1
|
Song M, Ruan Q, Wang D. Paeoniflorin alleviates toxicity and accumulation of 6-PPD quinone by activating ACS-22 in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117226. [PMID: 39442254 DOI: 10.1016/j.ecoenv.2024.117226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
6-PPD quinone (6-PPDQ) is extensively existed in various environments. In Caenorhabditis elegans, exposure to 6-PPDQ could cause multiple toxic effects. In the current study, we further used C. elegans to investigate the effect of paeoniflorin (PF) treatment on 6-PPDQ toxicity and accumulation and the underlying mechanism. Treatment with PF (25-100 mg/L) inhibited 6-PPDQ toxicity on reproduction capacity and locomotion behavior and in inducing reactive oxygen species (ROS) production. Additionally, PF (25-100 mg/L) alleviated the dysregulation in expression of genes governing oxidative stress caused by 6-PPDQ exposure. Moreover, PF (25-100 mg/L) inhibited the enhancement in intestinal permeability caused by 6-PPDQ exposure and the accumulation of 6-PPDQ in the body of nematodes. In 6-PPDQ exposed nematodes, PF (25-100 mg/L) increased expression of acs-22 encoding a fatty acid transporter. RNAi of acs-22 could inhibit the beneficial effect of PF against 6-PPDQ toxicity in decreasing reproductive capacity and locomotion behavior, in inducing intestinal ROS production, and in enhancing intestinal permeability. RNAi of acs-22 could also suppress the PF beneficial effect against 6-PPDQ accumulation in the body of nematodes. Therefore, our results demonstrate the function of PF treatment against 6-PPDQ toxicity and accumulation in nematodes by activating the ACS-22.
Collapse
Affiliation(s)
- Mingxuan Song
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qinli Ruan
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, China.
| |
Collapse
|
2
|
Ikeda A, Meng H, Taniguchi D, Mio M, Funayama M, Nishioka K, Yoshida M, Li Y, Yoshino H, Inoshita T, Shiba-Fukushima K, Okubo Y, Sakurai T, Amo T, Aiba I, Saito Y, Saito Y, Murayama S, Atsuta N, Nakamura R, Tohnai G, Izumi Y, Morita M, Tamura A, Kano O, Oda M, Kuwabara S, Yamashita T, Sone J, Kaji R, Sobue G, Imai Y, Hattori N. CHCHD2 P14L, found in amyotrophic lateral sclerosis, exhibits cytoplasmic mislocalization and alters Ca 2+ homeostasis. PNAS NEXUS 2024; 3:pgae319. [PMID: 39131911 PMCID: PMC11316225 DOI: 10.1093/pnasnexus/pgae319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
CHCHD2 and CHCHD10, linked to Parkinson's disease and amyotrophic lateral sclerosis-frontotemporal dementia (ALS), respectively, are mitochondrial intermembrane proteins that form a heterodimer. This study aimed to investigate the impact of the CHCHD2 P14L variant, implicated in ALS, on mitochondrial function and its subsequent effects on cellular homeostasis. The missense variant of CHCHD2, P14L, found in a cohort of patients with ALS, mislocalized CHCHD2 to the cytoplasm, leaving CHCHD10 in the mitochondria. Drosophila lacking the CHCHD2 ortholog exhibited mitochondrial degeneration. In contrast, human CHCHD2 P14L, but not wild-type human CHCHD2, failed to suppress this degeneration, suggesting that P14L is a pathogenic variant. The mitochondrial Ca2+ buffering capacity was reduced in Drosophila neurons expressing human CHCHD2 P14L. The altered Ca2+-buffering phenotype was also observed in cultured human neuroblastoma SH-SY5Y cells expressing CHCHD2 P14L. In these cells, transient elevation of cytoplasmic Ca2+ facilitated the activation of calpain and caspase-3, accompanied by the processing and insolubilization of TDP-43. These observations suggest that CHCHD2 P14L causes abnormal Ca2+ dynamics and TDP-43 aggregation, reflecting the pathophysiology of ALS.
Collapse
Affiliation(s)
- Aya Ikeda
- Department of Neurology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hongrui Meng
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Daisuke Taniguchi
- Department of Neurology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Muneyo Mio
- Department of Neurology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Manabu Funayama
- Department of Neurology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kenya Nishioka
- Department of Neurology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Yuanzhe Li
- Department of Neurology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hiroyo Yoshino
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tsuyoshi Inoshita
- Department of Neurology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kahori Shiba-Fukushima
- Department of Drug Development for Parkinson's Disease, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yohei Okubo
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Taku Amo
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa 239-8686, Japan
| | - Ikuko Aiba
- Department of Neurology, NHO Higashinagoya National Hospital, Meito-ku, Nagoya, Aichi 465-8620, Japan
| | - Yufuko Saito
- Department of Neurology, NHO Higashinagoya National Hospital, Meito-ku, Nagoya, Aichi 465-8620, Japan
| | - Yuko Saito
- Brain Bank for Aging Research (Department of Neuropathology), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan
| | - Shigeo Murayama
- Brain Bank for Aging Research (Department of Neuropathology), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan
- Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Osaka 565-0871, Japan
| | - Naoki Atsuta
- Department of Neurology, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Ryoichi Nakamura
- Department of Neurology, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Genki Tohnai
- Division of ALS Research, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Yuishin Izumi
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
| | - Mitsuya Morita
- Division of Neurology, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Asako Tamura
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Osamu Kano
- Department of Neurology, Toho University Faculty of Medicine, Ota-ku, Tokyo 143-8541, Japan
| | - Masaya Oda
- Department of Neurology, Vihara Hananosato Hospital, Miyoshi, Hiroshima 728-0001, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Toru Yamashita
- Department of Neurology, Okayama University Graduate School of Medicine, Kita-ku, Okayama 700-8558, Japan
| | - Jun Sone
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Ryuji Kaji
- Department of Clinical Neuroscience, Tokushima University, Tokushima 770-8503, Japan
| | - Gen Sobue
- Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Yuzuru Imai
- Department of Neurology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Drug Development for Parkinson's Disease, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| |
Collapse
|
3
|
Jado JC, Dow M, Carolino K, Klie A, Fonseca GJ, Ideker T, Carter H, Winzeler EA. In vitro evolution and whole genome analysis to study chemotherapy drug resistance in haploid human cells. Sci Rep 2024; 14:13989. [PMID: 38886371 PMCID: PMC11183241 DOI: 10.1038/s41598-024-63943-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
In vitro evolution and whole genome analysis has proven to be a powerful method for studying the mechanism of action of small molecules in many haploid microbes but has generally not been applied to human cell lines in part because their diploid state complicates the identification of variants that confer drug resistance. To determine if haploid human cells could be used in MOA studies, we evolved resistance to five different anticancer drugs (doxorubicin, gemcitabine, etoposide, topotecan, and paclitaxel) using a near-haploid cell line (HAP1) and then analyzed the genomes of the drug resistant clones, developing a bioinformatic pipeline that involved filtering for high frequency alleles predicted to change protein sequence, or alleles which appeared in the same gene for multiple independent selections with the same compound. Applying the filter to sequences from 28 drug resistant clones identified a set of 21 genes which was strongly enriched for known resistance genes or known drug targets (TOP1, TOP2A, DCK, WDR33, SLCO3A1). In addition, some lines carried structural variants that encompassed additional known resistance genes (ABCB1, WWOX and RRM1). Gene expression knockdown and knockout experiments of 10 validation targets showed a high degree of specificity and accuracy in our calls and demonstrates that the same drug resistance mechanisms found in diverse clinical samples can be evolved, discovered and studied in an isogenic background.
Collapse
Affiliation(s)
- Juan Carlos Jado
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, Gilman Dr., La Jolla, CA, 92093, USA
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michelle Dow
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
- Health Science, Department of Biomedical Informatics, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Krypton Carolino
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Adam Klie
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Gregory J Fonseca
- Department of Medicine, Meakins-Christie Laboratories, McGill University Health Centre, 1001 Decaire Blvd, Montreal, QC, H4A 3J1, Canada
| | - Trey Ideker
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Hannah Carter
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Elizabeth A Winzeler
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, Gilman Dr., La Jolla, CA, 92093, USA.
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
4
|
Qu M, Miao L, Chen H, Zhang X, Wang Y. SKN-1/Nrf2-dependent regulation of mitochondrial homeostasis modulates transgenerational toxicity induced by nanoplastics with different surface charges in Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131840. [PMID: 37327611 DOI: 10.1016/j.jhazmat.2023.131840] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/26/2023] [Accepted: 06/10/2023] [Indexed: 06/18/2023]
Abstract
The toxic effects of nanoplastics on transgenerational toxicity in environmental organisms and the involved mechanisms remain poorly comprehended. This study aimed to identify the role of SKN-1/Nrf2-dependent regulation of mitochondrial homeostasis in response to transgenerational toxicity caused by changes in nanoplastic surface charges in Caenorhabditis elegans (C. elegans). Our results revealed that compared with the wild-type control and PS exposed groups, exposure to PS-NH2 or PS-SOOOH at environmentally relevant concentrations (ERC) of ≥ 1 μg/L caused transgenerational reproductive toxicity, inhibited mitochondrial unfolded protein responses (UPR) by downregulating the transcription levels of hsp-6, ubl-5, dve-1, atfs-1, haf-1, and clpp-1, membrane potential by downregulating phb-1 and phb-2, and promoted mitochondrial apoptosis by downregulating ced-4 and ced-3 and upregulating ced-9, DNA damage by upregulating hus-1, cep-1, egl-1, reactive oxygen species (ROS) by upregulating nduf-7 and nuo-6, ultimately resulting in mitochondrial homeostasis. Additionally, further study indicated that SKN-1/Nrf2 mediated antioxidant response to alleviate PS-induced toxicity in the P0 generation and dysregulated mitochondrial homeostasis to enhance PS-NH2 or PS-SOOOH-induced transgenerational toxicity. Our study highlights the momentous role of SKN-1/Nrf2 mediated mitochondrial homeostasis in the response to nanoplastics caused transgenerational toxicity in environmental organisms.
