1
|
van der Beek J, Klumperman J. Trafficking to the lysosome: HOPS paves the way. Curr Opin Cell Biol 2025; 94:102515. [PMID: 40262415 DOI: 10.1016/j.ceb.2025.102515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/19/2025] [Indexed: 04/24/2025]
Abstract
The endo-lysosomal system plays a crucial role in cellular homeostasis by continuously turning over organelles, proteins, and other cargo of intra- or extracellular origin. Moreover, it senses the nutrient status within the cell and can ignite cellular responses by activating or repressing signaling pathways. To enable these roles, lysosomes are fueled by the biosynthetic pathway and receive cargo for degradation by endocytosis and autophagy. Tight regulation and coordination of these distinct trafficking pathways to lysosomes are critical for cellular health. In this review, we explore how these pathways converge at the late stages of the endo-lysosomal system and highlight the role of the HOPS complex as a unifying gatekeeper for trafficking to the lysosome.
Collapse
Affiliation(s)
- Jan van der Beek
- Center for Molecular Medicine Section Cell Biology, University Medical Center Utrecht, the Netherlands
| | - Judith Klumperman
- Center for Molecular Medicine Section Cell Biology, University Medical Center Utrecht, the Netherlands.
| |
Collapse
|
2
|
Ungermann C, Moeller A. Structuring of the endolysosomal system by HOPS and CORVET tethering complexes. Curr Opin Cell Biol 2025; 94:102504. [PMID: 40187049 DOI: 10.1016/j.ceb.2025.102504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 04/07/2025]
Abstract
Eukaryotic cells depend on their endolysosomal system for membrane protein and organelle turnover, plasma membrane quality control, or regulation of their nutrient uptake. All material eventually ends up in the lytic environment of the lysosome for cellular recycling. At endosomes and lysosomes, the multisubunit complexes CORVET and HOPS tether membranes by binding both their cognate Rab GTPase and specific membrane lipids. Additionally, they carry one Sec1/Munc18-like subunit at their center and thus promote SNARE assembly and, subsequently, bilayer mixing. Recent structural and functional analysis provided insights into their organization and suggested how these complexes combine tethering with fusion catalysis. This review discusses the function and structural organization of HOPS and CORVET in the context of recent studies in yeast and metazoan cells.
Collapse
Affiliation(s)
- Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Barbarastrasse 13, 49076, Osnabrück, Germany; Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, Barbarastrasse 11, 49076, Osnabrück, Germany.
| | - Arne Moeller
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, Barbarastrasse 11, 49076, Osnabrück, Germany; Department of Biology/Chemistry, Structural Biology Section, Osnabrück University, Barbarastrasse 13, 49076, Osnabrück, Germany.
| |
Collapse
|
3
|
Mesén-Ramírez JP, Fuchs G, Burmester J, Farias GB, Alape-Flores AM, Singla S, Alder A, Cubillán-Marín J, Castro-Peña C, Lemcke S, Sondermann H, Prado M, Spielmann T, Wilson D, Gilberger TW. HOPS/CORVET tethering complexes are critical for endocytosis and protein trafficking to invasion related organelles in malaria parasites. PLoS Pathog 2025; 21:e1013053. [PMID: 40198740 PMCID: PMC12011295 DOI: 10.1371/journal.ppat.1013053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 04/21/2025] [Accepted: 03/18/2025] [Indexed: 04/10/2025] Open
Abstract
The tethering complexes HOPS/CORVET are central for vesicular fusion through the eukaryotic endolysosomal system, but the functions of these complexes in the intracellular development of malaria parasites are still unknown. Here we show that the HOPS/CORVET core subunits are critical for the intracellular proliferation of the malaria parasite Plasmodium falciparum. We demonstrate that HOPS/CORVET are required for parasite endocytosis and host cell cytosol uptake, as early functional depletion of the complex led to developmental arrest and accumulation of endosomes that failed to fuse to the digestive vacuole membrane. Late depletion of the core HOPS/CORVET subunits led to a severe defect in merozoite invasion as a result of the mistargeting of proteins destined to the apical secretory organelles, the rhoptries and micronemes. Ultrastructure-expansion microscopy revealed a reduced rhoptry volume and the accumulation of numerous vesicles in HOPS/CORVET deficient schizonts, further supporting a role of HOPS/CORVET in post-Golgi protein cargo trafficking to the invasion related organelles. Hence, malaria parasites have repurposed HOPS/CORVET to perform dual functions across the intraerythrocytic cycle, consistent with a canonical endocytic pathway for delivery of host cell material to the digestive vacuole in trophozoite stages and a parasite specific role in trafficking of protein cargo to the apical organelles required for invasion in schizont stages.
Collapse
Affiliation(s)
- Joëlle Paolo Mesén-Ramírez
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Gwendolin Fuchs
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Jonas Burmester
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Guilherme B. Farias
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Ana María Alape-Flores
- Microbiology Faculty and Center for Research in Tropical Diseases (CIET), University of Costa Rica, San José, Costa Rica
| | - Shamit Singla
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, Australia
| | - Arne Alder
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | | | | | - Sarah Lemcke
- Centre for Structural Systems Biology, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Holger Sondermann
- Centre for Structural Systems Biology, Hamburg, Germany
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Mónica Prado
- Microbiology Faculty and Center for Research in Tropical Diseases (CIET), University of Costa Rica, San José, Costa Rica
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Danny Wilson
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, Australia
| | - Tim-Wolf Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| |
Collapse
|
4
|
Leih M, Plemel RL, West M, Angers CG, Merz AJ, Odorizzi G. Disordered hinge regions of the AP-3 adaptor complex promote vesicle budding from the late Golgi in yeast. J Cell Sci 2024; 137:jcs262234. [PMID: 39330471 PMCID: PMC11574352 DOI: 10.1242/jcs.262234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024] Open
Abstract
Vesicles bud from maturing Golgi cisternae in a programmed sequence. Budding is mediated by adaptors that recruit cargoes and facilitate vesicle biogenesis. In Saccharomyces cerevisiae, the AP-3 adaptor complex directs cargoes from the Golgi to the lysosomal vacuole. The AP-3 core consists of small and medium subunits complexed with two non-identical large subunits, β3 (Apl6) and δ (Apl5). The C-termini of β3 and δ were thought to be flexible hinges linking the core to ear domains that bind accessory proteins involved in vesicular transport. We found by computational modeling that the yeast β3 and δ hinges are intrinsically disordered and lack folded ear domains. When either hinge is truncated, AP-3 is recruited to the Golgi, but vesicle budding is impaired and cargoes normally sorted into the AP-3 pathway are mistargeted. This budding deficiency causes AP-3 to accumulate on ring-like Golgi structures adjacent to GGA adaptors that, in wild-type cells, bud vesicles downstream of AP-3 during Golgi maturation. Thus, each of the disordered hinges of yeast AP-3 has a crucial role in mediating transport vesicle formation at the Golgi.
Collapse
Affiliation(s)
- Mitchell Leih
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Rachael L Plemel
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Matt West
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Cortney G Angers
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alexey J Merz
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Greg Odorizzi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
5
|
Sőth Á, Molnár M, Lőrincz P, Simon-Vecsei Z, Juhász G. CORVET-specific subunit levels determine the balance between HOPS/CORVET endosomal tethering complexes. Sci Rep 2024; 14:10146. [PMID: 38698024 PMCID: PMC11066007 DOI: 10.1038/s41598-024-59775-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024] Open
Abstract
The closely related endolysosomal tethering complexes HOPS and CORVET play pivotal roles in the homo- and heterotypic fusion of early and late endosomes, respectively, and HOPS also mediates the fusion of lysosomes with incoming vesicles including late endosomes and autophagosomes. These heterohexameric complexes share their four core subunits that assemble with additional two, complex-specific subunits. These features and the similar structure of the complexes could allow the formation of hybrid complexes, and the complex specific subunits may compete for binding to the core. Indeed, our biochemical analyses revealed the overlap of binding sites for HOPS-specific VPS41 and CORVET-specific VPS8 on the shared core subunit VPS18. We found that the overexpression of CORVET-specific VPS8 or Tgfbrap1 decreased the amount of core proteins VPS11 and VPS18 that are assembled with HOPS-specific subunits VPS41 or VPS39, indicating reduced amount of assembled HOPS. In line with this, we observed the elevation of both lipidated, autophagosome-associated LC3 protein and the autophagic cargo p62 in these cells, suggesting impaired autophagosome-lysosome fusion. In contrast, overexpression of HOPS-specific VPS39 or VPS41 did not affect the level of assembled CORVET or autophagy. VPS8 or Tgfbrap1 overexpression also induced Cathepsin D accumulation, suggesting that HOPS-dependent biosynthetic delivery of lysosomal hydrolases is perturbed, too. These indicate that CORVET-specific subunit levels fine-tune HOPS assembly and activity in vivo.
Collapse
Affiliation(s)
- Ármin Sőth
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University (ELTE), Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Márton Molnár
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University (ELTE), Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
- Momentum Vesicle Trafficking Research Group, Hungarian Academy of Sciences-Eötvös Loránd University, Budapest, Hungary
| | - Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University (ELTE), Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
- Momentum Vesicle Trafficking Research Group, Hungarian Academy of Sciences-Eötvös Loránd University, Budapest, Hungary
| | - Zsófia Simon-Vecsei
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University (ELTE), Pázmány Péter sétány 1/C, Budapest, 1117, Hungary.
- Momentum Vesicle Trafficking Research Group, Hungarian Academy of Sciences-Eötvös Loránd University, Budapest, Hungary.
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University (ELTE), Pázmány Péter sétány 1/C, Budapest, 1117, Hungary.
- Momentum Lysosomal Degradation Research Group, Institute of Genetics, HUN-REN Biological Research Centre Szeged, Szeged, Hungary.
| |
Collapse
|
6
|
Kümmel D, Herrmann E, Langemeyer L, Ungermann C. Molecular insights into endolysosomal microcompartment formation and maintenance. Biol Chem 2022; 404:441-454. [PMID: 36503831 DOI: 10.1515/hsz-2022-0294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022]
Abstract
Abstract
The endolysosomal system of eukaryotic cells has a key role in the homeostasis of the plasma membrane, in signaling and nutrient uptake, and is abused by viruses and pathogens for entry. Endocytosis of plasma membrane proteins results in vesicles, which fuse with the early endosome. If destined for lysosomal degradation, these proteins are packaged into intraluminal vesicles, converting an early endosome to a late endosome, which finally fuses with the lysosome. Each of these organelles has a unique membrane surface composition, which can form segmented membrane microcompartments by membrane contact sites or fission proteins. Furthermore, these organelles are in continuous exchange due to fission and fusion events. The underlying machinery, which maintains organelle identity along the pathway, is regulated by signaling processes. Here, we will focus on the Rab5 and Rab7 GTPases of early and late endosomes. As molecular switches, Rabs depend on activating guanine nucleotide exchange factors (GEFs). Over the last years, we characterized the Rab7 GEF, the Mon1-Ccz1 (MC1) complex, and key Rab7 effectors, the HOPS complex and retromer. Structural and functional analyses of these complexes lead to a molecular understanding of their function in the context of organelle biogenesis.
