Cinkir
- T.C. Saglik Bakanligi Başakşehir Cam ve Sakura Sehir Hastanesi, Communication, T.C. Saglik Bakanligi Başakşehir Cam ve Sakura Sehir Hastanesi, Istanbul, Turkey
- * Correspondence: Ufuk Cinkir, T.C. Saglik Bakanligi Başakşehir Cam ve Sakura Sehir Hastanesi, Communication, T.C. Saglik Bakanligi Başakşehir Cam Ve Sakura Sehir Hastanesi, Istanbul 34480, Turkey (e-mail: )
| | - Levent Sinan Bir
- Pamukkale Universitesi Tip Fakultesi Hastanesi, Communication, Pamukkale Universitesi Tip Fakultesi Hastanesi, Denizli, Turkey
| | - Selma Tekin
- Pamukkale Universitesi Tip Fakultesi Hastanesi, Communication, Pamukkale Universitesi Tip Fakultesi Hastanesi, Denizli, Turkey
| | - Ahmet Magrur Karagulmez
- Pamukkale Universitesi Tip Fakultesi Hastanesi, Communication, Pamukkale Universitesi Tip Fakultesi Hastanesi, Denizli, Turkey
| | - Esin Avci Cicek
- Pamukkale Universitesi Tip Fakultesi Hastanesi, Communication, Pamukkale Universitesi Tip Fakultesi Hastanesi, Denizli, Turkey
| | - Hande Senol
- Pamukkale Universitesi Tip Fakultesi Hastanesi, Communication, Pamukkale Universitesi Tip Fakultesi Hastanesi, Denizli, Turkey
| |
Collapse
|
7
|
Čoma M, Manning JC, Kaltner H, Gál P. The sweet side of wound healing: galectins as promising therapeutic targets in hemostasis, inflammation, proliferation, and maturation/remodeling. Expert Opin Ther Targets 2023; 27:41-53. [PMID: 36716023 DOI: 10.1080/14728222.2023.2175318] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Understanding the molecular and cellular processes involved in skin wound healing may pave the way for the development of innovative approaches to transforming the identified natural effectors into therapeutic tools. Based on the extensive involvement of the ga(lactoside-binding)lectin family in (patho)physiological processes, it has been well established that galectins are involved in a wide range of cell-cell and cell-matrix interactions. AREAS COVERED In the present paper, we provide an overview of the biological role of galectins in repair and regeneration, focusing on four main phases (hemostasis, inflammation, proliferation, and maturation/remodeling) of skin repair using basic wound models (open excision vs. sutured incision). EXPERT OPINION The reported data make a strong case for directing further efforts to treat excisional and incisional wounds differently. Functions of galectins essentially result from their modular presentation. In fact, Gal-1 seems to play a role in the early phases of healing (anti-inflammatory) and wound contraction, Gal-3 accelerates re-epithelization and increases tensile strength (scar inductor). Galectins have also become subject of redesigning by engineering to optimize the activity. Clinically relevant, these new tools derived from the carbohydrate recognition domain platform may also prove helpful for other purposes, such as potent antibacterial agglutinins and opsonins.
Collapse
Affiliation(s)
- Matúš Čoma
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases Inc, Košice, Slovak Republic.,Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic
| | - Joachim C Manning
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilian University, Munich, Germany
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilian University, Munich, Germany
| | - Peter Gál
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases Inc, Košice, Slovak Republic.,Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic.,Prague Burn Center, Third Faculty of Medicine, Charles University and University Hospital Královske Vinohrady, Prague, Czech Republic.,Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| |
Collapse
|
8
|
Kumar Das A, Ghosh N, Mandal A, Sil PC. Glycobiology of cellular expiry: Decrypting the role of glycan-lectin regulatory complex and therapeutic strategies focusing on cancer. Biochem Pharmacol 2023; 207:115367. [PMID: 36481348 DOI: 10.1016/j.bcp.2022.115367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Often the outer leaflets of living cells bear a coat of glycosylated proteins, which primarily regulates cellular processes. Glycosylation of such proteins occurs as part of their post-translational modification. Within the endoplasmic reticulum, glycosylation enables the attachment of specific oligosaccharide moieties such as, 'glycan' to the transmembrane receptor proteins which confers precise biological information for governing the cell fate. The nature and degree of glycosylation of cell surface receptors are regulated by a bunch of glycosyl transferases and glycosidases which fine-tune attachment or detachment of glycan moieties. In classical death receptors, upregulation of glycosylation by glycosyl transferases is capable of inducing cell death in T cells, tumor cells, etc. Thus, any deregulated alternation at surface glycosylation of these death receptors can result in life-threatening disorder like cancer. In addition, transmembrane glycoproteins and lectin receptors can transduce intracellular signals for cell death execution. Exogenous interaction of lectins with glycan containing death receptors signals for cell death initiation by modulating downstream signalings. Subsequently, endogenous glycan-lectin interplay aids in the customization and implementation of the cell death program. Lastly, the glycan-lectin recognition system dictates the removal of apoptotic cells by sending accurate signals to the extracellular milieu. Since glycosylation has proven to be a biomarker of cellular death and disease progression; glycans serve as specific therapeutic targets of cancers. In this context, we are reviewing the molecular mechanisms of the glycan-lectin regulatory network as an integral part of cell death machinery in cancer to target them for successful therapeutic and clinical approaches.
Collapse
Affiliation(s)
- Abhishek Kumar Das
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Noyel Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Ankita Mandal
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India.
| |
Collapse
|
9
|
Madsari N, Maskaew S, Obchoei S, Kwankaew P, Senghoi W, Utarabhand P, Runsaeng P. Determination of the efficacy of using a serine protease gene as a DNA vaccine to protect against Vibrio parahaemolyticus infection in Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104459. [PMID: 35660488 DOI: 10.1016/j.dci.2022.104459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Serine proteases are proteolytic enzymes that exhibit biological roles in many biological systems. Previously, a Vibrio parahaemolyticus serine protease was reported to be a virulence factor. Here, the serine protease gene of V. parahaemolyticus was investigated as a DNA vaccine against V. parahaemolyticus in Litopenaeus vannamei. The serine protease gene was mutated to replace the conserved residues His82, Asp131 and Ser231 with Gly, Asp and Pro, respectively. Then, a pcDNA3.1 vector to express mutVpSP (mutant serine protease) was constructed for in vitro and in vivo DNA vaccine investigation. In vivo mutVpSP transcriptional analysis revealed expression in various immunized white shrimp tissues, such as hemocytes, hepatopancreas, stomach, intestine, gills, and muscle. The efficiency of prevention of V. parahaemolyticus infection was investigated in vaccinated shrimp, and the lowest cumulative mortality percentage was 30%, while the control shrimp had a 60% cumulative mortality rate. The immune system was stimulated in shrimp vaccinated with the DNA vaccine. The mRNA expression of the shrimp immune-responsive genes phenoloxidase, peroxinectin and C-type lectin was significantly upregulated. Additionally, the humoral and cellular immune responses, including the PO, phagocytic, and encapsulation activities and nodule formation, were elevated. These results suggested that the serine protease could be a V. parahaemolyticus virulence determinant and that this DNA vaccine could be applied as an effective vaccine candidate for control of acute hepatopancreatic necrosis disease syndrome (AHPND) in shrimp.
Collapse
Affiliation(s)
- Naeem Madsari
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, 90110, Thailand
| | - Siriluk Maskaew
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, 90110, Thailand
| | - Sumalee Obchoei
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, 90110, Thailand
| | - Pattamaporn Kwankaew
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80161, Thailand; Research Excellence Center for Innovation and Health Product, Walailak University, Nakhon Si Thammarat, 80161, Thailand
| | - Wilaiwan Senghoi
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80161, Thailand; Center of Excellent Research for Melioidosis (CERM), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Prapaporn Utarabhand
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, 90110, Thailand
| | - Phanthipha Runsaeng
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, 90110, Thailand.
| |
Collapse
|
10
|
Ho AD, Wu SC, Kamili NA, Blenda AV, Cummings RD, Stowell SR, Arthur CM. An Automated Approach to Assess Relative Galectin-Glycan Affinity Following Glycan Microarray Analysis. Front Mol Biosci 2022; 9:893185. [PMID: 36032675 PMCID: PMC9403319 DOI: 10.3389/fmolb.2022.893185] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/20/2022] [Indexed: 12/02/2022] Open
Abstract
Numerous studies have highlighted the utility of glycan microarray analysis for the elucidation of protein-glycan interactions. However, most current glycan microarray studies analyze glycan binding protein (GBP)-glycan interactions at a single protein concentration. While this approach provides useful information related to a GBP's overall binding capabilities, extrapolation of true glycan binding preferences using this method fails to account for printing variations or other factors that may confound relative binding. To overcome this limitation, we examined glycan array binding of three galectins over a range of concentrations to allow for a more complete assessment of binding preferences. This approach produced a richer data set than single concentration analysis and provided more accurate identification of true glycan binding preferences. However, while this approach can be highly informative, currently available data analysis approaches make it impractical to perform binding isotherms for each glycan present on currently available platforms following GBP evaluation. To overcome this limitation, we developed a method to directly optimize the efficiency of assessing association constants following multi-GBP concentration glycan array analysis. To this end, we developed programs that automatically analyze raw array data (kdMining) to generate output graphics (kaPlotting) following array analysis at multiple doses. These automatic programing methods reduced processing time from 32.8 h to 1.67 min. Taken together, these results demonstrate an effective approach to glycan array analysis that provides improved detail and efficiency when compared to previous methods.
