1
|
Salman S, Paulet V, Hardonnière K, Kerdine‐Römer S. The role of NRF2 transcription factor in inflammatory skin diseases. Biofactors 2025; 51:e70013. [PMID: 40207460 PMCID: PMC11983367 DOI: 10.1002/biof.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/25/2025] [Indexed: 04/11/2025]
Abstract
The skin is the body's largest organ and performs several vital functions, such as controlling the movement of essential substances while protecting against external threats. Although mainly composed of keratinocytes (KCs), the skin also contains a complex network of immune cells that play a critical role in host defense and maintaining skin homeostasis. KCs proliferate in the basal layer of the epidermis and undergo differentiation, altering their functional and phenotypic characteristics. These differentiation steps are crucial for the stratification of the epidermis and the formation of the stratum corneum, ensuring the skin barrier's functions. Exposure to UV, environmental pollutants, or chemicals can lead to an overproduction of reactive species of oxygen (ROS), leading to oxidative stress. To ensure redox homeostasis and prevent damage resulting from the formation of ROS, the skin has an extensive network of antioxidant defense systems, mainly orchestrated by the nuclear factor erythroid-2-related factor 2 (Nrf2) pathway. Indeed, Nrf2 induces the expression of detoxification and antioxidant enzymes and suppresses inductions of pro-inflammatory cytokine genes. In this context, Nrf2 is critical in preserving skin functions such as epidermal differentiation, regulating skin immunity, and managing environmental stresses. Besides, this pathway plays an important role in the pathogenesis of common inflammatory skin diseases such as allergic contact dermatitis, atopic dermatitis, and psoriasis. Therefore, the present review highlights the crucial role of Nrf2 in KCs for maintaining skin homeostasis and regulating skin immunity, as well as its contribution to the pathophysiology of inflammatory skin diseases. Finally, a particular emphasis will be placed on the therapeutic potential of targeting the Nrf2 pathway to alleviate symptoms of these inflammatory skin disorders.
Collapse
Affiliation(s)
- Sara Salman
- Université Paris‐Saclay, INSERM, Inflammation, Microbiome and ImmunosurveillanceOrsayFrance
| | - Virginie Paulet
- Université Paris‐Saclay, INSERM, Inflammation, Microbiome and ImmunosurveillanceOrsayFrance
| | - Kévin Hardonnière
- Université Paris‐Saclay, INSERM, Inflammation, Microbiome and ImmunosurveillanceOrsayFrance
| | - Saadia Kerdine‐Römer
- Université Paris‐Saclay, INSERM, Inflammation, Microbiome and ImmunosurveillanceOrsayFrance
| |
Collapse
|
2
|
Koch M, Ferrarese L, Ben-Yehuda Greenwald M, Werner S. Dose-dependent effects of Nrf2 on the epidermis in chronic skin inflammation. Dis Model Mech 2025; 18:dmm052126. [PMID: 39744884 PMCID: PMC11708820 DOI: 10.1242/dmm.052126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease, characterized by an impaired epidermal barrier and immunological alterations. The activity of the cytoprotective NRF2 transcription factor is reduced in the epidermis of AD patients. To determine the functional relevance of this deficiency, we used mice lacking fibroblast growth factor receptors 1 and 2 in keratinocytes (K5-R1/R2 mice), which exhibit several AD-like symptoms. Proteomics analysis of their epidermis revealed reduced Nrf2 activity. This was accompanied by an increase in DNA damage and in the number of senescent cells. Genetic deletion of Nrf2 in keratinocytes of these mice further promoted DNA damage and senescence, but time-limited pharmacological activation of Nrf2 in the skin had a mild protective effect. Surprisingly, long-term genetic activation of Nrf2 in keratinocytes of K5-R1/R2 mice caused strong hyperkeratosis, keratinocyte hyperproliferation, epidermal thickening, increased keratinocyte apoptosis and DNA damage, and altered immune cell composition. These results reveal a complex role of Nrf2 in the epidermis and show the necessity to optimize the duration and intensity of NRF2 activation for the treatment of epidermal alterations in patients with AD.
Collapse
Affiliation(s)
- Michael Koch
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Luca Ferrarese
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
3
|
Corneal epithelium in keratoconus underexpresses active NRF2 and a subset of oxidative stress-related genes. PLoS One 2022; 17:e0273807. [PMID: 36240204 PMCID: PMC9565379 DOI: 10.1371/journal.pone.0273807] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/15/2022] [Indexed: 11/07/2022] Open
Abstract
Keratoconus (KC) is a multifactorial progressive ectatic disorder characterized by local thinning of the cornea, leading to decreased visual acuity due to irregular astigmatism and opacities. Despite the evolution of advanced imaging methods, the exact etiology of KC remains unknown. Our aim was to investigate the involvement of corneal epithelium in the pathophysiology of the disease. Corneal epithelial samples were collected from 23 controls and from 2 cohorts of patients with KC: 22 undergoing corneal crosslinking (early KC) and 6 patients before penetrating keratoplasty (advanced KC). The expression of genes involved in the epidermal terminal differentiation program and of the oxidative stress pathway was assessed by real time PCR analysis. Presence of some of the differentially expressed transcripts was confirmed at protein level using immunofluorescence on controls and advanced KC additional corneal samples. We found statistically significant under-expression in early KC samples of some genes known to be involved in the mechanical resistance of the epidermis (KRT16, KRT14, SPRR1A, SPRR2A, SPRR3, TGM1 and TGM5) and in oxidative stress pathways (NRF2, HMOX1 and HMOX2), as compared to controls. In advanced KC samples, expression of SPRR2A and HMOX1 was reduced. Decreased expression of keratin (KRT)16 and KRT14 proteins was observed. Moreover, differential localization was noted for involucrin, another protein involved in the epidermis mechanical properties. Finally, we observed an immunofluorescence staining for the active form of NRF2 in control epithelia that was reduced in KC epithelia. These results suggest a defect in the mechanical resistance and the oxidative stress defense possibly mediated via the NRF2 pathway in the corneal keratoconic epithelium.
Collapse
|
4
|
Ferulic Acid Induces Keratin 6α via Inhibition of Nuclear β-Catenin Accumulation and Activation of Nrf2 in Wound-Induced Inflammation. Biomedicines 2021; 9:biomedicines9050459. [PMID: 33922346 PMCID: PMC8146113 DOI: 10.3390/biomedicines9050459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022] Open
Abstract
Injured tissue triggers complex interactions through biological process associated with keratins. Rapid recovery is most important for protection against secondary infection and inflammatory pain. For rapid wound healing with minimal pain and side effects, shilajit has been used as an ayurvedic medicine. However, the mechanisms of rapid wound closure are unknown. Here, we found that shilajit induced wound closure in an acute wound model and induced migration in skin explant cultures through evaluation of transcriptomics via microarray testing. In addition, ferulic acid (FA), as a bioactive compound, induced migration via modulation of keratin 6α (K6α) and inhibition of β-catenin in primary keratinocytes of skin explant culture and injured full-thickness skin, because accumulation of β-catenin into the nucleus acts as a negative regulator and disturbs migration in human epidermal keratinocytes. Furthermore, FA alleviated wound-induced inflammation via activation of nuclear factor erythroid-2-related factor 2 (Nrf2) at the wound edge. These findings show that FA is a novel therapeutic agent for wound healing that acts via inhibition of β-catenin in keratinocytes and by activation of Nrf2 in wound-induced inflammation.