Collapse
Affiliation(s)
- Daniel Kümmel
- Institute of Biochemistry, University of Münster , Corrensstraße 36 , D-48149 Münster , Germany
| | - Eric Herrmann
- Institute of Biochemistry, University of Münster , Corrensstraße 36 , D-48149 Münster , Germany
| | - Lars Langemeyer
- Department of Biology/Chemistry, Biochemistry section , Osnabrück University , Barbarastraße 13 , D-49076 Osnabrück , Germany
- Center of Cellular Nanoanalytics (CellNanOs) , Osnabrück University , Barbarastraße 11 , D-49076 Osnabrück , Germany
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry section , Osnabrück University , Barbarastraße 13 , D-49076 Osnabrück , Germany
- Center of Cellular Nanoanalytics (CellNanOs) , Osnabrück University , Barbarastraße 11 , D-49076 Osnabrück , Germany
| |
Collapse
|
7
|
Vtc5 Is Localized to the Vacuole Membrane by the Conserved AP-3 Complex to Regulate Polyphosphate Synthesis in Budding Yeast. mBio 2021; 12:e0099421. [PMID: 34544285 PMCID: PMC8510523 DOI: 10.1128/mbio.00994-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Polyphosphates (polyP) are energy-rich polymers of inorganic phosphates assembled into chains ranging from 3 residues to thousands of residues in length. They are thought to exist in all cells on earth and play roles in an eclectic mix of functions ranging from phosphate homeostasis to cell signaling, infection control, and blood clotting. In the budding yeast Saccharomyces cerevisiae, polyP chains are synthesized by the vacuole-bound vacuolar transporter chaperone (VTC) complex, which synthesizes polyP while simultaneously translocating it into the vacuole lumen, where it is stored at high concentrations. VTC’s activity is promoted by an accessory subunit called Vtc5. In this work, we found that the conserved AP-3 complex is required for proper Vtc5 localization to the vacuole membrane. In human cells, previous work has demonstrated that mutation of AP-3 subunits gives rise to Hermansky-Pudlak syndrome, a rare disease with molecular phenotypes that include decreased polyP accumulation in platelet dense granules. In yeast AP-3 mutants, we found that Vtc5 is rerouted to the vacuole lumen by the endosomal sorting complex required for transport (ESCRT), where it is degraded by the vacuolar protease Pep4. Cells lacking functional AP-3 have decreased levels of polyP, demonstrating that membrane localization of Vtc5 is required for its VTC stimulatory activity in vivo. Our work provides insight into the molecular trafficking of a critical regulator of polyP metabolism in yeast. We speculate that AP-3 may also be responsible for the delivery of polyP regulatory proteins to platelet dense granules in higher eukaryotes.
Collapse
|
8
|
Schoppe J, Schubert E, Apelbaum A, Yavavli E, Birkholz O, Stephanowitz H, Han Y, Perz A, Hofnagel O, Liu F, Piehler J, Raunser S, Ungermann C. Flexible open conformation of the AP-3 complex explains its role in cargo recruitment at the Golgi. J Biol Chem 2021; 297:101334. [PMID: 34688652 PMCID: PMC8591511 DOI: 10.1016/j.jbc.2021.101334] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 01/17/2023] Open
Abstract
Vesicle formation at endomembranes requires the selective concentration of cargo by coat proteins. Conserved adapter protein complexes at the Golgi (AP-3), the endosome (AP-1), or the plasma membrane (AP-2) with their conserved core domain and flexible ear domains mediate this function. These complexes also rely on the small GTPase Arf1 and/or specific phosphoinositides for membrane binding. The structural details that influence these processes, however, are still poorly understood. Here we present cryo-EM structures of the full-length stable 300 kDa yeast AP-3 complex. The structures reveal that AP-3 adopts an open conformation in solution, comparable to the membrane-bound conformations of AP-1 or AP-2. This open conformation appears to be far more flexible than AP-1 or AP-2, resulting in compact, intermediate, and stretched subconformations. Mass spectrometrical analysis of the cross-linked AP-3 complex further indicates that the ear domains are flexibly attached to the surface of the complex. Using biochemical reconstitution assays, we also show that efficient AP-3 recruitment to the membrane depends primarily on cargo binding. Once bound to cargo, AP-3 clustered and immobilized cargo molecules, as revealed by single-molecule imaging on polymer-supported membranes. We conclude that its flexible open state may enable AP-3 to bind and collect cargo at the Golgi and could thus allow coordinated vesicle formation at the trans-Golgi upon Arf1 activation.
Collapse
Affiliation(s)
- Jannis Schoppe
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
| | - Evelyn Schubert
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Amir Apelbaum
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Erdal Yavavli
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
| | - Oliver Birkholz
- Department of Biology/Chemistry, Biophysics Section, Osnabrück University, Osnabrück, Germany
| | - Heike Stephanowitz
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Berlin, Germany
| | - Yaping Han
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
| | - Angela Perz
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
| | - Oliver Hofnagel
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Fan Liu
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Berlin, Germany
| | - Jacob Piehler
- Department of Biology/Chemistry, Biophysics Section, Osnabrück University, Osnabrück, Germany; Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, Dortmund, Germany.
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany; Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany.
| |
Collapse
|
9
|
Ramakrishnan S, Baptista RP, Asady B, Huang G, Docampo R. TbVps41 regulates trafficking of endocytic but not biosynthetic cargo to lysosomes of bloodstream forms of Trypanosoma brucei. FASEB J 2021; 35:e21641. [PMID: 34041791 DOI: 10.1096/fj.202100487r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 11/11/2022]
Abstract
The bloodstream stage of Trypanosoma brucei, the causative agent of African trypanosomiasis, is characterized by its high rate of endocytosis, which is involved in remodeling of its surface coat. Here we present evidence that RNAi-mediated expression down-regulation of vacuolar protein sorting 41 (Vps41), a component of the homotypic fusion and vacuole protein sorting (HOPS) complex, leads to a strong inhibition of endocytosis, vesicle accumulation, enlargement of the flagellar pocket ("big eye" phenotype), and dramatic effect on cell growth. Unexpectedly, other functions described for Vps41 in mammalian cells and yeasts, such as delivery of proteins to lysosomes, and lysosome-related organelles (acidocalcisomes) were unaffected, indicating that in trypanosomes post-Golgi trafficking is distinct from that of mammalian cells and yeasts. The essentiality of TbVps41 suggests that it is a potential drug target.
Collapse
Affiliation(s)
| | | | - Beejan Asady
- Center for Tropical and Emerging Global Diseases, Athens, GA, USA
| | - Guozhong Huang
- Center for Tropical and Emerging Global Diseases, Athens, GA, USA
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases, Athens, GA, USA.,Department of Cellular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
10
|
van der Welle REN, Jobling R, Burns C, Sanza P, van der Beek JA, Fasano A, Chen L, Zwartkruis FJ, Zwakenberg S, Griffin EF, ten Brink C, Veenendaal T, Liv N, van Ravenswaaij‐Arts CMA, Lemmink HH, Pfundt R, Blaser S, Sepulveda C, Lozano AM, Yoon G, Santiago‐Sim T, Asensio CS, Caldwell GA, Caldwell KA, Chitayat D, Klumperman J. Neurodegenerative VPS41 variants inhibit HOPS function and mTORC1-dependent TFEB/TFE3 regulation. EMBO Mol Med 2021; 13:e13258. [PMID: 33851776 PMCID: PMC8103106 DOI: 10.15252/emmm.202013258] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/09/2022] Open
Abstract
Vacuolar protein sorting 41 (VPS41) is as part of the Homotypic fusion and Protein Sorting (HOPS) complex required for lysosomal fusion events and, independent of HOPS, for regulated secretion. Here, we report three patients with compound heterozygous mutations in VPS41 (VPS41S285P and VPS41R662* ; VPS41c.1423-2A>G and VPS41R662* ) displaying neurodegeneration with ataxia and dystonia. Cellular consequences were investigated in patient fibroblasts and VPS41-depleted HeLa cells. All mutants prevented formation of a functional HOPS complex, causing delayed lysosomal delivery of endocytic and autophagic cargo. By contrast, VPS41S285P enabled regulated secretion. Strikingly, loss of VPS41 function caused a cytosolic redistribution of mTORC1, continuous nuclear localization of Transcription Factor E3 (TFE3), enhanced levels of LC3II, and a reduced autophagic response to nutrient starvation. Phosphorylation of mTORC1 substrates S6K1 and 4EBP1 was not affected. In a C. elegans model of Parkinson's disease, co-expression of VPS41S285P /VPS41R662* abolished the neuroprotective function of VPS41 against α-synuclein aggregates. We conclude that the VPS41 variants specifically abrogate HOPS function, which interferes with the TFEB/TFE3 axis of mTORC1 signaling, and cause a neurodegenerative disease.
