1
|
Fabret C, Giudice E, Chat S, Gillet R, Namy O. RQC2 is a major player in peptide release from stalled ribosomes. Structure 2025:S0969-2126(25)00105-4. [PMID: 40187343 DOI: 10.1016/j.str.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 11/15/2024] [Accepted: 03/11/2025] [Indexed: 04/07/2025]
Abstract
Eukaryotic cells prevent the accumulation of potentially toxic aberrant polypeptides and maintain ribosome availability through surveillance and clearance mechanisms, including the evolutionarily conserved ribosome-associated quality control complex (RQC). RQC pathways have been widely investigated, with the identification of several factors ANKZF1/Vms1p, Ptrh1, and Arb1p involved in release/cleavage of the peptide-tRNA from 60S subunits. We aimed here to identify the genes involved in peptide release from stalled ribosomes. Using a genetic screen, we identified a mutant allele of RQC2 as involved in this process. We present the cryoelectron microscopy (cryo-EM) structure of RQC, which reveals how the F340I mutation affects mutant binding. This altered binding, in turn, disrupts the A-site's ability to bind the tRNA in the presence of Ltn1. These data account for the limitation of C-terminal alanine and threonine (CAT) tailing by the F340I mutation and suggest a model explaining the role of the Rqc2 protein in peptide release.
Collapse
Affiliation(s)
- Céline Fabret
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Emmanuel Giudice
- University Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, 35000 Rennes, France
| | - Sophie Chat
- University Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, 35000 Rennes, France
| | - Reynald Gillet
- University Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, 35000 Rennes, France
| | - Olivier Namy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
2
|
Mikutis S, Bernardes GJL. Technologies for Targeted RNA Degradation and Induced RNA Decay. Chem Rev 2024; 124:13301-13330. [PMID: 39499674 PMCID: PMC11638902 DOI: 10.1021/acs.chemrev.4c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/03/2024] [Accepted: 10/29/2024] [Indexed: 11/07/2024]
Abstract
The vast majority of the human genome codes for RNA, but RNA-targeting therapeutics account for a small fraction of approved drugs. As such, there is great incentive to improve old and develop new approaches to RNA targeting. For many RNA targeting modalities, just binding is not sufficient to exert a therapeutic effect; thus, targeted RNA degradation and induced decay emerged as powerful approaches with a pronounced biological effect. This review covers the origins and advanced use cases of targeted RNA degrader technologies grouped by the nature of the targeting modality as well as by the mode of degradation. It covers both well-established methods and clinically successful platforms such as RNA interference, as well as emerging approaches such as recruitment of RNA quality control machinery, CRISPR, and direct targeted RNA degradation. We also share our thoughts on the biggest hurdles in this field, as well as possible ways to overcome them.
Collapse
Affiliation(s)
- Sigitas Mikutis
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Gonçalo J. L. Bernardes
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
3
|
Firdous Z, Kalra S, Chattopadhyay R, Bari VK. Current insight into the role of mRNA decay pathways in fungal pathogenesis. Microbiol Res 2024; 283:127671. [PMID: 38479232 DOI: 10.1016/j.micres.2024.127671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 04/17/2024]
Abstract
Pathogenic fungal species can cause superficial and mucosal infections, to potentially fatal systemic or invasive infections in humans. These infections are more common in immunocompromised or critically ill patients and have a significant morbidity and fatality rate. Fungal pathogens utilize several strategies to adapt the host environment resulting in efficient and comprehensive alterations in their cellular metabolism. Fungal virulence is regulated by several factors and post-transcriptional regulation mechanisms involving mRNA molecules are one of them. Post-transcriptional controls have emerged as critical regulatory mechanisms involved in the pathogenesis of fungal species. The untranslated upstream and downstream regions of the mRNA, as well as RNA-binding proteins, regulate morphogenesis and virulence by controlling mRNA degradation and stability. The limited number of available therapeutic drugs, the emergence of multidrug resistance, and high death rates associated with systemic fungal illnesses pose a serious risk to human health. Therefore, new antifungal treatments that specifically target mRNA pathway components can decrease fungal pathogenicity and when combined increase the effectiveness of currently available antifungal drugs. This review summarizes the mRNA degradation pathways and their role in fungal pathogenesis.
Collapse
Affiliation(s)
- Zulikha Firdous
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India
| | - Sapna Kalra
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India
| | - Rituja Chattopadhyay
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India
| | - Vinay Kumar Bari
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India.
| |
Collapse
|
4
|
Khalifah BA, Alghamdi SA, Alhasan AH. Unleashing the potential of catalytic RNAs to combat mis-spliced transcripts. Front Bioeng Biotechnol 2023; 11:1244377. [PMID: 38047291 PMCID: PMC10690607 DOI: 10.3389/fbioe.2023.1244377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Human transcriptome can undergo RNA mis-splicing due to spliceopathies contributing to the increasing number of genetic diseases including muscular dystrophy (MD), Alzheimer disease (AD), Huntington disease (HD), myelodysplastic syndromes (MDS). Intron retention (IR) is a major inducer of spliceopathies where two or more introns remain in the final mature mRNA and account for many intronic expansion diseases. Potential removal of such introns for therapeutic purposes can be feasible when utilizing bioinformatics, catalytic RNAs, and nano-drug delivery systems. Overcoming delivery challenges of catalytic RNAs was discussed in this review as a future perspective highlighting the significance of utilizing synthetic biology in addition to high throughput deep sequencing and computational approaches for the treatment of mis-spliced transcripts.
Collapse
Affiliation(s)
- Bashayer A. Khalifah
- Institute for Bioengineering, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Ali H. Alhasan
- Institute for Bioengineering, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- College of Science and General Studies, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Alagar Boopathy LR, Beadle E, Garcia-Bueno Rico A, Vera M. Proteostasis regulation through ribosome quality control and no-go-decay. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1809. [PMID: 37488089 DOI: 10.1002/wrna.1809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/14/2023] [Accepted: 06/30/2023] [Indexed: 07/26/2023]
Abstract
Cell functionality relies on the existing pool of proteins and their folding into functional conformations. This is achieved through the regulation of protein synthesis, which requires error-free mRNAs and ribosomes. Ribosomes are quality control hubs for mRNAs and proteins. Problems during translation elongation slow down the decoding rate, leading to ribosome halting and the eventual collision with the next ribosome. Collided ribosomes form a specific disome structure recognized and solved by ribosome quality control (RQC) mechanisms. RQC pathways orchestrate the degradation of the problematic mRNA by no-go decay and the truncated nascent peptide, the repression of translation initiation, and the recycling of the stalled ribosomes. All these events maintain protein homeostasis and return valuable ribosomes to translation. As such, cell homeostasis and function are maintained at the mRNA level by preventing the production of aberrant or unnecessary proteins. It is becoming evident that the crosstalk between RQC and the protein homeostasis network is vital for cell function, as the absence of RQC components leads to the activation of stress response and neurodegenerative diseases. Here, we review the molecular events of RQC discovered through well-designed stalling reporters. Given the impact of RQC in proteostasis, we discuss the relevance of identifying endogenous mRNA regulated by RQC and their preservation in stress conditions. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms Translation > Regulation.
Collapse
Affiliation(s)
| | - Emma Beadle
- Department of Biochemistry, McGill University, Montreal, Canada
| | | | - Maria Vera
- Department of Biochemistry, McGill University, Montreal, Canada
| |
Collapse
|
6
|
Iyer KV, Müller M, Tittel LS, Winz ML. Molecular Highway Patrol for Ribosome Collisions. Chembiochem 2023; 24:e202300264. [PMID: 37382189 DOI: 10.1002/cbic.202300264] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 06/30/2023]
Abstract
During translation, messenger RNAs (mRNAs) are decoded by ribosomes which can stall for various reasons. These include chemical damage, codon composition, starvation, or translation inhibition. Trailing ribosomes can collide with stalled ribosomes, potentially leading to dysfunctional or toxic proteins. Such aberrant proteins can form aggregates and favor diseases, especially neurodegeneration. To prevent this, both eukaryotes and bacteria have evolved different pathways to remove faulty nascent peptides, mRNAs and defective ribosomes from the collided complex. In eukaryotes, ubiquitin ligases play central roles in triggering downstream responses and several complexes have been characterized that split affected ribosomes and facilitate degradation of the various components. As collided ribosomes signal translation stress to affected cells, in eukaryotes additional stress response pathways are triggered when collisions are sensed. These pathways inhibit translation and modulate cell survival and immune responses. Here, we summarize the current state of knowledge about rescue and stress response pathways triggered by ribosome collisions.
Collapse
Affiliation(s)
- Kaushik Viswanathan Iyer
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Max Müller
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Lena Sophie Tittel
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Marie-Luise Winz
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| |
Collapse
|
7
|
Monem PC, Vidyasagar N, Piatt AL, Sehgal E, Arribere JA. Ubiquitination of stalled ribosomes enables mRNA decay via HBS-1 and NONU-1 in vivo. PLoS Genet 2023; 19:e1010577. [PMID: 36626369 PMCID: PMC9870110 DOI: 10.1371/journal.pgen.1010577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/23/2023] [Accepted: 12/18/2022] [Indexed: 01/11/2023] Open
Abstract
As ribosomes translate the genetic code, they can encounter a variety of obstacles that hinder their progress. If ribosomes stall for prolonged times, cells suffer due to the loss of translating ribosomes and the accumulation of aberrant protein products. Thus to protect cells, stalled ribosomes experience a series of reactions to relieve the stall and degrade the offending mRNA, a process known as No-Go mRNA Decay (NGD). While much of the machinery for NGD is known, the precise ordering of events and factors along this pathway has not been tested. Here, we deploy C. elegans to unravel the coordinated events comprising NGD. Utilizing a novel reporter and forward and reverse genetics, we identify the machinery required for NGD. Our subsequent molecular analyses define a functional requirement for ubiquitination on at least two ribosomal proteins (eS10 and uS10), and we show that ribosomes lacking ubiquitination sites on eS10 and uS10 fail to perform NGD in vivo. We show that the nuclease NONU-1 acts after the ubiquitin ligase ZNF-598, and discover a novel requirement for the ribosome rescue factors HBS-1/PELO-1 in mRNA decay via NONU-1. Taken together, our work demonstrates mechanisms by which ribosomes signal to effectors of mRNA repression, and we delineate links between repressive factors working toward a well-defined NGD pathway.