Collapse
|
5
|
Jiang X, Zhu Y, Sun H, Gu F. A Novel Mutation p.L461P in KRT5 Causing Localized Epidermolysis Bullosa Simplex. Ann Dermatol 2020; 33:11-17. [PMID: 33911807 PMCID: PMC7875216 DOI: 10.5021/ad.2021.33.1.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/29/2020] [Accepted: 06/17/2020] [Indexed: 11/08/2022] Open
Abstract
Background Epidermolysis bullosa (EB) is a rare genetic disease with widely different clinical manifestations, but the relationship between genotype and phenotype is not fully understood. In the present study, we recruited a Chinese family in which two members had been diagnosed with localized EB simplex (EBS), with clinical manifestation, including blisters and erosions on the soles of the feet since infancy. Objective To identify and confirm the genetic variation in a Chinese family diagnosed as localized EBS. Methods Our study included two patients, other healthy members of the family, and 100 normal controls. Genomic DNA samples were isolated from each participant, and then polymerase chain reaction (PCR) direct sequencing was performed. Results The results of PCR direct sequencing revealed a novel heterozygous missense mutation in codon 461 of exon 7 of KRT5 (c.1382T>C), which led to an amino acid change (p.L461P) in the patients with EBS but was absent in unaffected family members and 100 unrelated control samples. Conclusion The present study broadens the mutational spectrum of EBS, and this knowledge could be harnessed for prenatal screening, gene diagnosis, and gene therapy for localized EBS.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Dermatology, Tongling People's Hospital, Anhui, China
| | - Yingyu Zhu
- Department of Dermatology, Tongling People's Hospital, Anhui, China
| | - Huihui Sun
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China.,Genetic Disease Center, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Feng Gu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China.,Genetic Disease Center, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Kerns ML, Miller RJ, Mazhar M, Byrd AS, Archer NK, Pinkser BL, Lew L, Dillen CA, Wang R, Miller LS, Chien AL, Kang S. Pathogenic and therapeutic role for NRF2 signaling in ultraviolet light-induced skin pigmentation. JCI Insight 2020; 5:139342. [PMID: 33001866 PMCID: PMC7605539 DOI: 10.1172/jci.insight.139342] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/16/2020] [Indexed: 01/06/2023] Open
Abstract
Mottled skin pigmentation and solar lentigines from chronic photodamage with aging involve complex interactions between keratinocytes and melanocytes. However, the precise signaling mechanisms that could serve as therapeutic targets are unclear. Herein, we report that expression of nuclear factor erythroid 2-related factor 2 (NRF2), which regulates reduction-oxidation reactions, is altered in solar lentigines and photodamaged skin. Moreover, mottled skin pigmentation in humans could be treated with topical application of the NRF2 inducer sulforaphane (SF). Similarly, UV light-induced pigmentation of WT mouse ear skin could be treated or prevented with SF treatment. Conversely, SF treatment was unable to reduce UV-induced ear skin pigmentation in mice deficient in NRF2 or in mice with keratinocyte-specific conditional deletion of IL-6Rα. Taken together, NRF2 and IL-6Rα signaling are involved in the pathogenesis of UV-induced skin pigmentation, and specific enhancement of NRF2 signaling could represent a potential therapeutic target.
Collapse
|
7
|
Natural Nrf2 Modulators for Skin Protection. Antioxidants (Basel) 2020; 9:antiox9090812. [PMID: 32882952 PMCID: PMC7556038 DOI: 10.3390/antiox9090812] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Since the discovery of antioxidant responsive elements (ARE), which are commonly found in the promoter of the Phase II metabolism/antioxidant enzymes, and nuclear factor erythroid 2-related factor 2 (Nrf2), the transcription factor that binds to ARE, the study conducted in this field has expanded remarkably over the decades, and the Nrf2-mediated pathway is now recognized to occupy a central position in cell defense mechanisms. Induction of the Phase II metabolism/antioxidant enzymes through direct activation of Nrf2 can be a promising strategy for preventing degenerative diseases in general, but a dark side of this strategy should be considered, as Nrf2 activation can enhance the survival of cancer cells. In this review, we discuss the historical discovery of Nrf2 and the regulatory mechanism of the Nrf2-mediated pathway, focusing on the interacting proteins and post-translational modifications. In addition, we discuss the latest studies that examined various natural Nrf2 modulators for the protective roles in the skin, in consideration of their dermatological and cosmetic applications. Studies are reviewed in the order of time of research as much as possible, to help understand how and why such studies were conducted under the circumstances of that time. We hope that this review can serve as a steppingstone in conducting more advanced research by providing a scientific basis for researchers newly entering this field.
Collapse
|
8
|
Zeng Z, Wang ZY, Li YK, Ye DM, Zeng J, Hu JL, Chen PF, Xiao J, Zou J, Li ZH. Nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) in non-small cell lung cancer. Life Sci 2020; 254:117325. [PMID: 31954159 DOI: 10.1016/j.lfs.2020.117325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/15/2022]
Abstract
Nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) is a transcription factor that can regulate downstream target gene expression. Kelch-like ECH-associated protein 1 (Keap1) negatively regulates Nrf2 activation and translocation to target its 26S proteasomal degradation. It has been widely reported that the Keap1/Nrf2 pathway is associated with tumorigenesis, chemotherapy resistance and progression and development of non-small cell lung cancer (NSCLC). High expression of Nrf2 and low abundance of Keap1 contribute to the abnormalities and unrealistic treatment prognosis of NSCLC. Therefore, elucidating the role and potential mechanism of Nrf2 in NSCLC is essential for understanding tumorigenesis and for the development of strategies for effective clinical management. Here, we summarize current knowledge about the molecular structure and biological function of Nrf2, and we discuss the roles of Nrf2 in tumorigenesis, which will further provide a possible therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Zhi Zeng
- Department of Pathology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning 437000, PR China
| | - Zi-Yao Wang
- Ultrasound B Imaging Division, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China
| | - Yu-Kun Li
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Dong-Mei Ye
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Juan Zeng
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China
| | - Jia-Li Hu
- Department of Pathology, Jiujiang University Clinic College Hospital, Jiujiang, Jiangxi 332000, PR China
| | - Pi-Feng Chen
- Department of Pediatric Surgery, Jiujiang Maternal and Child Health Hospital, Jiujiang, Jiangxi 332000, PR China
| | - Jiao Xiao
- Department of Endocrinology, The Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421002, PR China
| | - Juan Zou
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China.