Collapse
Affiliation(s)
- Reini E N van der Welle
- Section Cell BiologyCenter for Molecular MedicineInstitute of BiomembranesUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Rebekah Jobling
- Department of PediatricsDivision of Clinical and Metabolic GeneticsThe Hospital for Sick ChildrenUniversity of TorontoTorontoONCanada
| | - Christian Burns
- Department of Biological SciencesDivision of Natural Sciences and MathematicsUniversity of DenverDenverCOUSA
| | - Paolo Sanza
- Section Cell BiologyCenter for Molecular MedicineInstitute of BiomembranesUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Jan A van der Beek
- Section Cell BiologyCenter for Molecular MedicineInstitute of BiomembranesUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson’s DiseaseMorton and Gloria Shulman Movement Disorders ClinicToronto Western Hospital, UHNTorontoONCanada
- Division of NeurologyUniversity of TorontoTorontoONCanada
- Krembil Brain InstituteTorontoONCanada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA)TorontoONCanada
| | - Lan Chen
- Department of Biological SciencesDivision of Natural Sciences and MathematicsUniversity of DenverDenverCOUSA
| | - Fried J Zwartkruis
- Section Molecular Cancer ResearchCenter for Molecular MedicineUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Susan Zwakenberg
- Section Molecular Cancer ResearchCenter for Molecular MedicineUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Edward F Griffin
- Department of Biological SciencesThe University of AlabamaTuscaloosaALUSA
- Department of NeurologyCenter for Neurodegeneration and Experimental TherapeuticsNathan Shock Center for Basic Research in the Biology of AgingUniversity of Alabama at Birmingham School of MedicineBirminghamALUSA
| | - Corlinda ten Brink
- Section Cell BiologyCenter for Molecular MedicineInstitute of BiomembranesUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Tineke Veenendaal
- Section Cell BiologyCenter for Molecular MedicineInstitute of BiomembranesUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Nalan Liv
- Section Cell BiologyCenter for Molecular MedicineInstitute of BiomembranesUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | | | - Henny H Lemmink
- Department of GeneticsUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Rolph Pfundt
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
| | - Susan Blaser
- Department of Diagnostic ImagingHospital for Sick ChildrenTorontoONCanada
| | - Carolina Sepulveda
- Edmond J. Safra Program in Parkinson’s DiseaseMorton and Gloria Shulman Movement Disorders ClinicToronto Western Hospital, UHNTorontoONCanada
- Division of NeurologyUniversity of TorontoTorontoONCanada
| | - Andres M Lozano
- Krembil Brain InstituteTorontoONCanada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA)TorontoONCanada
- Department of NeurosurgeryToronto Western Hospital, UHNTorontoONCanada
- University of TorontoTorontoONCanada
| | - Grace Yoon
- Department of PediatricsDivision of Clinical and Metabolic GeneticsThe Hospital for Sick ChildrenUniversity of TorontoTorontoONCanada
| | | | - Cedric S Asensio
- Department of Biological SciencesDivision of Natural Sciences and MathematicsUniversity of DenverDenverCOUSA
| | - Guy A Caldwell
- Department of Biological SciencesThe University of AlabamaTuscaloosaALUSA
- Department of NeurologyCenter for Neurodegeneration and Experimental TherapeuticsNathan Shock Center for Basic Research in the Biology of AgingUniversity of Alabama at Birmingham School of MedicineBirminghamALUSA
| | - Kim A Caldwell
- Department of Biological SciencesThe University of AlabamaTuscaloosaALUSA
- Department of NeurologyCenter for Neurodegeneration and Experimental TherapeuticsNathan Shock Center for Basic Research in the Biology of AgingUniversity of Alabama at Birmingham School of MedicineBirminghamALUSA
| | - David Chitayat
- Department of PediatricsDivision of Clinical and Metabolic GeneticsThe Hospital for Sick ChildrenUniversity of TorontoTorontoONCanada
- The Prenatal Diagnosis and Medical Genetics ProgramDepartment of Obstetrics and GynecologyUniversity of TorontoTorontoONCanada
| | - Judith Klumperman
- Section Cell BiologyCenter for Molecular MedicineInstitute of BiomembranesUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
11
|
Liu M, Hu J, Zhang A, Dai Y, Chen W, He Y, Zhang H, Zheng X, Zhang Z. Auxilin-like protein MoSwa2 promotes effector secretion and virulence as a clathrin uncoating factor in the rice blast fungus Magnaporthe oryzae. THE NEW PHYTOLOGIST 2021; 230:720-736. [PMID: 33423301 PMCID: PMC8048681 DOI: 10.1111/nph.17181] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/04/2021] [Indexed: 05/03/2023]
Abstract
Plant pathogens exploit the extracellular matrix (ECM) to inhibit host immunity during their interactions with the host. The formation of ECM involves a series of continuous steps of vesicular transport events. To understand how such vesicle trafficking impacts ECM and virulence in the rice blast fungus Magnaporthe oryzae, we characterised MoSwa2, a previously identified actin-regulating kinase MoArk1 interacting protein, as an orthologue of the auxilin-like clathrin uncoating factor Swa2 of the budding yeast Saccharomyces cerevisiae. We found that MoSwa2 functions as an uncoating factor of the coat protein complex II (COPII) via an interaction with the COPII subunit MoSec24-2. Loss of MoSwa2 led to a deficiency in the secretion of extracellular proteins, resulting in both restricted growth of invasive hyphae and reduced inhibition of host immunity. Additionally, extracellular fluid (ECF) proteome analysis revealed that MoSwa2-regulated extracellular proteins include many redox proteins such as the berberine bridge enzyme-like (BBE-like) protein MoSef1. We further found that MoSef1 functions as an apoplastic virulent factor that inhibits the host immune response. Our studies revealed a novel function of a COPII uncoating factor in vesicular transport that is critical in the suppression of host immunity and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Muxing Liu
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjing210095China
| | - Jiexiong Hu
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
| | - Ao Zhang
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
| | - Ying Dai
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
| | - Weizhong Chen
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
| | - Yanglan He
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
| | - Haifeng Zhang
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
| | - Xiaobo Zheng
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
| | - Zhengguang Zhang
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjing210095China
| |
Collapse
|
12
|
Schoppe J, Mari M, Yavavli E, Auffarth K, Cabrera M, Walter S, Fröhlich F, Ungermann C. AP-3 vesicle uncoating occurs after HOPS-dependent vacuole tethering. EMBO J 2020; 39:e105117. [PMID: 32840906 PMCID: PMC7560216 DOI: 10.15252/embj.2020105117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 11/09/2022] Open
Abstract
Heterotetrameric adapter (AP) complexes cooperate with the small GTPase Arf1 or lipids in cargo selection, vesicle formation, and budding at endomembranes in eukaryotic cells. While most AP complexes also require clathrin as the outer vesicle shell, formation of AP-3-coated vesicles involved in Golgi-to-vacuole transport in yeast has been postulated to depend on Vps41, a subunit of the vacuolar HOPS tethering complex. HOPS has also been identified as the tether of AP-3 vesicles on vacuoles. To unravel this conundrum of a dual Vps41 function, we anchored Vps41 stably to the mitochondrial outer membrane. By monitoring AP-3 recruitment, we now show that Vps41 can tether AP-3 vesicles to mitochondria, yet AP-3 vesicles can form in the absence of Vps41 or clathrin. By proximity labeling and mass spectrometry, we identify the Arf1 GTPase-activating protein (GAP) Age2 at the AP-3 coat and show that tethering, but not fusion at the vacuole can occur without complete uncoating. We conclude that AP-3 vesicles retain their coat after budding and that their complete uncoating occurs only after tethering at the vacuole.
Collapse
Affiliation(s)
- Jannis Schoppe
- Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, Osnabrück, Germany
| | - Muriel Mari
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Erdal Yavavli
- Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, Osnabrück, Germany
| | - Kathrin Auffarth
- Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, Osnabrück, Germany
| | - Margarita Cabrera
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Farba, Barcelona, Spain
| | - Stefan Walter
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Florian Fröhlich
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), University of Osnabrück, Osnabrück, Germany.,Department of Biology/Chemistry, Molecular Membrane Biology Section, University of Osnabrück, Osnabrück, Germany
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, Osnabrück, Germany.,Center of Cellular Nanoanalytic Osnabrück (CellNanOs), University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
13
|
Cargo Release from Myosin V Requires the Convergence of Parallel Pathways that Phosphorylate and Ubiquitylate the Cargo Adaptor. Curr Biol 2020; 30:4399-4412.e7. [PMID: 32916113 DOI: 10.1016/j.cub.2020.08.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/23/2020] [Accepted: 08/17/2020] [Indexed: 11/22/2022]
Abstract
Cellular function requires molecular motors to transport cargoes to their correct intracellular locations. The regulated assembly and disassembly of motor-adaptor complexes ensures that cargoes are loaded at their origin and unloaded at their destination. In Saccharomyces cerevisiae, early in the cell cycle, a portion of the vacuole is transported into the emerging bud. This transport requires a myosin V motor, Myo2, which attaches to the vacuole via Vac17, the vacuole-specific adaptor protein. Vac17 also binds to Vac8, a vacuolar membrane protein. Once the vacuole is brought to the bud cortex via the Myo2-Vac17-Vac8 complex, Vac17 is degraded and the vacuole is released from Myo2. However, mechanisms governing dissociation of the Myo2-Vac17-Vac8 complex are not well understood. Ubiquitylation of the Vac17 adaptor at the bud cortex provides spatial regulation of vacuole release. Here, we report that ubiquitylation alone is not sufficient for cargo release. We find that a parallel pathway, which initiates on the vacuole, converges with ubiquitylation to release the vacuole from Myo2. Specifically, we show that Yck3 and Vps41, independent of their known roles in homotypic fusion and protein sorting (HOPS)-mediated vesicle tethering, are required for the phosphorylation of Vac17 in its Myo2 binding domain. These phosphorylation events allow ubiquitylated Vac17 to be released from Myo2 and Vac8. Our data suggest that Vps41 is regulating the phosphorylation of Vac17 via Yck3, a casein kinase I, and likely another unknown kinase. That parallel pathways are required to release the vacuole from Myo2 suggests that multiple signals are integrated to terminate organelle inheritance.
Collapse
|
14
|
Lőrincz P, Juhász G. Autophagosome-Lysosome Fusion. J Mol Biol 2020; 432:2462-2482. [DOI: 10.1016/j.jmb.2019.10.028] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 12/26/2022]
|
15
|
McCarthy L, Bentley‐DeSousa A, Denoncourt A, Tseng Y, Gabriel M, Downey M. Proteins required for vacuolar function are targets of lysine polyphosphorylation in yeast. FEBS Lett 2019; 594:21-30. [DOI: 10.1002/1873-3468.13588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Liam McCarthy
- Department of Cellular and Molecular Medicine University of Ottawa Canada
- Ottawa Institute of Systems Biology University of Ottawa Canada
| | - Amanda Bentley‐DeSousa
- Department of Cellular and Molecular Medicine University of Ottawa Canada
- Ottawa Institute of Systems Biology University of Ottawa Canada
| | - Alix Denoncourt
- Department of Cellular and Molecular Medicine University of Ottawa Canada
- Ottawa Institute of Systems Biology University of Ottawa Canada
| | - Yi‐Chieh Tseng
- Department of Cellular and Molecular Medicine University of Ottawa Canada
- Ottawa Institute of Systems Biology University of Ottawa Canada
| | - Matthew Gabriel
- Department of Cellular and Molecular Medicine University of Ottawa Canada
- Ottawa Institute of Systems Biology University of Ottawa Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine University of Ottawa Canada
- Ottawa Institute of Systems Biology University of Ottawa Canada
| |
Collapse
|
16
|
Tojima T, Suda Y, Ishii M, Kurokawa K, Nakano A. Spatiotemporal dissection of the trans-Golgi network in budding yeast. J Cell Sci 2019; 132:jcs.231159. [PMID: 31289195 PMCID: PMC6703704 DOI: 10.1242/jcs.231159] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/01/2019] [Indexed: 12/27/2022] Open
Abstract
The trans-Golgi network (TGN) acts as a sorting hub for membrane traffic. It receives newly synthesized and recycled proteins, and sorts and delivers them to specific targets such as the plasma membrane, endosomes and lysosomes/vacuoles. Accumulating evidence suggests that the TGN is generated from the trans-most cisterna of the Golgi by maturation, but the detailed transition processes remain obscure. Here, we examine spatiotemporal assembly dynamics of various Golgi/TGN-resident proteins in budding yeast by high-speed and high-resolution spinning-disk confocal microscopy. The Golgi–TGN transition gradually proceeds via at least three successive stages: the ‘Golgi stage’ where glycosylation occurs; the ‘early TGN stage’, which receives retrograde traffic; and the ‘late TGN stage’, where transport carriers are produced. During the stage transition periods, earlier and later markers are often compartmentalized within a cisterna. Furthermore, for the late TGN stage, various types of coat/adaptor proteins exhibit distinct assembly patterns. Taken together, our findings characterize the identity of the TGN as a membrane compartment that is structurally and functionally distinguishable from the Golgi. This article has an associated First Person interview with the first author of the paper. Highlighted Article: The TGN displays two sub-stages of maturation: ‘early TGN’, when retrograde traffic is received, and ‘late TGN’, when transport carriers are produced. At the late TGN, various coat/adaptor proteins exhibit distinct assembly dynamics.