Collapse
Affiliation(s)
- Alex D. Ho
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Nourine A. Kamili
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Anna V. Blenda
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC, United States
| | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Sean R. Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Connie M. Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
The Contribution of Viral Proteins to the Synergy of Influenza and Bacterial Co-Infection. Viruses 2022; 14:v14051064. [PMID: 35632805 PMCID: PMC9143653 DOI: 10.3390/v14051064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
A severe course of acute respiratory disease caused by influenza A virus (IAV) infection is often linked with subsequent bacterial superinfection, which is difficult to cure. Thus, synergistic influenza-bacterial co-infection represents a serious medical problem. The pathogenic changes in the infected host are accelerated as a consequence of IAV infection, reflecting its impact on the host immune response. IAV infection triggers a complex process linked with the blocking of innate and adaptive immune mechanisms required for effective antiviral defense. Such disbalance of the immune system allows for easier initiation of bacterial superinfection. Therefore, many new studies have emerged that aim to explain why viral-bacterial co-infection can lead to severe respiratory disease with possible fatal outcomes. In this review, we discuss the key role of several IAV proteins-namely, PB1-F2, hemagglutinin (HA), neuraminidase (NA), and NS1-known to play a role in modulating the immune defense of the host, which consequently escalates the development of secondary bacterial infection, most often caused by Streptococcus pneumoniae. Understanding the mechanisms leading to pathological disorders caused by bacterial superinfection after the previous viral infection is important for the development of more effective means of prevention; for example, by vaccination or through therapy using antiviral drugs targeted at critical viral proteins.
Collapse
|
12
|
Verkerke H, Dias-Baruffi M, Cummings RD, Arthur CM, Stowell SR. Galectins: An Ancient Family of Carbohydrate Binding Proteins with Modern Functions. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2442:1-40. [PMID: 35320517 DOI: 10.1007/978-1-0716-2055-7_1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Galectins are a large family of carbohydrate binding proteins with members in nearly every lineage of multicellular life. Through tandem and en-mass genome duplications, over 15 known vertebrate galectins likely evolved from a single common ancestor extant in pre-chordate lineages. While galectins have divergently evolved numerous functions, some of which do not involve carbohydrate recognition, the vast majority of the galectins have retained the conserved ability to bind variably modified polylactosamine (polyLacNAc) residues on glycans that modify proteins and lipids on the surface of host cells and pathogens. In addition to their direct role in microbial killing, many proposed galectin functions in the immune system and cancer involve crosslinking glycosylated receptors and modifying signaling pathways or sensitivity to antigen from the outside in. However, a large body of work has uncovered intracellular galectin functions mediated by carbohydrate- and non-carbohydrate-dependent interactions. In the cytoplasm, galectins can tune intracellular kinase and G-protein-coupled signaling cascades important for nutrient sensing, cell cycle progression, and transformation. Particularly, but interconnected pathways, cytoplasmic galectins serve the innate immune system as sensors of endolysosomal damage, recruiting and assembling the components of autophagosomes during intracellular infection through carbohydrate-dependent and -independent activities. In the nucleus, galectins participate in pre-mRNA splicing perhaps through interactions with non-coding RNAs required for assembly of spliceosomes. Together, studies of galectin function paint a picture of a functionally dynamic protein family recruited during eons of evolution to regulate numerous essential cellular processes in the context of multicellular life.
Collapse
Affiliation(s)
- Hans Verkerke
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA
| | - Marcelo Dias-Baruffi
- Department of Clinical Analysis, Toxicological and Bromatological, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Connie M Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Paul A, Wu SC, Patel KR, Ho AD, Allen JWL, Verkerke H, Arthur CM, Stowell SR. Purification of Recombinant Galectins from Different Species Using Distinct Affinity Chromatography Methods. Methods Mol Biol 2022; 2442:55-74. [PMID: 35320519 DOI: 10.1007/978-1-0716-2055-7_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Galectins are lectins having the capacity to recognize β-galactose-containing glycan structures and are widely distributed among various taxa. However, the exact physiological and biochemical functions mediated by galectins that necessitate their wide occurrence among diverse species have not yet been delineated in a precise manner. Purification of recombinant galectins in active form is a fundamental requirement to elucidate their biological function. In this chapter, we are describing methods to recombinantly express and purify galectins using three different methods of affinity purification, i.e., lactosyl-Sepharose chromatography for fungal galectin Coprinopsis cinerea galectin 2 (CGL2), nickel-chromatography for histidine-tagged human galectin-7, and glutathione-Sepharose chromatography for Glutathione S-transferase-tagged (GST-tagged) human galectin-7. Step-by-step instructions are provided for obtaining the above-mentioned recombinant galectins that retain carbohydrate-binding activity and are suitable for conducting biochemical experiments.
Collapse
Affiliation(s)
- Anu Paul
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kashyap R Patel
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alex D Ho
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jerry William Lynn Allen
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hans Verkerke
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Connie M Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Kamili NA, Paul A, Wu SC, Dias-Baruffi M, Cummings RD, Arthur CM, Stowell SR. Evaluation of the Bactericidal Activity of Galectins. Methods Mol Biol 2022; 2442:517-531. [PMID: 35320543 DOI: 10.1007/978-1-0716-2055-7_27] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over a century ago, Karl Landsteiner discovered that blood group antigens could predict the immunological outcome of red blood cell transfusion. While the discovery of ABO(H) blood group antigens revolutionized transfusion medicine, many questions remain regarding the development and regulation of naturally occurring anti-blood group antibody formation. Early studies suggested that blood group antibodies develop following stimulation by bacteria that express blood group antigens. While this may explain the development of anti-blood group antibodies in blood group-negative individuals, how blood group-positive individuals protect themselves against blood group-positive microbes remained unknown. Recent studies suggest that several members of the galectin family specifically target blood group-positive microbes, thereby providing innate immune protection against blood group antigen-positive microbes regardless of the blood group status of an individual. Importantly, subsequent studies suggest that this unique form of immunity may not be limited to blood group expressing microbes, but may reflect a more generalized form of innate immunity against molecular mimicry. As this form of antimicrobial activity represents a unique and unprecedented form of immunity, we will examine important considerations and methodological approaches that can be used when seeking to ascertain the potential antimicrobial activity of various members of the galectin family.
Collapse
Affiliation(s)
- Nourine A Kamili
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anu Paul
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcelo Dias-Baruffi
- Department of Clinical Analysis, Toxicological and Bromatological, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | - Connie M Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Stowell SR, Dias-Baruffi M, Cummings RD, Arthur CM. Detection of Phosphatidylserine Exposure on Leukocytes Following Treatment with Human Galectins. Methods Mol Biol 2022; 2442:533-548. [PMID: 35320544 DOI: 10.1007/978-1-0716-2055-7_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cellular turnover represents a fundamental aspect of immunological homeostasis. While many factors appear to regulate leukocyte removal during inflammatory resolution, recent studies suggest that members of the galectin family play a unique role in orchestrating this process. Unlike cellular removal through apoptotic cell death, several members of the galectin family induce surface expression of phosphatidylserine (PS), a phagocytic marker on cells undergoing apoptosis, in the absence of cell death. However, similar to PS on cells undergoing apoptosis, galectin-induced PS exposure sensitizes cells to phagocytic removal. As galectins appear to prepare cells for phagocytic removal without actually inducing apoptotic cell death, this process has recently been coined preaparesis. Given the unique characteristics of galectin-induced PS exposure in the context of preaparesis, we will examine unique considerations when evaluating the potential impact of different galectin family members on PS exposure and cell viability.
Collapse
Affiliation(s)
- Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA
| | - Marcelo Dias-Baruffi
- Department of Clinical Analysis, Toxicological and Bromatological, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Connie M Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Kojima I, Izumi F, Ozawa M, Fujimoto Y, Okajima M, Ito N, Sugiyama M, Masatani T. Analyses of cell death mechanisms related to amino acid substitution at position 95 in the rabies virus matrix protein. J Gen Virol 2021; 102. [PMID: 33891533 DOI: 10.1099/jgv.0.001594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We previously reported that the avirulent fixed rabies virus strain Ni-CE induces a clear cytopathic effect in mouse neuroblastoma cells, whereas its virulent progenitor, the Nishigahara strain, does not. Infection with Nishigahara and Ni-CE mutants containing a single amino acid substitution in the matrix protein (M) demonstrated that the amino acid at position 95 of M (M95) is a cytopathic determinant. The characteristics of cell death induced by Ni-CE infection resemble those of apoptosis (rounded and shrunken cells, DNA fragmentation), but the intracellular signalling pathway for this process has not been fully investigated. In this study, we aimed to elucidate the mechanism by which M95 affects cell death induced by human neuroblastoma cell infection with the Nishigahara, Ni-CE and M95-mutated strains. We demonstrated that the Ni-CE strain induced DNA fragmentation, cell membrane disruption, exposure of phosphatidylserine (PS), activation of caspase-3/7 and anti-poly (ADP-ribose) polymerase 1 (PARP-1) cleavage, an early apoptosis indicator, whereas the Nishigahara strain did not induce DNA fragmentation, caspase-3/7 activation, cell membrane disruption, or PARP-1 cleavage, but did induce PS exposure. We also demonstrated that these characteristics were associated with M95 using M95-mutated strains. However, we found that Ni-CE induced cell death despite the presence of a caspase inhibitor, Z-VAD-FMK. In conclusion, our data suggest that M95 mutation-related cell death is caused by both the caspase-dependent and -independent pathways.