| | - Zhen-Hua Li
- Department of Cardiothoracic Surgery, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning 437000, PR China.
| |
Collapse
|
9
|
Casares L, García V, Garrido-Rodríguez M, Millán E, Collado JA, García-Martín A, Peñarando J, Calzado MA, de la Vega L, Muñoz E. Cannabidiol induces antioxidant pathways in keratinocytes by targeting BACH1. Redox Biol 2020; 28:101321. [PMID: 31518892 PMCID: PMC6742916 DOI: 10.1016/j.redox.2019.101321] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/23/2019] [Accepted: 09/05/2019] [Indexed: 12/30/2022] Open
Abstract
Cannabidiol (CBD) is a major non-psychotropic phytocannabinoid that attracted a great attention for its therapeutic potential against different pathologies including skin diseases. However, although the efficacy in preclinical models and the clinical benefits of CBD in humans have been extensively demonstrated, the molecular mechanism(s) and targets responsible for these effects are as yet unknown. Herein we characterized at the molecular level the effects of CBD on primary human keratinocytes using a combination of RNA sequencing (RNA-Seq) and sequential window acquisition of all theoretical mass spectrometry (SWATH-MS). Functional analysis revealed that CBD regulated pathways involved in keratinocyte differentiation, skin development and epidermal cell differentiation among other processes. In addition, CBD induced the expression of several NRF2 target genes, with heme oxygenase 1 (HMOX1) being the gene and the protein most upregulated by CBD. CRISPR/Cas9-mediated genome editing, RNA interference and biochemical studies demonstrated that the induction of HMOX1 mediated by CBD, involved nuclear export and proteasomal degradation of the transcriptional repressor BACH1. Notably, we showed that the effect of BACH1 on HMOX1 expression in keratinocytes is independent of NRF2. In vivo studies showed that topical CBD increased the levels of HMOX1 and of the proliferation and wound-repair associated keratins 16 and 17 in the skin of mice. Altogether, our study identifies BACH1 as a molecular target for CBD in keratinocytes and sets the basis for the use of topical CBD for the treatment of different skin diseases including atopic dermatitis and keratin disorders.
Collapse
Affiliation(s)
- Laura Casares
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK
| | - Víctor García
- Innohealth Group, Madrid, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Martín Garrido-Rodríguez
- Innohealth Group, Madrid, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | | | - Juan A Collado
- Innohealth Group, Madrid, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | | | | | - Marco A Calzado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain; Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Spain; Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Laureano de la Vega
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK.
| | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain; Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Spain; Hospital Universitario Reina Sofía, Córdoba, Spain.
| |
Collapse
|
10
|
Werner S, Keller L, Pantel K. Epithelial keratins: Biology and implications as diagnostic markers for liquid biopsies. Mol Aspects Med 2019; 72:100817. [PMID: 31563278 DOI: 10.1016/j.mam.2019.09.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023]
Abstract
Keratins are essential elements of the cytoskeleton of normal and malignant epithelial cells. Because carcinomas commonly maintain their specific keratin expression pattern during malignant transformation, keratins are extensively used as tumor markers in cancer diagnosis including the detection of circulating tumor cells in blood of carcinoma patients. Interestingly, recent biological insights demonstrate that epithelial keratins should not only be considered as mere tumor markers. Emerging evidence suggests an active biological role of keratins in tumor cell dissemination and metastasis. In this review, we illustrate the family of keratin proteins, summarize the latest biological insights into keratin function related to cancer metastasis and discuss the current use of keratins for detection of CTCs and other blood biomarkers used in oncology.
Collapse
Affiliation(s)
- Stefan Werner
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Keller
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
11
|
Leube RE, Schwarz N. Sex Matters: Interfering with the Oxidative Stress Response in Pachyonychia Congenita. J Invest Dermatol 2019; 138:1019-1022. [PMID: 29681388 DOI: 10.1016/j.jid.2017.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 01/03/2023]
Abstract
Pachyonychia congenita is an incurable and often debilitating genodermatosis. Topical application of the antioxidative response inducer sulforaphane, however, alleviates disease symptoms in a murine pachyonychia congenita model, forecasting clinical benefits. The Coulombe laboratory now reports sex-dependent differences in sulforaphane responsiveness of pachyonychia congenita mice, thereby dampening treatment expectations but also unveiling novel aspects of sex-specific oxidative stress reactivity in the epidermis.
Collapse
Affiliation(s)
- Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany.
| | - Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| |
Collapse
|
12
|
NISHIMURA Y, KASAHARA K, INAGAKI M. Intermediate filaments and IF-associated proteins: from cell architecture to cell proliferation. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:479-493. [PMID: 31611503 PMCID: PMC6819152 DOI: 10.2183/pjab.95.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/08/2019] [Indexed: 05/05/2023]
Abstract
Intermediate filaments (IFs), in coordination with microfilaments and microtubules, form the structural framework of the cytoskeleton and nucleus, thereby providing mechanical support against cellular stresses and anchoring intracellular organelles in place. The assembly and disassembly of IFs are mainly regulated by the phosphorylation of IF proteins. These phosphorylation states can be tracked using antibodies raised against phosphopeptides in the target proteins. IFs exert their functions through interactions with not only structural proteins, but also non-structural proteins involved in cell signaling, such as stress responses, apoptosis, and cell proliferation. This review highlights findings related to how IFs regulate cell division through phosphorylation cascades and how trichoplein, a centriolar protein originally identified as a keratin-associated protein, regulates the cell cycle through primary cilium formation.
Collapse
Affiliation(s)
- Yuhei NISHIMURA
- Departments of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kousuke KASAHARA
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masaki INAGAKI
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
13
|
Rojo de la Vega M, Zhang DD, Wondrak GT. Topical Bixin Confers NRF2-Dependent Protection Against Photodamage and Hair Graying in Mouse Skin. Front Pharmacol 2018; 9:287. [PMID: 29636694 PMCID: PMC5880955 DOI: 10.3389/fphar.2018.00287] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/13/2018] [Indexed: 01/10/2023] Open
Abstract
Environmental exposure to solar ultraviolet (UV) radiation causes acute photodamage, premature aging, and skin cancer, attributable to UV-induced genotoxic, oxidative, and inflammatory stress. The transcription factor NRF2 [nuclear factor erythroid 2 (E2)-related factor 2] is the master regulator of the cellular antioxidant response protecting skin against various environmental stressors including UV radiation and electrophilic pollutants. NRF2 in epidermal keratinocytes can be activated using natural chemopreventive compounds such as the apocarotenoid bixin, an FDA-approved food additive and cosmetic ingredient from the seeds of the achiote tree (Bixa orellana). Here, we tested the feasibility of topical use of bixin for NRF2-dependent skin photoprotection in two genetically modified mouse models [SKH1 and C57BL/6J (Nrf2+/+ versus Nrf2-/- )]. First, we observed that a bixin formulation optimized for topical NRF2 activation suppresses acute UV-induced photodamage in Nrf2+/+ but not Nrf2-/- SKH1 mice, a photoprotective effect indicated by reduced epidermal hyperproliferation and oxidative DNA damage. Secondly, it was demonstrated that topical bixin suppresses PUVA (psoralen + UVA)-induced hair graying in Nrf2+/+ but not Nrf2-/- C57BL/6J mice. Collectively, this research provides the first in vivo evidence that topical application of bixin can protect against UV-induced photodamage and PUVA-induced loss of hair pigmentation through NRF2 activation. Topical NRF2 activation using bixin may represent a novel strategy for human skin photoprotection, potentially complementing conventional sunscreen-based approaches.