Collapse
Affiliation(s)
- Parissa C. Monem
- Department of Molecular, Cell, and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California, United States of America
| | - Nitin Vidyasagar
- Department of Molecular, Cell, and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California, United States of America
| | - Audrey L. Piatt
- Department of Molecular, Cell, and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California, United States of America
| | - Enisha Sehgal
- Department of Molecular, Cell, and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California, United States of America
| | - Joshua A. Arribere
- Department of Molecular, Cell, and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
8
|
Young DJ, Guydosh NR. Rebirth of the translational machinery: The importance of recycling ribosomes. Bioessays 2022; 44:e2100269. [PMID: 35147231 PMCID: PMC9270684 DOI: 10.1002/bies.202100269] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/10/2022]
Abstract
Translation of the genetic code occurs in a cycle where ribosomes engage mRNAs, synthesize protein, and then disengage in order to repeat the process again. The final part of this process-ribosome recycling, where ribosomes dissociate from mRNAs-involves a complex molecular choreography of specific protein factors to remove the large and small subunits of the ribosome in a coordinated fashion. Errors in this process can lead to the accumulation of ribosomes at stop codons or translation of downstream open reading frames (ORFs). Ribosome recycling is also critical when a ribosome stalls during the elongation phase of translation and must be rescued to allow continued translation of the mRNA. Here we discuss the molecular interactions that drive ribosome recycling, and their regulation in the cell. We also examine the consequences of inefficient recycling with regards to disease, and its functional roles in synthesis of novel peptides, regulation of gene expression, and control of mRNA-associated proteins. Alterations in ribosome recycling efficiency have the potential to impact many cellular functions but additional work is needed to understand how this regulatory power is utilized.
Collapse
Affiliation(s)
- David J Young
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Nicholas R Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Mishra R, Bansal A, Mishra A. LISTERIN E3 Ubiquitin Ligase and Ribosome-Associated Quality Control (RQC) Mechanism. Mol Neurobiol 2021; 58:6593-6609. [PMID: 34590243 DOI: 10.1007/s12035-021-02564-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/12/2021] [Indexed: 01/09/2023]
Abstract
According to cellular demands, ribosomes synthesize and maintain the desired pool of proteins inside the cell. However, sometimes due to defects in ribosomal machinery and faulty mRNAs, these nascent polypeptides are constantly under threat to become non-functional. In such conditions, cells acquire the help of ribosome-associated quality control mechanisms (RQC) to eliminate such aberrant nascent proteins. The primary regulator of RQC is RING domain containing LISTERIN E3 ubiquitin ligase, which is associated with ribosomes and alleviates non-stop proteins-associated stress in cells. Mouse RING finger protein E3 ubiquitin ligase LISTERIN is crucial for embryonic development, and a loss in its function causes neurodegeneration. LISTERIN is overexpressed in the mouse brain and spinal cord regions, and its perturbed functions generate neurological and motor deficits, but the mechanism of the same is unclear. Overall, LISTERIN is crucial for brain health and brain development. The present article systematically describes the detailed nature, molecular functions, and cellular physiological characterization of LISTERIN E3 ubiquitin ligase. Improve comprehension of LISTERIN's neurological roles may uncover pathways linked with neurodegeneration, which in turn might elucidate a promising novel therapeutic intervention against human neurodegenerative diseases.
Collapse
Affiliation(s)
- Ribhav Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, 342037, India
| | - Anurag Bansal
- Center for Converging Technologies, Jaipur, University of Rajasthan, Jaipur, 302001, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, 342037, India.
| |
Collapse
|
10
|
Coupled protein synthesis and ribosome-guided piRNA processing on mRNAs. Nat Commun 2021; 12:5970. [PMID: 34645830 PMCID: PMC8514520 DOI: 10.1038/s41467-021-26233-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
PIWI-interacting small RNAs (piRNAs) protect the germline genome and are essential for fertility. piRNAs originate from transposable element (TE) RNAs, long non-coding RNAs, or 3´ untranslated regions (3´UTRs) of protein-coding messenger genes, with the last being the least characterized of the three piRNA classes. Here, we demonstrate that the precursors of 3´UTR piRNAs are full-length mRNAs and that post-termination 80S ribosomes guide piRNA production on 3´UTRs in mice and chickens. At the pachytene stage, when other co-translational RNA surveillance pathways are sequestered, piRNA biogenesis degrades mRNAs right after pioneer rounds of translation and fine-tunes protein production from mRNAs. Although 3´UTR piRNA precursor mRNAs code for distinct proteins in mice and chickens, they all harbor embedded TEs and produce piRNAs that cleave TEs. Altogether, we discover a function of the piRNA pathway in fine-tuning protein production and reveal a conserved piRNA biogenesis mechanism that recognizes translating RNAs in amniotes.
Collapse
|
11
|
Korostelev AA. Diversity and Similarity of Termination and Ribosome Rescue in Bacterial, Mitochondrial, and Cytoplasmic Translation. BIOCHEMISTRY (MOSCOW) 2021; 86:1107-1121. [PMID: 34565314 DOI: 10.1134/s0006297921090066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
When a ribosome encounters the stop codon of an mRNA, it terminates translation, releases the newly made protein, and is recycled to initiate translation on a new mRNA. Termination is a highly dynamic process in which release factors (RF1 and RF2 in bacteria; eRF1•eRF3•GTP in eukaryotes) coordinate peptide release with large-scale molecular rearrangements of the ribosome. Ribosomes stalled on aberrant mRNAs are rescued and recycled by diverse bacterial, mitochondrial, or cytoplasmic quality control mechanisms. These are catalyzed by rescue factors with peptidyl-tRNA hydrolase activity (bacterial ArfA•RF2 and ArfB, mitochondrial ICT1 and mtRF-R, and cytoplasmic Vms1), that are distinct from each other and from release factors. Nevertheless, recent structural studies demonstrate a remarkable similarity between translation termination and ribosome rescue mechanisms. This review describes how these pathways rely on inherent ribosome dynamics, emphasizing the active role of the ribosome in all translation steps.
Collapse
Affiliation(s)
- Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, USA.
| |
Collapse
|
12
|
Wollen KL, Hagen L, Vågbø CB, Rabe R, Iveland TS, Aas PA, Sharma A, Sporsheim B, Erlandsen HO, Palibrk V, Bjørås M, Fonseca DM, Mosammaparast N, Slupphaug G. ALKBH3 partner ASCC3 mediates P-body formation and selective clearance of MMS-induced 1-methyladenosine and 3-methylcytosine from mRNA. J Transl Med 2021; 19:287. [PMID: 34217309 PMCID: PMC8254245 DOI: 10.1186/s12967-021-02948-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023] Open
Abstract
Background Reversible enzymatic methylation of mammalian mRNA is widespread and serves crucial regulatory functions, but little is known to what degree chemical alkylators mediate overlapping modifications and whether cells distinguish aberrant from canonical methylations. Methods Here we use quantitative mass spectrometry to determine the fate of chemically induced methylbases in the mRNA of human cells. Concomitant alteration in the mRNA binding proteome was analyzed by SILAC mass spectrometry. Results MMS induced prominent direct mRNA methylations that were chemically identical to endogenous methylbases. Transient loss of 40S ribosomal proteins from isolated mRNA suggests that aberrant methylbases mediate arrested translational initiation and potentially also no-go decay of the affected mRNA. Four proteins (ASCC3, YTHDC2, TRIM25 and GEMIN5) displayed increased mRNA binding after MMS treatment. ASCC3 is a binding partner of the DNA/RNA demethylase ALKBH3 and was recently shown to promote disassembly of collided ribosomes as part of the ribosome quality control (RQC) trigger complex. We find that ASCC3-deficient cells display delayed removal of MMS-induced 1-methyladenosine (m1A) and 3-methylcytosine (m3C) from mRNA and impaired formation of MMS-induced P-bodies. Conclusions Our findings conform to a model in which ASCC3-mediated disassembly of collided ribosomes allows demethylation of aberrant m1A and m3C by ALKBH3. Our findings constitute first evidence of selective sanitation of aberrant mRNA methylbases over their endogenous counterparts and warrant further studies on RNA-mediated effects of chemical alkylators commonly used in the clinic. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02948-6.
Collapse
Affiliation(s)
- Kristian Lied Wollen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway.,PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, Trondheim, Norway
| | - Cathrine B Vågbø
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway.,PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, Trondheim, Norway
| | - Renana Rabe
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway
| | - Tobias S Iveland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway
| | - Per Arne Aas
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway
| | - Animesh Sharma
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway.,PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, Trondheim, Norway
| | - Bjørnar Sporsheim
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.,CMIC Cellular & Molecular Imaging Core Facility, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, Trondheim, Norway
| | - Hilde O Erlandsen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway
| | - Vuk Palibrk
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway
| | - Davi M Fonseca
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway.,PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, Trondheim, Norway
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Geir Slupphaug
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway. .,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway. .,PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, Trondheim, Norway.
| |
Collapse
|
13
|
D'Orazio KN, Green R. Ribosome states signal RNA quality control. Mol Cell 2021; 81:1372-1383. [PMID: 33713598 PMCID: PMC8041214 DOI: 10.1016/j.molcel.2021.02.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/04/2021] [Accepted: 02/17/2021] [Indexed: 12/18/2022]
Abstract
Eukaryotic cells integrate multiple quality control (QC) responses during protein synthesis in the cytoplasm. These QC responses are signaled by slow or stalled elongating ribosomes. Depending on the nature of the delay, the signal may lead to translational repression, messenger RNA decay, ribosome rescue, and/or nascent protein degradation. Here, we discuss how the structure and composition of an elongating ribosome in a troubled state determine the downstream quality control pathway(s) that ensue. We highlight the intersecting pathways involved in RNA decay and the crosstalk that occurs between RNA decay and ribosome rescue.
Collapse
Affiliation(s)
- Karole N D'Orazio
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
14
|
RNA Metabolism Guided by RNA Modifications: The Role of SMUG1 in rRNA Quality Control. Biomolecules 2021; 11:biom11010076. [PMID: 33430019 PMCID: PMC7826747 DOI: 10.3390/biom11010076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
RNA modifications are essential for proper RNA processing, quality control, and maturation steps. In the last decade, some eukaryotic DNA repair enzymes have been shown to have an ability to recognize and process modified RNA substrates and thereby contribute to RNA surveillance. Single-strand-selective monofunctional uracil-DNA glycosylase 1 (SMUG1) is a base excision repair enzyme that not only recognizes and removes uracil and oxidized pyrimidines from DNA but is also able to process modified RNA substrates. SMUG1 interacts with the pseudouridine synthase dyskerin (DKC1), an enzyme essential for the correct assembly of small nucleolar ribonucleoproteins (snRNPs) and ribosomal RNA (rRNA) processing. Here, we review rRNA modifications and RNA quality control mechanisms in general and discuss the specific function of SMUG1 in rRNA metabolism. Cells lacking SMUG1 have elevated levels of immature rRNA molecules and accumulation of 5-hydroxymethyluridine (5hmU) in mature rRNA. SMUG1 may be required for post-transcriptional regulation and quality control of rRNAs, partly by regulating rRNA and stability.