Collapse
Affiliation(s)
- Takuro Tojima
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Yasuyuki Suda
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan.,Laboratory of Molecular Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Midori Ishii
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| |
Collapse
|
17
|
Lőrincz P, Kenéz LA, Tóth S, Kiss V, Varga Á, Csizmadia T, Simon-Vecsei Z, Juhász G. Vps8 overexpression inhibits HOPS-dependent trafficking routes by outcompeting Vps41/Lt. eLife 2019; 8:45631. [PMID: 31194677 PMCID: PMC6592680 DOI: 10.7554/elife.45631] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/13/2019] [Indexed: 01/31/2023] Open
Abstract
Two related multisubunit tethering complexes promote endolysosomal trafficking in all eukaryotes: Rab5-binding CORVET that was suggested to transform into Rab7-binding HOPS. We have previously identified miniCORVET, containing Drosophila Vps8 and three shared core proteins, which are required for endosome maturation upstream of HOPS in highly endocytic cells (Lőrincz et al., 2016a). Here, we show that Vps8 overexpression inhibits HOPS-dependent trafficking routes including late endosome maturation, autophagosome-lysosome fusion, crinophagy and lysosome-related organelle formation. Mechanistically, Vps8 overexpression abolishes the late endosomal localization of HOPS-specific Vps41/Lt and prevents HOPS assembly. Proper ratio of Vps8 to Vps41 is thus critical because Vps8 negatively regulates HOPS by outcompeting Vps41. Endosomal recruitment of miniCORVET- or HOPS-specific subunits requires proper complex assembly, and Vps8/miniCORVET is dispensable for autophagy, crinophagy and lysosomal biogenesis. These data together indicate the recruitment of these complexes to target membranes independent of each other in Drosophila, rather than their transformation during vesicle maturation.
Collapse
Affiliation(s)
- Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary.,Premium Postdoctoral Research Program, Hungarian Academy of Sciences, Budapest, Hungary
| | - Lili Anna Kenéz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Sarolta Tóth
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Viktória Kiss
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Ágnes Varga
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Tamás Csizmadia
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Zsófia Simon-Vecsei
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary.,Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
18
|
van der Beek J, Jonker C, van der Welle R, Liv N, Klumperman J. CORVET, CHEVI and HOPS – multisubunit tethers of the endo-lysosomal system in health and disease. J Cell Sci 2019; 132:132/10/jcs189134. [DOI: 10.1242/jcs.189134] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ABSTRACT
Multisubunit tethering complexes (MTCs) are multitasking hubs that form a link between membrane fusion, organelle motility and signaling. CORVET, CHEVI and HOPS are MTCs of the endo-lysosomal system. They regulate the major membrane flows required for endocytosis, lysosome biogenesis, autophagy and phagocytosis. In addition, individual subunits control complex-independent transport of specific cargoes and exert functions beyond tethering, such as attachment to microtubules and SNARE activation. Mutations in CHEVI subunits lead to arthrogryposis, renal dysfunction and cholestasis (ARC) syndrome, while defects in CORVET and, particularly, HOPS are associated with neurodegeneration, pigmentation disorders, liver malfunction and various forms of cancer. Diseases and phenotypes, however, vary per affected subunit and a concise overview of MTC protein function and associated human pathologies is currently lacking. Here, we provide an integrated overview on the cellular functions and pathological defects associated with CORVET, CHEVI or HOPS proteins, both with regard to their complexes and as individual subunits. The combination of these data provides novel insights into how mutations in endo-lysosomal proteins lead to human pathologies.
Collapse
Affiliation(s)
- Jan van der Beek
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht University, Utrecht 3584 CX, The Netherlands
| | - Caspar Jonker
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht University, Utrecht 3584 CX, The Netherlands
| | - Reini van der Welle
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht University, Utrecht 3584 CX, The Netherlands
| | - Nalan Liv
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht University, Utrecht 3584 CX, The Netherlands
| | - Judith Klumperman
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht University, Utrecht 3584 CX, The Netherlands
| |
Collapse
|
19
|
Karim MA, McNally EK, Samyn DR, Mattie S, Brett CL. Rab-Effector-Kinase Interplay Modulates Intralumenal Fragment Formation during Vacuole Fusion. Dev Cell 2018; 47:80-97.e6. [PMID: 30269949 DOI: 10.1016/j.devcel.2018.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 07/01/2018] [Accepted: 09/01/2018] [Indexed: 01/17/2023]
Abstract
Upon vacuolar lysosome (or vacuole) fusion in S. cerevisiae, a portion of membrane is internalized and catabolized. Formation of this intralumenal fragment (ILF) is important for organelle protein and lipid homeostasis and remodeling. But how ILF formation is optimized for membrane turnover is not understood. Here, we show that fewer ILFs form when the interaction between the Rab-GTPase Ypt7 and its effector Vps41 (a subunit of the tethering complex HOPS) is interrupted by a point mutation (Ypt7-D44N). Subsequent phosphorylation of Vps41 by the casein kinase Yck3 prevents stabilization of trans-SNARE complexes needed for lipid bilayer pore formation. Impairing ILF formation prevents clearance of misfolded proteins from vacuole membranes and promotes organelle permeability and cell death. We propose that HOPS coordinates Rab, kinase, and SNARE cycles to modulate ILF size during vacuole fusion, regulating lipid and protein turnover important for quality control and membrane integrity.
Collapse
Affiliation(s)
- Mahmoud Abdul Karim
- Department of Biology, Concordia University, 7141 Sherbrooke St. W., SP, 501.15, Montréal, QC H4R 1R6, Canada
| | - Erin Kate McNally
- Department of Biology, Concordia University, 7141 Sherbrooke St. W., SP, 501.15, Montréal, QC H4R 1R6, Canada
| | - Dieter Ronny Samyn
- Department of Biology, Concordia University, 7141 Sherbrooke St. W., SP, 501.15, Montréal, QC H4R 1R6, Canada
| | - Sevan Mattie
- Department of Biology, Concordia University, 7141 Sherbrooke St. W., SP, 501.15, Montréal, QC H4R 1R6, Canada
| | - Christopher Leonard Brett
- Department of Biology, Concordia University, 7141 Sherbrooke St. W., SP, 501.15, Montréal, QC H4R 1R6, Canada.
| |
Collapse
|
20
|
Lund VK, Madsen KL, Kjaerulff O. Drosophila Rab2 controls endosome-lysosome fusion and LAMP delivery to late endosomes. Autophagy 2018; 14:1520-1542. [PMID: 29940804 PMCID: PMC6135592 DOI: 10.1080/15548627.2018.1458170] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Rab2 is a conserved Rab GTPase with a well-established role in secretory pathway function and phagocytosis. Here we demonstrate that Drosophila Rab2 is recruited to late endosomal membranes, where it controls the fusion of LAMP-containing biosynthetic carriers and lysosomes to late endosomes. In contrast, the lysosomal GTPase Gie/Arl8 is only required for late endosome-lysosome fusion, but not for the delivery of LAMP to the endocytic pathway. We also find that Rab2 is required for the fusion of autophagosomes to the endolysosomal pathway, but not for the biogenesis of lysosome-related organelles. Surprisingly, Rab2 does not rely on HOPS-mediated vesicular fusion for recruitment to late endosomal membranes. Our work suggests that Drosophila Rab2 is a central regulator of the endolysosomal and macroautophagic/autophagic pathways by controlling the major heterotypic fusion processes at the late endosome.
Collapse
Affiliation(s)
- Viktor Karlovich Lund
- a Department of Neuroscience, The Faculty of Health Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Kenneth Lindegaard Madsen
- a Department of Neuroscience, The Faculty of Health Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Ole Kjaerulff
- a Department of Neuroscience, The Faculty of Health Sciences , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
21
|
Day KJ, Casler JC, Glick BS. Budding Yeast Has a Minimal Endomembrane System. Dev Cell 2018; 44:56-72.e4. [PMID: 29316441 DOI: 10.1016/j.devcel.2017.12.014] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 12/01/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022]
Abstract
The endomembrane system consists of the secretory and endocytic pathways, which communicate by transport to and from the trans-Golgi network (TGN). In mammalian cells, the endocytic pathway includes early, late, and recycling endosomes. In budding yeast, different types of endosomes have been described, but the organization of the endocytic pathway has remained unclear. We performed a spatial and temporal analysis of yeast endosomal markers and endocytic cargoes. Our results indicate that the yeast TGN also serves as an early and recycling endosome. In addition, as previously described, yeast contains a late or prevacuolar endosome (PVE). Endocytic cargoes localize to the TGN shortly after internalization, and manipulations that perturb export from the TGN can slow the passage of endocytic cargoes to the PVE. Yeast apparently lacks a distinct early endosome. Thus, yeast has a simple endocytic pathway that may reflect the ancestral organization of the endomembrane system.
Collapse
Affiliation(s)
- Kasey J Day
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | - Jason C Casler
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | - Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
| |
Collapse
|
22
|
Hallmarks of Reversible Separation of Living, Unperturbed Cell Membranes into Two Liquid Phases. Biophys J 2018; 113:2425-2432. [PMID: 29211996 DOI: 10.1016/j.bpj.2017.09.029] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/15/2017] [Accepted: 09/22/2017] [Indexed: 01/04/2023] Open
Abstract
Controversy has long surrounded the question of whether spontaneous lateral demixing of membranes into coexisting liquid phases can organize proteins and lipids on micron scales within unperturbed, living cells. A clear answer hinges on observation of hallmarks of a reversible phase transition. Here, by directly imaging micron-scale membrane domains of yeast vacuoles both in vivo and cell free, we demonstrate that the domains arise through a phase separation mechanism. The domains are large, have smooth boundaries, and can merge quickly, consistent with fluid phases. Moreover, the domains disappear above a distinct miscibility transition temperature (Tmix) and reappear below Tmix, over multiple heating and cooling cycles. Hence, large-scale membrane organization in living cells under physiologically relevant conditions can be controlled by tuning a single thermodynamic parameter.
Collapse
|
23
|
Schwartz ML, Nickerson DP, Lobingier BT, Plemel RL, Duan M, Angers CG, Zick M, Merz AJ. Sec17 (α-SNAP) and an SM-tethering complex regulate the outcome of SNARE zippering in vitro and in vivo. eLife 2017; 6:27396. [PMID: 28925353 PMCID: PMC5643095 DOI: 10.7554/elife.27396] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 09/15/2017] [Indexed: 02/02/2023] Open
Abstract
Zippering of SNARE complexes spanning docked membranes is essential for most intracellular fusion events. Here, we explore how SNARE regulators operate on discrete zippering states. The formation of a metastable trans-complex, catalyzed by HOPS and its SM subunit Vps33, is followed by subsequent zippering transitions that increase the probability of fusion. Operating independently of Sec18 (NSF) catalysis, Sec17 (α-SNAP) either inhibits or stimulates SNARE-mediated fusion. If HOPS or Vps33 are absent, Sec17 inhibits fusion at an early stage. Thus, Vps33/HOPS promotes productive SNARE assembly in the presence of otherwise inhibitory Sec17. Once SNAREs are partially zipped, Sec17 promotes fusion in either the presence or absence of HOPS, but with faster kinetics when HOPS is absent, suggesting that ejection of the SM is a rate-limiting step.