Collapse
Affiliation(s)
- Montserrat Rojo de la Vega
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States.,The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - Georg T Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States.,The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
14
|
Kerns ML, Hakim JMC, Zieman A, Lu RG, Coulombe PA. Sexual Dimorphism in Response to an NRF2 Inducer in a Model for Pachyonychia Congenita. J Invest Dermatol 2017; 138:1094-1100. [PMID: 29277538 DOI: 10.1016/j.jid.2017.09.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/25/2017] [Accepted: 09/28/2017] [Indexed: 11/30/2022]
Abstract
Sex is an influential factor regarding pathophysiology and therapeutic response in human disease. Pachyonychia congenita is caused by mutations in keratin genes and typified by dystrophic lesions affecting nails, glands, oral mucosa, and palmar-plantar epidermis. Painful palmar-plantar keratoderma (PPK) severely impairs mobility in pachyonychia congenita. Mice genetically null for keratin 16 (Krt16), one of the genes mutated in pachyonychia congenita, develop pachyonychia congenita-like PPK. In male Krt16-/- mice, oxidative stress associated with impaired glutathione synthesis and nuclear factor erythroid-derived 2 related factor 2 (NRF2)-dependent gene expression precedes PPK onset, which can be prevented by topical sulforaphane-mediated activation of NRF2. We report here that sulforaphane treatment fails to activate NRF2 and prevent PPK in female Krt16-/- mice despite a similar set of molecular circumstances. Follow-up studies reveal a temporal shift in PPK onset in Krt16-/- females, coinciding with sex-specific fluctuations in footpad skin glutathione levels. Dual treatment with sulforaphane and diarylpropionitrile, an estrogen receptor beta selective agonist, results in NRF2 activation, normalization of glutathione levels, and prevention of PPK in female Krt16-/- mice. These findings point to a sex difference in NRF2 responsiveness that needs be considered when exploring NRF2 as a therapeutic target in skin disorders.
Collapse
Affiliation(s)
- Michelle L Kerns
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jill M C Hakim
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Abigail Zieman
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Rosemary G Lu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Pierre A Coulombe
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Biological Chemistry, Johns Hopkins University, Baltimore, Maryland, USA; Department of Dermatology, Johns Hopkins University, Baltimore, Maryland, USA; Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
15
|
Yang L, Fan X, Cui T, Dang E, Wang G. Nrf2 Promotes Keratinocyte Proliferation in Psoriasis through Up-Regulation of Keratin 6, Keratin 16, and Keratin 17. J Invest Dermatol 2017; 137:2168-2176. [DOI: 10.1016/j.jid.2017.05.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 05/13/2017] [Accepted: 05/15/2017] [Indexed: 12/31/2022]
|
16
|
Jadkauskaite L, Coulombe PA, Schäfer M, Dinkova-Kostova AT, Paus R, Haslam IS. Oxidative stress management in the hair follicle: Could targeting NRF2 counter age-related hair disorders and beyond? Bioessays 2017; 39. [PMID: 28685843 DOI: 10.1002/bies.201700029] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Widespread expression of the transcription factor, nuclear factor (erythroid-derived 2)-like 2 (NRF2), which maintains redox homeostasis, has recently been identified in the hair follicle (HF). Small molecule activators of NRF2 may therefore be useful in the management of HF pathologies associated with redox imbalance, ranging from HF greying and HF ageing via androgenetic alopecia and alopecia areata to chemotherapy-induced hair loss. Indeed, NRF2 activation has been shown to prevent peroxide-induced hair growth inhibition. Multiple parameters can increase the levels of reactive oxygen species in the HF, for example melanogenesis, depilation-induced trauma, neurogenic and autoimmune inflammation, toxic drugs, environmental stressors such as UV irradiation, genetic defects and aging-associated mitochondrial dysfunction. In this review, the potential mechanisms whereby NRF2 activation could prove beneficial in treatment of redox-associated HF disorders are therefore discussed.
Collapse
Affiliation(s)
- Laura Jadkauskaite
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Pierre A Coulombe
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Matthias Schäfer
- Department of Biology, Institute of Molecular Health Sciences, Swiss Institute of Technology (ETH), Zürich, Switzerland
| | - Albena T Dinkova-Kostova
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Ralf Paus
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester, Manchester, UK.,Department of Dermatology, University of Münster, Münster, Germany
| | - Iain S Haslam
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester, Manchester, UK.,Department of Biological Sciences, School of Applied Science, University of Huddersfield, Huddersfield, UK
| |
Collapse
|
17
|
Takeda TA, Sasai M, Adachi Y, Ohnishi K, Fujisawa JI, Izawa S, Taketani S. Potential role of heme metabolism in the inducible expression of heme oxygenase-1. Biochim Biophys Acta Gen Subj 2017; 1861:1813-1824. [PMID: 28347842 DOI: 10.1016/j.bbagen.2017.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/06/2017] [Accepted: 03/23/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND The degradation of heme significantly contributes to cytoprotective effects against oxidative stress and inflammation. The enzyme heme oxygenase-1 (HO-1), involved in the degradation of heme, forms carbon monoxide (CO), ferrous iron, and bilirubin in conjunction with biliverdin reductase, and is induced by various stimuli including oxidative stress and heavy metals. We examined the involvement of heme metabolism in the induction of HO-1 by the inducers sulforaphane and sodium arsenite. METHODS We examined the expression of HO-1 in sulforaphane-, sodium arsenite- and CORM3-treated HEK293T cells, by measuring the transcriptional activity and levels of mRNA and protein. RESULTS The blockade of heme biosynthesis by succinylacetone and N-methyl protoporphyrin, which are inhibitors of heme biosynthesis, markedly decreased the induction of HO-1. The knockdown of the first enzyme in the biosynthesis of heme, 5-aminolevulinic acid synthase, also decreased the induction of HO-1. The cessation of HO-1 induction occurred at the transcriptional and translational levels, and was mediated by the activation of the heme-binding transcriptional repressor Bach1 and translational factor HRI. CO appeared to improve the expression of HO-1 at the transcriptional and translational levels. CONCLUSIONS We demonstrated the importance of heme metabolism in the stress-inducible expression of HO-1, and also that heme and its degradation products are protective factors for self-defense responses. GENERAL SIGNIFICANCE The key role of heme metabolism in the stress-inducible expression of HO-1 may promote further studies on heme and its degradation products as protective factors of cellular stresses and iron homeostasis in specialized cells, organs, and whole animal systems.