Collapse
Affiliation(s)
- Isshu Kojima
- Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.,Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Fumiki Izumi
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Makoto Ozawa
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.,Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.,Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Yoshikazu Fujimoto
- Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.,Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Misuzu Okajima
- Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.,Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Naoto Ito
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Makoto Sugiyama
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Tatsunori Masatani
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.,Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
17
|
Van Broeckhoven J, Sommer D, Dooley D, Hendrix S, Franssen AJPM. Macrophage phagocytosis after spinal cord injury: when friends become foes. Brain 2021; 144:2933-2945. [PMID: 34244729 DOI: 10.1093/brain/awab250] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/12/2021] [Accepted: 06/20/2021] [Indexed: 11/14/2022] Open
Abstract
After spinal cord injury (SCI), macrophages can exert either beneficial or detrimental effects depending on their phenotype. Aside from their critical role in inflammatory responses, macrophages are also specialized in the recognition, engulfment, and degradation of pathogens, apoptotic cells, and tissue debris. They promote remyelination and axonal regeneration by removing inhibitory myelin components and cellular debris. However, excessive intracellular presence of lipids and dysregulated intracellular lipid homeostasis result in the formation of foamy macrophages. These develop a pro-inflammatory phenotype that may contribute to further neurological decline. Additionally, myelin-activated macrophages play a crucial role in axonal dieback and retraction. Here, we review the opposing functional consequences of phagocytosis by macrophages in SCI, including remyelination and regeneration versus demyelination, degeneration, and axonal dieback. Furthermore, we discuss how targeting the phagocytic ability of macrophages may have therapeutic potential for the treatment of SCI.
Collapse
Affiliation(s)
- Jana Van Broeckhoven
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Daniela Sommer
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Dearbhaile Dooley
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield Dublin 4, Ireland.,UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sven Hendrix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.,Medical School Hamburg, Hamburg, Germany
| | - Aimée J P M Franssen
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
18
|
Flagging fusion: Phosphatidylserine signaling in cell-cell fusion. J Biol Chem 2021; 296:100411. [PMID: 33581114 PMCID: PMC8005811 DOI: 10.1016/j.jbc.2021.100411] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Formations of myofibers, osteoclasts, syncytiotrophoblasts, and fertilized zygotes share a common step, cell–cell fusion. Recent years have brought about considerable progress in identifying some of the proteins involved in these and other cell-fusion processes. However, even for the best-characterized cell fusions, we still do not know the mechanisms that regulate the timing of cell-fusion events. Are they fully controlled by the expression of fusogenic proteins or do they also depend on some triggering signal that activates these proteins? The latter scenario would be analogous to the mechanisms that control the timing of exocytosis initiated by Ca2+ influx and virus-cell fusion initiated by low pH- or receptor interaction. Diverse cell fusions are accompanied by the nonapoptotic exposure of phosphatidylserine at the surface of fusing cells. Here we review data on the dependence of membrane remodeling in cell fusion on phosphatidylserine and phosphatidylserine-recognizing proteins and discuss the hypothesis that cell surface phosphatidylserine serves as a conserved “fuse me” signal regulating the time and place of cell-fusion processes.
Collapse
|
19
|
Doktorova M, Symons JL, Levental I. Structural and functional consequences of reversible lipid asymmetry in living membranes. Nat Chem Biol 2020; 16:1321-1330. [PMID: 33199908 PMCID: PMC7747298 DOI: 10.1038/s41589-020-00688-0] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022]
Abstract
Maintenance of lipid asymmetry across the two leaflets of the plasma membrane (PM) bilayer is a ubiquitous feature of eukaryotic cells. Loss of this asymmetry has been widely associated with cell death. However, increasing evidence points to the physiological importance of non-apoptotic, transient changes in PM asymmetry. Such transient scrambling events are associated with a range of biological functions, including intercellular communication and intracellular signaling. Thus, regulation of interleaflet lipid distribution in the PM is a broadly important but underappreciated cellular process with key physiological and structural consequences. Here, we compile the mounting evidence revealing multifaceted, functional roles of PM asymmetry and transient loss thereof. We discuss the consequences of reversible asymmetry on PM structure, biophysical properties and interleaflet coupling. We argue that despite widespread recognition of broad aspects of membrane asymmetry, its importance in cell biology demands more in-depth investigation of its features, regulation, and physiological and pathological implications.
Collapse
Affiliation(s)
| | - Jessica L Symons
- University of Texas Health Science Center at Houston, Houston, TX, USA
| | | |
Collapse
|
20
|
Galectins in the Tumor Microenvironment: Focus on Galectin-1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1259:17-38. [PMID: 32578169 DOI: 10.1007/978-3-030-43093-1_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Naeini MB, Bianconi V, Pirro M, Sahebkar A. The role of phosphatidylserine recognition receptors in multiple biological functions. Cell Mol Biol Lett 2020; 25:23. [PMID: 32226456 PMCID: PMC7098104 DOI: 10.1186/s11658-020-00214-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
Apoptotic cells are rapidly engulfed and degraded by phagocytes through efferocytosis. Efferocytosis is a highly regulated process. It is triggered upon the activation of caspase-dependent apoptosis, which in turn promotes the expression of "eat me" signals on the surface of dying cells and the release of soluble "find me" signals for the recruitment of phagocytes. To date, many "eat me" signals have been recognized, including phosphatidylserine (PS), intercellular adhesion molecule-3, carbohydrates (e.g., amino sugars, mannose) and calreticulin. Among them, PS is the most studied one. PS recognition receptors are different functionally active receptors expressed by phagocytes. Various PS recognition receptors with different structure, cell type expression, and ability to bind to PS have been recognized. Although PS recognition receptors do not fall into a single classification or family of proteins due to their structural differences, they all share the common ability to activate downstream signaling pathways leading to the production of anti-inflammatory mediators. In this review, available evidence regarding molecular mechanisms underlying PS recognition receptor-regulated clearance of apoptotic cells is discussed. In addition, some efferocytosis-independent biological functions of PS recognition receptors are reviewed.
Collapse
Affiliation(s)
- Mehri Bemani Naeini
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vanessa Bianconi
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, School of Medicine, Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P.O. Box: 91779-48564, Mashhad, Iran
| |
Collapse
|
22
|
Law HL, Wright RD, Iqbal AJ, Norling LV, Cooper D. A Pro-resolving Role for Galectin-1 in Acute Inflammation. Front Pharmacol 2020; 11:274. [PMID: 32265698 PMCID: PMC7098973 DOI: 10.3389/fphar.2020.00274] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/26/2020] [Indexed: 11/13/2022] Open
Abstract
Galectin-1 (Gal-1) exerts immune-regulatory and anti-inflammatory actions in animal models of acute and chronic inflammation. Its release into the extracellular milieu often correlates with the peak of inflammation suggesting that it may serve a pro-resolving function. Gal-1 is reported to inhibit neutrophil recruitment and induce surface exposure of phosphatidylserine (PS), an "eat me" signal on the surface of neutrophils, yet its role in resolution remains to be fully elucidated. We hypothesized that the anti-inflammatory and pro-resolving properties of Gal-1 are mediated through its ability to inhibit neutrophil recruitment and potentiate neutrophil clearance. To investigate this, a murine model of self-resolving inflammation was utilized to uncover the role of both the endogenous and exogenous protein using Gal-1 null mice and recombinant protein, respectively. We found that peritoneal macrophages express increased Gal-1 during the resolution phase and enhanced neutrophil recruitment occurs in the early phases of zymosan peritonitis in Gal-1 null mice compared to their wild-type (WT) counterparts. Administration of recombinant Gal-1 following the peak of inflammation led to reduced neutrophil numbers at 24 and 48 h, shortening the resolution interval from 39 to 14 h. Gal-1 treatment also enhanced neutrophil apoptosis, indicating a pro-resolving action. Together these results indicate an important role for Gal-1 in the timely resolution of acute inflammation.
Collapse
Affiliation(s)
- Hannah L Law
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Rachael D Wright
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Asif J Iqbal
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Lucy V Norling
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| | - Dianne Cooper
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
23
|
Suppression of age-related salivary gland autoimmunity by glycosylation-dependent galectin-1-driven immune inhibitory circuits. Proc Natl Acad Sci U S A 2020; 117:6630-6639. [PMID: 32161138 DOI: 10.1073/pnas.1922778117] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aging elicits quantitative and qualitative changes in different immune components, leading to disruption of tolerogenic circuits and development of autoimmune disorders. Galectin-1 (Gal1), an endogenous glycan-binding protein, has emerged as a regulator of immune cell homeostasis by shaping the fate of myeloid and lymphoid cells. Here, we demonstrate that aged Gal1-null mutant (Lgals1 -/- ) mice develop a spontaneous inflammatory process in salivary glands that resembles Sjögren's syndrome. This spontaneous autoimmune phenotype was recapitulated in mice lacking β1,6N-acetylglucosaminyltransferase V (Mgat5), an enzyme responsible for generating β1,6-branched complex N-glycans, which serve as a major ligand for this lectin. Lack of Gal1 resulted in CD11c+ dendritic cells (DCs) with higher immunogenic potential, lower frequency of Foxp3+ regulatory T cells (Tregs), and increased number of CD8+ T cells with greater effector capacity. Supporting its tolerogenic activity, Gal1 expression decreased with age in autoimmunity-prone nonobese diabetic (NOD) mice. Treatment with recombinant Gal1 restored tolerogenic mechanisms and reduced salivary gland inflammation. Accordingly, labial biopsies from primary Sjögren's syndrome patients showed reduced Gal1 expression concomitant with higher number of infiltrating CD8+ T cells. Thus, endogenous Gal1 serves as a homeostatic rheostat that safeguards immune tolerance and prevents age-dependent development of spontaneous autoimmunity.