Collapse
Affiliation(s)
- Matthew L Schwartz
- Department of Biochemistry, University of Washington School of Medicine, Seattle, United States
| | - Daniel P Nickerson
- Department of Biology, California State University, San Bernardino, United States
| | - Braden T Lobingier
- Department of Biochemistry, University of Washington School of Medicine, Seattle, United States
| | - Rachael L Plemel
- Department of Biochemistry, University of Washington School of Medicine, Seattle, United States
| | - Mengtong Duan
- Department of Biochemistry, University of Washington School of Medicine, Seattle, United States
| | - Cortney G Angers
- Department of Biochemistry, University of Washington School of Medicine, Seattle, United States
| | - Michael Zick
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Alexey J Merz
- Department of Biochemistry, University of Washington School of Medicine, Seattle, United States.,Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, United States
| |
Collapse
|
24
|
Anderson NS, Mukherjee I, Bentivoglio CM, Barlowe C. The Golgin protein Coy1 functions in intra-Golgi retrograde transport and interacts with the COG complex and Golgi SNAREs. Mol Biol Cell 2017; 28:mbc.E17-03-0137. [PMID: 28794270 PMCID: PMC5620376 DOI: 10.1091/mbc.e17-03-0137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/12/2017] [Accepted: 07/31/2017] [Indexed: 01/09/2023] Open
Abstract
Extended coiled-coil proteins of the Golgin family play prominent roles in maintaining the structure and function of the Golgi complex. Here we further investigate the Golgin protein Coy1 and document its function in retrograde transport between early Golgi compartments. Cells that lack Coy1 displayed a reduced half-life of the Och1 mannosyltransferase, an established cargo of intra-Golgi retrograde transport. Combining the coy1Δ mutation with deletions in other putative retrograde Golgins (sgm1Δ and rud3Δ) caused strong glycosylation and growth defects and reduced membrane association of the Conserved Oligomeric Golgi complex. In contrast, overexpression of COY1 inhibited the growth of mutant strains deficient in fusion activity at the Golgi (sed5-1 and sly1-ts). To map Coy1 protein interactions, co-immunoprecipitation experiments revealed an association with the Conserved Oliogmeric Golgi (COG) complex and with intra-Golgi SNARE proteins. These physical interactions are direct, as Coy1 was efficiently captured in vitro by Lobe A of the COG complex and the purified SNARE proteins Gos1, Sed5 and Sft1. Thus, our genetic, in vivo, and biochemical data indicate a role for Coy1 in regulating COG complex-dependent fusion of retrograde-directed COPI vesicles.
Collapse
Affiliation(s)
- Nadine S Anderson
- Department of Biochemistry & Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Indrani Mukherjee
- Department of Biochemistry & Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Christine M Bentivoglio
- Department of Biochemistry & Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Charles Barlowe
- Department of Biochemistry & Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
25
|
Zhen Y, Li W. Impairment of autophagosome-lysosome fusion in the buff mutant mice with the VPS33A(D251E) mutation. Autophagy 2016; 11:1608-22. [PMID: 26259518 DOI: 10.1080/15548627.2015.1072669] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The HOPS (homotypic fusion and protein sorting) complex functions in endocytic and autophagic pathways in both lower eukaryotes and mammalian cells through its involvement in fusion events between endosomes and lysosomes or autophagosomes and lysosomes. However, the differential molecular mechanisms underlying these fusion processes are largely unknown. Buff (bf) is a mouse mutant that carries an Asp251-to-Glu point mutation (D251E) in the VPS33A protein, a tethering protein and a core subunit of the HOPS complex. Bf mice showed impaired spontaneous locomotor activity, motor learning, and autophagic activity. Although the gross anatomy of the brain was apparently normal, the number of Purkinje cells was significantly reduced. Furthermore, we found that fusion between autophagosomes and lysosomes was defective in bf cells without compromising the endocytic pathway. The direct association of mutant VPS33A(D251E) with the autophagic SNARE complex, STX17 (syntaxin 17)-VAMP8-SNAP29, was enhanced. In addition, the VPS33A(D251E) mutation enhanced interactions with other HOPS subunits, namely VPS41, VPS39, VPS18, and VPS11, except for VPS16. Reduction of the interactions between VPS33A(Y440D) and several other HOPS subunits led to decreased association with STX17. These results suggest that the VPS33A(D251E) mutation plays dual roles by increasing the HOPS complex assembly and its association with the autophagic SNARE complex, which selectively affects the autophagosome-lysosome fusion that impairs basal autophagic activity and induces Purkinje cell loss.
Collapse
Affiliation(s)
- Yuanli Zhen
- a State Key Laboratory of Molecular Developmental Biology; Institute of Genetics & Developmental Biology; Chinese Academy of Sciences ; Beijing , China.,b University of Chinese Academy of Sciences ; Beijing , China
| | - Wei Li
- a State Key Laboratory of Molecular Developmental Biology; Institute of Genetics & Developmental Biology; Chinese Academy of Sciences ; Beijing , China.,c Center of Alzheimer Disease; Beijing Institute for Brain Disorders ; Beijing China.,d Beijing Children's Hospital; Capital Medical University ; Beijing , China
| |
Collapse
|
26
|
Schroeter S, Beckmann S, Schmitt HD. Coat/Tether Interactions-Exception or Rule? Front Cell Dev Biol 2016; 4:44. [PMID: 27243008 PMCID: PMC4868844 DOI: 10.3389/fcell.2016.00044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/25/2016] [Indexed: 12/02/2022] Open
Abstract
Coat complexes are important for cargo selection and vesicle formation. Recent evidence suggests that they may also be involved in vesicle targeting. Tethering factors, which form an initial bridge between vesicles and the target membrane, may bind to coat complexes. In this review, we ask whether these coat/tether interactions share some common mechanisms, or whether they are special adaptations to the needs of very specific transport steps. We compare recent findings in two multisubunit tethering complexes, the Dsl1 complex and the HOPS complex, and put them into context with the TRAPP I complex as a prominent example for coat/tether interactions. We explore where coat/tether interactions are found, compare their function and structure, and comment on a possible evolution from a common ancestor of coats and tethers.
Collapse
Affiliation(s)
- Saskia Schroeter
- Neurobiology, Max Planck Institute for Biophysical Chemistry Göttingen, Germany
| | - Sabrina Beckmann
- Neurobiology, Max Planck Institute for Biophysical Chemistry Göttingen, Germany
| | - Hans Dieter Schmitt
- Neurobiology, Max Planck Institute for Biophysical Chemistry Göttingen, Germany
| |
Collapse
|
27
|
Ding J, Segarra VA, Chen S, Cai H, Lemmon SK, Ferro-Novick S. Auxilin facilitates membrane traffic in the early secretory pathway. Mol Biol Cell 2015; 27:127-36. [PMID: 26538028 PMCID: PMC4694752 DOI: 10.1091/mbc.e15-09-0631] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/27/2015] [Indexed: 12/01/2022] Open
Abstract
In this study, a proteomic approach links the J-domain chaperone auxilin, which uncoats clathrin-coated vesicles, to the other major coat complexes in the cell (COPII and COPI). Genetic and biochemical studies support the proposal that auxilin facilitates vesicle traffic in the early secretory pathway. Coat protein complexes contain an inner shell that sorts cargo and an outer shell that helps deform the membrane to give the vesicle its shape. There are three major types of coated vesicles in the cell: COPII, COPI, and clathrin. The COPII coat complex facilitates vesicle budding from the endoplasmic reticulum (ER), while the COPI coat complex performs an analogous function in the Golgi. Clathrin-coated vesicles mediate traffic from the cell surface and between the trans-Golgi and endosome. While the assembly and structure of these coat complexes has been extensively studied, the disassembly of COPII and COPI coats from membranes is less well understood. We describe a proteomic and genetic approach that connects the J-domain chaperone auxilin, which uncoats clathrin-coated vesicles, to COPII and COPI coat complexes. Consistent with a functional role for auxilin in the early secretory pathway, auxilin binds to COPII and COPI coat subunits. Furthermore, ER–Golgi and intra-Golgi traffic is delayed at 15°C in swa2Δ mutant cells, which lack auxilin. In the case of COPII vesicles, we link this delay to a defect in vesicle fusion. We propose that auxilin acts as a chaperone and/or uncoating factor for transport vesicles that act in the early secretory pathway.
Collapse
Affiliation(s)
- Jingzhen Ding
- Department of Cellular and Molecular Medicine, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093-0668
| | - Verónica A Segarra
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL 33136
| | - Shuliang Chen
- Department of Cellular and Molecular Medicine, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093-0668
| | - Huaqing Cai
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sandra K Lemmon
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL 33136
| | - Susan Ferro-Novick
- Department of Cellular and Molecular Medicine, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093-0668
| |
Collapse
|
28
|
Ho R, Stroupe C. The HOPS/class C Vps complex tethers membranes by binding to one Rab GTPase in each apposed membrane. Mol Biol Cell 2015; 26:2655-63. [PMID: 25995379 PMCID: PMC4501362 DOI: 10.1091/mbc.e14-04-0922] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/13/2015] [Accepted: 05/15/2015] [Indexed: 11/30/2022] Open
Abstract
Many Rab GTPase effectors are membrane-tethering factors, that is, they physically link two apposed membranes before intracellular membrane fusion. In this study, we investigate the distinct binding factors needed on apposed membranes for Rab effector-dependent tethering. We show that the homotypic fusion and protein-sorting/class C vacuole protein-sorting (HOPS/class C Vps) complex can tether low-curvature membranes, that is, liposomes with a diameter of ∼100 nm, only when the yeast vacuolar Rab GTPase Ypt7p is present in both tethered membranes. When HOPS is phosphorylated by the vacuolar casein kinase I, Yck3p, tethering only takes place when GTP-bound Ypt7p is present in both tethered membranes. When HOPS is not phosphorylated, however, its tethering activity shows little specificity for the nucleotide-binding state of Ypt7p. These results suggest a model for HOPS-mediated tethering in which HOPS tethers membranes by binding to Ypt7p in each of the two tethered membranes. Moreover, because vacuole-associated HOPS is presumably phosphorylated by Yck3p, our results suggest that nucleotide exchange of Ypt7p on multivesicular bodies (MVBs)/late endosomes must take place before HOPS can mediate tethering at vacuoles.