Collapse
|
15
|
Carbone CE, Demo G, Madireddy R, Svidritskiy E, Korostelev AA. ArfB can displace mRNA to rescue stalled ribosomes. Nat Commun 2020; 11:5552. [PMID: 33144582 PMCID: PMC7641280 DOI: 10.1038/s41467-020-19370-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
Ribosomes stalled during translation must be rescued to replenish the pool of translation-competent ribosomal subunits. Bacterial alternative rescue factor B (ArfB) releases nascent peptides from ribosomes stalled on mRNAs truncated at the A site, allowing ribosome recycling. Prior structural work revealed that ArfB recognizes such ribosomes by inserting its C-terminal α-helix into the vacant mRNA tunnel. In this work, we report that ArfB can efficiently recognize a wider range of mRNA substrates, including longer mRNAs that extend beyond the A-site codon. Single-particle cryo-EM unveils that ArfB employs two modes of function depending on the mRNA length. ArfB acts as a monomer to accommodate a shorter mRNA in the ribosomal A site. By contrast, longer mRNAs are displaced from the mRNA tunnel by more than 20 Å and are stabilized in the intersubunit space by dimeric ArfB. Uncovering distinct modes of ArfB function resolves conflicting biochemical and structural studies, and may lead to re-examination of other ribosome rescue pathways, whose functions depend on mRNA lengths.
Collapse
Affiliation(s)
- Christine E Carbone
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts, 01605, United States
| | - Gabriel Demo
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts, 01605, United States
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Rohini Madireddy
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts, 01605, United States
- Medicago Inc., 7 Triangle drive, Durham, NC, 27713, USA
| | - Egor Svidritskiy
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts, 01605, United States.
- Sanofi, 49 New York Ave, Suite 3660, Framingham, MA, 01701, USA.
| | - Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts, 01605, United States.
| |
Collapse
|
16
|
Gilet J, Conte R, Torchet C, Benard L, Lafontaine I. Additional Layer of Regulation via Convergent Gene Orientation in Yeasts. Mol Biol Evol 2020; 37:365-378. [PMID: 31580446 PMCID: PMC6993858 DOI: 10.1093/molbev/msz221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Convergent gene pairs can produce transcripts with complementary sequences. We had shown that mRNA duplexes form in vivo in Saccharomyces cerevisiae via interactions of mRNA overlapping 3′-ends and can lead to posttranscriptional regulatory events. Here we show that mRNA duplex formation is restricted to convergent genes separated by short intergenic distance, independently of their 3′-untranslated region (UTR) length. We disclose an enrichment in genes involved in biological processes related to stress among these convergent genes. They are markedly conserved in convergent orientation in budding yeasts, meaning that this mode of posttranscriptional regulation could be shared in these organisms, conferring an additional level for modulating stress response. We thus investigated the mechanistic advantages potentially conferred by 3′-UTR mRNA interactions. Analysis of genome-wide transcriptome data revealed that Pat1 and Lsm1 factors, having 3′-UTR binding preference and participating to the remodeling of messenger ribonucleoprotein particles, bind differently these messenger-interacting mRNAs forming duplexes in comparison to mRNAs that do not interact (solo mRNAs). Functionally, messenger-interacting mRNAs show limited translational repression upon stress. We thus propose that mRNA duplex formation modulates the regulation of mRNA expression by limiting their access to translational repressors. Our results thus show that posttranscriptional regulation is an additional factor that determines the order of coding genes.
Collapse
Affiliation(s)
- Jules Gilet
- Institut de Biologie Physico-Chimique, UMR7141 Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, CNRS, Sorbonne Université, Paris, France.,Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Romain Conte
- Institut de Biologie Physico-Chimique, UMR7141 Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, CNRS, Sorbonne Université, Paris, France.,Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Claire Torchet
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Lionel Benard
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Ingrid Lafontaine
- Institut de Biologie Physico-Chimique, UMR7141 Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, CNRS, Sorbonne Université, Paris, France.,Institut de Biologie Physico-Chimique, FRC 550, CNRS, Paris, France
| |
Collapse
|
17
|
Liang XH, Nichols JG, De Hoyos CL, Crooke ST. Some ASOs that bind in the coding region of mRNAs and induce RNase H1 cleavage can cause increases in the pre-mRNAs that may blunt total activity. Nucleic Acids Res 2020; 48:9840-9858. [PMID: 32870273 PMCID: PMC7515700 DOI: 10.1093/nar/gkaa715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 01/06/2023] Open
Abstract
Antisense oligonucleotide (ASO) drugs that trigger RNase H1 cleavage of target RNAs have been developed to treat various diseases. Basic pharmacological principles suggest that the development of tolerance is a common response to pharmacological interventions. In this manuscript, for the first time we report a molecular mechanism of tolerance that occurs with some ASOs. Two observations stimulated our interest: some RNA targets are difficult to reduce with RNase H1 activating ASOs and some ASOs display a shorter duration of activity than the prolonged target reduction typically observed. We found that certain ASOs targeting the coding region of some mRNAs that initially reduce target mRNAs can surprisingly increase the levels of the corresponding pre-mRNAs. The increase in pre-mRNA is delayed and due to enhanced transcription and likely also slower processing. This process requires that the ASOs bind in the coding region and reduce the target mRNA by RNase H1 while the mRNA resides in the ribosomes. The pre-mRNA increase is dependent on UPF3A and independent of the NMD pathway or the XRN1-CNOT pathway. The response is consistent in multiple cell lines and independent of the methods used to introduce ASOs into cells.
Collapse
Affiliation(s)
- Xue-hai Liang
- Core Antisense Research, Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Joshua G Nichols
- Core Antisense Research, Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Cheryl L De Hoyos
- Core Antisense Research, Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Stanley T Crooke
- Core Antisense Research, Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| |
Collapse
|
18
|
Juszkiewicz S, Speldewinde SH, Wan L, Svejstrup JQ, Hegde RS. The ASC-1 Complex Disassembles Collided Ribosomes. Mol Cell 2020; 79:603-614.e8. [PMID: 32579943 PMCID: PMC7447978 DOI: 10.1016/j.molcel.2020.06.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 02/03/2023]
Abstract
Translating ribosomes that slow excessively incur collisions with trailing ribosomes. Persistent collisions are detected by ZNF598, a ubiquitin ligase that ubiquitinates sites on the ribosomal 40S subunit to initiate pathways of mRNA and protein quality control. The collided ribosome complex must be disassembled to initiate downstream quality control, but the mechanistic basis of disassembly is unclear. Here, we reconstitute the disassembly of a collided polysome in a mammalian cell-free system. The widely conserved ASC-1 complex (ASCC) containing the ASCC3 helicase disassembles the leading ribosome in an ATP-dependent reaction. Disassembly, but not ribosome association, requires 40S ubiquitination by ZNF598, but not GTP-dependent factors, including the Pelo-Hbs1L ribosome rescue complex. Trailing ribosomes can elongate once the roadblock has been removed and only become targets if they subsequently stall and incur collisions. These findings define the specific role of ASCC during ribosome-associated quality control and identify the molecular target of its activity.
Collapse
Affiliation(s)
- Szymon Juszkiewicz
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | | | - Li Wan
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
19
|
|
20
|
Pavlovic Djuranovic S, Erath J, Andrews RJ, Bayguinov PO, Chung JJ, Chalker DL, Fitzpatrick JAJ, Moss WN, Szczesny P, Djuranovic S. Plasmodium falciparum translational machinery condones polyadenosine repeats. eLife 2020; 9:e57799. [PMID: 32469313 PMCID: PMC7295572 DOI: 10.7554/elife.57799] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/28/2020] [Indexed: 01/04/2023] Open
Abstract
Plasmodium falciparum is a causative agent of human malaria. Sixty percent of mRNAs from its extremely AT-rich (81%) genome harbor long polyadenosine (polyA) runs within their ORFs, distinguishing the parasite from its hosts and other sequenced organisms. Recent studies indicate polyA runs cause ribosome stalling and frameshifting, triggering mRNA surveillance pathways and attenuating protein synthesis. Here, we show that P. falciparum is an exception to this rule. We demonstrate that both endogenous genes and reporter sequences containing long polyA runs are efficiently and accurately translated in P. falciparum cells. We show that polyA runs do not elicit any response from No Go Decay (NGD) or result in the production of frameshifted proteins. This is in stark contrast to what we observe in human cells or T. thermophila, an organism with similar AT-content. Finally, using stalling reporters we show that Plasmodium cells evolved not to have a fully functional NGD pathway.
Collapse
Affiliation(s)
| | - Jessey Erath
- Department of Cell Biology and Physiology, Washington University School of MedicineSt. LouisUnited States
| | - Ryan J Andrews
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State UniversityAmesUnited States
| | - Peter O Bayguinov
- Washington University Center for Cellular Imaging, Washington University School of MedicineSt. LouisUnited States
| | - Joyce J Chung
- Department of Biology, Washington UniversitySt LouisUnited States
| | | | - James AJ Fitzpatrick
- Department of Cell Biology and Physiology, Washington University School of MedicineSt. LouisUnited States
- Washington University Center for Cellular Imaging, Washington University School of MedicineSt. LouisUnited States
- Department of Neuroscience, Washington University School of MedicineSt. LouisUnited States
- Department of Biomedical Engineering, Washington UniversitySt LouisUnited States
| | - Walter N Moss
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State UniversityAmesUnited States
| | - Pawel Szczesny
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Department of BioinformaticsWarsawPoland
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of MedicineSt. LouisUnited States
| |
Collapse
|
21
|
Navickas A, Chamois S, Saint-Fort R, Henri J, Torchet C, Benard L. No-Go Decay mRNA cleavage in the ribosome exit tunnel produces 5'-OH ends phosphorylated by Trl1. Nat Commun 2020; 11:122. [PMID: 31913314 PMCID: PMC6949252 DOI: 10.1038/s41467-019-13991-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/11/2019] [Indexed: 11/24/2022] Open
Abstract
The No-Go Decay (NGD) mRNA surveillance pathway degrades mRNAs containing stacks of stalled ribosomes. Although an endoribonuclease has been proposed to initiate cleavages upstream of the stall sequence, the production of two RNA fragments resulting from a unique cleavage has never been demonstrated. Here we use mRNAs expressing a 3'-ribozyme to produce truncated transcripts in vivo to mimic naturally occurring truncated mRNAs known to trigger NGD. This technique allows us to analyse endonucleolytic cleavage events at single-nucleotide resolution starting at the third collided ribosome, which we show to be Hel2-dependent. These cleavages map precisely in the mRNA exit tunnel of the ribosome, 8 nucleotides upstream of the first P-site residue and release 5'-hydroxylated RNA fragments requiring 5'-phosphorylation prior to digestion by the exoribonuclease Xrn1, or alternatively by Dxo1. Finally, we identify the RNA kinase Trl1, alias Rlg1, as an essential player in the degradation of NGD RNAs.