Collapse
|
24
|
Rodrigues LC, Kabeya LM, Azzolini AECS, Cerri DG, Stowell SR, Cummings RD, Lucisano-Valim YM, Dias-Baruffi M. Galectin-1 modulation of neutrophil reactive oxygen species production depends on the cell activation state. Mol Immunol 2019; 116:80-89. [PMID: 31630079 DOI: 10.1016/j.molimm.2019.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/01/2019] [Accepted: 10/01/2019] [Indexed: 11/18/2022]
Abstract
Here we report the effects of exogenous and endogenous galectin-1 (Gal-1) in modulating the functional responses of human and murine neutrophils at different stages of activation, i.e. naive, primed, and activated. Exposure to Gal-1 did not induce ROS production in either naive or N-formyl-methionyl-leucyl-phenylalanine-primed (fMLP; 10-9 M) neutrophils. However, Gal-1 elicited a concentration-dependent ROS production in neutrophils activated with fMLP at concentrations ranging from 10-8 M to 10-6 M. Additional fMLP (10-7 M) stimulation of fMLP-activated neutrophils increased ROS production, whose intensity was inversely related to the fMLP concentration used in the first activation step (10-8 M to 10-6 M), and was not influenced by the presence of Gal-1. Naive neutrophils treated with Gal-1 and then exposed to fMLP (10-6 M) or phorbol-12-myristate-13-acetate (10-7 M) produced less ROS, as compared to naive neutrophils not treated with Gal-1. Interestingly, these in vitro Gal-1 effects were associated with Gal-1 carbohydrate-binding activity and the ability to decrease FPR-1 (formyl peptide receptor 1) expression in naive human neutrophils. Conversely, positive ROS modulation by Gal-1 in activated neutrophils was not associated with FPR-1 expression but it was related to its carbohydrate recognition. In vitro, fMLP stimulation of Gal-1-/- mouse neutrophils produced more ROS than fMLP stimulation of Gal-1+/+ neutrophils and this effect may be associated with increased FPR-1 expression. Exogenous Gal-1 induced ROS production in Gal-1-/- mouse neutrophils more effectively than in Gal-1+/+ mouse neutrophils. Compared to Gal-1+/+ mice, Gal-1-/- mice exhibited lower bacterial load in the peritoneal fluid and peripheral blood, thus indicating a greater bactericidal activity in vivo. These findings demonstrate that endogenous Gal-1 restricts ROS generation that correlates with bacterial killing capacity in inflammatory neutrophils. Thus, endogenous and exogenous Gal-1 may either positively or negatively modulate the effector functions of neutrophils according to the cell activation stage.
Collapse
Affiliation(s)
- Lílian C Rodrigues
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luciana M Kabeya
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana Elisa C S Azzolini
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Daniel Giuliano Cerri
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Sean R Stowell
- Pathology Department, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Room 11087, Boston, MA, 02115, USA
| | - Yara Maria Lucisano-Valim
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marcelo Dias-Baruffi
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
25
|
Tribulatti MV, Carabelli J, Prato CA, Campetella O. Galectin-8 in the onset of the immune response and inflammation. Glycobiology 2019; 30:134-142. [DOI: 10.1093/glycob/cwz077] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023] Open
Abstract
Abstract
Galectins (Gals), a family of mammalian lectins, have emerged as key regulators of the immune response, being implicated in several physiologic and pathologic conditions. Lately, there is increasing data regarding the participation of Galectin-8 (Gal-8) in both the adaptive and innate immune responses, as well as its high expression in inflammatory disorders. Here, we focus on the pro- and anti-inflammatory properties of Gal-8 and discuss the potential use of this lectin in order to shape the immune response, according to the context.
Collapse
Affiliation(s)
- María V Tribulatti
- Laboratorio de Inmunología Molecular, Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Campus Miguelete, Avenida 25 de Mayo y Francia, San Martín, Buenos Aires B1650HMP, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Julieta Carabelli
- Laboratorio de Inmunología Molecular, Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Campus Miguelete, Avenida 25 de Mayo y Francia, San Martín, Buenos Aires B1650HMP, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Cecilia A Prato
- Laboratorio de Inmunología Molecular, Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Campus Miguelete, Avenida 25 de Mayo y Francia, San Martín, Buenos Aires B1650HMP, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Oscar Campetella
- Laboratorio de Inmunología Molecular, Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Campus Miguelete, Avenida 25 de Mayo y Francia, San Martín, Buenos Aires B1650HMP, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
26
|
Robinson BS, Arthur CM, Evavold B, Roback E, Kamili NA, Stowell CS, Vallecillo-Zúniga ML, Van Ry PM, Dias-Baruffi M, Cummings RD, Stowell SR. The Sweet-Side of Leukocytes: Galectins as Master Regulators of Neutrophil Function. Front Immunol 2019; 10:1762. [PMID: 31440233 PMCID: PMC6693361 DOI: 10.3389/fimmu.2019.01762] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
Among responders to microbial invasion, neutrophils represent one of the earliest and perhaps most important factors that contribute to initial host defense. Effective neutrophil immunity requires their rapid mobilization to the site of infection, which requires efficient extravasation, activation, chemotaxis, phagocytosis, and eventual killing of potential microbial pathogens. Following pathogen elimination, neutrophils must be eliminated to prevent additional host injury and subsequent exacerbation of the inflammatory response. Galectins, expressed in nearly every tissue and regulated by unique sensitivity to oxidative and proteolytic inactivation, appear to influence nearly every aspect of neutrophil function. In this review, we will examine the impact of galectins on neutrophils, with a particular focus on the unique biochemical traits that allow galectin family members to spatially and temporally regulate neutrophil function.
Collapse
Affiliation(s)
- Brian S Robinson
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Connie M Arthur
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Birk Evavold
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Ethan Roback
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Nourine A Kamili
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Caleb S Stowell
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | | | - Pam M Van Ry
- Department of Biochemistry, Brigham Young University, Provo, UT, United States
| | - Marcelo Dias-Baruffi
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, São Paulo, Brazil
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Sean R Stowell
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
27
|
Lhuillier C, Barjon C, Baloche V, Niki T, Gelin A, Mustapha R, Claër L, Hoos S, Chiba Y, Ueno M, Hirashima M, Wei M, Morales O, Raynal B, Delhem N, Dellis O, Busson P. Characterization of neutralizing antibodies reacting with the 213-224 amino-acid segment of human galectin-9. PLoS One 2018; 13:e0202512. [PMID: 30204750 PMCID: PMC6133441 DOI: 10.1371/journal.pone.0202512] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/03/2018] [Indexed: 01/17/2023] Open
Abstract
Extra-cellular galectin-9 (gal-9) is an immuno-modulatory protein with predominant immunosuppressive effects. Inappropriate production of gal-9 has been reported in several human malignancies and viral diseases like nasopharyngeal, pancreatic and renal carcinomas, metastatic melanomas and chronic active viral hepatitis. Therefore therapeutic antibodies neutralizing extra-cellular gal-9 are expected to contribute to immune restoration in these pathological conditions. Two novel monoclonal antibodies targeting gal-9 –Gal-Nab 1 and 2—have been produced and characterized in this study. We report a protective effect of Gal-Nab1 and Gal-Nab2 on the apoptotic cell death induced by gal-9 in primary T cells. In addition, they inhibit late phenotypic changes observed in peripheral T cells that survive gal-9-induced apoptosis. Gal-Nab1 and Gal-Nab2 bind nearly identical, overlapping linear epitopes contained in the 213–224 amino-acid segments of gal-9. Nevertheless, they have some distinct functional characteristics suggesting that their three-dimensional epitopes are distinct. These differences are best demonstrated when gal-9 is applied on Jurkat cells where Gal-Nab1 is less efficient than Gal-Nab2 in the prevention of apoptotic cell death. In addition, Gal-Nab1 stimulates non-lethal phosphatidylserine translocation at the plasma membrane and calcium mobilization triggered by gal-9 in these cells. Both Gal-Nab1 and 2 cross-react with murine gal-9. They bind its natural as well as its recombinant form. This cross-species recognition will be an advantage for their assessment in pre-clinical tumor models.
Collapse
Affiliation(s)
- Claire Lhuillier
- CNRS, UMR 8126, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Univ Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Cellvax, Romainville, France
| | - Clément Barjon
- CNRS, UMR 8126, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Univ Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Cellvax, Romainville, France
| | - Valentin Baloche
- CNRS, UMR 8126, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Univ Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Toshiro Niki
- Department of Immunology, Faculty of Medicine, Kagawa University, Takamatsu, Kagawa, Japan
- GalPharma Co., Ltd., Takamatsu, Kagawa, Japan
| | - Aurore Gelin
- CNRS, UMR 8126, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Univ Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Rami Mustapha
- CNRS, UMR 8161, IRCV group, Institut de Biologie de Lille, Lille, France
| | | | - Sylviane Hoos
- Plate-forme de Biophysique Moléculaire, Institut Pasteur, Paris, France
| | - Yoichi Chiba
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Takamatsu, Kagawa, Japan
| | - Masaki Ueno
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Takamatsu, Kagawa, Japan
| | - Mitsuomi Hirashima
- GalPharma Co., Ltd., Takamatsu, Kagawa, Japan
- Department of Gastroenterology & Neurology, Faculty of Medicine, Kagawa University, Takamatsu, Kagawa, Japan
| | | | - Olivier Morales
- CNRS, UMR 8161, IRCV group, Institut de Biologie de Lille, Lille, France
| | - Bertrand Raynal
- Plate-forme de Biophysique Moléculaire, Institut Pasteur, Paris, France
| | - Nadira Delhem
- CNRS, UMR 8161, IRCV group, Institut de Biologie de Lille, Lille, France
| | - Olivier Dellis
- INSERM, UMR-S 1174, Univ Paris Sud, Université Paris-Saclay, Orsay, France
| | - Pierre Busson
- CNRS, UMR 8126, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Univ Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- * E-mail:
| |
Collapse
|
28
|
Sundblad V, Quintar AA, Morosi LG, Niveloni SI, Cabanne A, Smecuol E, Mauriño E, Mariño KV, Bai JC, Maldonado CA, Rabinovich GA. Galectins in Intestinal Inflammation: Galectin-1 Expression Delineates Response to Treatment in Celiac Disease Patients. Front Immunol 2018; 9:379. [PMID: 29545799 PMCID: PMC5837985 DOI: 10.3389/fimmu.2018.00379] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/12/2018] [Indexed: 12/21/2022] Open
Abstract
Galectins, a family of animal lectins characterized by their affinity for N-acetyllactosamine-enriched glycoconjugates, modulate several immune cell processes shaping the course of innate and adaptive immune responses. Through interaction with a wide range of glycosylated receptors bearing complex branched N-glycans and core 2-O-glycans, these endogenous lectins trigger distinct signaling programs thereby controling immune cell activation, differentiation, recruitment and survival. Given the unique features of mucosal inflammation and the differential expression of galectins throughout the gastrointestinal tract, we discuss here key findings on the role of galectins in intestinal inflammation, particularly Crohn’s disease, ulcerative colitis, and celiac disease (CeD) patients, as well as in murine models resembling these inflammatory conditions. In addition, we present new data highlighting the regulated expression of galectin-1 (Gal-1), a proto-type member of the galectin family, during intestinal inflammation in untreated and treated CeD patients. Our results unveil a substantial upregulation of Gal-1 accompanying the anti-inflammatory and tolerogenic response associated with gluten-free diet in CeD patients, suggesting a major role of this lectin in favoring resolution of inflammation and restoration of mucosal homeostasis. Thus, a coordinated network of galectins and their glycosylated ligands, exerting either anti-inflammatory or proinflammatory responses, may influence the interplay between intestinal epithelial cells and the highly specialized gut immune system in physiologic and pathologic settings.