Collapse
Affiliation(s)
- Ruoya Ho
- Department of Molecular Physiology and Biological Physics and Center for Membrane Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Christopher Stroupe
- Department of Molecular Physiology and Biological Physics and Center for Membrane Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| |
Collapse
|
29
|
Li Z, Blissard G. The vacuolar protein sorting genes in insects: A comparative genome view. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 62:211-225. [PMID: 25486452 DOI: 10.1016/j.ibmb.2014.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/06/2014] [Accepted: 11/21/2014] [Indexed: 06/04/2023]
Abstract
In eukaryotic cells, regulated vesicular trafficking is critical for directing protein transport and for recycling and degradation of membrane lipids and proteins. Through carefully regulated transport vesicles, the endomembrane system performs a large and important array of dynamic cellular functions while maintaining the integrity of the cellular membrane system. Genetic studies in yeast Saccharomyces cerevisiae have identified approximately 50 vacuolar protein sorting (VPS) genes involved in vesicle trafficking, and most of these genes are also characterized in mammals. The VPS proteins form distinct functional complexes, which include complexes known as ESCRT, retromer, CORVET, HOPS, GARP, and PI3K-III. Little is known about the orthologs of VPS proteins in insects. Here, with the newly annotated Manduca sexta genome, we carried out genomic comparative analysis of VPS proteins in yeast, humans, and 13 sequenced insect genomes representing the Orders Hymenoptera, Diptera, Hemiptera, Phthiraptera, Lepidoptera, and Coleoptera. Amino acid sequence alignments and domain/motif structure analyses reveal that most of the components of ESCRT, retromer, CORVET, HOPS, GARP, and PI3K-III are evolutionarily conserved across yeast, insects, and humans. However, in contrast to the VPS gene expansions observed in the human genome, only four VPS genes (VPS13, VPS16, VPS33, and VPS37) were expanded in the six insect Orders. Additionally, VPS2 was expanded only in species from Phthiraptera, Lepidoptera, and Coleoptera. These studies provide a baseline for understanding the evolution of vesicular trafficking across yeast, insect, and human genomes, and also provide a basis for further addressing specific functional roles of VPS proteins in insects.
Collapse
Affiliation(s)
- Zhaofei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Taicheng Road, Yangling, Shaanxi 712100, China.
| | - Gary Blissard
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
30
|
Mor V, Rella A, Farnoud AM, Singh A, Munshi M, Bryan A, Naseem S, Konopka JB, Ojima I, Bullesbach E, Ashbaugh A, Linke MJ, Cushion M, Collins M, Ananthula HK, Sallans L, Desai PB, Wiederhold NP, Fothergill AW, Kirkpatrick WR, Patterson T, Wong LH, Sinha S, Giaever G, Nislow C, Flaherty P, Pan X, Cesar GV, de Melo Tavares P, Frases S, Miranda K, Rodrigues ML, Luberto C, Nimrichter L, Del Poeta M. Identification of a New Class of Antifungals Targeting the Synthesis of Fungal Sphingolipids. mBio 2015; 6:e00647. [PMID: 26106079 PMCID: PMC4479701 DOI: 10.1128/mbio.00647-15] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Recent estimates suggest that >300 million people are afflicted by serious fungal infections worldwide. Current antifungal drugs are static and toxic and/or have a narrow spectrum of activity. Thus, there is an urgent need for the development of new antifungal drugs. The fungal sphingolipid glucosylceramide (GlcCer) is critical in promoting virulence of a variety of human-pathogenic fungi. In this study, we screened a synthetic drug library for compounds that target the synthesis of fungal, but not mammalian, GlcCer and found two compounds [N'-(3-bromo-4-hydroxybenzylidene)-2-methylbenzohydrazide (BHBM) and its derivative, 3-bromo-N'-(3-bromo-4-hydroxybenzylidene) benzohydrazide (D0)] that were highly effective in vitro and in vivo against several pathogenic fungi. BHBM and D0 were well tolerated in animals and are highly synergistic or additive to current antifungals. BHBM and D0 significantly affected fungal cell morphology and resulted in the accumulation of intracellular vesicles. Deep-sequencing analysis of drug-resistant mutants revealed that four protein products, encoded by genes APL5, COS111, MKK1, and STE2, which are involved in vesicular transport and cell cycle progression, are targeted by BHBM. IMPORTANCE Fungal infections are a significant cause of morbidity and mortality worldwide. Current antifungal drugs suffer from various drawbacks, including toxicity, drug resistance, and narrow spectrum of activity. In this study, we have demonstrated that pharmaceutical inhibition of fungal glucosylceramide presents a new opportunity to treat cryptococcosis and various other fungal infections. In addition to being effective against pathogenic fungi, the compounds discovered in this study were well tolerated by animals and additive to current antifungals. These findings suggest that these drugs might pave the way for the development of a new class of antifungals.
Collapse
Affiliation(s)
- Visesato Mor
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| | - Antonella Rella
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| | - Amir M Farnoud
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| | - Ashutosh Singh
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| | - Mansa Munshi
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| | - Arielle Bryan
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| | - Shamoon Naseem
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| | - James B Konopka
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| | - Iwao Ojima
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York, USA
| | - Erika Bullesbach
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Alan Ashbaugh
- Department of Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| | | | | | - Margaret Collins
- University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | - Larry Sallans
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Pankaj B Desai
- Department of Pharmaceutical Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Nathan P Wiederhold
- Department of Pathology, Fungus Testing Laboratory, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Annette W Fothergill
- Department of Pathology, Fungus Testing Laboratory, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - William R Kirkpatrick
- Division of Infectious Diseases, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Thomas Patterson
- Division of Infectious Diseases, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Lai Hong Wong
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Colombia, Canada
| | - Sunita Sinha
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Colombia, Canada
| | - Guri Giaever
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Colombia, Canada
| | - Corey Nislow
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Colombia, Canada
| | - Patrick Flaherty
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Xuewen Pan
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Gabriele Vargas Cesar
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia de Melo Tavares
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Susana Frases
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Chiara Luberto
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, USA
| | - Leonardo Nimrichter
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
31
|
Kuhlee A, Raunser S, Ungermann C. Functional homologies in vesicle tethering. FEBS Lett 2015; 589:2487-97. [PMID: 26072291 DOI: 10.1016/j.febslet.2015.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 05/30/2015] [Accepted: 06/01/2015] [Indexed: 11/24/2022]
Abstract
The HOPS multisubunit tethering factor (MTC) is a macromolecular protein complex composed of six different subunits. It is one of the key components in the perception and subsequent fusion of multivesicular bodies and vacuoles. Electron microscopy studies indicate structural flexibility of the purified HOPS complex. Inducing higher rigidity into HOPS by biochemically modifying the complex declines the potential to mediate SNARE-driven membrane fusion. Thus, we propose that integral flexibility seems to be not only a feature, but of essential need for the function of HOPS. This review focuses on the general features of membrane tethering and fusion. For this purpose, we compare the structure and mode of action of different tethering factors to highlight their common central features and mechanisms.
Collapse
Affiliation(s)
- Anne Kuhlee
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| | - Stefan Raunser
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Christian Ungermann
- Department of Biology, University of Osnabrück, Barbarastrasse 13, 49076 Osnabrück, Germany
| |
Collapse
|
32
|
Hao Z, Wei L, Feng Y, Chen X, Du W, Ma J, Zhou Z, Chen L, Li W. Impaired maturation of large dense core vesicles in muted-deficient adrenal chromaffin cells. J Cell Sci 2015; 128:1365-74. [DOI: 10.1242/jcs.161414] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The large dense-core vesicle (LDCV), a type of lysosome-related organelle, is involved in the secretion of hormones and neuropeptides in specialized secretory cells. The granin family is a driving force in LDCV biogenesis, but the machinery for granin sorting to this biogenesis pathway is largely unknown. The mu mutant mouse, which carries a spontaneous null mutation on the Muted gene (also known as Bloc1s5) that encodes a subunit of lysosome-related organelles complex-1 (BLOC-1), is a mouse model of Hermansky-Pudlak syndrome. We here found that LDCVs were enlarged in mu adrenal chromaffin cells. Chromogranin A (CgA) was increased in mu adrenals and muted-knockdown cells. The increased CgA in mu mice was likely due to the failure of its sorting-out, which impairs LDCV maturation and docking. In mu chromaffin cells, the size of readily releasable pool and the vesicle release frequency were reduced. Our studies suggest that the muted protein is involved in the sorting-out of CgA during the biogenesis of LDCVs.
Collapse
|
33
|
Zlatic SA, Tornieri K, L'hernault SW, Faundez V. Metazoan cell biology of the HOPS tethering complex. CELLULAR LOGISTICS 2014; 1:111-117. [PMID: 21922076 DOI: 10.4161/cl.1.3.17279] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 07/18/2011] [Accepted: 07/20/2011] [Indexed: 01/09/2023]
Abstract
Membrane fusion with vacuoles, the lysosome equivalent of the yeast Saccharomyces cerevisiae, is among the best understood membrane fusion events. Our precise understanding of this fusion machinery stems from powerful genetics and elegant in vitro reconstitution assays. Central to vacuolar membrane fusion is the multi-subunit tether the HO motypic fusion and Protein Sorting (HOPS) complex, a complex of proteins that organizes other necessary components of the fusion machinery. We lack a similarly detailed molecular understanding of membrane fusion with lysosomes or lysosome-related organelles in metazoans. However, it is likely that fundamental principles of how rabs, SNAREs and HOPS tethers work to fuse membranes with lysosomes and related organelles are conserved between Saccharomyces cerevisiae and metazoans. Here, we discuss emerging differences in the coat-dependent mechanisms that govern HOPS complex subcellular distribution between Saccharomyces cerevisiae and metazoans. These differences reside upstream of the membrane fusion event. We propose that the differences in how coats segregate class C Vps/HOPS tethers to organelles and domains of metazoan cells are adaptations to complex architectures that characterize metazoan cells such as those of neuronal and epithelial tissues.
Collapse
Affiliation(s)
- Stephanie A Zlatic
- Graduate Program in Biochemistry, Cell and Developmental Biology; Emory University; Atlanta, GA USA
| | | | | | | |
Collapse
|
34
|
Abstract
Membrane trafficking depends on transport vesicles and carriers docking and fusing with the target organelle for the delivery of cargo. Membrane tethers and small guanosine triphosphatases (GTPases) mediate the docking of transport vesicles/carriers to enhance the efficiency of the subsequent SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)-mediated fusion event with the target membrane bilayer. Different classes of membrane tethers and their specific intracellular location throughout the endomembrane system are now well defined. Recent biochemical and structural studies have led to a deeper understanding of the mechanism by which membrane tethers mediate docking of membrane carriers as well as an appreciation of the role of tethers in coordinating the correct SNARE complex and in regulating the organization of membrane compartments. This review will summarize the properties and roles of membrane tethers of both secretory and endocytic systems.