Collapse
Affiliation(s)
- Man Qu
- School of Public Health, Yangzhou University, Yangzhou 225000, China.
| | - Long Miao
- School of Public Health, Yangzhou University, Yangzhou 225000, China
| | - He Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230000, China
| | - Xing Zhang
- The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing 210009, China
| | - Yang Wang
- Yangzhou Hospital of Traditional Chinese Medicine Affiliated to the School of Clinical Chinese Medicine, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
5
|
Ikeda A, Imai Y, Hattori N. Neurodegeneration-associated mitochondrial proteins, CHCHD2 and CHCHD10–what distinguishes the two? Front Cell Dev Biol 2022; 10:996061. [PMID: 36158221 PMCID: PMC9500460 DOI: 10.3389/fcell.2022.996061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) and Coiled-coil-helix-coiled-coil-helix domain containing 10 (CHCHD10) are mitochondrial proteins that are thought to be genes which duplicated during evolution and are the causative genes for Parkinson’s disease and amyotrophic lateral sclerosis/frontotemporal lobe dementia, respectively. CHCHD2 forms a heterodimer with CHCHD10 and a homodimer with itself, both of which work together within the mitochondria. Various pathogenic and disease-risk variants have been identified; however, how these mutations cause neurodegeneration in specific diseases remains a mystery. This review focuses on important new findings published since 2019 and discusses avenues to solve this mystery.
Collapse
Affiliation(s)
- Aya Ikeda
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yuzuru Imai
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Research for Parkinson’s Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
- *Correspondence: Yuzuru Imai, ; Nobutaka Hattori,
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Research for Parkinson’s Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama, Japan
- *Correspondence: Yuzuru Imai, ; Nobutaka Hattori,
| |
Collapse
|
6
|
Strachan EL, Mac White-Begg D, Crean J, Reynolds AL, Kennedy BN, O’Sullivan NC. The Role of Mitochondria in Optic Atrophy With Autosomal Inheritance. Front Neurosci 2021; 15:784987. [PMID: 34867178 PMCID: PMC8634724 DOI: 10.3389/fnins.2021.784987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Optic atrophy (OA) with autosomal inheritance is a form of optic neuropathy characterized by the progressive and irreversible loss of vision. In some cases, this is accompanied by additional, typically neurological, extra-ocular symptoms. Underlying the loss of vision is the specific degeneration of the retinal ganglion cells (RGCs) which form the optic nerve. Whilst autosomal OA is genetically heterogenous, all currently identified causative genes appear to be associated with mitochondrial organization and function. However, it is unclear why RGCs are particularly vulnerable to mitochondrial aberration. Despite the relatively high prevalence of this disorder, there are currently no approved treatments. Combined with the lack of knowledge concerning the mechanisms through which aberrant mitochondrial function leads to RGC death, there remains a clear need for further research to identify the underlying mechanisms and develop treatments for this condition. This review summarizes the genes known to be causative of autosomal OA and the mitochondrial dysfunction caused by pathogenic mutations. Furthermore, we discuss the suitability of available in vivo models for autosomal OA with regards to both treatment development and furthering the understanding of autosomal OA pathology.
Collapse
Affiliation(s)
- Elin L. Strachan
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Delphi Mac White-Begg
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - John Crean
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Alison L. Reynolds
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Breandán N. Kennedy
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Niamh C. O’Sullivan
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
7
|
Hershberger KA, Rooney JP, Turner EA, Donoghue LJ, Bodhicharla R, Maurer LL, Ryde IT, Kim JJ, Joglekar R, Hibshman JD, Smith LL, Bhatt DP, Ilkayeva OR, Hirschey MD, Meyer JN. Early-life mitochondrial DNA damage results in lifelong deficits in energy production mediated by redox signaling in Caenorhabditis elegans. Redox Biol 2021; 43:102000. [PMID: 33993056 PMCID: PMC8134077 DOI: 10.1016/j.redox.2021.102000] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 11/12/2022] Open
Abstract
The consequences of damage to the mitochondrial genome (mtDNA) are poorly understood, although mtDNA is more susceptible to damage resulting from some genotoxicants than nuclear DNA (nucDNA), and many environmental toxicants target the mitochondria. Reports from the toxicological literature suggest that exposure to early-life mitochondrial damage could lead to deleterious consequences later in life (the “Developmental Origins of Health and Disease” paradigm), but reports from other fields often report beneficial (“mitohormetic”) responses to such damage. Here, we tested the effects of low (causing no change in lifespan) levels of ultraviolet C (UVC)-induced, irreparable mtDNA damage during early development in Caenorhabditis elegans. This exposure led to life-long reductions in mtDNA copy number and steady-state ATP levels, accompanied by increased oxygen consumption and altered metabolite profiles, suggesting inefficient mitochondrial function. Exposed nematodes were also developmentally delayed, reached smaller adult size, and were rendered more susceptible to subsequent exposure to chemical mitotoxicants. Metabolomic and genetic analysis of key signaling and metabolic pathways supported redox and mitochondrial stress-response signaling during early development as a mechanism for establishing these persistent alterations. Our results highlight the importance of early-life exposures to environmental pollutants, especially in the context of exposure to chemicals that target mitochondria. Early life mtDNA damage led to lifelong deficits in mitochondrial function. C. elegans developed slowly and were sensitive to chemical exposures as adults. Redox signaling is a mechanism that establishes these persistent alterations. Data are consistent with the Developmental Origins of Health and Disease model.
Collapse
Affiliation(s)
- Kathleen A Hershberger
- Duke University, Nicholas School of the Environment, Integrated Toxicology and Environmental Health Program, Durham, NC, USA
| | - John P Rooney
- Duke University, Nicholas School of the Environment, Integrated Toxicology and Environmental Health Program, Durham, NC, USA
| | - Elena A Turner
- Duke University, Nicholas School of the Environment, Integrated Toxicology and Environmental Health Program, Durham, NC, USA
| | - Lauren J Donoghue
- Duke University, Nicholas School of the Environment, Integrated Toxicology and Environmental Health Program, Durham, NC, USA
| | - Rakesh Bodhicharla
- Duke University, Nicholas School of the Environment, Integrated Toxicology and Environmental Health Program, Durham, NC, USA
| | - Laura L Maurer
- Duke University, Nicholas School of the Environment, Integrated Toxicology and Environmental Health Program, Durham, NC, USA
| | - Ian T Ryde
- Duke University, Nicholas School of the Environment, Integrated Toxicology and Environmental Health Program, Durham, NC, USA
| | - Jina J Kim
- Duke University, Nicholas School of the Environment, Integrated Toxicology and Environmental Health Program, Durham, NC, USA
| | - Rashmi Joglekar
- Duke University, Nicholas School of the Environment, Integrated Toxicology and Environmental Health Program, Durham, NC, USA
| | - Jonathan D Hibshman
- Duke University Department of Biology and University Program in Genetics and Genomics, Durham, NC, USA
| | - Latasha L Smith
- Duke University, Nicholas School of the Environment, Integrated Toxicology and Environmental Health Program, Durham, NC, USA
| | | | | | | | - Joel N Meyer
- Duke University, Nicholas School of the Environment, Integrated Toxicology and Environmental Health Program, Durham, NC, USA.
| |
Collapse
|
8
|
Kee TR, Espinoza Gonzalez P, Wehinger JL, Bukhari MZ, Ermekbaeva A, Sista A, Kotsiviras P, Liu T, Kang DE, Woo JAA. Mitochondrial CHCHD2: Disease-Associated Mutations, Physiological Functions, and Current Animal Models. Front Aging Neurosci 2021; 13:660843. [PMID: 33967741 PMCID: PMC8100248 DOI: 10.3389/fnagi.2021.660843] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/31/2021] [Indexed: 12/19/2022] Open
Abstract
Rare mutations in the mitochondrial protein coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) are associated with Parkinson's disease (PD) and other Lewy body disorders. CHCHD2 is a bi-organellar mediator of oxidative phosphorylation, playing crucial roles in regulating electron flow in the mitochondrial electron transport chain and acting as a nuclear transcription factor for a cytochrome c oxidase subunit (COX4I2) and itself in response to hypoxic stress. CHCHD2 also regulates cell migration and differentiation, mitochondrial cristae structure, and apoptosis. In this review, we summarize the known disease-associated mutations of CHCHD2 in Asian and Caucasian populations, the physiological functions of CHCHD2, how CHCHD2 mutations contribute to α-synuclein pathology, and current animal models of CHCHD2. Further, we discuss the necessity of continued investigation into the divergent functions of CHCHD2 and CHCHD10 to determine how mutations in these similar mitochondrial proteins contribute to different neurodegenerative diseases.
Collapse
Affiliation(s)
- Teresa R Kee
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States.,Department of Molecular Pharmacology and Physiology, USF Health Morsani College of Medicine, Tampa, FL, United States
| | | | - Jessica L Wehinger
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States
| | - Mohammed Zaheen Bukhari
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States.,Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL, United States
| | - Aizara Ermekbaeva
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States
| | - Apoorva Sista
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States
| | - Peter Kotsiviras
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States
| | - Tian Liu
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States.,Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL, United States
| | - David E Kang
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States.,Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL, United States.,James A. Haley Veterans Administration Hospital, Tampa, FL, United States
| | - Jung-A A Woo
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States.,Department of Molecular Pharmacology and Physiology, USF Health Morsani College of Medicine, Tampa, FL, United States
| |
Collapse
|
9
|
Jia Q, Sieburth D. Mitochondrial hydrogen peroxide positively regulates neuropeptide secretion during diet-induced activation of the oxidative stress response. Nat Commun 2021; 12:2304. [PMID: 33863916 PMCID: PMC8052458 DOI: 10.1038/s41467-021-22561-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondria play a pivotal role in the generation of signals coupling metabolism with neurotransmitter release, but a role for mitochondrial-produced ROS in regulating neurosecretion has not been described. Here we show that endogenously produced hydrogen peroxide originating from axonal mitochondria (mtH2O2) functions as a signaling cue to selectively regulate the secretion of a FMRFamide-related neuropeptide (FLP-1) from a pair of interneurons (AIY) in C. elegans. We show that pharmacological or genetic manipulations that increase mtH2O2 levels lead to increased FLP-1 secretion that is dependent upon ROS dismutation, mitochondrial calcium influx, and cysteine sulfenylation of the calcium-independent PKC family member PKC-1. mtH2O2-induced FLP-1 secretion activates the oxidative stress response transcription factor SKN-1/Nrf2 in distal tissues and protects animals from ROS-mediated toxicity. mtH2O2 levels in AIY neurons, FLP-1 secretion and SKN-1 activity are rapidly and reversibly regulated by exposing animals to different bacterial food sources. These results reveal a previously unreported role for mtH2O2 in linking diet-induced changes in mitochondrial homeostasis with neuropeptide secretion.