Collapse
Affiliation(s)
- Victoria Sundblad
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Amado A Quintar
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Luciano G Morosi
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sonia I Niveloni
- Sección Intestino Delgado, Departamento de Medicina, Hospital de Gastroenterología Dr. C. Bonorino Udaondo, Buenos Aires, Argentina
| | - Ana Cabanne
- Unidad de Patología, Hospital de Gastroenterología, Bonorino Udaondo, Buenos Aires, Argentina
| | - Edgardo Smecuol
- Sección Intestino Delgado, Departamento de Medicina, Hospital de Gastroenterología Dr. C. Bonorino Udaondo, Buenos Aires, Argentina
| | - Eduardo Mauriño
- Sección Intestino Delgado, Departamento de Medicina, Hospital de Gastroenterología Dr. C. Bonorino Udaondo, Buenos Aires, Argentina
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Julio C Bai
- Sección Intestino Delgado, Departamento de Medicina, Hospital de Gastroenterología Dr. C. Bonorino Udaondo, Buenos Aires, Argentina.,Instituto de Investigaciones, Universidad del Salvador, Buenos Aires, Argentina
| | - Cristina A Maldonado
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
29
|
Alhabbab R, Blair P, Smyth LA, Ratnasothy K, Peng Q, Moreau A, Lechler R, Elgueta R, Lombardi G. Galectin-1 is required for the regulatory function of B cells. Sci Rep 2018; 8:2725. [PMID: 29426942 PMCID: PMC5807431 DOI: 10.1038/s41598-018-19965-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/04/2018] [Indexed: 12/11/2022] Open
Abstract
Galectin-1 (Gal-1) is required for the development of B cells in the bone marrow (BM), however very little is known about the contribution of Gal-1 to the development of B cell regulatory function. Here, we report an important role for Gal-1 in the induction of B cells regulatory function. Mice deficient of Gal-1 (Gal-1−/−) showed significant loss of Transitional-2 (T2) B cells, previously reported to include IL-10+ regulatory B cells. Gal-1−/− B cells stimulated in vitro via CD40 molecules have impaired IL-10 and Tim-1 expression, the latter reported to be required for IL-10 production in regulatory B cells, and increased TNF-α expression compared to wild type (WT) B cells. Unlike their WT counterparts, T2 and T1 Gal-1−/− B cells did not suppress TNF-α expression by CD4+ T cells activated in vitro with allogenic DCs (allo-DCs), nor were they suppressive in vivo, being unable to delay MHC-class I mismatched skin allograft rejection following adoptive transfer. Moreover, T cells stimulated with allo-DCs show an increase in their survival when co-cultured with Gal-1−/− T2 and MZ B cells compared to WT T2 and MZ B cells. Collectively, these data suggest that Gal-1 contributes to the induction of B cells regulatory function.
Collapse
Affiliation(s)
- R Alhabbab
- Infectious Disease Unit & Division of Applied Medical Sciences, King Fahad Centre for medical research, King Abdulaziz University, Jeddah, Saudi Arabia. .,Division of Transplantation Immunology & Mucosal Biology, King's College London, King's Health Partners, Guy's Hospital, London, SE1 9RT, UK.
| | - P Blair
- Division of Transplantation Immunology & Mucosal Biology, King's College London, King's Health Partners, Guy's Hospital, London, SE1 9RT, UK.,Centre for Rheumatology, Division of Medicine, University College London, London, WC1E 6JF, UK
| | - L A Smyth
- Division of Transplantation Immunology & Mucosal Biology, King's College London, King's Health Partners, Guy's Hospital, London, SE1 9RT, UK.,School of Health, Sports and Biosciences, University of East London, Stratford, E15 4LZ, UK
| | - K Ratnasothy
- Division of Transplantation Immunology & Mucosal Biology, King's College London, King's Health Partners, Guy's Hospital, London, SE1 9RT, UK
| | - Q Peng
- Division of Transplantation Immunology & Mucosal Biology, King's College London, King's Health Partners, Guy's Hospital, London, SE1 9RT, UK
| | - A Moreau
- Division of Transplantation Immunology & Mucosal Biology, King's College London, King's Health Partners, Guy's Hospital, London, SE1 9RT, UK.,Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, CHU, Nantes, France
| | - R Lechler
- Division of Transplantation Immunology & Mucosal Biology, King's College London, King's Health Partners, Guy's Hospital, London, SE1 9RT, UK
| | - R Elgueta
- Division of Transplantation Immunology & Mucosal Biology, King's College London, King's Health Partners, Guy's Hospital, London, SE1 9RT, UK.
| | - G Lombardi
- Division of Transplantation Immunology & Mucosal Biology, King's College London, King's Health Partners, Guy's Hospital, London, SE1 9RT, UK.
| |
Collapse
|
30
|
Sundblad V, Morosi LG, Geffner JR, Rabinovich GA. Galectin-1: A Jack-of-All-Trades in the Resolution of Acute and Chronic Inflammation. THE JOURNAL OF IMMUNOLOGY 2017; 199:3721-3730. [PMID: 29158348 DOI: 10.4049/jimmunol.1701172] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/10/2017] [Indexed: 12/25/2022]
Abstract
Regulatory signals provide negative input to immunological networks promoting resolution of acute and chronic inflammation. Galectin-1 (Gal-1), a member of a family of evolutionarily conserved glycan-binding proteins, displays broad anti-inflammatory and proresolving activities by targeting multiple immune cell types. Within the innate immune compartment, Gal-1 acts as a resolution-associated molecular pattern by counteracting the synthesis of proinflammatory cytokines, inhibiting neutrophil trafficking, targeting eosinophil migration and survival, and suppressing mast cell degranulation. Likewise, this lectin controls T cell and B cell compartments by modulating receptor clustering and signaling, thus serving as a negative-regulatory checkpoint that reprograms cellular activation, differentiation, and survival. In this review, we discuss the central role of Gal-1 in regulatory programs operating during acute inflammation, autoimmune diseases, allergic inflammation, pregnancy, cancer, and infection. Therapeutic strategies aimed at targeting Gal-1-glycan interactions will contribute to overcome cancer immunosuppression and reinforce antimicrobial immunity, whereas stimulation of Gal-1-driven immunoregulatory circuits will help to mitigate exuberant inflammation.
Collapse
Affiliation(s)
- Victoria Sundblad
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo de Investigaciones Científicas y Técnicas, C1428 Buenos Aires, Argentina
| | - Luciano G Morosi
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo de Investigaciones Científicas y Técnicas, C1428 Buenos Aires, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428 Buenos Aires, Argentina
| | - Jorge R Geffner
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, C1405 Buenos Aires, Argentina; and.,Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Consejo de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, C1405 Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo de Investigaciones Científicas y Técnicas, C1428 Buenos Aires, Argentina; .,Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428 Buenos Aires, Argentina
| |
Collapse
|
31
|
Takatsu H, Takayama M, Naito T, Takada N, Tsumagari K, Ishihama Y, Nakayama K, Shin HW. Phospholipid flippase ATP11C is endocytosed and downregulated following Ca 2+-mediated protein kinase C activation. Nat Commun 2017; 8:1423. [PMID: 29123098 PMCID: PMC5680300 DOI: 10.1038/s41467-017-01338-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 09/09/2017] [Indexed: 12/15/2022] Open
Abstract
We and others showed that ATP11A and ATP11C, members of the P4-ATPase family, translocate phosphatidylserine (PS) and phosphatidylethanolamine from the exoplasmic to the cytoplasmic leaflets at the plasma membrane. PS exposure on the outer leaflet of the plasma membrane in activated platelets, erythrocytes, and apoptotic cells was proposed to require the inhibition of PS-flippases, as well as activation of scramblases. Although ATP11A and ATP11C are cleaved by caspases in apoptotic cells, it remains unclear how PS-flippase activity is regulated in non-apoptotic cells. Here we report that the PS-flippase ATP11C, but not ATP11A, is sequestered from the plasma membrane via clathrin-mediated endocytosis upon Ca2+-mediated PKC activation. Importantly, we show that a characteristic di-leucine motif (SVRPLL) in the C-terminal cytoplasmic region of ATP11C becomes functional upon PKC activation. Moreover endocytosis of ATP11C is induced by Ca2+-signaling via Gq-coupled receptors. Our data provide the first evidence for signal-dependent regulation of mammalian P4-ATPase. ATP11C is a flippase that uses ATP hydrolysis to translocate phospholipids at the plasma membrane. Here, the authors show that the activation of Ca2+-dependent protein kinase C increases ATP11C endocytosis thus downregulating phospholipid translocation.