Collapse
Affiliation(s)
- Albertas Navickas
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, Laboratoire de Biologie moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Sébastien Chamois
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, Laboratoire de Biologie moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Rénette Saint-Fort
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, Laboratoire de Biologie moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Julien Henri
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, Laboratoire de Biologie moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Claire Torchet
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, Laboratoire de Biologie moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Lionel Benard
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, Laboratoire de Biologie moléculaire et Cellulaire des Eucaryotes, Paris, France.
| |
Collapse
|
22
|
Gribling-Burrer AS, Chiabudini M, Zhang Y, Qiu Z, Scazzari M, Wölfle T, Wohlwend D, Rospert S. A dual role of the ribosome-bound chaperones RAC/Ssb in maintaining the fidelity of translation termination. Nucleic Acids Res 2020; 47:7018-7034. [PMID: 31114879 PMCID: PMC6648330 DOI: 10.1093/nar/gkz334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/05/2019] [Accepted: 04/25/2019] [Indexed: 11/22/2022] Open
Abstract
The yeast ribosome-associated complex RAC and the Hsp70 homolog Ssb are anchored to the ribosome and together act as chaperones for the folding and co-translational assembly of nascent polypeptides. In addition, the RAC/Ssb system plays a crucial role in maintaining the fidelity of translation termination; however, the latter function is poorly understood. Here we show that the RAC/Ssb system promotes the fidelity of translation termination via two distinct mechanisms. First, via direct contacts with the ribosome and the nascent chain, RAC/Ssb facilitates the translation of stalling-prone poly-AAG/A sequences encoding for polylysine segments. Impairment of this function leads to enhanced ribosome stalling and to premature nascent polypeptide release at AAG/A codons. Second, RAC/Ssb is required for the assembly of fully functional ribosomes. When RAC/Ssb is absent, ribosome biogenesis is hampered such that core ribosomal particles are structurally altered at the decoding and peptidyl transferase centers. As a result, ribosomes assembled in the absence of RAC/Ssb bind to the aminoglycoside paromomycin with high affinity (KD = 76.6 nM) and display impaired discrimination between stop codons and sense codons. The combined data shed light on the multiple mechanisms by which the RAC/Ssb system promotes unimpeded biogenesis of newly synthesized polypeptides.
Collapse
Affiliation(s)
- Anne-Sophie Gribling-Burrer
- Institute of Biochemistry and Molecular Biology, ZBMZ, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany
| | - Marco Chiabudini
- Institute of Biochemistry and Molecular Biology, ZBMZ, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany
| | - Ying Zhang
- Institute of Biochemistry and Molecular Biology, ZBMZ, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany
| | - Zonghao Qiu
- Institute of Biochemistry and Molecular Biology, ZBMZ, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany
| | - Mario Scazzari
- Institute of Biochemistry and Molecular Biology, ZBMZ, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany
| | - Tina Wölfle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany
| | - Daniel Wohlwend
- Institute of Biochemistry, Chemical and Pharmaceutical Faculty, University of Freiburg, D-79104 Freiburg, Germany
| | - Sabine Rospert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
23
|
Yan LL, Simms CL, McLoughlin F, Vierstra RD, Zaher HS. Oxidation and alkylation stresses activate ribosome-quality control. Nat Commun 2019; 10:5611. [PMID: 31819057 PMCID: PMC6901537 DOI: 10.1038/s41467-019-13579-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023] Open
Abstract
Oxidation and alkylation of nucleobases are known to disrupt their base-pairing properties within RNA. It is, however, unclear whether organisms have evolved general mechanism(s) to deal with this damage. Here we show that the mRNA-surveillance pathway of no-go decay and the associated ribosome-quality control are activated in response to nucleobase alkylation and oxidation. Our findings reveal that these processes are important for clearing chemically modified mRNA and the resulting aberrant-protein products. In the absence of Xrn1, the level of damaged mRNA significantly increases. Furthermore, deletion of LTN1 results in the accumulation of protein aggregates in the presence of oxidizing and alkylating agents. This accumulation is accompanied by Hel2-dependent regulatory ubiquitylation of ribosomal proteins. Collectively, our data highlight the burden of chemically damaged mRNA on cellular homeostasis and suggest that organisms evolved mechanisms to counter their accumulation.
Collapse
Affiliation(s)
- Liewei L Yan
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Carrie L Simms
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Fionn McLoughlin
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Hani S Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
24
|
Park H, Subramaniam AR. Inverted translational control of eukaryotic gene expression by ribosome collisions. PLoS Biol 2019; 17:e3000396. [PMID: 31532761 PMCID: PMC6750593 DOI: 10.1371/journal.pbio.3000396] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/05/2019] [Indexed: 11/19/2022] Open
Abstract
The canonical model of eukaryotic translation posits that efficient translation initiation increases protein expression and mRNA stability. Contrary to this model, we find that increasing initiation rate can decrease both protein expression and stability of certain mRNAs in the budding yeast Saccharomyces cerevisiae. These mRNAs encode a stretch of polybasic residues that cause ribosome stalling. Our computational modeling predicts that the observed decrease in gene expression at high initiation rates occurs when ribosome collisions at stalls stimulate abortive termination of the leading ribosome or cause endonucleolytic mRNA cleavage. Consistent with this prediction, the collision-associated quality-control factors Asc1 and Hel2 (orthologs of human RACK1 and ZNF598, respectively) decrease gene expression from stall-containing mRNAs only at high initiation rates. Remarkably, hundreds of S. cerevisiae mRNAs that contain ribosome stall sequences also exhibit lower translation efficiency. We propose that inefficient translation initiation allows these stall-containing endogenous mRNAs to escape collision-stimulated reduction in gene expression. Higher rates of translation counterintuitively lead to lower protein levels from eukaryotic mRNAs that encode ribosome stalls; modelling suggests that this occurs when ribosome collisions at stalls trigger abortive termination of the leading ribosome or cause endonucleolytic mRNA cleavage.
Collapse
Affiliation(s)
- Heungwon Park
- Basic Sciences Division and Computational Biology Section of Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Arvind R. Subramaniam
- Basic Sciences Division and Computational Biology Section of Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
25
|
Liang XH, Nichols J, Hsu CW, Vickers T, Crooke S. mRNA levels can be reduced by antisense oligonucleotides via no-go decay pathway. Nucleic Acids Res 2019; 47:6900-6916. [PMID: 31165876 PMCID: PMC6649848 DOI: 10.1093/nar/gkz500] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/24/2019] [Accepted: 06/01/2019] [Indexed: 01/03/2023] Open
Abstract
Antisense technology can reduce gene expression via the RNase H1 or RISC pathways and can increase gene expression through modulation of splicing or translation. Here, we demonstrate that antisense oligonucleotides (ASOs) can reduce mRNA levels by acting through the no-go decay pathway. Phosphorothioate ASOs fully modified with 2'-O-methoxyethyl decreased mRNA levels when targeted to coding regions of mRNAs in a translation-dependent, RNase H1-independent manner. The ASOs that activated this decay pathway hybridized near the 3' end of the coding regions. Although some ASOs induced nonsense-mediated decay, others reduced mRNA levels through the no-go decay pathway, since depletion of PELO/HBS1L, proteins required for no-go decay pathway activity, decreased the activities of these ASOs. ASO length and chemical modification influenced the efficacy of these reagents. This non-gapmer ASO-induced mRNA reduction was observed for different transcripts and in different cell lines. Thus, our study identifies a new mechanism by which mRNAs can be degraded using ASOs, adding a new antisense approach to modulation of gene expression. It also helps explain why some fully modified ASOs cause RNA target to be reduced despite being unable to serve as substrates for RNase H1.
Collapse
Affiliation(s)
- Xue-hai Liang
- Department of Core Antisense Research, Ionis Pharmaceutics, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Joshua G Nichols
- Department of Core Antisense Research, Ionis Pharmaceutics, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Chih-Wei Hsu
- Department of Core Antisense Research, Ionis Pharmaceutics, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Timothy A Vickers
- Department of Core Antisense Research, Ionis Pharmaceutics, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Stanley T Crooke
- Department of Core Antisense Research, Ionis Pharmaceutics, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| |
Collapse
|
26
|
The Origin and Evolution of Release Factors: Implications for Translation Termination, Ribosome Rescue, and Quality Control Pathways. Int J Mol Sci 2019; 20:ijms20081981. [PMID: 31018531 PMCID: PMC6514570 DOI: 10.3390/ijms20081981] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 01/26/2023] Open
Abstract
The evolution of release factors catalyzing the hydrolysis of the final peptidyl-tRNA bond and the release of the polypeptide from the ribosome has been a longstanding paradox. While the components of the translation apparatus are generally well-conserved across extant life, structurally unrelated release factor peptidyl hydrolases (RF-PHs) emerged in the stems of the bacterial and archaeo-eukaryotic lineages. We analyze the diversification of RF-PH domains within the broader evolutionary framework of the translation apparatus. Thus, we reconstruct the possible state of translation termination in the Last Universal Common Ancestor with possible tRNA-like terminators. Further, evolutionary trajectories of the several auxiliary release factors in ribosome quality control (RQC) and rescue pathways point to multiple independent solutions to this problem and frequent transfers between superkingdoms including the recently characterized ArfT, which is more widely distributed across life than previously appreciated. The eukaryotic RQC system was pieced together from components with disparate provenance, which include the long-sought-after Vms1/ANKZF1 RF-PH of bacterial origin. We also uncover an under-appreciated evolutionary driver of innovation in rescue pathways: effectors deployed in biological conflicts that target the ribosome. At least three rescue pathways (centered on the prfH/RFH, baeRF-1, and C12orf65 RF-PH domains), were likely innovated in response to such conflicts.