Collapse
Affiliation(s)
- Qi Jia
- PIBBS program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Derek Sieburth
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Haeussler S, Yeroslaviz A, Rolland SG, Luehr S, Lambie EJ, Conradt B. Genome-wide RNAi screen for regulators of UPRmt in Caenorhabditis elegans mutants with defects in mitochondrial fusion. G3-GENES GENOMES GENETICS 2021; 11:6204483. [PMID: 33784383 PMCID: PMC8495942 DOI: 10.1093/g3journal/jkab095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/18/2021] [Indexed: 01/22/2023]
Abstract
Mitochondrial dynamics plays an important role in mitochondrial quality control and the adaptation of metabolic activity in response to environmental changes. The disruption of mitochondrial dynamics has detrimental consequences for mitochondrial and cellular homeostasis and leads to the activation of the mitochondrial unfolded protein response (UPRmt), a quality control mechanism that adjusts cellular metabolism and restores homeostasis. To identify genes involved in the induction of UPRmt in response to a block in mitochondrial fusion, we performed a genome-wide RNAi screen in Caenorhabditis elegans mutants lacking the gene fzo-1, which encodes the ortholog of mammalian Mitofusin, and identified 299 suppressors and 86 enhancers. Approximately 90% of these 385 genes are conserved in humans, and one third of the conserved genes have been implicated in human disease. Furthermore, many have roles in developmental processes, which suggests that mitochondrial function and the response to stress are defined during development and maintained throughout life. Our dataset primarily contains mitochondrial enhancers and non-mitochondrial suppressors of UPRmt, indicating that the maintenance of mitochondrial homeostasis has evolved as a critical cellular function, which, when disrupted, can be compensated for by many different cellular processes. Analysis of the subsets 'non-mitochondrial enhancers' and 'mitochondrial suppressors' suggests that organellar contact sites, especially between the ER and mitochondria, are of importance for mitochondrial homeostasis. In addition, we identified several genes involved in IP3 signaling that modulate UPRmt in fzo-1 mutants and found a potential link between pre-mRNA splicing and UPRmt activation.
Collapse
Affiliation(s)
- Simon Haeussler
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Assa Yeroslaviz
- Computational Biology Group, Max Planck Institute of Biochemistry, 82152 Planegg-Martinsried, Germany
| | - Stéphane G Rolland
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.,Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, South Korea
| | - Sebastian Luehr
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Eric J Lambie
- Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Barbara Conradt
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.,Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.,Research Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6AP, United Kingdom
| |
Collapse
|
11
|
Saura-Esteller J, Sánchez-Vera I, Núñez-Vázquez S, Jabalquinto-Carrasco J, Cosialls AM, Mendive-Tapia L, Kukhtar D, Martínez-Bueno MD, Lavilla R, Cerón J, Artal-Sanz M, Pons G, Iglesias-Serret D, Gil J. Fluorizoline-induced apoptosis requires prohibitins in nematodes and human cells. Apoptosis 2021; 26:83-95. [PMID: 33387147 DOI: 10.1007/s10495-020-01651-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
We previously showed that fluorizoline, a fluorinated thiazoline compound, binds to both subunits of the mitochondrial prohibitin (PHB) complex, PHB1 and PHB2, being the expression of these proteins required for fluorizoline-induced apoptosis in mouse embryonic fibroblasts. To investigate the conservation of this apoptotic mechanism, we studied the effect of PHB downregulation on fluorizoline activity on two human cell lines, HEK293T and U2OS. Then, we asked whether PHBs mediate the effect of fluorizoline in a multicellular organism. Interestingly, reduced levels of PHBs in the human cells impaired the induction of apoptosis by fluorizoline. We observed that fluorizoline has a detrimental dose-dependent effect on the development and survival of the nematode model Caenorhabditis elegans. Besides, such effects of fluorizoline treatment in living nematodes were absent in PHB mutants. Finally, we further explored the apoptotic pathway triggered by fluorizoline in human cell lines. We found that the BH3-only proteins NOXA, BIM and PUMA participate in fluorizoline-induced apoptosis and that the induction of NOXA and PUMA is dependent on PHB expression.
Collapse
Affiliation(s)
- José Saura-Esteller
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ismael Sánchez-Vera
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sonia Núñez-Vázquez
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Judith Jabalquinto-Carrasco
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ana M Cosialls
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Lorena Mendive-Tapia
- Laboratory of Medical Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Medicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Dmytro Kukhtar
- Modeling Human Diseases in C. Elegans Group. Genes, Disease and Therapy Program, IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Manuel D Martínez-Bueno
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Universidad Pablo de Olavide, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Rodolfo Lavilla
- Laboratory of Medical Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Medicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Julián Cerón
- Modeling Human Diseases in C. Elegans Group. Genes, Disease and Therapy Program, IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Marta Artal-Sanz
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Universidad Pablo de Olavide, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Gabriel Pons
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Daniel Iglesias-Serret
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain.,Facultat de Medicina, Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Barcelona, Spain
| | - Joan Gil
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
12
|
Rolland SG, Schneid S, Schwarz M, Rackles E, Fischer C, Haeussler S, Regmi SG, Yeroslaviz A, Habermann B, Mokranjac D, Lambie E, Conradt B. Compromised Mitochondrial Protein Import Acts as a Signal for UPR mt. Cell Rep 2020; 28:1659-1669.e5. [PMID: 31412237 DOI: 10.1016/j.celrep.2019.07.049] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 03/22/2019] [Accepted: 07/16/2019] [Indexed: 02/08/2023] Open
Abstract
The induction of the mitochondrial unfolded protein response (UPRmt) results in increased transcription of the gene encoding the mitochondrial chaperone HSP70. We systematically screened the C. elegans genome and identified 171 genes that, when knocked down, induce the expression of an hsp-6 HSP70 reporter and encode mitochondrial proteins. These genes represent many, but not all, mitochondrial processes (e.g., mitochondrial calcium homeostasis and mitophagy are not represented). Knockdown of these genes leads to reduced mitochondrial membrane potential and, hence, decreased protein import into mitochondria. In addition, it induces UPRmt in a manner that is dependent on ATFS-1 but that is not antagonized by the kinase GCN-2. We propose that compromised mitochondrial protein import signals the induction of UPRmt and that the mitochondrial targeting sequence of ATFS-1 functions as a sensor for this signal.
Collapse
Affiliation(s)
| | - Sandra Schneid
- Faculty of Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Melanie Schwarz
- Faculty of Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
| | | | - Christian Fischer
- Faculty of Biology, LMU Munich, 82152 Planegg-Martinsried, Germany; Center for Integrated Protein Science, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Simon Haeussler
- Faculty of Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Saroj G Regmi
- Faculty of Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Assa Yeroslaviz
- Max Planck Institute of Biochemistry, Computational Systems Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Bianca Habermann
- Max Planck Institute of Biochemistry, Computational Systems Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Dejana Mokranjac
- Biomedical Center Munich - Physiological Chemistry, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Eric Lambie
- Faculty of Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Barbara Conradt
- Faculty of Biology, LMU Munich, 82152 Planegg-Martinsried, Germany; Center for Integrated Protein Science, LMU Munich, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
13
|
Haeussler S, Köhler F, Witting M, Premm MF, Rolland SG, Fischer C, Chauve L, Casanueva O, Conradt B. Autophagy compensates for defects in mitochondrial dynamics. PLoS Genet 2020; 16:e1008638. [PMID: 32191694 PMCID: PMC7135339 DOI: 10.1371/journal.pgen.1008638] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 04/06/2020] [Accepted: 01/28/2020] [Indexed: 12/30/2022] Open
Abstract
Compromising mitochondrial fusion or fission disrupts cellular homeostasis; however, the underlying mechanism(s) are not fully understood. The loss of C. elegans fzo-1MFN results in mitochondrial fragmentation, decreased mitochondrial membrane potential and the induction of the mitochondrial unfolded protein response (UPRmt). We performed a genome-wide RNAi screen for genes that when knocked-down suppress fzo-1MFN(lf)-induced UPRmt. Of the 299 genes identified, 143 encode negative regulators of autophagy, many of which have previously not been implicated in this cellular quality control mechanism. We present evidence that increased autophagic flux suppresses fzo-1MFN(lf)-induced UPRmt by increasing mitochondrial membrane potential rather than restoring mitochondrial morphology. Furthermore, we demonstrate that increased autophagic flux also suppresses UPRmt induction in response to a block in mitochondrial fission, but not in response to the loss of spg-7AFG3L2, which encodes a mitochondrial metalloprotease. Finally, we found that blocking mitochondrial fusion or fission leads to increased levels of certain types of triacylglycerols and that this is at least partially reverted by the induction of autophagy. We propose that the breakdown of these triacylglycerols through autophagy leads to elevated metabolic activity, thereby increasing mitochondrial membrane potential and restoring mitochondrial and cellular homeostasis.