Collapse
Affiliation(s)
- Hiroyuki Takatsu
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Masahiro Takayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tomoki Naito
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Naoto Takada
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kazuya Tsumagari
- Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yasushi Ishihama
- Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hye-Won Shin
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
32
|
Kamili NA, Arthur CM, Gerner-Smidt C, Tafesse E, Blenda A, Dias-Baruffi M, Stowell SR. Key regulators of galectin-glycan interactions. Proteomics 2017; 16:3111-3125. [PMID: 27582340 DOI: 10.1002/pmic.201600116] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/15/2016] [Accepted: 08/29/2016] [Indexed: 11/08/2022]
Abstract
Protein-ligand interactions serve as fundamental regulators of numerous biological processes. Among protein-ligand pairs, glycan binding proteins (GBPs) and the glycans they recognize represent unique and highly complex interactions implicated in a broad range of regulatory activities. With few exceptions, cell surface receptors and secreted proteins are heavily glycosylated. As these glycans often represent highly regulatable post-translational modifications, alterations in glycosylation can fundamentally impact GBP recognition. Among GBPs, galectins in particular appear to engage a diverse set of glycan determinants to impact a broad range of biological processes. In this review, we will explore factors that impact galectin activity, including the effect of glycan modification on galectin-glycan interactions.
Collapse
Affiliation(s)
- Nourine A Kamili
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Connie M Arthur
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Christian Gerner-Smidt
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Eden Tafesse
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Anna Blenda
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA.,Department of Biology, Erskine College, Due West, SC, USA
| | - Marcelo Dias-Baruffi
- Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Sean R Stowell
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA.,Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
33
|
Translating the ‘Sugar Code’ into Immune and Vascular Signaling Programs. Trends Biochem Sci 2017; 42:255-273. [DOI: 10.1016/j.tibs.2016.11.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 12/21/2022]
|
34
|
Blaževitš O, Mideksa YG, Šolman M, Ligabue A, Ariotti N, Nakhaeizadeh H, Fansa EK, Papageorgiou AC, Wittinghofer A, Ahmadian MR, Abankwa D. Galectin-1 dimers can scaffold Raf-effectors to increase H-ras nanoclustering. Sci Rep 2016; 6:24165. [PMID: 27087647 PMCID: PMC4834570 DOI: 10.1038/srep24165] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 03/22/2016] [Indexed: 12/12/2022] Open
Abstract
Galectin-1 (Gal-1) dimers crosslink carbohydrates on cell surface receptors. Carbohydrate-derived inhibitors have been developed for cancer treatment. Intracellularly, Gal-1 was suggested to interact with the farnesylated C-terminus of Ras thus specifically stabilizing GTP-H-ras nanoscale signalling hubs in the membrane, termed nanoclusters. The latter activity may present an alternative mechanism for how overexpressed Gal-1 stimulates tumourigenesis. Here we revise the current model for the interaction of Gal-1 with H-ras. We show that it indirectly forms a complex with GTP-H-ras via a high-affinity interaction with the Ras binding domain (RBD) of Ras effectors. A computationally generated model of the Gal-1/C-Raf-RBD complex is validated by mutational analysis. Both cellular FRET as well as proximity ligation assay experiments confirm interaction of Gal-1 with Raf proteins in mammalian cells. Consistently, interference with H-rasG12V-effector interactions basically abolishes H-ras nanoclustering. In addition, an intact dimer interface of Gal-1 is required for it to positively regulate H-rasG12V nanoclustering, but negatively K-rasG12V nanoclustering. Our findings suggest stacked dimers of H-ras, Raf and Gal-1 as building blocks of GTP-H-ras-nanocluster at high Gal-1 levels. Based on our results the Gal-1/effector interface represents a potential drug target site in diseases with aberrant Ras signalling.
Collapse
Affiliation(s)
- Olga Blaževitš
- Turku Centre for Biotechnology, Åbo Akademi University, Tykistökatu 6B, 20520 Turku, Finland
| | - Yonatan G. Mideksa
- Turku Centre for Biotechnology, Åbo Akademi University, Tykistökatu 6B, 20520 Turku, Finland
| | - Maja Šolman
- Turku Centre for Biotechnology, Åbo Akademi University, Tykistökatu 6B, 20520 Turku, Finland
| | - Alessio Ligabue
- Turku Centre for Biotechnology, Åbo Akademi University, Tykistökatu 6B, 20520 Turku, Finland
| | - Nicholas Ariotti
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Hossein Nakhaeizadeh
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Eyad K. Fansa
- Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | | | | | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Daniel Abankwa
- Turku Centre for Biotechnology, Åbo Akademi University, Tykistökatu 6B, 20520 Turku, Finland
| |
Collapse
|
35
|
van den Bogaart E, de Bes HM, Balraadjsing PPS, Mens PF, Adams ER, Grobusch MP, van Die I, Schallig HDFH. Leishmania donovani infection drives the priming of human monocyte-derived dendritic cells during Plasmodium falciparum co-infections. Parasite Immunol 2015; 37:453-69. [PMID: 26173941 DOI: 10.1111/pim.12214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/07/2015] [Indexed: 11/28/2022]
Abstract
Functional impairment of dendritic cells (DCs) is part of a survival strategy evolved by Leishmania and Plasmodium parasites to evade host immune responses. Here, the effects of co-exposing human monocyte-derived DCs to Leishmania donovani promastigotes and Plasmodium falciparum-infected erythrocytes were investigated. Co-stimulation resulted in a dual, dose-dependent effect on DC differentiation which ranged from semi-mature cells, secreting low interleukin(-12p70 levels to a complete lack of phenotypic maturation in the presence of high parasite amounts. The effect was mainly triggered by the Leishmania parasites, as illustrated by their ability to induce semi-mature, interleukin-10-producing DCs, that poorly responded to lipopolysaccharide stimulation. Conversely, P. falciparum blood-stage forms failed to activate DCs and only slightly interfered with lipopolysaccharide effects. Stimulation with high L. donovani concentrations triggered phosphatidylserine translocation, whose onset presented after initiating the maturation impairment process. When added in combination, the two parasites could co-localize in the same DCs, confirming that the leading effects of Leishmania over Plasmodium may not be due to mutual exclusion. Altogether, these results suggest that in the presence of visceral leishmaniasis-malaria co-infections, Leishmania-driven effects may overrule the more silent response elicited by P. falciparum, shaping host immunity towards a regulatory pattern and possibly delaying disease resolution.
Collapse
Affiliation(s)
- E van den Bogaart
- Parasitology Unit, Department of Biomedical Research, Royal Tropical Institute (KIT), Amsterdam, the Netherlands
| | - H M de Bes
- Parasitology Unit, Department of Biomedical Research, Royal Tropical Institute (KIT), Amsterdam, the Netherlands
| | - P P S Balraadjsing
- Parasitology Unit, Department of Biomedical Research, Royal Tropical Institute (KIT), Amsterdam, the Netherlands
| | - P F Mens
- Parasitology Unit, Department of Biomedical Research, Royal Tropical Institute (KIT), Amsterdam, the Netherlands.,Division of Internal Medicine, Department of Infectious Diseases, Center of Tropical Medicine and Travel Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - E R Adams
- Parasitology Unit, Department of Biomedical Research, Royal Tropical Institute (KIT), Amsterdam, the Netherlands
| | - M P Grobusch
- Division of Internal Medicine, Department of Infectious Diseases, Center of Tropical Medicine and Travel Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - I van Die
- Department of Molecular Cell Biology, VU University Medical Centre (VUMC), Amsterdam, the Netherlands
| | - H D F H Schallig
- Parasitology Unit, Department of Biomedical Research, Royal Tropical Institute (KIT), Amsterdam, the Netherlands
| |
Collapse
|
36
|
Hornik TC, Vilalta A, Brown GC. Activated microglia cause reversible apoptosis of pheochromocytoma cells, inducing their cell death by phagocytosis. J Cell Sci 2015; 129:65-79. [PMID: 26567213 DOI: 10.1242/jcs.174631] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 11/10/2015] [Indexed: 12/15/2022] Open
Abstract
Some apoptotic processes, such as phosphatidylserine exposure, are potentially reversible and do not necessarily lead to cell death. However, phosphatidylserine exposure can induce phagocytosis of a cell, resulting in cell death by phagocytosis: phagoptosis. Phagoptosis of neurons by microglia might contribute to neuropathology, whereas phagoptosis of tumour cells by macrophages might limit cancer. Here, we examined the mechanisms by which BV-2 microglia killed co-cultured pheochromocytoma (PC12) cells that were either undifferentiated or differentiated into neuronal cells. We found that microglia activated by lipopolysaccharide rapidly phagocytosed PC12 cells. Activated microglia caused reversible phosphatidylserine exposure on and reversible caspase activation in PC12 cells, and caspase inhibition prevented phosphatidylserine exposur and decreased subsequent phagocytosis. Nitric oxide was necessary and sufficient to induce the reversible phosphatidylserine exposure and phagocytosis. The PC12 cells were not dead at the time they were phagocytised, and inhibition of their phagocytosis left viable cells. Cell loss was inhibited by blocking phagocytosis mediated by phosphatidylserine, MFG-E8, vitronectin receptors or P2Y6 receptors. Thus, activated microglia can induce reversible apoptosis of target cells, which is insufficient to cause apoptotic cell death, but sufficient to induce their phagocytosis and therefore cell death by phagoptosis.