Collapse
Affiliation(s)
- Taka-Aki Takeda
- Department of Biotechnology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8510, Japan
| | - Machiko Sasai
- Department of Biotechnology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8510, Japan
| | - Yuka Adachi
- Department of Biotechnology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8510, Japan
| | - Keiko Ohnishi
- Department of Biotechnology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8510, Japan
| | - Jun-Ichi Fujisawa
- Department of Microbiology, Kansai Medical University, Hirakata, Osaka 573-8510, Japan
| | - Shingo Izawa
- Department of Biotechnology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8510, Japan
| | - Shigeru Taketani
- Department of Biotechnology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8510, Japan; Unit of Research Complex, Kansai Medical University, Hirakata, Osaka 573-8510, Japan.
| |
Collapse
|
18
|
|
19
|
Kerns ML, Guss L, Fahey J, Cohen B, Hakim JMC, Sung S, Lu RG, Coulombe PA. Randomized, split-body, single-blinded clinical trial of topical broccoli sprout extract: Assessing the feasibility of its use in keratin-based disorders. J Am Acad Dermatol 2016; 76:449-453.e1. [PMID: 27889290 DOI: 10.1016/j.jaad.2016.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Epidermolysis bullosa simplex is a skin-blistering disorder caused by mutations in keratin (K)14 or K5. Treatment with nuclear factor (erythroid-derived 2)-like 2 inducer sulforaphane ameliorated skin blistering in Krt14-null mice, correlating with induction of K17. To be therapeutically useful for epidermolysis bullosa simplex, topical broccoli sprout extract (BSE), enriched for sulforaphane, would ideally induce the expression of homologous keratins (eg, K6, K17, K16) in the basal layer of human epidermis without impacting expression of defective keratins (K5/K14). OBJECTIVE The purpose of this 1-week, randomized, split-body, single-blinded, placebo-controlled trial was to assess the impact of BSE on keratin expression. METHODS Five subjects (34-71 years old) applied BSE (500 nmol of sulforaphane/mL) or vehicle alone to the inner aspect of the arm daily. Expression of keratin, nuclear factor (erythroid-derived 2)-like 2, and other markers was assessed using reverse transcription-polymerase chain reaction and indirect immunofluorescence. RESULTS One subject (age 71 years) was excluded a posteriori because of poor tissue quality. Topical BSE activated nuclear factor (erythroid-derived 2)-like 2 and up-regulated K17 in the epidermis of all subjects, had variable effects on K16 and K6 expression, and did not alter expression of K14 or K5. LIMITATIONS Small sample size is a limitation. CONCLUSION BSE represents an attractive therapeutic candidate for K14-associated epidermolysis bullosa simplex.
Collapse
Affiliation(s)
- Michelle L Kerns
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Lark Guss
- Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Jed Fahey
- Department of Clinical Pharmacology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Bernard Cohen
- Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, Maryland; Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Jill M C Hakim
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Sarah Sung
- Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Rosemary G Lu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Pierre A Coulombe
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland; Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, Maryland; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland; Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
20
|
Pinner KD, Wales CT, Gristock RA, Vo HT, So N, Jacobs AT. Flavokawains A and B from kava (Piper methysticum) activate heat shock and antioxidant responses and protect against hydrogen peroxide-induced cell death in HepG2 hepatocytes. PHARMACEUTICAL BIOLOGY 2016; 54:1503-12. [PMID: 26789234 PMCID: PMC5040346 DOI: 10.3109/13880209.2015.1107104] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/14/2015] [Accepted: 10/07/2015] [Indexed: 06/05/2023]
Abstract
Context Flavokawains are secondary metabolites from the kava plant (Piper methysticum Forst. f., Piperaceae) that have anticancer properties and demonstrated oral efficacy in murine cancer models. However, flavokawains also have suspected roles in rare cases of kava-induced hepatotoxicity. Objective To compare the toxicity flavokawains A and B (FKA, FKB) and monitor the resulting transcriptional responses and cellular adaptation in the human hepatocyte cell line, HepG2. Materials and methods HepG2 were treated with 2-100 μM FKA or FKB for 24-48 h. Cellular viability was measured with calcein-AM and changes in signalling and gene expression were monitored by luciferase reporter assay, real-time PCR and Western blot of both total and nuclear protein extracts. To test for subsequent resistance to oxidative stress, cells were pretreated with 50 μM FKA, 10 μM FKB or 10 μM sulphoraphane (SFN) for 24 h, followed by 0.4-2.8 mM H2O2 for 48 h, and then viability was assessed. Results FKA (≤100 μM) was not toxic to HepG2, whereas FKB caused significant cell death (IC50=23.2 ± 0.8 μM). Both flavokawains activated Nrf2, increasing HMOX1 and GCLC expression and enhancing total glutathione levels over 2-fold (p < 0.05). FKA and FKB also activated HSF1, increasing HSPA1A and DNAJA4 expression. Also, flavokawain pretreatment mitigated cell death after a subsequent challenge with H2O2, with FKA being more effective than FKB, and similar to SFN. Conclusions Flavokawains promote an adaptive cellular response that protects hepatocytes against oxidative stress. We propose that FKA has potential as a chemopreventative or chemotherapeutic agent.
Collapse
Affiliation(s)
- Keanu D. Pinner
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 W. Kawili St., Hilo, HI 96720
| | - Christina T.K. Wales
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 W. Kawili St., Hilo, HI 96720
| | - Rachel A. Gristock
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 W. Kawili St., Hilo, HI 96720
| | | | | | - Aaron T. Jacobs
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 W. Kawili St., Hilo, HI 96720
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu HI 96813
| |
Collapse
|
21
|
Holloway PM, Gillespie S, Becker F, Vital SA, Nguyen V, Alexander JS, Evans PC, Gavins FNE. Sulforaphane induces neurovascular protection against a systemic inflammatory challenge via both Nrf2-dependent and independent pathways. Vascul Pharmacol 2016; 85:29-38. [PMID: 27401964 DOI: 10.1016/j.vph.2016.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/01/2016] [Accepted: 07/03/2016] [Indexed: 12/25/2022]
Abstract
Sepsis is often characterized by an acute brain inflammation and dysfunction, which is associated with increased morbidity and mortality worldwide. Preventing cerebral leukocyte recruitment may provide the key to halt progression of systemic inflammation to the brain. Here we investigated the influence of the anti-inflammatory and anti-oxidant compound, sulforaphane (SFN) on lipopolysaccharide (LPS)-induced cellular interactions in the brain. The inflammatory response elicited by LPS was blunted by SFN administration (5 and 50mg/kg i.p.) 24h prior to LPS treatment in WT animals, as visualized and quantified using intravital microscopy. This protective effect of SFN was lost in Nrf2-KO mice at the lower dose tested, however 50mg/kg SFN revealed a partial effect, suggesting SFN works in part independently of Nrf2 activity. In vitro, SFN reduced neutrophil recruitment to human brain endothelial cells via a down regulation of E-selectin and vascular cell adhesion molecule 1 (VCAM-1). Our data confirm a fundamental dose-dependent role of SFN in limiting cerebral inflammation. Furthermore, our data demonstrate that not only is Nrf2 in part essential in mediating these neuroprotective effects, but they occur via down-regulation of E-selectin and VCAM-1. In conclusion, SFN may provide a useful therapeutic drug to reduce cerebral inflammation in sepsis.