Collapse
Affiliation(s)
- Simon Haeussler
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Fabian Köhler
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael Witting
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Analytical Food Chemistry, Technische Universität München, Freising, Germany
| | - Madeleine F. Premm
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Christian Fischer
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
- Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Laetitia Chauve
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Olivia Casanueva
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Barbara Conradt
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
- Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| |
Collapse
|
14
|
ROS-based lethality of Caenorhabditis elegans mitochondrial electron transport mutants grown on Escherichia coli siderophore iron release mutants. Proc Natl Acad Sci U S A 2019; 116:21651-21658. [PMID: 31591219 PMCID: PMC6815122 DOI: 10.1073/pnas.1912628116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Caenorhabditis elegans consumes bacteria, which can supply essential vitamins and cofactors, especially for mitochondrial functions that have a bacterial ancestry. Therefore, we screened the Keio Escherichia coli knockout library for mutations that induce the C. elegans hsp-6 mitochondrial damage response gene, and identified 45 E. coli mutations that induce hsp-6::gfp We tested whether any of these E. coli mutations that stress the C. elegans mitochondrion genetically interact with C. elegans mutations in mitochondrial functions. Surprisingly, 4 E. coli mutations that disrupt the import or removal of iron from the bacterial siderophore enterobactin were lethal in combination with a collection of C. elegans mutations that disrupt particular iron-sulfur proteins of the electron transport chain. Bacterial mutations that fail to synthesize enterobactin are not synthetic lethal with these C. elegans mitochondrial mutants; it is the enterobactin-iron complex that is lethal in combination with the C. elegans mitochondrial mutations. Antioxidants suppress this inviability, suggesting that reactive oxygen species (ROS) are produced by the mutant mitochondria in combination with the bacterial enterobactin-iron complex.
Collapse
|
15
|
Herholz M, Cepeda E, Baumann L, Kukat A, Hermeling J, Maciej S, Szczepanowska K, Pavlenko V, Frommolt P, Trifunovic A. KLF-1 orchestrates a xenobiotic detoxification program essential for longevity of mitochondrial mutants. Nat Commun 2019; 10:3323. [PMID: 31346165 PMCID: PMC6658563 DOI: 10.1038/s41467-019-11275-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 06/28/2019] [Indexed: 12/29/2022] Open
Abstract
Most manipulations that extend lifespan also increase resistance to various stress factors and environmental cues in a range of animals from yeast to mammals. However, the underlying molecular mechanisms regulating stress resistance during aging are still largely unknown. Here we identify Krüppel-like factor 1 (KLF-1) as a mediator of a cytoprotective response that dictates longevity induced by reduced mitochondrial function. A redox-regulated KLF-1 activation and transfer to the nucleus coincides with the peak of somatic mitochondrial biogenesis that occurs around a transition from larval stage L3 to D1. We further show that KLF-1 activates genes involved in the xenobiotic detoxification programme and identified cytochrome P450 oxidases, the KLF-1 main effectors, as longevity-assurance factors of mitochondrial mutants. Collectively, these findings underline the importance of the xenobiotic detoxification in the mitohormetic, longevity assurance pathway and identify KLF-1 as a central factor in orchestrating this response.
Collapse
Affiliation(s)
- Marija Herholz
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, D-50931, Cologne, Germany
| | - Estela Cepeda
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, D-50931, Cologne, Germany
| | - Linda Baumann
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, D-50931, Cologne, Germany
| | - Alexandra Kukat
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, D-50931, Cologne, Germany
| | - Johannes Hermeling
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, D-50931, Cologne, Germany
| | - Sarah Maciej
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, D-50931, Cologne, Germany
| | - Karolina Szczepanowska
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, D-50931, Cologne, Germany
| | - Victor Pavlenko
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, D-50931, Cologne, Germany
| | - Peter Frommolt
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, D-50931, Cologne, Germany
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, D-50931, Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC), D-50931, Cologne, Germany.
| |
Collapse
|
16
|
Respiratory analysis as a tool to detect physiological changes in Anisakis larvae subjected to stress. Parasitol Res 2019; 118:1127-1135. [PMID: 30790039 DOI: 10.1007/s00436-019-06260-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/11/2019] [Indexed: 12/15/2022]
Abstract
Human infection due to eating fish parasitized by live Anisakis larvae in the third stage is considered an important health problem, and the application of treatments to ensure their mortality in the fish products is crucial to prevent the risk of infection. Mobility is used to assess viability, but mobile larvae may not always be infective and immobile larvae may be erroneously considered as non-viable. The objective was to establish whether the analysis of respiratory activity by means of the oxygen consumption rate (OCR) of Anisakis could be used to identify subtle differences between larvae that were still considered viable in terms of their mobility but had been subjected to thermal and/or chemical stress. The metabolic modulators FCCP [carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone] and sodium azide were used and the basal, maximum, spare and residual respiration rates calculated. Results showed that maximum respiratory capacity of larvae subjected to freezing significantly decreased immediately after thawing, but after some acclimatization, they recovered their capacity fully. However, when these larvae were stored at 4.6 °C, their mitochondria became dysfunctional faster than those of untreated larvae. OCR also showed that mitochondria of larvae were affected by incubation at 37 °C in NaCl or gastric juice. To conclude, OCR of Anisakis in the presence of metabolic modulators can help to identify subtle changes that occur in the larva. These measurements could be used to characterize larvae subjected to various stresses so that a broader picture of Anisakis pathogenic potential can be gained.
Collapse
|
17
|
Zhou Y, Zhang X, Butcher RA. Tryptophan Metabolism in Caenorhabditis elegans Links Aggregation Behavior to Nutritional Status. ACS Chem Biol 2019; 14:50-57. [PMID: 30586284 DOI: 10.1021/acschembio.8b00872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Caenorhabditis elegans uses aggregation pheromones to communicate its nutritional status and recruit fellow members of its species to food sources. These aggregation pheromones include the IC-ascarosides, ascarosides modified with an indole-3-carbonyl (IC) group on the 4'-position of the ascarylose sugar. Nothing is known about the biosynthesis of the IC modification beyond the fact that it is derived from tryptophan. Here, we show that C. elegans produces endogenously several indole-containing metabolites, including indole-3-pyruvic acid (IPA), indole-3-acetic acid (IAA; auxin), and indole-3-carboxylic acid, and that these metabolites are intermediates in the biosynthetic pathway from tryptophan to the IC group. Stable isotope-labeled IPA and IAA are incorporated into the IC-ascarosides. Importantly, we show that flux through the biosynthetic pathway is affected by the activity of the pyruvate dehydrogenase complex (PDC). Knockdown of the PDC by RNA interference leads to an accumulation of upstream metabolites and a reduction in downstream metabolites in the pathway. Our results show that production of aggregation pheromones is linked to PDC activity and that aggregation behavior may reflect a favorable metabolic state in the worm. Lastly, we show that treatment of C. elegans with indole-containing metabolites in the pathway induces the biosynthesis of the IC-ascarosides. Because the natural environment of C. elegans is rotting plant material, indole-containing metabolites in this environment could potentially stimulate pheromone biosynthesis and aggregation behavior in the worm. Thus, there may be important links between tryptophan metabolism in C. elegans and in plants and bacteria that enable interkingdom signaling.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Xinxing Zhang
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Rebecca A. Butcher
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
18
|
Meyer JN, Leuthner TC, Luz AL. Mitochondrial fusion, fission, and mitochondrial toxicity. Toxicology 2017; 391:42-53. [PMID: 28789970 PMCID: PMC5681418 DOI: 10.1016/j.tox.2017.07.019] [Citation(s) in RCA: 379] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/10/2017] [Accepted: 07/31/2017] [Indexed: 12/17/2022]
Abstract
Mitochondrial dynamics are regulated by two sets of opposed processes: mitochondrial fusion and fission, and mitochondrial biogenesis and degradation (including mitophagy), as well as processes such as intracellular transport. These processes maintain mitochondrial homeostasis, regulate mitochondrial form, volume and function, and are increasingly understood to be critical components of the cellular stress response. Mitochondrial dynamics vary based on developmental stage and age, cell type, environmental factors, and genetic background. Indeed, many mitochondrial homeostasis genes are human disease genes. Emerging evidence indicates that deficiencies in these genes often sensitize to environmental exposures, yet can also be protective under certain circumstances. Inhibition of mitochondrial dynamics also affects elimination of irreparable mitochondrial DNA (mtDNA) damage and transmission of mtDNA mutations. We briefly review the basic biology of mitodynamic processes with a focus on mitochondrial fusion and fission, discuss what is known and unknown regarding how these processes respond to chemical and other stressors, and review the literature on interactions between mitochondrial toxicity and genetic variation in mitochondrial fusion and fission genes. Finally, we suggest areas for future research, including elucidating the full range of mitodynamic responses from low to high-level exposures, and from acute to chronic exposures; detailed examination of the physiological consequences of mitodynamic alterations in different cell types; mechanism-based testing of mitotoxicant interactions with interindividual variability in mitodynamics processes; and incorporating other environmental variables that affect mitochondria, such as diet and exercise.
Collapse
Affiliation(s)
- Joel N Meyer
- Nicholas School of the Environment and Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC 27708-0328, United States.
| | - Tess C Leuthner
- Nicholas School of the Environment and Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC 27708-0328, United States.
| | - Anthony L Luz
- Nicholas School of the Environment and Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC 27708-0328, United States.
| |
Collapse
|
19
|
Chaudhari SN, Kipreos ET. Increased mitochondrial fusion allows the survival of older animals in diverse C. elegans longevity pathways. Nat Commun 2017; 8:182. [PMID: 28769038 PMCID: PMC5541002 DOI: 10.1038/s41467-017-00274-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 06/19/2017] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are dynamic organelles that undergo fusion and fission events. Mitochondrial dynamics are required for mitochondrial viability and for responses to changes in bioenergetic status. Here we describe an insulin-signaling and SCFLIN-23-regulated pathway that controls mitochondrial fusion in Caenorhabditis elegans by repressing the expression of the mitochondrial proteases SPG-7 and PPGN-1. This pathway is required for mitochondrial fusion in response to physical exertion, and for the associated extension in lifespan. We show that diverse longevity pathways exhibit increased levels of elongated mitochondria. The increased mitochondrial fusion is essential for longevity in the diverse longevity pathways, as inhibiting mitochondrial fusion reduces their lifespans to wild-type levels. Our results suggest that increased mitochondrial fusion is not a major driver of longevity, but rather is essential to allow the survival of older animals beyond their normal lifespan in diverse longevity pathways.Mitochondria can undergo shape changes as a result of fusion and fission events. Here the authors describe how insulin signalling regulates mitochondrial fusion in C. elegans, and show that mitochondrial fusion is necessary, but not sufficient, for longevity of worms with mutations that increase lifespan.