Collapse
Affiliation(s)
- Tamara C Hornik
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Anna Vilalta
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| |
Collapse
|
37
|
Hou F, Liu Y, He S, Wang X, Mao A, Liu Z, Sun C, Liu X. A galectin from shrimp Litopenaeus vannamei is involved in immune recognition and bacteria phagocytosis. FISH & SHELLFISH IMMUNOLOGY 2015; 44:584-591. [PMID: 25819117 DOI: 10.1016/j.fsi.2015.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 06/04/2023]
Abstract
Galectins are conserved family members with β-galactosides affinity that play multiple functions in embryogenesis, development and regulation of innate and adaptive immunity. However, little functional studies were reported in crustaceans. Here, a shrimp Litopenaeus vannamei galectin (LvGal) cDNA was identified with an open reading frame of 1017 bp, which encodes a putative protein of 338 amino acids. A carbohydrate recognition domain (CRD) and several amino acids residues involved in dimerization were found in LvGal. LvGal mRNA was mainly expressed in gills and hemocytes and upregulated post Vibrio anguillarum challenge. Recombinant LvGal (rLvGal) was expressed in Escherichia coli BL21 (DE3) and the purified rLvGal could strongly bind G(-) bacteria V. anguillarum and G(+) bacteria Micrococcus lysodeikticus. Besides, rLvGal exhibited strong activity to agglutinate V. anguillarum and weak activity to agglutinate M. lysodeikticus but no obvious antibacterial activity was found with selected bacteria. In addition, in vivo experiments showed rLvGal could promote phagocytosis of bacteria by hemocytes. Thus, through these collective data we predicted LvGal is involved in immune recognition and functions as a potential pattern recognition receptor.
Collapse
Affiliation(s)
- Fujun Hou
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, China
| | - Yongjie Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, China
| | - Shulin He
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, China
| | - Xianzong Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, China
| | - Aitao Mao
- Fisheries College, Guangdong Ocean University, Guangdong 524088, China
| | - Zhigang Liu
- Fisheries College, Guangdong Ocean University, Guangdong 524088, China
| | - Chengbo Sun
- Fisheries College, Guangdong Ocean University, Guangdong 524088, China
| | - Xiaolin Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, China.
| |
Collapse
|
38
|
Cerri DG, Arthur CM, Rodrigues LC, Fermino ML, Rocha LB, Stowell SR, Baruffi MD. Examination of galectin localization using confocal microscopy. Methods Mol Biol 2015; 1207:343-54. [PMID: 25253152 DOI: 10.1007/978-1-4939-1396-1_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Confocal microscopy provides a unique modality to examine the expression and localization of biomolecules in a variety of settings. Using this technique, an image is acquired from the focal plane of the objective using focused laser light, making it possible to work within the resolution limit of the optical system. In addition, by acquiring multiple images from a variety of focal planes, stacked series of images can provide clear spatial localization of a probed structure or protein. We describe herein the immunofluorescence methods for galectin staining in frozen sections of tissue for galectin localization using confocal microscopy.
Collapse
Affiliation(s)
- Daniel Giuliano Cerri
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Clinical, Toxicological and Bromatological Analysis, University of Sao Paulo, Ribeirão Preto-S, Brazil
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Galectins, a family of β-galactoside-binding proteins, are expressed in many different phagocytic leukocytes (granulocytes, monocytes, and macrophages). A number of family members have been shown to play an important role in ingestion of particles (phagocytosis), thus contributing to clearance of damaged cells and host defense against pathogens. Here we describe procedures for analysis of the roles of galectins in phagocytosis by using galectin-3 as an example. We emphasize the function of endogenous galectin-3 as determined by comparison of phagocytosis by macrophages from galectin-3 knockout mice and wild-type mice. We focus on the role of galectin-3 in phagocytosis of pathogens and Fcγ receptor-mediated phagocytosis of opsonized cells and particles.
Collapse
Affiliation(s)
- Huan-Yuan Chen
- Department of Dermatology, University of California Davis, School of Medicine, Sacramento, CA, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
Plasma cells are terminally differentiated B cells that develop via the stimulation of mature B cells with various agents such as antigens and mitogens. Recently, we found that plasma cell differentiation can be modulated by galectin-1 and galectin-8; these galectins appear to play additive and redundant roles in promoting the production of antibody. Here, we describe the protocols for how to investigate the roles of galectins in plasma cell differentiation. These methods include the preparation of recombinant galectins from Escherichia coli for exogenously treating primary B cells, generation of galectin_Fc(m) fusion proteins for determining their binding to B cells, introduction of ectopic galectins in primary B cells using retroviral vectors, and inhibition of the binding of galectins to B cells by synthetic disaccharides.
Collapse
Affiliation(s)
- Chih-Ming Tsai
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang District, Taipei 115, Taiwan
| | | |
Collapse
|
41
|
Abstract
Galectins are an evolutionarily ancient family of glycan-binding proteins (GBPs) and are found in all animals. Although they were discovered over 30 years ago, ideas about their biological functions continue to evolve. Current evidence indicates that galectins, which are the only known GBPs that occur free in the cytoplasm and extracellularly, are involved in a variety of intracellular and extracellular pathways contributing to homeostasis, cellular turnover, cell adhesion, and immunity. Here we review evolving insights into galectin biology from a historical perspective and explore current evidence regarding biological roles of galectins.
Collapse
|
42
|
Detection of phosphatidylserine exposure on leukocytes following treatment with human galectins. Methods Mol Biol 2015; 1207:185-200. [PMID: 25253141 DOI: 10.1007/978-1-4939-1396-1_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cellular turnover represents a fundamental aspect of immunological homeostasis. While many factors appear to regulate leukocyte removal during inflammatory resolution, recent studies suggest that members of the galectin family play a unique role in orchestrating this process. Unlike cellular removal through apoptotic cell death, several members of the galectin family induce surface expression of phosphatidylserine (PS), a phagocytic marker on cells undergoing apoptosis, in the absence of cell death. However, similar to PS on cells undergoing apoptosis, galectin-induced PS exposure sensitizes cells to phagocytic removal. As galectins appear to prepare cells for phagocytic removal without actually inducing apoptotic cell death, this process has recently been coined preaparesis. Given the unique characteristics of galectin-induced PS exposure in the context of preaparesis, we will examine important considerations when evaluating the potential impact of different galectin family members on PS exposure and cell viability.
Collapse
|
43
|
Anandhan A, Rodriguez-Rocha H, Bohovych I, Griggs AM, Zavala-Flores L, Reyes-Reyes EM, Seravalli J, Stanciu LA, Lee J, Rochet JC, Khalimonchuk O, Franco R. Overexpression of alpha-synuclein at non-toxic levels increases dopaminergic cell death induced by copper exposure via modulation of protein degradation pathways. Neurobiol Dis 2014; 81:76-92. [PMID: 25497688 DOI: 10.1016/j.nbd.2014.11.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 11/03/2014] [Accepted: 11/26/2014] [Indexed: 12/14/2022] Open
Abstract
Gene multiplications or point mutations in alpha (α)-synuclein are associated with familial and sporadic Parkinson's disease (PD). An increase in copper (Cu) levels has been reported in the cerebrospinal fluid and blood of PD patients, while occupational exposure to Cu has been suggested to augment the risk to develop PD. We aimed to elucidate the mechanisms by which α-synuclein and Cu regulate dopaminergic cell death. Short-term overexpression of wild type (WT) or mutant A53T α-synuclein had no toxic effect in human dopaminergic cells and primary midbrain cultures, but it exerted a synergistic effect on Cu-induced cell death. Cell death induced by Cu was potentiated by overexpression of the Cu transporter protein 1 (Ctr1) and depletion of intracellular glutathione (GSH) indicating that the toxic effects of Cu are linked to alterations in its intracellular homeostasis. Using the redox sensor roGFP, we demonstrated that Cu-induced oxidative stress was primarily localized in the cytosol and not in the mitochondria. However, α-synuclein overexpression had no effect on Cu-induced oxidative stress. WT or A53T α-synuclein overexpression exacerbated Cu toxicity in dopaminergic and yeast cells in the absence of α-synuclein aggregation. Cu increased autophagic flux and protein ubiquitination. Impairment of autophagy by overexpression of a dominant negative Atg5 form or inhibition of the ubiquitin/proteasome system (UPS) with MG132 enhanced Cu-induced cell death. However, only inhibition of the UPS stimulated the synergistic toxic effects of Cu and α-synuclein overexpression. Our results demonstrate that α-synuclein stimulates Cu toxicity in dopaminergic cells independent from its aggregation via modulation of protein degradation pathways.
Collapse
Affiliation(s)
- Annadurai Anandhan
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Humberto Rodriguez-Rocha
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Iryna Bohovych
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Amy M Griggs
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Laura Zavala-Flores
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Javier Seravalli
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Lia A Stanciu
- Weldon School of Biomedical Engineering and School of Materials Engineering, Purdue University, West Lafayette, IN, USA
| | - Jaekwon Lee
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Oleh Khalimonchuk
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Rodrigo Franco
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
44
|
Toledo KA, Fermino ML, Andrade CDC, Riul TB, Alves RT, Muller VDM, Russo RR, Stowell SR, Cummings RD, Aquino VH, Dias-Baruffi M. Galectin-1 exerts inhibitory effects during DENV-1 infection. PLoS One 2014; 9:e112474. [PMID: 25392933 PMCID: PMC4231055 DOI: 10.1371/journal.pone.0112474] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 10/15/2014] [Indexed: 12/19/2022] Open
Abstract
Dengue virus (DENV) is an enveloped RNA virus that is mosquito-transmitted and can infect a variety of immune and non-immune cells. Response to infection ranges from asymptomatic disease to a severe disorder known as dengue hemorrhagic fever. Despite efforts to control the disease, there are no effective treatments or vaccines. In our search for new antiviral compounds to combat infection by dengue virus type 1 (DENV-1), we investigated the role of galectin-1, a widely-expressed mammalian lectin with functions in cell-pathogen interactions and immunoregulatory properties. We found that DENV-1 infection of cells in vitro exhibited caused decreased expression of Gal-1 in several different human cell lines, suggesting that loss of Gal-1 is associated with virus production. In test of this hypothesis we found that exogenous addition of human recombinant Gal-1 (hrGal-1) inhibits the virus production in the three different cell types. This inhibitory effect was dependent on hrGal-1 dimerization and required its carbohydrate recognition domain. Importantly, the inhibition was specific for hrGal-1, since no effect was observed using recombinant human galectin-3. Interestingly, we found that hrGal-1 directly binds to dengue virus and acts, at least in part, during the early stages of DENV-1 infection, by inhibiting viral adsorption and its internalization to target cells. To test the in vivo role of Gal-1 in DENV infection, Gal-1-deficient-mice were used to demonstrate that the expression of endogenous Galectin-1 contributes to resistance of macrophages to in vitro-infection with DENV-1 and it is also important to physiological susceptibility of mice to in vivo infection with DENV-1. These results provide novel insights into the functions of Gal-1 in resistance to DENV infection and suggest that Gal-1 should be explored as a potential antiviral compound.