Collapse
|
27
|
Li Z, Yang F, Xuan Y, Xi R, Zhao R. Pelota-interacting G protein Hbs1 is required for spermatogenesis in Drosophila. Sci Rep 2019; 9:3226. [PMID: 30824860 PMCID: PMC6397311 DOI: 10.1038/s41598-019-39530-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 01/08/2019] [Indexed: 12/31/2022] Open
Abstract
Hbs1, which is homologous to the GTPase eRF3, is a small G protein implicated in mRNA quality control. It interacts with a translation-release factor 1-like protein Dom34/Pelota to direct decay of mRNAs with ribosomal stalls. Although both proteins are evolutionarily conserved in eukaryotes, the biological function of Hbs1 in multicellular organisms is yet to be characterized. In Drosophila, pelota is essential for the progression through meiosis during spermatogenesis and germline stem cell maintenance. Here we show that homozygous Hbs1 mutant flies are viable, female-fertile, but male-sterile, which is due to defects in meiosis and spermatid individualization, phenotypes that are also observed in pelota hypomorphic mutants. In contrast, Hbs1 mutants have no obvious defects in germline stem cell maintenance. We show that Hbs1 genetically interacts with pelota during spermatid individualization. Furthermore, Pelota with a point mutation on the putative Hbs1-binding site cannot substitute the wild type protein for normal spermatogenesis. These data suggest that Pelota forms a complex with Hbs1 to regulate multiple processes during spermatogenesis. Our results reveal a specific requirement of Hbs1 in male gametogenesis in Drosophila and indicate an essential role for the RNA surveillance complex Pelota-Hbs1 in spermatogenesis, a function that could be conserved in mammals.
Collapse
Affiliation(s)
- Zhaohui Li
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.,National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Fu Yang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Yang Xuan
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Rongwen Xi
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China. .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| | - Rui Zhao
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China. .,Genomics Institute of the Novartis Research Foundation, San Diego, California, 92121, USA.
| |
Collapse
|
28
|
Ikeuchi K, Izawa T, Inada T. Recent Progress on the Molecular Mechanism of Quality Controls Induced by Ribosome Stalling. Front Genet 2019; 9:743. [PMID: 30705686 PMCID: PMC6344382 DOI: 10.3389/fgene.2018.00743] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/22/2018] [Indexed: 11/21/2022] Open
Abstract
Accurate gene expression is a prerequisite for all cellular processes. Cells actively promote correct protein folding, which prevents the accumulation of abnormal and non-functional proteins. Translation elongation is the fundamental step in gene expression to ensure cellular functions, and abnormal translation arrest is recognized and removed by the quality controls. Recent studies demonstrated that ribosome plays crucial roles as a hub for gene regulation and quality controls. Ribosome-interacting factors are critical for the quality control mechanisms responding to abnormal translation arrest by targeting its products for degradation. Aberrant mRNAs are produced by errors in mRNA maturation steps and cause aberrant translation and are eliminated by the quality control system. In this review, we focus on recent progress on two quality controls, Ribosome-associated Quality Control (RQC) and No-Go Decay (NGD), for abnormal translational elongation. These quality controls recognize aberrant ribosome stalling and induce rapid degradation of aberrant polypeptides and mRNAs thereby maintaining protein homeostasis and preventing the protein aggregation.
Collapse
Affiliation(s)
- Ken Ikeuchi
- Gene Regulation Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Toshiaki Izawa
- Gene Regulation Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Toshifumi Inada
- Gene Regulation Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
29
|
Control of mRNA Translation by Versatile ATP-Driven Machines. Trends Biochem Sci 2018; 44:167-180. [PMID: 30527974 DOI: 10.1016/j.tibs.2018.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022]
Abstract
Translation is organized in a cycle that requires ribosomal subunits, mRNA, aminoacylated transfer RNAs, and myriad regulatory factors. As soon as translation reaches a stop codon or stall, a termination or surveillance process is launched via the release factors eRF1 or Pelota, respectively. The ATP-binding cassette (ABC) protein ABCE1 interacts with release factors and coordinates the recycling process in Eukarya and Archaea. After splitting, ABCE1 stays with the small ribosomal subunit and emerges as an integral part of translation initiation complexes. In addition, eEF3 and ABCF proteins control translation by binding at the E-site. In this review, we highlight advances in the fundamental role of ABC systems in mRNA translation in view of their collective inner mechanics.
Collapse
|
30
|
Simms CL, Kim KQ, Yan LL, Qiu J, Zaher HS. Interactions between the mRNA and Rps3/uS3 at the entry tunnel of the ribosomal small subunit are important for no-go decay. PLoS Genet 2018; 14:e1007818. [PMID: 30475795 PMCID: PMC6283612 DOI: 10.1371/journal.pgen.1007818] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/06/2018] [Accepted: 11/07/2018] [Indexed: 11/25/2022] Open
Abstract
No-go Decay (NGD) is a process that has evolved to deal with stalled ribosomes resulting from structural blocks or aberrant mRNAs. The process is distinguished by an endonucleolytic cleavage prior to degradation of the transcript. While many of the details of the pathway have been described, the identity of the endonuclease remains unknown. Here we identify residues of the small subunit ribosomal protein Rps3 that are important for NGD by affecting the cleavage reaction. Mutation of residues within the ribosomal entry tunnel that contact the incoming mRNA leads to significantly reduced accumulation of cleavage products, independent of the type of stall sequence, and renders cells sensitive to damaging agents thought to trigger NGD. These phenotypes are distinct from those seen in combination with other NGD factors, suggesting a separate role for Rps3 in NGD. Conversely, ribosomal proteins ubiquitination is not affected by rps3 mutations, indicating that upstream ribosome quality control (RQC) events are not dependent on these residues. Together, these results suggest that Rps3 is important for quality control on the ribosome and strongly supports the notion that the ribosome itself plays a central role in the endonucleolytic cleavage reaction during NGD. In all organisms, optimum cellular fitness depends on the ability of cells to recognize and degrade aberrant molecules. Messenger RNA is subject to alterations and, as a result, often presents roadblocks for the translating ribosomes. It is not surprising, then, that organisms evolved pathways to resolve these valuable stuck ribosomes. In eukaryotes, this process is called no-go decay (NGD) because it is coupled with decay of mRNAs that are associated with ribosomes that do not ‘go’. This decay process initiates with cleavage of the mRNA near the stall site, but some important details about this reaction are lacking. Here, we show that the ribosome itself is very central to the cleavage reaction. In particular, we identified a pair of residues of a ribosomal protein to be important for cleavage efficiency. These observations are consistent with prior structural studies showing that the residues make intimate contacts with the incoming mRNA in the entry tunnel. Altogether our data provide important clues about this quality-control pathway and suggest that the endonuclease not only recognizes stalled ribosomes but may have coevolved with the translation machinery to take advantage of certain residues of the ribosome to fulfill its function.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Amino Acid Sequence
- Amino Acid Substitution
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Endoribonucleases/genetics
- Endoribonucleases/metabolism
- GTP-Binding Proteins/genetics
- GTP-Binding Proteins/metabolism
- Genes, Fungal
- Models, Molecular
- Mutagenesis, Site-Directed
- Mutation
- Peptide Chain Elongation, Translational
- Protein Conformation
- RNA Stability
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosome Subunits, Small/genetics
- Ribosome Subunits, Small/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Sequence Homology, Amino Acid
- Ubiquitination
Collapse
Affiliation(s)
- Carrie L. Simms
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Kyusik Q. Kim
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Liewei L. Yan
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Jessica Qiu
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Hani S. Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
31
|
Wang J, Zhou J, Yang Q, Grayhack EJ. Multi-protein bridging factor 1(Mbf1), Rps3 and Asc1 prevent stalled ribosomes from frameshifting. eLife 2018; 7:39637. [PMID: 30465652 PMCID: PMC6301793 DOI: 10.7554/elife.39637] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022] Open
Abstract
Reading frame maintenance is critical for accurate translation. We show that the conserved eukaryotic/archaeal protein Mbf1 acts with ribosomal proteins Rps3/uS3 and eukaryotic Asc1/RACK1 to prevent frameshifting at inhibitory CGA-CGA codon pairs in the yeast Saccharomyces cerevisiae. Mutations in RPS3 that allow frameshifting implicate eukaryotic conserved residues near the mRNA entry site. Mbf1 and Rps3 cooperate to maintain the reading frame of stalled ribosomes, while Asc1 also mediates distinct events that result in recruitment of the ribosome quality control complex and mRNA decay. Frameshifting occurs through a +1 shift with a CGA codon in the P site and involves competition between codons entering the A site, implying that the wobble interaction of the P site codon destabilizes translation elongation. Thus, eukaryotes have evolved unique mechanisms involving both a universally conserved ribosome component and two eukaryotic-specific proteins to maintain the reading frame at ribosome stalls. Proteins perform all the chemical reactions needed to keep a cell alive; thus, it is essential to assemble them correctly. They are made by molecular machines called ribosomes, which follow a sequence of instructions written in genetic code in molecules known as mRNAs. Ribosomes essentially read the genetic code three letters at a time; each triplet either codes for the insertion of one of 20 building blocks into the emerging protein, or serves as a signal to stop the process. It is critical that, after reading one triplet, the ribosome moves precisely three letters to read the next triplet. If, for example, the ribosome shifted just two letters instead of three – a phenomenon known as “frameshifting” – it would completely change the building blocks that were used to make the protein. This could lead to atypical or aberrant proteins that either do not work or are even toxic to the cell. For a variety of reasons, ribosomes will often stall before they have finished building a protein. When this happens, the ribosome is more likely to frameshift. Cells commonly respond to stalled ribosomes by recruiting other molecules that work as quality control systems, some of which can disassemble the ribosome and break down the mRNA. In budding yeast, one part of the ribosome – named Asc1 – plays a key role in recruiting these quality control systems and in mRNA breakdown. If this component is removed, stalled ribosomes frameshift more frequently and, as a result, aberrant proteins accumulate in the cell. Since the Asc1 recruiter protein sits on the outside of the ribosome, it seemed likely that it might act through other factors to stop the ribosome from frameshifting when it stalls. However, it was unknown if such factors exist, what they are, or how they might work. Now, Wang et al. have identified two additional yeast proteins, named Mbf1 and Rps3, which cooperate to stop the ribosome from frameshifting after it stalls. Rps3, like Asc1, is a component of the ribosome, while Mbf1 is not. It appears that Rps3 likely stops frameshifting via an interaction with the incoming mRNA, because a region of Rps3 near the mRNA entry site to the ribosome is important for its activity. Further experiments then showed that the known Asc1-mediated breakdown of mRNAs did not depend on Mbf1 and Rps3, but also assists in stopping frameshifting. Thus, frameshifting of stalled ribosomes is prevented via two distinct ways: one that directly involves Mbf1 and Rps3 and one that is promoted by Asc1, which reduces the amounts of mRNAs on which ribosomes frameshift. These newly identified factors may provide insights into the precisely controlled protein-production machinery in the cell and into roles of the quality control systems. An improved understanding of mechanisms that prevent frameshifting could eventually lead to better treatments for some human diseases that result when these processes go awry, which include certain neurological conditions.