Collapse
Affiliation(s)
- Paul M Holloway
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Scarlett Gillespie
- Division of Brain Sciences, Imperial College London, London, United Kingdom
| | - Felix Becker
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA; Department for General and Visceral Surgery, University Hospital Muenster, Muenster, Germany
| | - Shantel A Vital
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Victoria Nguyen
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - J Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Paul C Evans
- Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
| | - Felicity N E Gavins
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA; Division of Brain Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
22
|
Kerns ML, Hakim JMC, Lu RG, Guo Y, Berroth A, Kaspar RL, Coulombe PA. Oxidative stress and dysfunctional NRF2 underlie pachyonychia congenita phenotypes. J Clin Invest 2016; 126:2356-66. [PMID: 27183391 DOI: 10.1172/jci84870] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/24/2016] [Indexed: 12/27/2022] Open
Abstract
Palmoplantar keratoderma (PPK) are debilitating lesions that arise in individuals with pachyonychia congenita (PC) and feature upregulation of danger-associated molecular patterns and skin barrier regulators. The defining features of PC-associated PPK are reproduced in mice null for keratin 16 (Krt16), which is commonly mutated in PC patients. Here, we have shown that PPK onset is preceded by oxidative stress in footpad skin of Krt16-/- mice and correlates with an inability of keratinocytes to sustain nuclear factor erythroid-derived 2 related factor 2-dependent (NRF2-dependent) synthesis of the cellular antioxidant glutathione (GSH). Additionally, examination of plantar skin biopsies from individuals with PC confirmed the presence of high levels of hypophosphorylated NRF2 in lesional tissue. In Krt16-/- mice, genetic ablation of Nrf2 worsened spontaneous skin lesions and accelerated PPK development in footpad skin. Hypoactivity of NRF2 in Krt16-/- footpad skin correlated with decreased levels or activity of upstream NRF2 activators, including PKCδ, receptor for activated C kinase 1 (RACK1), and p21. Topical application of the NRF2 activator sulforaphane to the footpad of Krt16-/- mice prevented the development of PPK and normalized redox balance via regeneration of GSH from existing cellular pools. Together, these findings point to oxidative stress and dysfunctional NRF2 as contributors to PPK pathogenesis, identify K16 as a regulator of NRF2 activation, and suggest that pharmacological activation of NRF2 should be further explored for PC treatment.
Collapse
|
23
|
Kumar V, Bouameur JE, Bär J, Rice RH, Hornig-Do HT, Roop DR, Schwarz N, Brodesser S, Thiering S, Leube RE, Wiesner RJ, Vijayaraj P, Brazel CB, Heller S, Binder H, Löffler-Wirth H, Seibel P, Magin TM. A keratin scaffold regulates epidermal barrier formation, mitochondrial lipid composition, and activity. J Cell Biol 2016; 211:1057-75. [PMID: 26644517 PMCID: PMC4674273 DOI: 10.1083/jcb.201404147] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epidermal keratin filaments are important components and organizers of the cornified envelope and regulate mitochondrial metabolism by modulating their membrane composition. Keratin intermediate filaments (KIFs) protect the epidermis against mechanical force, support strong adhesion, help barrier formation, and regulate growth. The mechanisms by which type I and II keratins contribute to these functions remain incompletely understood. Here, we report that mice lacking all type I or type II keratins display severe barrier defects and fragile skin, leading to perinatal mortality with full penetrance. Comparative proteomics of cornified envelopes (CEs) from prenatal KtyI−/− and KtyII−/−K8 mice demonstrates that absence of KIF causes dysregulation of many CE constituents, including downregulation of desmoglein 1. Despite persistence of loricrin expression and upregulation of many Nrf2 targets, including CE components Sprr2d and Sprr2h, extensive barrier defects persist, identifying keratins as essential CE scaffolds. Furthermore, we show that KIFs control mitochondrial lipid composition and activity in a cell-intrinsic manner. Therefore, our study explains the complexity of keratinopathies accompanied by barrier disorders by linking keratin scaffolds to mitochondria, adhesion, and CE formation.