Collapse
Affiliation(s)
- Karina Alves Toledo
- Department of Biological Sciences, Universidade Estadual Paulista - UNESP (FCL-Assis), Assis, Brazil
| | - Marise Lopes Fermino
- Departmento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Camillo Del Cistia Andrade
- Departmento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Thalita Bachelli Riul
- Departmento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Renata Tomé Alves
- Departmento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vanessa Danielle Menjon Muller
- Departmento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Raquel Rinaldi Russo
- Departmento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Sean R Stowell
- Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Richard D Cummings
- Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Victor Hugo Aquino
- Departmento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Marcelo Dias-Baruffi
- Departmento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
45
|
Abstract
TMEM16 proteins, also known as anoctamins, are involved in a variety of functions that include ion transport, phospholipid scrambling, and regulation of other membrane proteins. The first two members of the family, TMEM16A (anoctamin-1, ANO1) and TMEM16B (anoctamin-2, ANO2), function as Ca2+-activated Cl- channels (CaCCs), a type of ion channel that plays important functions such as transepithelial ion transport, smooth muscle contraction, olfaction, phototransduction, nociception, and control of neuronal excitability. Genetic ablation of TMEM16A in mice causes impairment of epithelial Cl- secretion, tracheal abnormalities, and block of gastrointestinal peristalsis. TMEM16A is directly regulated by cytosolic Ca2+ as well as indirectly by its interaction with calmodulin. Other members of the anoctamin family, such as TMEM16C, TMEM16D, TMEM16F, TMEM16G, and TMEM16J, may work as phospholipid scramblases and/or ion channels. In particular, TMEM16F (ANO6) is a major contributor to the process of phosphatidylserine translocation from the inner to the outer leaflet of the plasma membrane. Intriguingly, TMEM16F is also associated with the appearance of anion/cation channels activated by very high Ca2+ concentrations. Furthermore, a TMEM16 protein expressed in Aspergillus fumigatus displays both ion channel and lipid scramblase activity. This finding suggests that dual function is an ancestral characteristic of TMEM16 proteins and that some members, such as TMEM16A and TMEM16B, have evolved to a pure channel function. Mutations in anoctamin genes (ANO3, ANO5, ANO6, and ANO10) cause various genetic diseases. These diseases suggest the involvement of anoctamins in a variety of cell functions whose link with ion transport and/or lipid scrambling needs to be clarified.
Collapse
|
46
|
Shi XZ, Wang L, Xu S, Zhang XW, Zhao XF, Vasta GR, Wang JX. A galectin from the kuruma shrimp (Marsupenaeus japonicus) functions as an opsonin and promotes bacterial clearance from hemolymph. PLoS One 2014; 9:e91794. [PMID: 24618590 PMCID: PMC3950279 DOI: 10.1371/journal.pone.0091794] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/14/2014] [Indexed: 01/19/2023] Open
Abstract
Galectins are a lectin family characterized by a conserved sequence motif in the carbohydrate recognition domain, which preferential binds to galactosyl moieties. However, few studies about the biological roles of galectins in invertebrates have been reported except for the galectin (CvGal1) from the eastern oyster Crassostrea virginica. Furthermore, galectins have been described in only a few crustacean species, and no functional studies have been reported so far. In this study, we identified and functionally characterized a galectin from the kuruma shrimp Marsupenaeus japonicus, which we designated MjGal. Upon Vibrio anguillarum challenge, expression of MjGal was up-regulated mostly in hemocytes and hepatopancreas, and the protein bound to both Gram-positive and Gram-negative bacteria through the recognition of lipoteichoic acid (LTA) or lipopolysaccharide (LPS), respectively. By also binding to the shrimp hemocyte surface, MjGal functions as an opsonin for microbial pathogens, promoting their phagocytosis. Further, as shown by RNA interference, MjGal participates in clearance of bacteria from circulation, and thereby contributes to the shrimp’s immune defense against infectious challenge. Elucidation of functional and mechanistic aspects of shrimp immunity will enable the development of novel strategies for intervention in infectious diseases currently affecting the shrimp farming industry worldwide.
Collapse
Affiliation(s)
- Xiu-Zhen Shi
- MOE Key Laboratory of Plant Cell Engineering and Germplasm Innovation/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Lei Wang
- MOE Key Laboratory of Plant Cell Engineering and Germplasm Innovation/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Sen Xu
- MOE Key Laboratory of Plant Cell Engineering and Germplasm Innovation/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Xiao-Wen Zhang
- MOE Key Laboratory of Plant Cell Engineering and Germplasm Innovation/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Xiao-Fan Zhao
- MOE Key Laboratory of Plant Cell Engineering and Germplasm Innovation/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Gerardo Raul Vasta
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, and Institute of Marine and Environmental Technology, Baltimore, Maryland, United States of America
| | - Jin-Xing Wang
- MOE Key Laboratory of Plant Cell Engineering and Germplasm Innovation/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, China
- * E-mail:
| |
Collapse
|
47
|
Stowell SR, Liepkalns JS, Hendrickson JE, Girard-Pierce KR, Smith NH, Arthur CM, Zimring JC. Antigen modulation confers protection to red blood cells from antibody through Fcγ receptor ligation. THE JOURNAL OF IMMUNOLOGY 2013; 191:5013-25. [PMID: 24108700 DOI: 10.4049/jimmunol.1300885] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Autoantibodies and alloantibodies can damage self-tissue or transplanted tissues through either fixation of complement or ligation of FcγRs. Several pathways have been described that imbue self-tissues with resistance to damage from complement fixation, as a protective measure against damage from these Abs. However, it has been unclear whether parallel pathways exist to provide protection from FcγR ligation by bound Abs. In this article, we describe a novel pathway by which cell surface Ag is specifically decreased as a result of Ab binding (Ag modulation) to the extent of conferring protection to recognized cells from Fcγ-dependent clearance. Moreover, the Ag modulation in this system requires FcγR ligation. Together, these findings provide unique evidence of self-protective pathways for FcγR-mediated Ab damage.
Collapse
Affiliation(s)
- Sean R Stowell
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
| | | | | | | | | | | | | |
Collapse
|
48
|
Lichtenstein RG, Rabinovich GA. Glycobiology of cell death: when glycans and lectins govern cell fate. Cell Death Differ 2013; 20:976-86. [PMID: 23703323 DOI: 10.1038/cdd.2013.50] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/08/2013] [Accepted: 04/16/2013] [Indexed: 02/04/2023] Open
Abstract
Although one typically thinks of carbohydrates as associated with cell growth and viability, glycosylation also has an integral role in many processes leading to cell death. Glycans, either alone or complexed with glycan-binding proteins, can deliver intracellular signals or control extracellular processes that promote initiation, execution and resolution of cell death programs. Herein, we review the role of glycans and glycan-binding proteins as essential components of the cell death machinery during physiologic and pathologic settings.
Collapse
Affiliation(s)
- R G Lichtenstein
- Avram and Stella Goren-Goldstein, Department of Biotechnology Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | |
Collapse
|
49
|
Suzuki J, Fujii T, Imao T, Ishihara K, Kuba H, Nagata S. Calcium-dependent phospholipid scramblase activity of TMEM16 protein family members. J Biol Chem 2013; 288:13305-16. [PMID: 23532839 DOI: 10.1074/jbc.m113.457937] [Citation(s) in RCA: 283] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND TMEM16A and 16B work as Cl(-) channel, whereas 16F works as phospholipid scramblase. The function of other TMEM16 members is unknown. RESULTS Using TMEM16F(-/-) cells, TMEM16C, 16D, 16F, 16G, and 16J were shown to be lipid scramblases. CONCLUSION Some TMEM16 members are divided into two Cl(-) channels and five lipid scramblases. SIGNIFICANCE Learning the biochemical function ofTMEM16family members is essential to understand their physiological role. Asymmetrical distribution of phospholipids between the inner and outer plasma membrane leaflets is disrupted in various biological processes. We recently identified TMEM16F, an eight-transmembrane protein, as a Ca(2+)-dependent phospholipid scramblase that exposes phosphatidylserine (PS) to the cell surface. In this study, we established a mouse lymphocyte cell line with a floxed allele in the TMEM16F gene. When TMEM16F was deleted, these cells failed to expose PS in response to Ca(2+) ionophore, but PS exposure was elicited by Fas ligand treatment. We expressed other TMEM16 proteins in the TMEM16F(-/-) cells and found that not only TMEM16F, but also 16C, 16D, 16G, and 16J work as lipid scramblases with different preference to lipid substrates. On the other hand, a patch clamp analysis in 293T cells indicated that TMEM16A and 16B, but not other family members, acted as Ca(2+)-dependent Cl(-) channels. These results indicated that among 10 TMEM16 family members, 7 members could be divided into two subfamilies, Ca(2+)-dependent Cl(-) channels (16A and 16B) and Ca(2+)-dependent lipid scramblases (16C, 16D, 16F, 16G, and 16J).
Collapse
Affiliation(s)
- Jun Suzuki
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
50
|
|