Collapse
Affiliation(s)
- Snehal N Chaudhari
- Department of Cellular Biology, The University of Georgia, Athens, GA, 30602, USA
| | - Edward T Kipreos
- Department of Cellular Biology, The University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
20
|
Zhang L, Yang H, Zhang W, Liang Z, Huang Q, Xu G, Zhen X, Zheng LT. Clk1-regulated aerobic glycolysis is involved in glioma chemoresistance. J Neurochem 2017; 142:574-588. [PMID: 28581641 DOI: 10.1111/jnc.14096] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 06/01/2017] [Accepted: 06/01/2017] [Indexed: 02/01/2023]
Abstract
Chemoresistance remains a major challenge for the treatment of glioma. In this study, we investigated the role of Clock 1 (Clk1), which encodes an enzyme that is necessary for ubiquinone biosynthesis in glioma chemoresistance in vitro. The results showed that Clk1 was highly expressed in GL261 mouse glioma cells which were most sensitive to 1,3Bis (2-chloroethyl) 1 nitrosourea (BCNU) while was low expressed in BCNU resistant cells such as glioma cancer stem cells, T98G, U87MG and U251 glioma cells. Knockdown of Clk1 in GL261 glioma cells significantly reduced BCNU- or cisplatin-induced cell apoptosis, whereas the proliferative activity and the expression of multidrug resistance-related genes including MDR1, O6-methylguanine-DNA methyltransferase, and GSTP1 were not changed. When Clk1 was re-expressed in Clk1 knockdown GL261 glioma cells, the BCNU sensitivity was restored. The mechanistic study revealed that knockdown of Clk1 in GL261 glioma cells increased aerobic glycolysis including high glucose consumption, lactate production, and up-regulation of glycolysis-associated genes. Inhibition of glycolysis can reverse the chemoresistance elicited by Clk1 knockdown in GL261 cells. Moreover, knockdown of Clk1 induced HIF-1α expression in GL261 glioma cells which was found to be mediated by AMP-activated protein kinase (AMPK)/mechanistic target of rapamycin (mTOR) signaling pathway. Both metformin and rapamycin reversed the chemoresistance of Clk1 knockdown GL261 glioma cells. Over-expression of Clk1 significantly increased the sensitivity of T98G or U251 human glioblastoma cells to BCNU which was accompanied by decreased lactate secretion, decreased expression of HIF-1α, AMPK activation, and inhibition of mTOR pathway. Inhibition of glycolysis or activation of AMPK did not alter Clk1 expression in variant glioma cell lines suggesting that aerobic glycolysis is not an upstream event of Clk1 expression in glioma cells. Taken together, our results revealed, for the first time, that mitochondrial Clk1 regulated chemoresistance in glioma cells through AMPK/mTOR/HIF-1α mediated glycolysis pathway.
Collapse
Affiliation(s)
- Li Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.,College of Pharmaceutical Sciences and the Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| | - Huicui Yang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.,College of Pharmaceutical Sciences and the Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| | - Wenbin Zhang
- Department of neurosurgery, Brain Hospital affiliated to Nanjing medical University, Nanjing, China
| | - Zhongqin Liang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.,College of Pharmaceutical Sciences and the Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| | - Qiang Huang
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.,College of Pharmaceutical Sciences and the Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.,College of Pharmaceutical Sciences and the Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| | - Long Tai Zheng
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.,College of Pharmaceutical Sciences and the Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| |
Collapse
|
21
|
Woo JAA, Liu T, Trotter C, Fang CC, De Narvaez E, LePochat P, Maslar D, Bukhari A, Zhao X, Deonarine A, Westerheide SD, Kang DE. Loss of function CHCHD10 mutations in cytoplasmic TDP-43 accumulation and synaptic integrity. Nat Commun 2017; 8:15558. [PMID: 28585542 PMCID: PMC5467170 DOI: 10.1038/ncomms15558] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 04/07/2017] [Indexed: 12/13/2022] Open
Abstract
Although multiple CHCHD10 mutations are associated with the spectrum of familial and sporadic frontotemporal dementia–amyotrophic lateral sclerosis (FTD–ALS) diseases, neither the normal function of endogenous CHCHD10 nor its role in the pathological milieu (that is, TDP-43 pathology) of FTD/ALS have been investigated. In this study, we made a series of observations utilizing Caenorhabditis elegans models, mammalian cell lines, primary neurons and mouse brains, demonstrating that CHCHD10 normally exerts a protective role in mitochondrial and synaptic integrity as well as in the retention of nuclear TDP-43, whereas FTD/ALS-associated mutations (R15L and S59L) exhibit loss of function phenotypes in C. elegans genetic complementation assays and dominant negative activities in mammalian systems, resulting in mitochondrial/synaptic damage and cytoplasmic TDP-43 accumulation. As such, our results provide a pathological link between CHCHD10-associated mitochondrial/synaptic dysfunction and cytoplasmic TDP-43 inclusions. Mutations in CHCHD10 have been recently associated with frontotemporal dementia and amyotrophic lateral sclerosis. Here the authors study the functions of endogenous CHCHD10 in Caenorhabditis elegans, primary neurons, and mouse, and show that it normally protects mitochondria and synaptic integrity, and retains TDP-43 in the nucleus.
Collapse
Affiliation(s)
- Jung-A A Woo
- USF Health Byrd Alzheimer's Institute, University of South Florida, Morsani College of Medicine, Tampa, Florida 33613, USA.,Department of Molecular Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida 33613, USA
| | - Tian Liu
- USF Health Byrd Alzheimer's Institute, University of South Florida, Morsani College of Medicine, Tampa, Florida 33613, USA.,Department of Molecular Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida 33613, USA
| | - Courtney Trotter
- USF Health Byrd Alzheimer's Institute, University of South Florida, Morsani College of Medicine, Tampa, Florida 33613, USA.,Department of Molecular Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida 33613, USA
| | - Cenxiao C Fang
- USF Health Byrd Alzheimer's Institute, University of South Florida, Morsani College of Medicine, Tampa, Florida 33613, USA.,Department of Molecular Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida 33613, USA
| | - Emillio De Narvaez
- USF Health Byrd Alzheimer's Institute, University of South Florida, Morsani College of Medicine, Tampa, Florida 33613, USA.,Department of Molecular Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida 33613, USA
| | - Patrick LePochat
- USF Health Byrd Alzheimer's Institute, University of South Florida, Morsani College of Medicine, Tampa, Florida 33613, USA.,Department of Molecular Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida 33613, USA
| | - Drew Maslar
- USF Health Byrd Alzheimer's Institute, University of South Florida, Morsani College of Medicine, Tampa, Florida 33613, USA.,Department of Molecular Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida 33613, USA
| | - Anusha Bukhari
- USF Health Byrd Alzheimer's Institute, University of South Florida, Morsani College of Medicine, Tampa, Florida 33613, USA.,Department of Molecular Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida 33613, USA
| | - Xingyu Zhao
- USF Health Byrd Alzheimer's Institute, University of South Florida, Morsani College of Medicine, Tampa, Florida 33613, USA.,Department of Molecular Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida 33613, USA
| | - Andrew Deonarine
- Department of Cell Biology, Microbiology &Molecular Biology, University of South Florida, College of Arts and Sciences, Tampa, Florida 33620, USA
| | - Sandy D Westerheide
- Department of Cell Biology, Microbiology &Molecular Biology, University of South Florida, College of Arts and Sciences, Tampa, Florida 33620, USA
| | - David E Kang
- USF Health Byrd Alzheimer's Institute, University of South Florida, Morsani College of Medicine, Tampa, Florida 33613, USA.,Department of Molecular Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida 33613, USA.,James A. Haley Veteran's Administration Hospital, Tampa, Florida 33612, USA
| |
Collapse
|
22
|
Sun C, Jin W, Shi H. Oligomeric proanthocyanidins protects A549 cells against H2O2-induced oxidative stress via the Nrf2-ARE pathway. Int J Mol Med 2017; 39:1548-1554. [DOI: 10.3892/ijmm.2017.2971] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/07/2017] [Indexed: 11/05/2022] Open
|
23
|
Zhu L, Gomez-Duran A, Saretzki G, Jin S, Tilgner K, Melguizo-Sanchis D, Anyfantis G, Al-Aama J, Vallier L, Chinnery P, Lako M, Armstrong L. The mitochondrial protein CHCHD2 primes the differentiation potential of human induced pluripotent stem cells to neuroectodermal lineages. J Cell Biol 2016; 215:187-202. [PMID: 27810911 PMCID: PMC5084643 DOI: 10.1083/jcb.201601061] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 09/19/2016] [Indexed: 01/09/2023] Open
Abstract
Human induced pluripotent stem cell (hiPSC) utility is limited by variations in the ability of these cells to undergo lineage-specific differentiation. We have undertaken a transcriptional comparison of human embryonic stem cell (hESC) lines and hiPSC lines and have shown that hiPSCs are inferior in their ability to undergo neuroectodermal differentiation. Among the differentially expressed candidates between hESCs and hiPSCs, we identified a mitochondrial protein, CHCHD2, whose expression seems to correlate with neuroectodermal differentiation potential of pluripotent stem cells. We provide evidence that hiPSC variability with respect to CHCHD2 expression and differentiation potential is caused by clonal variation during the reprogramming process and that CHCHD2 primes neuroectodermal differentiation of hESCs and hiPSCs by binding and sequestering SMAD4 to the mitochondria, resulting in suppression of the activity of the TGFβ signaling pathway. Using CHCHD2 as a marker for assessing and comparing the hiPSC clonal and/or line differentiation potential provides a tool for large scale differentiation and hiPSC banking studies.