Collapse
Affiliation(s)
- Jiyu Wang
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York.,Center for RNA Biology, University of Rochester, Rochester, New York
| | - Jie Zhou
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Qidi Yang
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Elizabeth J Grayhack
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York.,Center for RNA Biology, University of Rochester, Rochester, New York
| |
Collapse
|
32
|
Collins JC, Ghalei H, Doherty JR, Huang H, Culver RN, Karbstein K. Ribosome biogenesis factor Ltv1 chaperones the assembly of the small subunit head. J Cell Biol 2018; 217:4141-4154. [PMID: 30348748 PMCID: PMC6279377 DOI: 10.1083/jcb.201804163] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/17/2018] [Accepted: 09/20/2018] [Indexed: 11/22/2022] Open
Abstract
Collins et al. use yeast genetics, biochemistry, and structure probing to dissect the role of the assembly factor Ltv1 in 40S ribosome maturation. Ribosomes from Ltv1-deficient cells have substoichiometric amounts of Rps10 and Asc1 and misfolded head rRNA, leading to defects in translational fidelity and ribosome-mediated RNA quality control, demonstrating a role for Ltv1 in chaperoning the assembly of the subunit head. The correct assembly of ribosomes from ribosomal RNAs (rRNAs) and ribosomal proteins (RPs) is critical, as indicated by the diseases caused by RP haploinsufficiency and loss of RP stoichiometry in cancer cells. Nevertheless, how assembly of each RP is ensured remains poorly understood. We use yeast genetics, biochemistry, and structure probing to show that the assembly factor Ltv1 facilitates the incorporation of Rps3, Rps10, and Asc1/RACK1 into the small ribosomal subunit head. Ribosomes from Ltv1-deficient yeast have substoichiometric amounts of Rps10 and Asc1 and show defects in translational fidelity and ribosome-mediated RNA quality control. These defects provide a growth advantage under some conditions but sensitize the cells to oxidative stress. Intriguingly, relative to glioma cell lines, breast cancer cells have reduced levels of LTV1 and produce ribosomes lacking RPS3, RPS10, and RACK1. These data describe a mechanism to ensure RP assembly and demonstrate how cancer cells circumvent this mechanism to generate diverse ribosome populations that can promote survival under stress.
Collapse
Affiliation(s)
- Jason C Collins
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL
| | - Homa Ghalei
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL
| | - Joanne R Doherty
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL
| | - Haina Huang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL
| | - Rebecca N Culver
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL
| | - Katrin Karbstein
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL
| |
Collapse
|
33
|
Karamyshev AL, Karamysheva ZN. Lost in Translation: Ribosome-Associated mRNA and Protein Quality Controls. Front Genet 2018; 9:431. [PMID: 30337940 PMCID: PMC6180196 DOI: 10.3389/fgene.2018.00431] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/11/2018] [Indexed: 12/15/2022] Open
Abstract
Aberrant, misfolded, and mislocalized proteins are often toxic to cells and result in many human diseases. All proteins and their mRNA templates are subject to quality control. There are several distinct mechanisms that control the quality of mRNAs and proteins during translation at the ribosome. mRNA quality control systems, nonsense-mediated decay, non-stop decay, and no-go decay detect premature stop codons, the absence of a natural stop codon, and stalled ribosomes in translation, respectively, and degrade their mRNAs. Defective truncated polypeptide nascent chains generated from faulty mRNAs are degraded by ribosome-associated protein quality control pathways. Regulation of aberrant protein production, a novel pathway, senses aberrant proteins by monitoring the status of nascent chain interactions during translation and triggers degradation of their mRNA. Here, we review the current progress in understanding of the molecular mechanisms of mRNA and protein quality controls at the ribosome during translation.
Collapse
Affiliation(s)
- Andrey L Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Zemfira N Karamysheva
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
34
|
Heck AM, Wilusz J. The Interplay between the RNA Decay and Translation Machinery in Eukaryotes. Cold Spring Harb Perspect Biol 2018; 10:a032839. [PMID: 29311343 PMCID: PMC5932591 DOI: 10.1101/cshperspect.a032839] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
RNA decay plays a major role in regulating gene expression and is tightly networked with other aspects of gene expression to effectively coordinate post-transcriptional regulation. The goal of this work is to provide an overview of the major factors and pathways of general messenger RNA (mRNA) decay in eukaryotic cells, and then discuss the effective interplay of this cytoplasmic process with the protein synthesis machinery. Given the transcript-specific and fluid nature of mRNA stability in response to changing cellular conditions, understanding the fundamental networking between RNA decay and translation will provide a foundation for a complete mechanistic understanding of this important aspect of cell biology.
Collapse
Affiliation(s)
- Adam M Heck
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80525
- Program in Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado 80525
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80525
- Program in Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado 80525
| |
Collapse
|
35
|
Arribere JA, Fire AZ. Nonsense mRNA suppression via nonstop decay. eLife 2018; 7:33292. [PMID: 29309033 PMCID: PMC5777819 DOI: 10.7554/elife.33292] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/05/2018] [Indexed: 11/13/2022] Open
Abstract
Nonsense-mediated mRNA decay is the process by which mRNAs bearing premature stop codons are recognized and cleared from the cell. While considerable information has accumulated regarding recognition of the premature stop codon, less is known about the ensuing mRNA suppression. During the characterization of a second, distinct translational surveillance pathway (nonstop mRNA decay), we trapped intermediates in nonsense mRNA degradation. We present data in support of a model wherein nonsense-mediated decay funnels into the nonstop decay pathway in Caenorhabditis elegans. Specifically, our results point to SKI-exosome decay and pelota-based ribosome removal as key steps facilitating suppression and clearance of prematurely-terminated translation complexes. These results suggest a model in which premature stop codons elicit nucleolytic cleavage, with the nonstop pathway disengaging ribosomes and degrading the resultant RNA fragments to suppress ongoing expression.
Collapse
Affiliation(s)
- Joshua A Arribere
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, United States
| | - Andrew Z Fire
- Departments of Pathology and Genetics, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
36
|
Navarro-Quiles C, Mateo-Bonmatí E, Micol JL. ABCE Proteins: From Molecules to Development. FRONTIERS IN PLANT SCIENCE 2018; 9:1125. [PMID: 30127795 PMCID: PMC6088178 DOI: 10.3389/fpls.2018.01125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/12/2018] [Indexed: 05/12/2023]
Abstract
Most members of the large family of ATP-Binding Cassette (ABC) proteins function as membrane transporters. However, the most evolutionarily conserved group, the ABCE protein subfamily, comprises soluble proteins that were initially denoted RNase L inhibitor (RLI) proteins. ABCE proteins are present in all eukaryotes and archaea and are encoded by a single gene in most genomes, or by two genes in a few cases. Functional analysis of ABCE genes, primarily in Saccharomyces cerevisiae, has shown that ABCE proteins have essential functions as part of the translational apparatus. In this review, we summarize the current understanding of ABCE protein function in ribosome biogenesis and recycling, with a particular focus on their known and proposed developmental roles in different species. The ABCE proteins might represent another class of factors contributing to the role of the ribosome in gene expression regulation.
Collapse
|
37
|
Abstract
Ribonucleic acid (RNA) homeostasis is dynamically modulated in response to changing physiological conditions. Tight regulation of RNA abundance through both transcription and degradation determines the amount, timing, and location of protein translation. This balance is of particular importance in neurons, which are among the most metabolically active and morphologically complex cells in the body. As a result, any disruptions in RNA degradation can have dramatic consequences for neuronal health. In this chapter, we will first discuss mechanisms of RNA stabilization and decay. We will then explore how the disruption of these pathways can lead to neurodegenerative disease.
Collapse
|
38
|
Benchouaia M, Ripoche H, Sissoko M, Thiébaut A, Merhej J, Delaveau T, Fasseu L, Benaissa S, Lorieux G, Jourdren L, Le Crom S, Lelandais G, Corel E, Devaux F. Comparative Transcriptomics Highlights New Features of the Iron Starvation Response in the Human Pathogen Candida glabrata. Front Microbiol 2018; 9:2689. [PMID: 30505294 PMCID: PMC6250833 DOI: 10.3389/fmicb.2018.02689] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/22/2018] [Indexed: 11/21/2022] Open
Abstract
In this work, we used comparative transcriptomics to identify regulatory outliers (ROs) in the human pathogen Candida glabrata. ROs are genes that have very different expression patterns compared to their orthologs in other species. From comparative transcriptome analyses of the response of eight yeast species to toxic doses of selenite, a pleiotropic stress inducer, we identified 38 ROs in C. glabrata. Using transcriptome analyses of C. glabrata response to five different stresses, we pointed out five ROs which were more particularly responsive to iron starvation, a process which is very important for C. glabrata virulence. Global chromatin Immunoprecipitation and gene profiling analyses showed that four of these genes are actually new targets of the iron starvation responsive Aft2 transcription factor in C. glabrata. Two of them (HBS1 and DOM34b) are required for C. glabrata optimal growth in iron limited conditions. In S. cerevisiae, the orthologs of these two genes are involved in ribosome rescue by the NO GO decay (NGD) pathway. Hence, our results suggest a specific contribution of NGD co-factors to the C. glabrata adaptation to iron starvation.