Collapse
Affiliation(s)
- Pei Zhi Cheryl Chia
- National Institute of Dental and Craniofacial Research, National Institutes of Health30 Convent Drive, Bethesda, MD 20892-4340USA
| | - Paul A. Gleeson
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute30 Flemington Road, The University of Melbourne, Victoria 3010Australia
| |
Collapse
|
35
|
Elbaz-Alon Y, Rosenfeld-Gur E, Shinder V, Futerman AH, Geiger T, Schuldiner M. A dynamic interface between vacuoles and mitochondria in yeast. Dev Cell 2014; 30:95-102. [PMID: 25026036 DOI: 10.1016/j.devcel.2014.06.007] [Citation(s) in RCA: 276] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 04/14/2014] [Accepted: 06/09/2014] [Indexed: 12/18/2022]
Abstract
Cellular life depends on continuous transport of lipids and small molecules between mitochondria and the endomembrane system. Recently, endoplasmic reticulum-mitochondrial encounter structure (ERMES) was identified as an important yet nonessential contact for such transport. Using a high-content screen in yeast, we found a contact site, marked by Vam6/Vps39, between vacuoles (the yeast lysosomal compartment) and mitochondria, named vCLAMP (vacuole and mitochondria patch). vCLAMP is enriched with ion and amino-acid transporters and has a role in lipid relay between the endomembrane system and mitochondria. Critically, we show that mitochondria are dependent on having one of two contact sites, ERMES or vCLAMP. The absence of one causes expansion of the other, and elimination of both is lethal. Identification of vCLAMP adds to our ability to understand the complexity of interorganellar crosstalk.
Collapse
Affiliation(s)
- Yael Elbaz-Alon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eden Rosenfeld-Gur
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Vera Shinder
- Electron Microscopy Unit, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anthony H Futerman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
36
|
Auffarth K, Arlt H, Lachmann J, Cabrera M, Ungermann C. Tracking of the dynamic localization of the Rab-specific HOPS subunits reveal their distinct interaction with Ypt7 and vacuoles. CELLULAR LOGISTICS 2014; 4:e29191. [PMID: 25210650 PMCID: PMC4156483 DOI: 10.4161/cl.29191] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/29/2014] [Accepted: 05/09/2014] [Indexed: 12/19/2022]
Abstract
Endosomal and vacuole fusion depends on the two homologous tethering complexes CORVET and HOPS. HOPS binds the activated Rab GTPase Ypt7 via two distinct subunits, Vps39 and Vps41. To understand the participation and possible polarity of Vps41 and Vps39 during tethering, we used an in vivo approach. For this, we established the ligand-induced relocalization to the plasma membrane, using the Mon1-Ccz1 GEF complex that activates Ypt7 on endosomes. We then employed slight overexpression to compare the mobility of the HOPS-specific Vps41 and Vps39 subunits during this process. Our data indicate an asymmetry in the Rab-specific interaction of the two HOPS subunits: Vps39 is more tightly bound to the vacuole, and relocalizes the entire vacuole to the plasma membrane, whereas Vps41 behaved like the more mobile subunit. This is due to their specific Rab binding, as the mobility of both subunits was similar in ypt7∆ cells. In contrast, both HOPS subunits were far less mobile if tagged endogenously, suggesting that the entire HOPS complex is tightly bound to the vacuole in vivo. Similar results were obtained for the endosomal association of CORVET, when we followed its Rab-specific subunit Vps8. Our data provide in vivo evidence for distinct Rab specificity within HOPS, which may explain its function during tethering, and indicate that these tethering complexes are less mobile within the cell than previously anticipated.
Collapse
Affiliation(s)
- Kathrin Auffarth
- Biochemistry section; Department of Biology/Chemistry; University of Osnabrück; Osnabrück, Germany
| | - Henning Arlt
- Biochemistry section; Department of Biology/Chemistry; University of Osnabrück; Osnabrück, Germany
| | - Jens Lachmann
- Biochemistry section; Department of Biology/Chemistry; University of Osnabrück; Osnabrück, Germany
| | - Margarita Cabrera
- Biochemistry section; Department of Biology/Chemistry; University of Osnabrück; Osnabrück, Germany
| | - Christian Ungermann
- Biochemistry section; Department of Biology/Chemistry; University of Osnabrück; Osnabrück, Germany
| |
Collapse
|
37
|
Wei AH, He X, Li W. Hypopigmentation in Hermansky-Pudlak syndrome. J Dermatol 2014; 40:325-9. [PMID: 23668540 DOI: 10.1111/1346-8138.12025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 09/20/2012] [Indexed: 11/28/2022]
Abstract
Hermansky-Pudlak syndrome (HPS) is characterized by oculocutaneous albinism, bleeding tendency, and ceroid deposition which often leads to death in midlife. Currently, nine genes have been identified as causative for HPS in humans. Hypopigmentation is the prominent feature of HPS, attributable to the disrupted biogenesis of melanosome, a member of the lysosome-related organelle (LRO) family. Current understanding of the cargo transporting mechanisms into the melanosomes expands our knowledge of the pathogenesis of hypopigmentation in HPS patients.
Collapse
Affiliation(s)
- Ai-Hua Wei
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | |
Collapse
|
38
|
Toshima JY, Nishinoaki S, Sato Y, Yamamoto W, Furukawa D, Siekhaus DE, Sawaguchi A, Toshima J. Bifurcation of the endocytic pathway into Rab5-dependent and -independent transport to the vacuole. Nat Commun 2014; 5:3498. [PMID: 24667230 DOI: 10.1038/ncomms4498] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/24/2014] [Indexed: 12/27/2022] Open
Abstract
The yeast Rab5 homologue, Vps21p, is known to be involved both in the vacuolar protein sorting (VPS) pathway from the trans-Golgi network to the vacuole, and in the endocytic pathway from the plasma membrane to the vacuole. However, the intracellular location at which these two pathways converge remains unclear. In addition, the endocytic pathway is not completely blocked in yeast cells lacking all Rab5 genes, suggesting the existence of an unidentified route that bypasses the Rab5-dependent endocytic pathway. Here we show that convergence of the endocytic and VPS pathways occurs upstream of the requirement for Vps21p in these pathways. We also identify a previously unidentified endocytic pathway mediated by the AP-3 complex. Importantly, the AP-3-mediated pathway appears mostly intact in Rab5-disrupted cells, and thus works as an alternative route to the vacuole/lysosome. We propose that the endocytic traffic branches into two routes to reach the vacuole: a Rab5-dependent VPS pathway and a Rab5-independent AP-3-mediated pathway.
Collapse
Affiliation(s)
- Junko Y Toshima
- 1] Faculty of Science and Engineering, Waseda University, Wakamatsu-cho, 2-2, Shinjuku-ku, Tokyo 162-8480, Japan [2] Research Center for RNA Science, RIST, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Show Nishinoaki
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Yoshifumi Sato
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Wataru Yamamoto
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Daiki Furukawa
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | | | - Akira Sawaguchi
- Department of Anatomy, University of Miyazaki Faculty of Medicine, Miyazaki 889-1692, Japan
| | - Jiro Toshima
- 1] Research Center for RNA Science, RIST, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan [2] Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
39
|
Hecht KA, O'Donnell AF, Brodsky JL. The proteolytic landscape of the yeast vacuole. CELLULAR LOGISTICS 2014; 4:e28023. [PMID: 24843828 PMCID: PMC4022603 DOI: 10.4161/cl.28023] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 01/07/2023]
Abstract
The vacuole in the yeast Saccharomyces cerevisiae plays a number of essential roles, and to provide some of these required functions the vacuole harbors at least seven distinct proteases. These proteases exhibit a range of activities and different classifications, and they follow unique paths to arrive at their ultimate, common destination in the cell. This review will first summarize the major functions of the yeast vacuole and delineate how proteins are targeted to this organelle. We will then describe the specific trafficking itineraries and activities of the characterized vacuolar proteases, and outline select features of a new member of this protease ensemble. Finally, we will entertain the question of why so many proteases evolved and reside in the vacuole, and what future research challenges exist in the field.
Collapse
Affiliation(s)
- Karen A Hecht
- Department of Biological Sciences; University of Pittsburgh; Pittsburgh, PA USA
| | - Allyson F O'Donnell
- Department of Cell Biology; University of Pittsburgh School of Medicine; Pittsburgh, PA USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences; University of Pittsburgh; Pittsburgh, PA USA
| |
Collapse
|
40
|
Delahaye JL, Foster OK, Vine A, Saxton DS, Curtin TP, Somhegyi H, Salesky R, Hermann GJ. Caenorhabditis elegans HOPS and CCZ-1 mediate trafficking to lysosome-related organelles independently of RAB-7 and SAND-1. Mol Biol Cell 2014; 25:1073-96. [PMID: 24501423 PMCID: PMC3967972 DOI: 10.1091/mbc.e13-09-0521] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
As early endosomes mature, the SAND-1/CCZ-1 complex acts as a guanine nucleotide exchange factor (GEF) for RAB-7 to promote the activity of its effector, HOPS, which facilitates late endosome-lysosome fusion and the consumption of AP-3-containing vesicles. We show that CCZ-1 and the HOPS complex are essential for the biogenesis of gut granules, cell type-specific, lysosome-related organelles (LROs) that coexist with conventional lysosomes in Caenorhabditis elegans intestinal cells. The HOPS subunit VPS-18 promotes the trafficking of gut granule proteins away from lysosomes and functions downstream of or in parallel to the AP-3 adaptor. CCZ-1 also acts independently of AP-3, and ccz-1 mutants mistraffic gut granule proteins. Our results indicate that SAND-1 does not participate in the formation of gut granules. In the absence of RAB-7 activity, gut granules are generated; however, their size and protein composition are subtly altered. These observations suggest that CCZ-1 acts in partnership with a protein other than SAND-1 as a GEF for an alternate Rab to promote gut granule biogenesis. Point mutations in GLO-1, a Rab32/38-related protein, predicted to increase spontaneous guanine nucleotide exchange, specifically suppress the loss of gut granules by ccz-1 and glo-3 mutants. GLO-3 is known to be required for gut granule formation and has homology to SAND-1/Mon1-related proteins, suggesting that CCZ-1 functions with GLO-3 upstream of the GLO-1 Rab, possibly as a GLO-1 GEF. These results support LRO formation occurring via processes similar to conventional lysosome biogenesis, albeit with key molecular differences.
Collapse
Affiliation(s)
- Jared L Delahaye
- Department of Biology, Lewis & Clark College, Portland, OR 97219 Program in Biochemistry and Molecular Biology, Lewis & Clark College, Portland, OR 97219
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Hong W, Lev S. Tethering the assembly of SNARE complexes. Trends Cell Biol 2014; 24:35-43. [DOI: 10.1016/j.tcb.2013.09.006] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 12/11/2022]
|
42
|
Balderhaar HJK, Ungermann C. CORVET and HOPS tethering complexes - coordinators of endosome and lysosome fusion. J Cell Sci 2013; 126:1307-16. [PMID: 23645161 DOI: 10.1242/jcs.107805] [Citation(s) in RCA: 394] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein and lipid transport along the endolysosomal system of eukaryotic cells depends on multiple fusion and fission events. Over the past few years, the molecular constituents of both fission and fusion machineries have been identified. Here, we focus on the mechanism of membrane fusion at endosomes, vacuoles and lysosomes, and in particular on the role of the two homologous tethering complexes called CORVET and HOPS. Both complexes are heterohexamers; they share four subunits, interact with Rab GTPases and soluble NSF attachment protein receptors (SNAREs) and can tether membranes. Owing to the presence of specific subunits, CORVET is a Rab5 effector complex, whereas HOPS can bind efficiently to late endosomes and lysosomes through Rab7. Based on the recently described overall structure of the HOPS complex and a number of in vivo and in vitro analyses, important insights into their function have been obtained. Here, we discuss the general function of both complexes in yeast and in metazoan cells in the context of endosomal biogenesis and maturation.