Collapse
Affiliation(s)
- Lili Zhu
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK
| | - Aurora Gomez-Duran
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK.,Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK
| | - Gabriele Saretzki
- Institute for Ageing and Health, Newcastle University, Newcastle NE1 3BZ, England, UK
| | - Shibo Jin
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK
| | - Katarzyna Tilgner
- Wellcome Trust-Medical Research Council Stem Cell Institute, Hinxton, Cambridge CB10 1SA, England, UK.,Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, England, UK
| | | | - Georgios Anyfantis
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK
| | - Jumana Al-Aama
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ludovic Vallier
- Wellcome Trust-Medical Research Council Stem Cell Institute, Hinxton, Cambridge CB10 1SA, England, UK
| | - Patrick Chinnery
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK
| | - Lyle Armstrong
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK
| |
Collapse
|
24
|
Koopman M, Michels H, Dancy BM, Kamble R, Mouchiroud L, Auwerx J, Nollen EA, Houtkooper RH. A screening-based platform for the assessment of cellular respiration in Caenorhabditis elegans. Nat Protoc 2016; 11:1798-816. [PMID: 27583642 PMCID: PMC5040492 DOI: 10.1038/nprot.2016.106] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mitochondrial dysfunction is at the core of many diseases ranging from inherited metabolic diseases to common conditions that are associated with aging. Although associations between aging and mitochondrial function have been identified using mammalian models, much of the mechanistic insight has emerged from Caenorhabditis elegans. Mitochondrial respiration is recognized as an indicator of mitochondrial health. The Seahorse XF96 respirometer represents the state-of-the-art platform for assessing respiration in cells, and we adapted the technique for applications involving C. elegans. Here we provide a detailed protocol to optimize and measure respiration in C. elegans with the XF96 respirometer, including the interpretation of parameters and results. The protocol takes ∼2 d to complete, excluding the time spent culturing C. elegans, and it includes (i) the preparation of C. elegans samples, (ii) selection and loading of compounds to be injected, (iii) preparation and execution of a run with the XF96 respirometer and (iv) postexperimental data analysis, including normalization. In addition, we compare our XF96 application with other existing techniques, including the eight-well Seahorse XFp. The main benefits of the XF96 include the limited number of worms required and the high throughput capacity due to the 96-well format.
Collapse
Affiliation(s)
- Mandy Koopman
- University of Groningen, University Medical Center Groningen, European Research Institute for the Biology of Ageing, Laboratory of Molecular Neurobiology of Ageing, Groningen, The Netherlands
| | - Helen Michels
- University of Groningen, University Medical Center Groningen, European Research Institute for the Biology of Ageing, Laboratory of Molecular Neurobiology of Ageing, Groningen, The Netherlands
| | - Beverley M. Dancy
- Laboratory of Cardiac Energetics, National Heart, Lung and Blood Institute, Bethesda, United States
| | - Rashmi Kamble
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, The Netherlands
| | - Laurent Mouchiroud
- Laboratory of Integrative and Systems Physiology, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Ellen A.A. Nollen
- University of Groningen, University Medical Center Groningen, European Research Institute for the Biology of Ageing, Laboratory of Molecular Neurobiology of Ageing, Groningen, The Netherlands
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Luz AL, Lagido C, Hirschey MD, Meyer JN. In Vivo Determination of Mitochondrial Function Using Luciferase-Expressing Caenorhabditis elegans: Contribution of Oxidative Phosphorylation, Glycolysis, and Fatty Acid Oxidation to Toxicant-Induced Dysfunction. CURRENT PROTOCOLS IN TOXICOLOGY 2016; 69:25.8.1-25.8.22. [PMID: 27479364 PMCID: PMC5002950 DOI: 10.1002/cptx.10] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitochondria are a target of many drugs and environmental toxicants; however, how toxicant-induced mitochondrial dysfunction contributes to the progression of human disease remains poorly understood. To address this issue, in vivo assays capable of rapidly assessing mitochondrial function need to be developed. Here, using the model organism Caenorhabditis elegans, we describe how to rapidly assess the in vivo role of the electron transport chain, glycolysis, or fatty acid oxidation in energy metabolism following toxicant exposure, using a luciferase-expressing ATP reporter strain. Alterations in mitochondrial function subsequent to toxicant exposure are detected by depleting steady-state ATP levels with inhibitors of the mitochondrial electron transport chain, glycolysis, or fatty acid oxidation. Differential changes in ATP following short-term inhibitor exposure indicate toxicant-induced alterations at the site of inhibition. Because a microplate reader is the only major piece of equipment required, this is a highly accessible method for studying toxicant-induced mitochondrial dysfunction in vivo. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Anthony L. Luz
- Nicholas School of the Environment, PO Box 90328, Duke University, Durham, North Carolina, 27708
| | - Cristina Lagido
- School of Medical Sciences, Institute of Medical Sciences, Aberdeen AB25 2 ZD, UK
| | - Matthew D. Hirschey
- Department of Medicine, 500 N. Duke St., 50-201, Duke University, Durham, North Carolina, 27708
| | - Joel N. Meyer
- Nicholas School of the Environment, PO Box 90328, Duke University, Durham, North Carolina, 27708
| |
Collapse
|
26
|
Dai Q, Yin Q, Zhao Y, Guo R, Li Z, Ma S, Lu N. III-10, a newly synthesized flavonoid, induces cell apoptosis with the involvement of reactive oxygen species-mitochondria pathway in human hepatocellular carcinoma cells. Eur J Pharmacol 2015; 764:353-362. [PMID: 26164795 DOI: 10.1016/j.ejphar.2015.06.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/26/2015] [Accepted: 06/26/2015] [Indexed: 01/18/2023]
Abstract
Study of the mechanisms of apoptosis in tumor cells is an important field of tumor therapy and cancer molecular biology. We recently established that III-10, a new flavonoid with a pyrrolidinyl and a benzyl group substitution, exerted its anti-tumor effect via inducing differentiation of human U937 leukemia cells. In this study, we demonstrated that III-10 induced cell apoptosis in human hepatocellular carcinoma cells. The activation of caspase-3, caspase-9, and the increased expression ratio of Bax/Bcl-2 were detected in III-10-induced apoptosis. Z-VAD-FMK, a pan-caspase inhibitor, partly attenuated the apoptotic induction of III-10 on both HepG2 and BEL-7402 cells. Furthermore, the increase of intracellular reactive oxygen species levels and the reduction of mitochondria ΔΨm were also observed in BEL-7402 and HepG2 cells after the treatment of III-10. Pretreatment with NAC, a reactive oxygen species production inhibitor, partly attenuated the apoptosis induced by III-10 via blocking the reactive oxygen species generation. Our data also showed that III-10 induced the release of cytochrome c and AIF to cytosol followed after the reactive oxygen species accumulation. Moreover, the GSH levels and ATP generation were both inhibited after III-10 treatment. Besides, the MAPK, the downstream effect of reactive oxygen species accumulation including JNK could be activated by III-10, as well as the inactivation of ERK. Collectively, the generation of reactive oxygen species might play an crucial role in III-10-induced mitochondrial apoptosis pathway, provided more stubborn evidence for III-10 as a potent anticancer therapeutic candidate.
Collapse
Affiliation(s)
- Qinsheng Dai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Qian Yin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Yikai Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Ruichen Guo
- Xi'an Middle School of Shaanxi Province, Xi'an 710021, People's Republic of China
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Shiping Ma
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
27
|
de Boer R, Smith RL, De Vos WH, Manders EMM, Brul S, van der Spek H. Caenorhabditis elegans as a Model System for Studying Drug Induced Mitochondrial Toxicity. PLoS One 2015; 10:e0126220. [PMID: 25970180 PMCID: PMC4430419 DOI: 10.1371/journal.pone.0126220] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 03/30/2015] [Indexed: 01/23/2023] Open
Abstract
Today HIV-1 infection is recognized as a chronic disease with obligatory lifelong treatment to keep viral titers below detectable levels. The continuous intake of antiretroviral drugs however, leads to severe and even life-threatening side effects, supposedly by the deleterious impact of nucleoside-analogue type compounds on the functioning of the mitochondrial DNA polymerase. For detailed investigation of the yet partially understood underlying mechanisms, the availability of a versatile model system is crucial. We therefore set out to develop the use of Caenorhabditis elegans to study drug induced mitochondrial toxicity. Using a combination of molecular-biological and functional assays, combined with a quantitative analysis of mitochondrial network morphology, we conclude that anti-retroviral drugs with similar working mechanisms can be classified into distinct groups based on their effects on mitochondrial morphology and biochemistry. Additionally we show that mitochondrial toxicity of antiretroviral drugs cannot be exclusively attributed to interference with the mitochondrial DNA polymerase.
Collapse
Affiliation(s)
- Richard de Boer
- Molecular Biology & Microbial Food Safety, Swammerdam Institute for Life Sciences (SILS), Faculty of Science (FNWI), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Ruben L. Smith
- Molecular Biology & Microbial Food Safety, Swammerdam Institute for Life Sciences (SILS), Faculty of Science (FNWI), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Winnok H. De Vos
- Cell Biology and Histology Group, Department of Veterinary Sciences, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, Coupure Links, 653, 9000, Ghent, Belgium
| | - Erik M. M. Manders
- van Leeuwenhoek Center for Advanced Microscopy, Swammerdam Institute for Life Sciences (SILS), Faculty of Science (FNWI), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Stanley Brul
- Molecular Biology & Microbial Food Safety, Swammerdam Institute for Life Sciences (SILS), Faculty of Science (FNWI), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Hans van der Spek
- Molecular Biology & Microbial Food Safety, Swammerdam Institute for Life Sciences (SILS), Faculty of Science (FNWI), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
28
|
MNRR1 (formerly CHCHD2) is a bi-organellar regulator of mitochondrial metabolism. Mitochondrion 2015; 20:43-51. [DOI: 10.1016/j.mito.2014.10.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/12/2014] [Accepted: 10/08/2014] [Indexed: 12/20/2022]
|
29
|
Walker AJ, Ressurreição M, Rothermel R. Exploring the function of protein kinases in schistosomes: perspectives from the laboratory and from comparative genomics. Front Genet 2014; 5:229. [PMID: 25132840 PMCID: PMC4117187 DOI: 10.3389/fgene.2014.00229] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/30/2014] [Indexed: 01/09/2023] Open
Abstract
Eukaryotic protein kinases are well conserved through evolution. The genome of Schistosoma mansoni, which causes intestinal schistosomiasis, encodes over 250 putative protein kinases with all of the main eukaryotic groups represented. However, unraveling functional roles for these kinases is a considerable endeavor, particularly as protein kinases regulate multiple and sometimes overlapping cell and tissue functions in organisms. In this article, elucidating protein kinase signal transduction and function in schistosomes is considered from the perspective of the state-of-the-art methodologies used and comparative organismal biology, with a focus on current advances and future directions. Using the free-living nematode Caenorhabditis elegans as a comparator we predict roles for various schistosome protein kinases in processes vital for host invasion and successful parasitism such as sensory behavior, growth and development. It is anticipated that the characterization of schistosome protein kinases in the context of parasite function will catalyze cutting edge research into host-parasite interactions and will reveal new targets for developing drug interventions against human schistosomiasis.