Collapse
Affiliation(s)
- Médine Benchouaia
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Hugues Ripoche
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Mariam Sissoko
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Antonin Thiébaut
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Jawad Merhej
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Thierry Delaveau
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Laure Fasseu
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Sabrina Benaissa
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Geneviève Lorieux
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Laurent Jourdren
- École Normale Supérieure, PSL Research University, CNRS, Inserm U1024, Institut de Biologie de l’École Normale Supérieure, Plateforme Génomique, Paris, France
| | - Stéphane Le Crom
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7138, Évolution, Paris, France
| | - Gaëlle Lelandais
- UMR 9198, Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Sud, UPSay, Gif-sur-Yvette, France
| | - Eduardo Corel
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7138, Évolution, Paris, France
| | - Frédéric Devaux
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
- *Correspondence: Frédéric Devaux,
| |
Collapse
|
39
|
Limoncelli KA, Merrikh CN, Moore MJ. ASC1 and RPS3: new actors in 18S nonfunctional rRNA decay. RNA (NEW YORK, N.Y.) 2017; 23:1946-1960. [PMID: 28956756 PMCID: PMC5689013 DOI: 10.1261/rna.061671.117] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 09/23/2017] [Indexed: 06/07/2023]
Abstract
In budding yeast, inactivating mutations within the 40S ribosomal subunit decoding center lead to 18S rRNA clearance by a quality control mechanism known as nonfunctional 18S rRNA decay (18S NRD). We previously showed that 18S NRD is functionally related to No-Go mRNA Decay (NGD), a pathway for clearing translation complexes stalled on aberrant mRNAs. Whereas the NGD factors Dom34p and Hbs1p contribute to 18S NRD, their genetic deletion (either singly or in combination) only partially stabilizes mutant 18S rRNA. Here we identify Asc1p (aka RACK1) and Rps3p, both stable 40S subunit components, as additional 18S NRD factors. Complete stabilization of mutant 18S rRNA in dom34Δ;asc1Δ and hbs1Δ;asc1Δ strains indicates the existence of two genetically separable 18S NRD pathways. A small region of the Rps3p C-terminal tail known to be subject to post-translational modification is also crucial for 18S NRD. We combine these findings with the effects of mutations in the 5' → 3' and 3' → 5' decay machinery to propose a model wherein multiple targeting and decay pathways kinetically contribute to 18S NRD.
Collapse
Affiliation(s)
- Kelly A Limoncelli
- Department of Biochemistry and Molecular Pharmacology, RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Christopher N Merrikh
- Department of Biochemistry and Molecular Pharmacology, RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Melissa J Moore
- Department of Biochemistry and Molecular Pharmacology, RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
40
|
Samanfar B, Shostak K, Moteshareie H, Hajikarimlou M, Shaikho S, Omidi K, Hooshyar M, Burnside D, Márquez IG, Kazmirchuk T, Naing T, Ludovico P, York-Lyon A, Szereszewski K, Leung C, Jin JY, Megarbane R, Smith ML, Babu M, Holcik M, Golshani A. The sensitivity of the yeast, Saccharomyces cerevisiae, to acetic acid is influenced by DOM34 and RPL36A. PeerJ 2017; 5:e4037. [PMID: 29158977 PMCID: PMC5691786 DOI: 10.7717/peerj.4037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/24/2017] [Indexed: 12/21/2022] Open
Abstract
The presence of acetic acid during industrial alcohol fermentation reduces the yield of fermentation by imposing additional stress on the yeast cells. The biology of cellular responses to stress has been a subject of vigorous investigations. Although much has been learned, details of some of these responses remain poorly understood. Members of heat shock chaperone HSP proteins have been linked to acetic acid and heat shock stress responses in yeast. Both acetic acid and heat shock have been identified to trigger different cellular responses including reduction of global protein synthesis and induction of programmed cell death. Yeast HSC82 and HSP82 code for two important heat shock proteins that together account for 1–2% of total cellular proteins. Both proteins have been linked to responses to acetic acid and heat shock. In contrast to the overall rate of protein synthesis which is reduced, the expression of HSC82 and HSP82 is induced in response to acetic acid stress. In the current study we identified two yeast genes DOM34 and RPL36A that are linked to acetic acid and heat shock sensitivity. We investigated the influence of these genes on the expression of HSP proteins. Our observations suggest that Dom34 and RPL36A influence translation in a CAP-independent manner.
Collapse
Affiliation(s)
- Bahram Samanfar
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada.,Agriculture and Ari-Food Canada, Ottawa Research and Development Centre (ORDC), Ottawa, Ontario, Canada
| | - Kristina Shostak
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada.,Agriculture and Ari-Food Canada, Ottawa Research and Development Centre (ORDC), Ottawa, Ontario, Canada
| | - Houman Moteshareie
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Maryam Hajikarimlou
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Sarah Shaikho
- Children's Hospital of Eastern Ontario Research Institute, Department of Pediatrics , University of Ottawa, Ottawa, Ontario, Canada
| | - Katayoun Omidi
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Mohsen Hooshyar
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada.,Ottawa Hospital Research Institute, Center for Cancer Therapeutics, Ottawa, Ontario, Canada
| | - Daniel Burnside
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Imelda Galván Márquez
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Tom Kazmirchuk
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Thet Naing
- Children's Hospital of Eastern Ontario Research Institute, Department of Pediatrics , University of Ottawa, Ottawa, Ontario, Canada
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Portugal
| | - Anna York-Lyon
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Kama Szereszewski
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada.,Department of Chemistry, Carleton University, Ottawa, Ontario, Canada
| | - Cindy Leung
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Jennifer Yixin Jin
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Rami Megarbane
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Myron L Smith
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan, Canada
| | - Martin Holcik
- Children's Hospital of Eastern Ontario Research Institute, Department of Pediatrics , University of Ottawa, Ottawa, Ontario, Canada.,Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Ashkan Golshani
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
41
|
Sitron CS, Park JH, Brandman O. Asc1, Hel2, and Slh1 couple translation arrest to nascent chain degradation. RNA (NEW YORK, N.Y.) 2017; 23:798-810. [PMID: 28223409 PMCID: PMC5393187 DOI: 10.1261/rna.060897.117] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/17/2017] [Indexed: 05/17/2023]
Abstract
Premature arrest of protein synthesis within the open reading frame elicits a protective response that degrades the incomplete nascent chain. In this response, arrested 80S ribosomes are split into their large and small subunits, allowing assembly of the ribosome quality control complex (RQC), which targets nascent chains for degradation. How the cell recognizes arrested nascent chains among the vast pool of actively translating polypeptides is poorly understood. We systematically examined translation arrest and modification of nascent chains in Saccharomyces cerevisiae to characterize the steps that couple arrest to RQC targeting. We focused our analysis on two poorly understood 80S ribosome-binding proteins previously implicated in the response to failed translation, Asc1 and Hel2, as well as a new component of the pathway, Slh1, that we identified here. We found that premature arrest at ribosome stalling sequences still occurred robustly in the absence of Asc1, Hel2, and Slh1. However, these three factors were required for the RQC to modify the nascent chain. We propose that Asc1, Hel2, and Slh1 target arresting ribosomes and that this targeting event is a precondition for the RQC to engage the incomplete nascent chain and facilitate its degradation.
Collapse
Affiliation(s)
- Cole S Sitron
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Joseph H Park
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Onn Brandman
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
42
|
Yang F, Xi R. Silencing transposable elements in the Drosophila germline. Cell Mol Life Sci 2017; 74:435-448. [PMID: 27600679 PMCID: PMC11107544 DOI: 10.1007/s00018-016-2353-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 08/18/2016] [Accepted: 08/30/2016] [Indexed: 10/21/2022]
Abstract
Transposable elements or transposons are DNA pieces that can move around within the genome and are, therefore, potential threat to genome stability and faithful transmission of the genetic information in the germline. Accordingly, self-defense mechanisms have evolved in the metazoan germline to silence transposons, and the primary mechanism requires the germline-specific non-coding small RNAs, named Piwi-interacting RNA (piRNAs), which are in complex with Argonaute family of PIWI proteins (the piRNA-RISC complexes), to silence transposons. piRNA-mediated transposon silencing occurs at both transcriptional and post-transcriptional levels. With the advantages of genetic manipulation and advances of sequencing technology, much progress has been made on the molecular mechanisms of piRNA-mediated transposon silencing in Drosophila melanogaster, which will be the focus of this review. Because piRNA-mediated transposon silencing is evolutionarily conserved in metazoan, model organisms, such as Drosophila, will continue to be served as pioneer systems towards the complete understanding of transposon silencing in the metazoan germline.
Collapse
Affiliation(s)
- Fu Yang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
- College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Rongwen Xi
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China.
| |
Collapse
|
43
|
Inada T. The Ribosome as a Platform for mRNA and Nascent Polypeptide Quality Control. Trends Biochem Sci 2017; 42:5-15. [DOI: 10.1016/j.tibs.2016.09.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 09/05/2016] [Accepted: 09/13/2016] [Indexed: 11/28/2022]
|
44
|
Lyu Z, Whitman WB. Evolution of the archaeal and mammalian information processing systems: towards an archaeal model for human disease. Cell Mol Life Sci 2017; 74:183-212. [PMID: 27261368 PMCID: PMC11107668 DOI: 10.1007/s00018-016-2286-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/05/2016] [Accepted: 05/27/2016] [Indexed: 12/22/2022]
Abstract
Current evolutionary models suggest that Eukaryotes originated from within Archaea instead of being a sister lineage. To test this model of ancient evolution, we review recent studies and compare the three major information processing subsystems of replication, transcription and translation in the Archaea and Eukaryotes. Our hypothesis is that if the Eukaryotes arose within the archaeal radiation, their information processing systems will appear to be one of kind and not wholly original. Within the Eukaryotes, the mammalian or human systems are emphasized because of their importance in understanding health. Biochemical as well as genetic studies provide strong evidence for the functional similarity of archaeal homologs to the mammalian information processing system and their dissimilarity to the bacterial systems. In many independent instances, a simple archaeal system is functionally equivalent to more elaborate eukaryotic homologs, suggesting that evolution of complexity is likely an central feature of the eukaryotic information processing system. Because fewer components are often involved, biochemical characterizations of the archaeal systems are often easier to interpret. Similarly, the archaeal cell provides a genetically and metabolically simpler background, enabling convenient studies on the complex information processing system. Therefore, Archaea could serve as a parsimonious and tractable host for studying human diseases that arise in the information processing systems.