Collapse
Affiliation(s)
- Vinod Kumar
- Translational Centre for Regenerative Medicine Leipzig, University of Leipzig, 04103 Leipzig, Germany Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, 04103 Leipzig, Germany
| | - Jamal-Eddine Bouameur
- Translational Centre for Regenerative Medicine Leipzig, University of Leipzig, 04103 Leipzig, Germany Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, 04103 Leipzig, Germany
| | - Janina Bär
- Translational Centre for Regenerative Medicine Leipzig, University of Leipzig, 04103 Leipzig, Germany Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, 04103 Leipzig, Germany
| | - Robert H Rice
- Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616
| | - Hue-Tran Hornig-Do
- Center for Physiology and Pathophysiology, Institute for Vegetative Physiology, University of Cologne, 50931 Cologne, Germany
| | - Dennis R Roop
- Department of Dermatology, University of Colorado, Denver, CO 80045 Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Denver, CO 80045
| | - Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany
| | - Susanne Brodesser
- Center for Physiology and Pathophysiology, Institute for Vegetative Physiology, University of Cologne, 50931 Cologne, Germany Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, 50931 Cologne, Germany Center for Molecular Medicine Cologne, 50931 Cologne, Germany
| | - Sören Thiering
- Translational Centre for Regenerative Medicine Leipzig, University of Leipzig, 04103 Leipzig, Germany Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, 04103 Leipzig, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute for Vegetative Physiology, University of Cologne, 50931 Cologne, Germany Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, 50931 Cologne, Germany Center for Molecular Medicine Cologne, 50931 Cologne, Germany
| | | | - Christina B Brazel
- Translational Centre for Regenerative Medicine Leipzig, University of Leipzig, 04103 Leipzig, Germany Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, 04103 Leipzig, Germany
| | - Sandra Heller
- Center for Biotechnology and Biomedicine, 04103 Leipzig, Germany
| | - Hans Binder
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany
| | - Henry Löffler-Wirth
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany
| | - Peter Seibel
- Center for Biotechnology and Biomedicine, 04103 Leipzig, Germany
| | - Thomas M Magin
- Translational Centre for Regenerative Medicine Leipzig, University of Leipzig, 04103 Leipzig, Germany Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
24
|
Liao C, Xie G, Zhu L, Chen X, Li X, Lu H, Xu B, Ramot Y, Paus R, Yue Z. p53 Is a Direct Transcriptional Repressor of Keratin 17: Lessons from a Rat Model of Radiation Dermatitis. J Invest Dermatol 2016; 136:680-689. [DOI: 10.1016/j.jid.2015.12.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 11/04/2015] [Accepted: 11/06/2015] [Indexed: 11/15/2022]
|
25
|
Hypoxia leads to abnormal epidermal differentiation via HIF-independent pathways. Biochem Biophys Res Commun 2015; 469:251-6. [PMID: 26646290 DOI: 10.1016/j.bbrc.2015.11.111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 11/24/2015] [Indexed: 12/25/2022]
Abstract
Atmospheric oxygen is important for the epidermis, as the skin epidermis is not greatly affected by blood circulation. Therefore, it is necessary to understand the effect of hypoxic signals on the epidermis as some environmental stimuli can induce skin hypoxia. Here, we investigated how hypoxia (1% O2) affected skin equivalents (SEs) and normal human epidermal keratinocytes. We found that hypoxia specifically decreased the protein levels of keratin 1 (K1)/keratin 10 (K10), a representative marker of the epidermal spinous layer in the epidermis. However, hypoxia-inducible factors, the major regulators of hypoxia, did not affect hypoxia-induced down-regulation of K1/K10. We also found that N-acetyl-l-cysteine (NAC), a reactive oxygen species scavenger, antagonized the hypoxia-induced reduction of K1/K10 in keratinocytes and SEs. In contrast to the findings for NAC, inhibitors that blocked reactive oxygen species generation did not cause recovery of K1/K10 protein levels under hypoxic conditions. Taken together, these results indicate that hypoxia leads to abnormal keratinocyte differentiation by down-regulating K1/K10 and that this phenomenon can be ameliorated by NAC.
Collapse
|
26
|
Kwan R, Chen L, Looi K, Tao GZ, Weerasinghe SV, Snider NT, Conti MA, Adelstein RS, Xie Q, Omary MB. PKC412 normalizes mutation-related keratin filament disruption and hepatic injury in mice by promoting keratin-myosin binding. Hepatology 2015; 62:1858-1869. [PMID: 26126491 PMCID: PMC4681638 DOI: 10.1002/hep.27965] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 06/29/2015] [Indexed: 12/22/2022]
Abstract
UNLABELLED Keratins, among other cytoskeletal intermediate filament proteins, are mutated at a highly conserved arginine with consequent severe disease phenotypes due to disruption of keratin filament organization. We screened a kinase inhibitor library, using A549 cells that are transduced with a lentivirus keratin 18 (K18) construct, to identify compounds that normalize filament disruption due to K18 Arg90Cys mutation at the conserved arginine. High-throughput screening showed that PKC412, a multikinase inhibitor, ameliorated K18 Arg90Cys-mediated keratin filament disruption in cells and in the livers of previously described transgenic mice that overexpress K18 Arg90Cys. Furthermore, PKC412 protected cultured A549 cells that express mutant or wild-type K18 and mouse livers of the K18 Arg90Cys-overexpressing transgenic mice from Fas-induced apoptosis. Proteomic analysis of proteins that associated with keratins after exposure of K18-expressing A549 cells to PKC412 showed that nonmuscle myosin heavy chain-IIA (NMHC-IIA) partitions with the keratin fraction. The nonmuscle myosin-IIA (NM-IIA) association with keratins was confirmed by immune staining and by coimmunoprecipitation. The keratin-myosin association is myosin dephosphorylation-dependent; occurs with K8, the obligate K18 partner; is enhanced by PKC412 in cells and mouse liver; and is blocked by hyperphosphorylation conditions in cultured cells and mouse liver. Furthermore, NMHC-IIA knockdown inhibits PKC412-mediated normalization of K18 R90C filaments. CONCLUSION The inhibitor PKC412 normalizes K18 Arg90Cys mutation-induced filament disruption and disorganization by enhancing keratin association with NM-IIA in a myosin dephosphorylation-regulated manner. Targeting of intermediate filament disorganization by compounds that alter keratin interaction with their associated proteins offers a potential novel therapeutic approach for keratin and possibly other intermediate filament protein-associated diseases.
Collapse
Affiliation(s)
- Raymond Kwan
- Departments of Molecular & Integrative Physiology and of Medicine, University of Michigan, Ann Arbor, MI
- VA Ann Arbor Healthcare System, Ann Arbor, MI
| | - Lu Chen
- Departments of Molecular & Integrative Physiology and of Medicine, University of Michigan, Ann Arbor, MI
- Infectious Diseases Department, Ruijin Hospital, Shanghai Jiao Tong University Medical School, Shanghai, People's Republic of China
| | - Koksun Looi
- Departments of Molecular & Integrative Physiology and of Medicine, University of Michigan, Ann Arbor, MI
| | - Guo-Zhong Tao
- Department of Surgery, Stanford University, Palo Alto, CA
| | - Sujith V Weerasinghe
- Departments of Molecular & Integrative Physiology and of Medicine, University of Michigan, Ann Arbor, MI
| | - Natasha T Snider
- Departments of Molecular & Integrative Physiology and of Medicine, University of Michigan, Ann Arbor, MI
| | - Mary Anne Conti
- The Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Robert S Adelstein
- The Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Qing Xie
- Infectious Diseases Department, Ruijin Hospital, Shanghai Jiao Tong University Medical School, Shanghai, People's Republic of China
| | - M Bishr Omary
- Departments of Molecular & Integrative Physiology and of Medicine, University of Michigan, Ann Arbor, MI
- VA Ann Arbor Healthcare System, Ann Arbor, MI
| |
Collapse
|
27
|
Sun J, Groppi VE, Gui H, Chen L, Xie Q, Liu L, Omary MB. High-Throughput Screening for Drugs that Modulate Intermediate Filament Proteins. Methods Enzymol 2015; 568:163-85. [PMID: 26795471 DOI: 10.1016/bs.mie.2015.09.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Intermediate filament (IF) proteins have unique and complex cell and tissue distribution. Importantly, IF gene mutations cause or predispose to more than 80 human tissue-specific diseases (IF-pathies), with the most severe disease phenotypes being due to mutations at conserved residues that result in a disrupted IF network. A critical need for the entire IF-pathy field is the identification of drugs that can ameliorate or cure these diseases, particularly since all current therapies target the IF-pathy complication, such as diabetes or cardiovascular disease, rather than the mutant IF protein or gene. We describe a high-throughput approach to identify drugs that can normalize disrupted IF proteins. This approach utilizes transduction of lentivirus that expresses green fluorescent protein-tagged keratin 18 (K18) R90C in A549 cells. The readout is drug "hits" that convert the dot-like keratin filament distribution, due to the R90C mutation, to a wild-type-like filamentous array. A similar strategy can be used to screen thousands of compounds and can be utilized for practically any IF protein with a filament-disrupting mutation, and could therefore potentially target many IF-pathies. "Hits" of interest require validation in cell culture then using in vivo experimental models. Approaches to study the mechanism of mutant IF normalization by potential drugs of interest are also described. The ultimate goal of this drug screening approach is to identify effective and safe compounds that can potentially be tested for clinical efficacy in patients.