Collapse
Affiliation(s)
- Anthony J Walker
- Laboratory of Molecular Parasitology, School of Life Sciences, Kingston University Kingston upon Thames, UK
| | - Margarida Ressurreição
- Laboratory of Molecular Parasitology, School of Life Sciences, Kingston University Kingston upon Thames, UK
| | - Rolf Rothermel
- Laboratory of Molecular Parasitology, School of Life Sciences, Kingston University Kingston upon Thames, UK
| |
Collapse
|
30
|
Regulation of synaptic nlg-1/neuroligin abundance by the skn-1/Nrf stress response pathway protects against oxidative stress. PLoS Genet 2014; 10:e1004100. [PMID: 24453991 PMCID: PMC3894169 DOI: 10.1371/journal.pgen.1004100] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/26/2013] [Indexed: 12/30/2022] Open
Abstract
The Nrf family of transcription factors mediates adaptive responses to stress and longevity, but the identities of the crucial Nrf targets, and the tissues in which they function in multicellular organisms to promote survival, are not known. Here, we use whole transcriptome RNA sequencing to identify 810 genes whose expression is controlled by the SKN-1/Nrf2 negative regulator WDR-23 in the nervous system of Caenorhabditis elegans. Among the genes identified is the synaptic cell adhesion molecule nlg-1/neuroligin. We find that the synaptic abundance of NLG-1 protein increases following pharmacological treatments that generate oxidative stress or by the genetic activation of skn-1. Increasing nlg-1 dosage correlates with increased survival in response to oxidative stress, whereas genetic inactivation of nlg-1 reduces survival and impairs skn-1-mediated stress resistance. We identify a canonical SKN-1 binding site in the nlg-1 promoter that binds to SKN-1 in vitro and is necessary for SKN-1 and toxin-mediated increases in nlg-1 expression in vivo. Together, our results suggest that SKN-1 activation in the nervous system can confer protection to organisms in response to stress by directly regulating nlg-1/neuroligin expression.
Collapse
|
31
|
Takahashi M, Wolf AM, Watari E, Norose Y, Ohta S, Takahashi H. Increased mitochondrial functions in human glioblastoma cells persistently infected with measles virus. Antiviral Res 2013; 99:238-44. [PMID: 23830853 DOI: 10.1016/j.antiviral.2013.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/03/2013] [Accepted: 06/22/2013] [Indexed: 02/07/2023]
Abstract
Measles virus (MV) is known for its ability to cause an acute infection with a potential of development of persistent infection. However, knowledge of how viral genes and cellular factors interact to cause or maintain the persistent infection has remained unclear. We have previously reported the possible involvement of mitochondrial short chain enoyl-CoA hydratase (ECHS), which is localized at mitochondria, in the regulation of MV replication. In this study we found increased functions of mitochondria in MV-persistently infected cells compared with uninfected or acutely infected cells. Furthermore, impairment of mitochondrial functions by treatment with mitochondrial inhibitors such as ethidium bromide (EtBr) or carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) induced the cytopathic effects of extensive syncytial formation in persistently infected cells. These findings suggest that mitochondria are one of the subcellular organelles contributing to regulate persistent infection of MV. Recent studies showed mitochondria provide an integral platform for retinoic acid-inducible protein (RIG-I)-like cytosolic receptors (RLRs) signaling and participate in cellular innate antiviral immunity. Our findings not only reveal a role of mitochondria in RLR mediated antiviral signaling but also suggest that mitochondria contribute to the regulation of persistent viral infection.
Collapse
Affiliation(s)
- Megumi Takahashi
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
| | | | | | | | | | | |
Collapse
|
32
|
Current methods in quantifying ROS and oxidative damage in Caenorhabditis elegans and other model organism of aging. Ageing Res Rev 2013; 12:918-30. [PMID: 24080227 DOI: 10.1016/j.arr.2013.09.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/02/2013] [Accepted: 09/19/2013] [Indexed: 01/06/2023]
Abstract
Accumulation of oxidative damage has been proposed to be causal to aging as defined by the Free radical Theory of Aging, which has been subject to recent debate. However, a major hurdle in understanding the biological roles of reactive oxygen species (ROS) signaling and their oxidative damage has been the widely recognized methodological difficulties to measure oxidative damage and ROS in vivo. In this review we describe the various novel approaches that have recently been developed to overcome this challenge in the nematode Caenorhabditis elegans, which is a paradigm invertebrate model organism for studying aging and age-related disease given its short lifespan, easy genetics and transparency. In addition, we also discuss these methods in other important model organisms of aging, including the budding yeast Saccharomyces cerevisiae, the fruitfly Drosophila melanogaster and the mouse Mus musculus. After an introduction on the various ROS that can be encountered, we discuss approaches for the detection and quantification of ROS and ROS damage of DNA, lipids and proteins, highlighting examples from literature to demonstrate the applicability and caveats of each method. As will become clear, combinations of approaches have now become possible and will prove essential for thoroughly understanding the involvement of ROS and ROS damage in the biology of aging and disease.
Collapse
|
33
|
Taylor CM, Wang Q, Rosa BA, Huang SCC, Powell K, Schedl T, Pearce EJ, Abubucker S, Mitreva M. Discovery of anthelmintic drug targets and drugs using chokepoints in nematode metabolic pathways. PLoS Pathog 2013; 9:e1003505. [PMID: 23935495 PMCID: PMC3731235 DOI: 10.1371/journal.ppat.1003505] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 06/03/2013] [Indexed: 12/19/2022] Open
Abstract
Parasitic roundworm infections plague more than 2 billion people (1/3 of humanity) and cause drastic losses in crops and livestock. New anthelmintic drugs are urgently needed as new drug resistance and environmental concerns arise. A “chokepoint reaction” is defined as a reaction that either consumes a unique substrate or produces a unique product. A chokepoint analysis provides a systematic method of identifying novel potential drug targets. Chokepoint enzymes were identified in the genomes of 10 nematode species, and the intersection and union of all chokepoint enzymes were found. By studying and experimentally testing available compounds known to target proteins orthologous to nematode chokepoint proteins in public databases, this study uncovers features of chokepoints that make them successful drug targets. Chemogenomic screening was performed on drug-like compounds from public drug databases to find existing compounds that target homologs of nematode chokepoints. The compounds were prioritized based on chemical properties frequently found in successful drugs and were experimentally tested using Caenorhabditis elegans. Several drugs that are already known anthelmintic drugs and novel candidate targets were identified. Seven of the compounds were tested in Caenorhabditis elegans and three yielded a detrimental phenotype. One of these three drug-like compounds, Perhexiline, also yielded a deleterious effect in Haemonchus contortus and Onchocerca lienalis, two nematodes with divergent forms of parasitism. Perhexiline, known to affect the fatty acid oxidation pathway in mammals, caused a reduction in oxygen consumption rates in C. elegans and genome-wide gene expression profiles provided an additional confirmation of its mode of action. Computational modeling of Perhexiline and its target provided structural insights regarding its binding mode and specificity. Our lists of prioritized drug targets and drug-like compounds have potential to expedite the discovery of new anthelmintic drugs with broad-spectrum efficacy. The World Health Organization estimates that 2.9 million people are infected with parasitic roundworms, causing high-morbidity and mortality rates, developmental delays in children, and low productivity of affected individuals. The agricultural industry experiences drastic losses in crop and livestock due to parasitic worm infections. Therefore, there is an urgent need to identify new targets and drugs to fight parasitic nematode infection. This study identified metabolic chokepoint compounds that were either produced or consumed by a single reaction and elucidated the chokepoint enzyme that drives the reaction. If the enzyme that catalyzes that reaction is blocked, a toxic build-up of a compound or lack of compound necessary for subsequent reaction will occur, potentially causing adverse effects to the parasite organism. Compounds that target some of the chokepoint enzymes were tested in C. elegans and several compounds showed efficacy. One drug-like compound, Perhexiline, showed efficacy in two different parasitic worms and yielded expected physiological effects, indicating that this drug-like compound may have efficacy on a pan-phylum level through the predicted mode of action. The methodology to find and prioritize metabolic chokepoint targets and prioritize compounds could be applied to other parasites.
Collapse
Affiliation(s)
- Christina M. Taylor
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Qi Wang
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Bruce A. Rosa
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Stanley Ching-Cheng Huang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kerrie Powell
- SCYNEXIS, Inc, Research Triangle Park, North Carolina, United States of America
| | - Tim Schedl
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Edward J. Pearce
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sahar Abubucker
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Makedonka Mitreva
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Infectious Diseases, Department of Internal Medicine, Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
34
|
Dong H, Cheung SH, Liang Y, Wang B, Ramalingam R, Wang P, Sun H, Cheng SH, Lam YW. “Stainomics”: Identification of mitotracker labeled proteins in mammalian cells. Electrophoresis 2013; 34:1957-64. [DOI: 10.1002/elps.201200557] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Hongjuan Dong
- Department of Biology and Chemistry; City University of Hong Kong; Kowloon; Hong Kong
| | - Sau Ha Cheung
- Department of Surgery; The Chinese University of Hong Kong; Hong Kong
| | - Yimin Liang
- Department of Biology and Chemistry; City University of Hong Kong; Kowloon; Hong Kong
| | - Baojiang Wang
- Department of Biology and Chemistry; City University of Hong Kong; Kowloon; Hong Kong
| | - Rajkumar Ramalingam
- Department of Biology and Chemistry; City University of Hong Kong; Kowloon; Hong Kong
| | - Ping Wang
- Department of Biology and Chemistry; City University of Hong Kong; Kowloon; Hong Kong
| | - Hongyan Sun
- Department of Biology and Chemistry; City University of Hong Kong; Kowloon; Hong Kong
| | - Shuk Han Cheng
- Department of Biology and Chemistry; City University of Hong Kong; Kowloon; Hong Kong
| | - Yun Wah Lam
- Department of Biology and Chemistry; City University of Hong Kong; Kowloon; Hong Kong
| |
Collapse
|
35
|
A cytoprotective perspective on longevity regulation. Trends Cell Biol 2013; 23:409-20. [PMID: 23726168 DOI: 10.1016/j.tcb.2013.04.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 02/07/2023]
Abstract
There are many mechanisms of lifespan extension, including the disruption of insulin/insulin-like growth factor 1 (IGF-1) signaling, metabolism, translation, and feeding. Despite the disparate functions of these pathways, inhibition of each induces responses that buffer stress and damage. Here, emphasizing data from genetic analyses in Caenorhabditis elegans, we explore the effectors and upstream regulatory components of numerous cytoprotective mechanisms activated as major elements of longevity programs, including detoxification, innate immunity, proteostasis, and oxidative stress response. We show that their induction underpins longevity extension across functionally diverse triggers and across species. Intertwined with the evolution of longevity, cytoprotective pathways are coupled to the surveillance of core cellular components, with important implications in normal and aberrant responses to drugs, chemicals, and pathogens.