Collapse
Affiliation(s)
- Zhe Lyu
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - William B Whitman
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
45
|
Hilal T, Yamamoto H, Loerke J, Bürger J, Mielke T, Spahn CM. Structural insights into ribosomal rescue by Dom34 and Hbs1 at near-atomic resolution. Nat Commun 2016; 7:13521. [PMID: 27995908 PMCID: PMC5187420 DOI: 10.1038/ncomms13521] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/11/2016] [Indexed: 01/13/2023] Open
Abstract
The surveillance of mRNA translation is imperative for homeostasis. Monitoring the integrity of the message is essential, as the translation of aberrant mRNAs leads to stalling of the translational machinery. During ribosomal rescue, arrested ribosomes are specifically recognized by the conserved eukaryotic proteins Dom34 and Hbs1, to initiate their recycling. Here we solve the structure of Dom34 and Hbs1 bound to a yeast ribosome programmed with a nonstop mRNA at 3.3 Å resolution using cryo-electron microscopy. The structure shows that Domain N of Dom34 is inserted into the upstream mRNA-binding groove via direct stacking interactions with conserved nucleotides of 18S rRNA. It senses the absence of mRNA at the A-site and part of the mRNA entry channel by direct competition. Thus, our analysis establishes the structural foundation for the recognition of aberrantly stalled 80S ribosomes by the Dom34·Hbs1·GTP complex during Dom34-mediated mRNA surveillance pathways.
Collapse
Affiliation(s)
- Tarek Hilal
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Hiroshi Yamamoto
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Justus Loerke
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jörg Bürger
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Max-Planck Institut für Molekulare Genetik, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Thorsten Mielke
- Max-Planck Institut für Molekulare Genetik, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Christian M.T. Spahn
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
46
|
van Wijlick L, Geissen R, Hilbig JS, Lagadec Q, Cantero PD, Pfeifer E, Juchimiuk M, Kluge S, Wickert S, Alepuz P, Ernst JF. Dom34 Links Translation to Protein O-mannosylation. PLoS Genet 2016; 12:e1006395. [PMID: 27768707 PMCID: PMC5074521 DOI: 10.1371/journal.pgen.1006395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/29/2016] [Indexed: 11/25/2022] Open
Abstract
In eukaryotes, Dom34 upregulates translation by securing levels of activatable ribosomal subunits. We found that in the yeast Saccharomyces cerevisiae and the human fungal pathogen Candida albicans, Dom34 interacts genetically with Pmt1, a major isoform of protein O-mannosyltransferase. In C. albicans, lack of Dom34 exacerbated defective phenotypes of pmt1 mutants, while they were ameliorated by Dom34 overproduction that enhanced Pmt1 protein but not PMT1 transcript levels. Translational effects of Dom34 required the 5′-UTR of the PMT1 transcript, which bound recombinant Dom34 directly at a CA/AC-rich sequence and regulated in vitro translation. Polysomal profiling revealed that Dom34 stimulates general translation moderately, but that it is especially required for translation of transcripts encoding Pmt isoforms 1, 4 and 6. Because defective protein N- or O-glycosylation upregulates transcription of PMT genes, it appears that Dom34-mediated specific translational upregulation of the PMT transcripts optimizes cellular responses to glycostress. Its translational function as an RNA binding protein acting at the 5′-UTR of specific transcripts adds another facet to the known ribosome-releasing functions of Dom34 at the 3′-UTR of transcripts. Fungi respond to damages of their glycostructures in their cell wall by transcriptional upregulation of genes that specify compensatory activities. Upon block of protein N-glycosylation, the human fungal pathogen Candida albicans increases transcription of PMT1 encoding a major isoform of protein O-mannosyltransferase. Here we demonstrate that the Dom34 protein aids in glycostress responses by upregulating the translation of several PMT isoform transcripts. Dom34 has previously been implicated in mechanisms to secure high levels of ribosomal subunits that promote translation in general, e. g. by no-go decay at the 3′-UTR of transcripts. By binding to the 5′-UTR and activating translational initiation of PMT transcripts we add a novel mode of action and suggest a preferred class of targets for the translational activities of the Dom34 protein. The combination of transcriptional and Dom34-mediated translational upregulation of PMT genes optimizes effective recovery and survival of fungal cells upon glycostress.
Collapse
Affiliation(s)
- Lasse van Wijlick
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
- Manchot Graduate School Molecules of Infection, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - René Geissen
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Jessica S. Hilbig
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Quentin Lagadec
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Pilar D. Cantero
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Eugen Pfeifer
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Mateusz Juchimiuk
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Sven Kluge
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Stephan Wickert
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Paula Alepuz
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot Spain
- ERI Biotecmed. Universitat de València, Burjassot Spain
| | - Joachim F. Ernst
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
- Manchot Graduate School Molecules of Infection, Heinrich-Heine-Universität, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
47
|
Łabno A, Tomecki R, Dziembowski A. Cytoplasmic RNA decay pathways - Enzymes and mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:3125-3147. [PMID: 27713097 DOI: 10.1016/j.bbamcr.2016.09.023] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 12/14/2022]
Abstract
RNA decay plays a crucial role in post-transcriptional regulation of gene expression. Work conducted over the last decades has defined the major mRNA decay pathways, as well as enzymes and their cofactors responsible for these processes. In contrast, our knowledge of the mechanisms of degradation of non-protein coding RNA species is more fragmentary. This review is focused on the cytoplasmic pathways of mRNA and ncRNA degradation in eukaryotes. The major 3' to 5' and 5' to 3' mRNA decay pathways are described with emphasis on the mechanisms of their activation by the deprotection of RNA ends. More recently discovered 3'-end modifications such as uridylation, and their relevance to cytoplasmic mRNA decay in various model organisms, are also discussed. Finally, we provide up-to-date findings concerning various pathways of non-coding RNA decay in the cytoplasm.
Collapse
Affiliation(s)
- Anna Łabno
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Rafał Tomecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland.
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland.
| |
Collapse
|
48
|
Ikeuchi K, Yazaki E, Kudo K, Inada T. Conserved functions of human Pelota in mRNA quality control of nonstop mRNA. FEBS Lett 2016; 590:3254-63. [DOI: 10.1002/1873-3468.12366] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/12/2016] [Accepted: 08/15/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Ken Ikeuchi
- Graduate School of Pharmaceutical Science; Tohoku University; Aoba-ku Sendai Japan
| | - Erina Yazaki
- Graduate School of Pharmaceutical Science; Tohoku University; Aoba-ku Sendai Japan
| | - Kazuhei Kudo
- Graduate School of Pharmaceutical Science; Tohoku University; Aoba-ku Sendai Japan
| | - Toshifumi Inada
- Graduate School of Pharmaceutical Science; Tohoku University; Aoba-ku Sendai Japan
| |
Collapse
|
49
|
Ribosome-associated Asc1/RACK1 is required for endonucleolytic cleavage induced by stalled ribosome at the 3' end of nonstop mRNA. Sci Rep 2016; 6:28234. [PMID: 27312062 PMCID: PMC4911565 DOI: 10.1038/srep28234] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/31/2016] [Indexed: 12/21/2022] Open
Abstract
Dom34-Hbs1 stimulates degradation of aberrant mRNAs lacking termination codons by dissociating ribosomes stalled at the 3′ ends, and plays crucial roles in Nonstop Decay (NSD) and No-Go Decay (NGD). In the dom34Δ mutant, nonstop mRNA is degraded by sequential endonucleolytic cleavages induced by a stalled ribosome at the 3′ end. Here, we report that ribosome-associated Asc1/RACK1 is required for the endonucleolytic cleavage of nonstop mRNA by stalled ribosome at the 3′ end of mRNA in dom34Δ mutant cells. Asc1/RACK1 facilitates degradation of truncated GFP-Rz mRNA in the absence of Dom34 and exosome-dependent decay. Asc1/RACK1 is required for the sequential endonucleolytic cleavages by the stalled ribosome in the dom34Δ mutant, depending on its ribosome-binding activity. The levels of peptidyl-tRNA derived from nonstop mRNA were elevated in dom34Δasc1Δ mutant cells, and overproduction of nonstop mRNA inhibited growth of mutant cells. E3 ubiquitin ligase Ltn1 degrades the arrest products from truncated GFP-Rz mRNA in dom34Δ and dom34Δasc1Δ mutant cells, and Asc1/RACK1 represses the levels of substrates for Ltn1-dependent degradation. These indicate that ribosome-associated Asc1/RACK1 facilitates endonucleolytic cleavage of nonstop mRNA by stalled ribosomes and represses the levels of aberrant products even in the absence of Dom34. We propose that Asc1/RACK1 acts as a fail-safe in quality control for nonstop mRNA.
Collapse
|
50
|
Feaga HA, Quickel MD, Hankey-Giblin PA, Keiler KC. Human Cells Require Non-stop Ribosome Rescue Activity in Mitochondria. PLoS Genet 2016; 12:e1005964. [PMID: 27029019 PMCID: PMC4814080 DOI: 10.1371/journal.pgen.1005964] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/07/2016] [Indexed: 12/04/2022] Open
Abstract
Bacteria use trans-translation and the alternative rescue factors ArfA (P36675) and ArfB (Q9A8Y3) to hydrolyze peptidyl-tRNA on ribosomes that stall near the 3' end of an mRNA during protein synthesis. The eukaryotic protein ICT1 (Q14197) is homologous to ArfB. In vitro ribosome rescue assays of human ICT1 and Caulobacter crescentus ArfB showed that these proteins have the same activity and substrate specificity. Both ArfB and ICT1 hydrolyze peptidyl-tRNA on nonstop ribosomes or ribosomes stalled with ≤6 nucleotides extending past the A site, but are unable to hydrolyze peptidyl-tRNA when the mRNA extends ≥14 nucleotides past the A site. ICT1 provided sufficient ribosome rescue activity to support viability in C. crescentus cells that lacked both trans-translation and ArfB. Likewise, expression of ArfB protected human cells from death when ICT1 was silenced with siRNA. These data indicate that ArfB and ICT1 are functionally interchangeable, and demonstrate that ICT1 is a ribosome rescue factor. Because ICT1 is essential in human cells, these results suggest that ribosome rescue activity in mitochondria is required in humans. Ribosomes can stall during protein synthesis on truncated or damaged mRNAs that lack a stop codon. In bacteria, these “non-stop” ribosomes are rescued by trans-translation or by an alternative rescue factor, ArfA or ArfB. Most eukaryotes do not have trans-translation, but mammals have a homolog of ArfB named ICT1. ICT1 is targeted to mitochondria, and is essential in human cells. Here, we show that human ICT1 and ArfB from the bacterium Caulobacter crescentus have the same biochemical activity and specificity. We also demonstrate that ICT1 and ArfB are functionally interchangeable in both bacteria and human cells. Collectively, this work demonstrates a new essential function in human cells—rescue of mitochondrial non-stop translation complexes.
Collapse
Affiliation(s)
- Heather A. Feaga
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Michael D. Quickel
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Pamela A. Hankey-Giblin
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kenneth C. Keiler
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|