Collapse
Affiliation(s)
- Henning J kleine Balderhaar
- University of Osnabrück, Department of Biology/Chemistry, Biochemistry Section, Barbarastrasse 13, 49076 Osnabrück, Germany
| | | |
Collapse
|
43
|
Self-assembly of VPS41 promotes sorting required for biogenesis of the regulated secretory pathway. Dev Cell 2013; 27:425-37. [PMID: 24210660 DOI: 10.1016/j.devcel.2013.10.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 08/06/2013] [Accepted: 10/11/2013] [Indexed: 12/22/2022]
Abstract
The regulated release of polypeptides has a central role in physiology, behavior, and development, but the mechanisms responsible for production of the large dense core vesicles (LDCVs) capable of regulated release have remained poorly understood. Recent work has implicated cytosolic adaptor protein AP-3 in the recruitment of LDCV membrane proteins that confer regulated release. However, AP-3 in mammals has been considered to function in the endolysosomal pathway and in the biosynthetic pathway only in yeast. We now find that the mammalian homolog of yeast VPS41, a member of the homotypic fusion and vacuole protein sorting (HOPS) complex that delivers biosynthetic cargo to the endocytic pathway in yeast, promotes LDCV formation through a common mechanism with AP-3, indicating a conserved role for these proteins in the biosynthetic pathway. VPS41 also self-assembles into a lattice, suggesting that it acts as a coat protein for AP-3 in formation of the regulated secretory pathway.
Collapse
|
44
|
Krantz KC, Puchalla J, Thapa R, Kobayashi C, Bisher M, Viehweg J, Carr CM, Rye HS. Clathrin coat disassembly by the yeast Hsc70/Ssa1p and auxilin/Swa2p proteins observed by single-particle burst analysis spectroscopy. J Biol Chem 2013; 288:26721-30. [PMID: 23913685 DOI: 10.1074/jbc.m113.491753] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of clathrin-coated vesicles in receptor-mediated endocytosis is conserved among eukaryotes, and many of the proteins required for clathrin coat assembly and disassembly have orthologs in yeast and mammals. In yeast, dozens of proteins have been identified as regulators of the multistep reaction required for endocytosis, including those that regulate disassembly of the clathrin coat. In mammalian systems, clathrin coat disassembly has been reconstituted using neuronal clathrin baskets mixed with the purified chaperone ATPase 70-kDa heat shock cognate (Hsc70), plus a clathrin-specific co-chaperone, such as the synaptic protein auxilin. Yet, despite previous characterization of the yeast Hsc70 ortholog, Ssa1p, and the auxilin-like ortholog, Swa2p, testing mechanistic models for disassembly of nonneuronal clathrin coats has been limited by the absence of a functional reconstitution assay. Here we use single-particle burst analysis spectroscopy, in combination with fluorescence correlation spectroscopy, to follow the population dynamics of fluorescently tagged yeast clathrin baskets in the presence of purified Ssa1p and Swa2p. An advantage of this combined approach for mechanistic studies is the ability to measure, as a function of time, changes in the number and size of objects from a starting population to the reaction products. Our results indicate that Ssa1p and Swa2p cooperatively disassemble yeast clathrin baskets into fragments larger than the individual triskelia, suggesting that disassembly of clathrin-coated vesicles may proceed through a partially uncoated intermediate.
Collapse
Affiliation(s)
- Kelly C Krantz
- From the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Structural basis of Vps33A recruitment to the human HOPS complex by Vps16. Proc Natl Acad Sci U S A 2013; 110:13345-50. [PMID: 23901104 DOI: 10.1073/pnas.1307074110] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The multisubunit homotypic fusion and vacuole protein sorting (HOPS) membrane-tethering complex is required for late endosome-lysosome and autophagosome-lysosome fusion in mammals. We have determined the crystal structure of the human HOPS subunit Vps33A, confirming its identity as a Sec1/Munc18 family member. We show that HOPS subunit Vps16 recruits Vps33A to the human HOPS complex and that residues 642-736 are necessary and sufficient for this interaction, and we present the crystal structure of Vps33A in complex with Vps16(642-736). Mutations at the binding interface disrupt the Vps33A-Vps16 interaction both in vitro and in cells, preventing recruitment of Vps33A to the HOPS complex. The Vps33A-Vps16 complex provides a structural framework for studying the association between Sec1/Munc18 proteins and tethering complexes.
Collapse
|
46
|
Marks MS, Heijnen HFG, Raposo G. Lysosome-related organelles: unusual compartments become mainstream. Curr Opin Cell Biol 2013; 25:495-505. [PMID: 23726022 DOI: 10.1016/j.ceb.2013.04.008] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 04/24/2013] [Indexed: 11/16/2022]
Abstract
Lysosome-related organelles (LROs) comprise a group of cell type-specific subcellular compartments with unique composition, morphology and structure that share some features with endosomes and lysosomes and that function in varied processes such as pigmentation, hemostasis, lung plasticity and immunity. In recent years, studies of genetic diseases in which LRO functions are compromised have provided new insights into the mechanisms of LRO biogenesis and the regulated secretion of LRO contents. These insights have revealed previously unappreciated specialized endosomal sorting processes in all cell types, and are expanding our views of the plasticity of the endosomal and secretory systems in adapting to cell type-specific needs.
Collapse
Affiliation(s)
- Michael S Marks
- Department of Pathology & Laboratory Medicine and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
47
|
Solinger JA, Spang A. Tethering complexes in the endocytic pathway: CORVET and HOPS. FEBS J 2013; 280:2743-57. [PMID: 23351085 DOI: 10.1111/febs.12151] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 01/10/2013] [Accepted: 01/23/2013] [Indexed: 12/21/2022]
Abstract
Endocytosis describes the processes by which proteins, peptides and solutes, and also pathogens, enter the cell. Endocytosed material progresses to endosomes. Genetic studies in yeast, worms, flies and mammals have identified a set of universally conserved proteins that are essential for early-to-late endosome transition and lysosome biogenesis, and for endolysosomal trafficking pathways, including autophagy. The two Vps-C complexes CORVET (class C core vacuole/endosome tethering) and HOPS (homotypic fusion and vacuole protein sorting) perform diverse biochemical functions in endocytosis: they tether membranes, interact with Rab GTPases, activate and proof-read SNARE assembly to drive membrane fusion, and possibly attach endosomes to the cytoskeleton. In addition, several of the CORVET and HOPS subunits have diversified in metazoans, and probably form additional specialized complexes to accomodate the higher complexity of trafficking pathways in these cells. Recent studies offer new insights into the complex relationships between CORVET and HOPS complexes and other factors of the endolysosomal pathway. Interactions with V-ATPase, the ESCRT machinery, phosphoinositides, the cytoskeleton and the Rab switch suggest an intricate cooperative network for endosome maturation. Accumulating evidence supports the view that endosomal tethering complexes implement a regulatory logic that governs endomembrane identity and dynamics.
Collapse
|
48
|
Pols MS, van Meel E, Oorschot V, ten Brink C, Fukuda M, Swetha MG, Mayor S, Klumperman J. hVps41 and VAMP7 function in direct TGN to late endosome transport of lysosomal membrane proteins. Nat Commun 2013; 4:1361. [PMID: 23322049 DOI: 10.1038/ncomms2360] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 12/05/2012] [Indexed: 12/18/2022] Open
Abstract
Targeted delivery of lysosome-associated membrane proteins is important for lysosome stability and function. Here we identify a pathway for transport of lysosome-associated membrane proteins directly from the trans-Golgi network to late endosomes, which exists in parallel to mannose 6-phosphate receptor and clathrin-dependent transport of lysosomal enzymes to early endosomes. By immunoelectron microscopy we localized endogenous LAMP-1 and -2 as well as LAMP-1-mGFP to non-coated, biosynthetic carriers at the trans-Golgi network and near late endosomes. These LAMP carriers were negative for mannose 6-phosphate receptor, adaptor-protein complex-1, secretory albumin and endocytic markers, but contained the homotypic fusion and protein sorting complex component hVps41 and the soluble N-ethylmaleimide-sensitive factor attachment protein receptors protein VAMP7. Knockdown of hVps41 or VAMP7 resulted in the accumulation of lysosome-associated membrane protein carriers, whereas knockdown of hVps39 or hVps18 did not, indicating that the effect of hVps41 is independent of CORVET/HOPS. Mannose 6-phosphate receptor carriers remained unaffected upon hVps41 or VAMP7 knockdown, implicating that hVps41 and VAMP7 are specifically involved in the fusion of trans-Golgi network-derived lysosome-associated membrane protein carriers with late endosomes.
Collapse
Affiliation(s)
- Maaike S Pols
- Department of Cell Biology, University Medical Centre Utrecht, AZU Room H02.313, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Wei AH, Li W. Hermansky-Pudlak syndrome: pigmentary and non-pigmentary defects and their pathogenesis. Pigment Cell Melanoma Res 2012; 26:176-92. [DOI: 10.1111/pcmr.12051] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 11/16/2012] [Indexed: 10/27/2022]
Affiliation(s)
| | - Wei Li
- State Key Laboratory of Molecular Developmental Biology; Institute of Genetics & Developmental Biology; Chinese Academy of Sciences; Beijing; China
| |
Collapse
|
50
|
Zheng L, Saunders CA, Sorensen EB, Waxmonsky NC, Conner SD. Notch signaling from the endosome requires a conserved dileucine motif. Mol Biol Cell 2012; 24:297-307. [PMID: 23171551 PMCID: PMC3564540 DOI: 10.1091/mbc.e12-02-0081] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Notch signaling is reliant on γ-secretase–mediated processing, although the subcellular location where it cleaves Notch to initiate signaling remains unresolved. Findings here support a model in which Notch signaling in mammalian systems is initiated from either the plasma membrane or lysosome, but not the early endosome. Notch signaling is reliant on γ-secretase–mediated processing, although the subcellular location where γ-secretase cleaves Notch to initiate signaling remains unresolved. Accumulating evidence demonstrates that Notch signaling is modulated by endocytosis and endosomal transport. In this study, we investigated the relationship between Notch transport itinerary and signaling capacity. In doing so, we discovered a highly conserved dileucine sorting signal encoded within the cytoplasmic tail that directs Notch to the limiting membrane of the lysosome for signaling. Mutating the dileucine motif led to receptor accumulation in cation-dependent mannose-phosphate receptor–positive tubular early endosomes and a reduction in Notch signaling capacity. Moreover, truncated receptor forms that mimic activated Notch were readily cleaved by γ-secretase within the endosome; however, the cleavage product was proteasome-sensitive and failed to contribute to robust signaling. Collectively these results indicate that Notch signaling from the lysosome limiting membrane is conserved and that receptor targeting to this compartment is an active process. Moreover, the data support a model in which Notch signaling in mammalian systems is initiated from either the plasma membrane or lysosome, but not the early endosome.
Collapse
Affiliation(s)
- Li Zheng
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|