Collapse
|
36
|
Smith RL, de Boer R, Brul S, Budovskaya Y, van Spek H. Premature and accelerated aging: HIV or HAART? Front Genet 2013; 3:328. [PMID: 23372574 PMCID: PMC3556597 DOI: 10.3389/fgene.2012.00328] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/29/2012] [Indexed: 01/09/2023] Open
Abstract
Highly active antiretroviral therapy (HAART) has significantly increased life expectancy of the human immunodeficiency virus (HIV)-positive population. Nevertheless, the average lifespan of HIV-patients remains shorter compared to uninfected individuals. Immunosenescence, a current explanation for this difference invokes heavily on viral stimulus despite HAART efficiency in viral suppression. We propose here that the premature and accelerated aging of HIV-patients can also be caused by adverse effects of antiretroviral drugs, specifically those that affect the mitochondria. The nucleoside reverse transcriptase inhibitor (NRTI) antiretroviral drug class for instance, is known to cause depletion of mitochondrial DNA via inhibition of the mitochondrial specific DNA polymerase-γ. Besides NRTIs, other antiretroviral drug classes such as protease inhibitors also cause severe mitochondrial damage by increasing oxidative stress and diminishing mitochondrial function. We also discuss important areas for future research and argue in favor of the use of Caenorhabditis elegans as a novel model system for studying these effects.
Collapse
Affiliation(s)
- Reuben L Smith
- Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | | | | | | | | |
Collapse
|
37
|
Abstract
Prohibitin (PHB), appearing to be a negative regulator of cell proliferation and to be a tumor suppressor, has been connected to diverse cellular functions including cell cycle control, senescence, apoptosis and the regulation of mitochondrial activities. It is a growth regulatory gene that has pleiotropic functions in the nucleus, mitochondria and cytoplasmic compartments. However, in different tissues/cells, the expression of PHB was different, such as that it was increased in most of the cancers, but its expression was reduced in kidney diseases. Signaling pathways might be very important in the pathogenesis of diseases. This review was performed to provide a relatively complete signaling pathways flowchart for PHB to the investigators who were interested in the roles of PHB in the pathogenesis of diseases. Here, we review the signal transduction pathways of PHB and its role in the pathogenesis of diseases.
Collapse
Affiliation(s)
- Tian-Biao Zhou
- Department of Pediatric Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | | |
Collapse
|
38
|
Induction of cytoprotective pathways is central to the extension of lifespan conferred by multiple longevity pathways. PLoS Genet 2012; 8:e1002792. [PMID: 22829775 PMCID: PMC3400582 DOI: 10.1371/journal.pgen.1002792] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/11/2012] [Indexed: 11/19/2022] Open
Abstract
Many genetic and physiological treatments that extend lifespan also confer resistance to a variety of stressors, suggesting that cytoprotective mechanisms underpin the regulation of longevity. It has not been established, however, whether the induction of cytoprotective pathways is essential for lifespan extension or merely correlated. Using a panel of GFP-fused stress response genes, we identified the suites of cytoprotective pathways upregulated by 160 gene inactivations known to increase Caenorhabditis elegans longevity, including the mitochondrial UPR (hsp-6, hsp-60), the ER UPR (hsp-4), ROS response (sod-3, gst-4), and xenobiotic detoxification (gst-4). We then screened for other gene inactivations that disrupt the induction of these responses by xenobiotic or genetic triggers, identifying 29 gene inactivations required for cytoprotective gene expression. If cytoprotective responses contribute directly to lifespan extension, inactivation of these genes would be expected to compromise the extension of lifespan conferred by decreased insulin/IGF-1 signaling, caloric restriction, or the inhibition of mitochondrial function. We find that inactivation of 25 of 29 cytoprotection-regulatory genes shortens the extension of longevity normally induced by decreased insulin/IGF-1 signaling, disruption of mitochondrial function, or caloric restriction, without disrupting normal longevity nearly as dramatically. These data demonstrate that induction of cytoprotective pathways is central to longevity extension and identify a large set of new genetic components of the pathways that detect cellular damage and couple that detection to downstream cytoprotective effectors. Many mutations that increase animal lifespan also confer stress tolerance, suggesting that cytoprotective mechanisms underpin the regulation of longevity. It has not been established, however, whether the induction of individual cytoprotective pathways is essential for lifespan extension, or merely correlated. To establish whether the regulatory pathways for the induction of cytoprotective responses are key in the extension of lifespan, we performed an RNAi screen for gene inactivations that decouple the activation of cytoprotective pathways from xenobiotic stimuli that normally induce them. The screen identified 29 genes that constitute the regulatory cascades of the unfolded protein response, oxidative stress response, and detoxification. These upstream regulatory genes are critical to stress tolerance and the extension of lifespan conferred by decreased insulin/IGF-1 signaling, disruption of mitochondrial function, or caloric restriction, but have little effect on normal longevity.
Collapse
|
39
|
Nedosekin DA, Galanzha EI, Ayyadevara S, Shmookler Reis RJ, Zharov VP. Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores. Biophys J 2012; 102:672-81. [PMID: 22325291 PMCID: PMC3274827 DOI: 10.1016/j.bpj.2011.12.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 12/07/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022] Open
Abstract
Confocal fluorescence microscopy is a powerful biological tool providing high-resolution, three-dimensional (3D) imaging of fluorescent molecules. Many cellular components are weakly fluorescent, however, and thus their imaging requires additional labeling. As an alternative, label-free imaging can be performed by photothermal (PT) microscopy (PTM), based on nonradiative relaxation of absorbed energy into heat. Previously, little progress has been made in PT spectral identification of cellular chromophores at the 3D microscopic scale. Here, we introduce PTM integrating confocal thermal-lens scanning schematic, time-resolved detection, PT spectral identification, and nonlinear nanobubble-induced signal amplification with a tunable pulsed nanosecond laser. The capabilities of this confocal PTM were demonstrated for high-resolution 3D imaging and spectral identification of up to four chromophores and fluorophores in live cells and Caenorhabditis elegans. Examples include cytochrome c, green fluorescent protein, Mito-Tracker Red, Alexa-488, and natural drug-enhanced or genetically engineered melanin as a PT contrast agent. PTM was able to guide spectral burning of strong absorption background, which masked weakly absorbing chromophores (e.g., cytochromes in the melanin background). PTM provided label-free monitoring of stress-related changes to cytochrome c distribution, in C. elegans at the single-cell level. In nonlinear mode ultrasharp PT spectra from cyt c and the lateral resolution of 120 nm during calibration with 10-nm gold film were observed, suggesting a potential of PTM to break through the spectral and diffraction limits, respectively. Confocal PT spectromicroscopy could provide a valuable alternative or supplement to fluorescence microscopy for imaging of nonfluorescent chromophores and certain fluorophores.
Collapse
Affiliation(s)
- Dmitry A Nedosekin
- Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| | | | | | | | | |
Collapse
|
40
|
Carneiro P, Duarte M, Videira A. Disruption of alternative NAD(P)H dehydrogenases leads to decreased mitochondrial ROS in Neurospora crassa. Free Radic Biol Med 2012; 52:402-9. [PMID: 22100504 DOI: 10.1016/j.freeradbiomed.2011.10.492] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 10/18/2011] [Accepted: 10/27/2011] [Indexed: 11/29/2022]
Abstract
Mitochondria are a main providers of high levels of energy, but also a major source of reactive oxygen species (ROS) during normal oxidative metabolism. The involvement of Neurospora crassa alternative NAD(P)H dehydrogenases in mitochondrial ROS production was evaluated. The growth responses of a series of respiratory mutants to several stress conditions revealed that disrupting alternative dehydrogenases leads to an increased tolerance to the redox cycler paraquat, with a mutant devoid of the external NDE1 and NDE2 enzymes being significantly more resistant. The nde1nde2 mutant mitochondria show a significant decrease in ROS generation in the presence and absence of paraquat, regardless of the respiratory substrate used, and an intrinsic increase in catalase activity. Analysis of ROS production by a complex I mutant (nuo51) indicates that, as in other organisms, paraquat-derived ROS in Neurospora mitochondria occur mainly at the level of complex I. We propose that disruption of the external NAD(P)H dehydrogenases NDE1 and NDE2 leads to a synergistic effect diminishing ROS generation by the mitochondrial respiratory chain. This, in addition to a robust increase in scavenging capacity, provides the mutant strain with an improved ability to withstand paraquat treatment.
Collapse
Affiliation(s)
- Patrícia Carneiro
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal.
| | | | | |
Collapse
|
41
|
Wei L, Lu N, Dai Q, Rong J, Chen Y, Li Z, You Q, Guo Q. Different apoptotic effects of wogonin via induction of H2O2 generation and Ca2+ overload in malignant hepatoma and normal hepatic cells. J Cell Biochem 2010; 111:1629-41. [DOI: 10.1002/jcb.22898] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|