Collapse
Affiliation(s)
- Jingyuan Sun
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA; Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA; VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA; Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, PR China; Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Vincent E Groppi
- Department of Pharmacology, The Center for Chemical Genomics, University of Michigan, Ann Arbor, Michigan, USA
| | - Honglian Gui
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA; Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA; VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA; Department of Infectious Diseases, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai, PR China
| | - Lu Chen
- Department of Infectious Diseases, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai, PR China
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai, PR China
| | - Li Liu
- Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, PR China; Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - M Bishr Omary
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA; Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA; VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA.
| |
Collapse
|
28
|
Schäfer M, Werner S. Nrf2--A regulator of keratinocyte redox signaling. Free Radic Biol Med 2015; 88:243-252. [PMID: 25912479 DOI: 10.1016/j.freeradbiomed.2015.04.018] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 01/12/2023]
Abstract
The skin is frequently exposed to environmental challenges, such as UV irradiation, toxic chemicals, and mechanical wounding. These insults cause an increase in the levels of reactive oxygen species, resulting in oxidative stress and concomitant inflammation, skin aging, and even cancer development. Therefore, an efficient antioxidant defense strategy is of major importance in this tissue. Since the Nrf2 transcription factor regulates a battery of genes involved in the defense against reactive oxygen species and in compound metabolism, it plays a key role in skin homeostasis, repair, and disease. In this review we summarize current knowledge on the expression and function of Nrf2 in normal skin and its role in the acute and chronic UV response as well as in the pathogenesis of epithelial skin cancer and of different inflammatory skin diseases. Finally, we discuss the potential of Nrf2-activating compounds for skin protection under stress conditions and for the treatment of major human skin disorders.
Collapse
Affiliation(s)
- Matthias Schäfer
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland.
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland.
| |
Collapse
|
29
|
Fischer H, Langbein L, Reichelt J, Buchberger M, Tschachler E, Eckhart L. Keratins K2 and K10 are essential for the epidermal integrity of plantar skin. J Dermatol Sci 2015; 81:10-6. [PMID: 26603179 DOI: 10.1016/j.jdermsci.2015.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND K1 and K2 are the main type II keratins in the suprabasal epidermis where each of them heterodimerizes with the type I keratin K10 to form intermediate filaments. In regions of the ears, tail, and soles of the mouse, only K2 is co-expressed with K10, suggesting that these keratins suffice to form a mechanically resilient cytoskeleton. OBJECTIVE To determine the effects of the suppression of both main keratins, K2 and K10, in the suprabasal plantar epidermis of the mouse. METHODS Krt2(-/-) Krt10(-/-) mice were generated by crossing Krt2(-/-) and Krt10(-/-) mice. Epidermal morphology of soles of hind-paws was examined macroscopically and histologically. Immunofluorescence analysis and quantitative PCR analysis were performed to analyze the expression of keratins in sole skin of wildtype and Krt2(-/-) Krt10(-/-) mice. Highly abundant proteins of the sole stratum corneum were determined by electrophoretic and chromatographic separation and subsequent mass spectrometry. RESULTS K2 and K10 are the most prominent suprabasal keratins in normal mouse soles with the exception of the footpads where K1, K9 and K10 predominate. Mice lacking both K2 and K10 were viable and developed epidermal acanthosis and hyperkeratosis in inter-footpad epidermis of the soles. The expression of keratins K1, K9 and K16 was massively increased at the RNA and protein levels in the soles of Krt2(-/-) Krt10(-/-) mice. CONCLUSIONS This study demonstrates that the loss of the main cytoskeletal components of plantar epidermis, i.e. K2 and K10, can be only partly compensated by the upregulation of other keratins. The thickening of the epidermis in the soles of Krt2(-/-) Krt10(-/-) mice may serve as a model for pathomechanistic aspects of palmoplantar keratoderma.
Collapse
Affiliation(s)
- Heinz Fischer
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Lutz Langbein
- Department of Genetics of Skin Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Julia Reichelt
- Institute of Cellular Medicine and North East England Stem Cell Institute, Newcastle University, Newcastle upon Tyne, UK; Divison of Experimental Dermatology and EB House Austria, Department of Dermatology, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Maria Buchberger
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
30
|
Amin PJ, Shankar BS. Sulforaphane induces ROS mediated induction of NKG2D ligands in human cancer cell lines and enhances susceptibility to NK cell mediated lysis. Life Sci 2015; 126:19-27. [PMID: 25721293 DOI: 10.1016/j.lfs.2015.01.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 01/06/2015] [Accepted: 01/19/2015] [Indexed: 12/11/2022]
Abstract
AIMS The goal of this study is to investigate the tumor cytotoxic effects of sulforaphane (SFN) and ionizing radiation (IR) as well as their ability to up-regulate natural killer group 2, member D (NKG2D) ligands and modulate the susceptibility of tumor cells to natural killer (NK) cell-mediated killing. MAIN METHODS Expression of MHC class I-related chain molecules A and B (MICA/MICB) and total reactive oxygen species (ROS) were assessed by flow cytometry following labeling with appropriate dyes or antibodies. NK cell cytotoxicity was determined by calcein release of target cells. KEY FINDINGS The expression of NKG2D ligands MICA/MICB was found to vary in all the four tumor cell lines tested (MCF7 < A549 < MDA-MB-231 < U937). Exposure of these cells to IR and SFN resulted in a differential induction of these ligands. IR induced an increase in expression of MICA/MICB in MCF7 cells and SFN induced MICA/MICB expression in A549 and MDA-MB-231 cells. This SFN induced increase in receptor expression resulted in increased susceptibility to NK cell mediated killing of tumor cells which was abrogated by blocking with anti-MICA/MICB antibody. SFN induced increase in MICA/MICB expression as well as increased susceptibility to NK cell mediated killing was abrogated by N-acetyl cysteine in A549 and MDA-MB-231 cells suggesting a ROS mediated mechanism. SIGNIFICANCE Our results indicate that SFN has an immunotherapeutic potential to be used in cancer therapy.
Collapse
Affiliation(s)
- Prayag J Amin
- Immunology Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Bhavani S Shankar
- Immunology Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| |
Collapse
|
31
|
|
32
|
|
33
|
|
34
|
Kurinna S, Schäfer M, Ostano P, Karouzakis E, Chiorino G, Bloch W, Bachmann A, Gay S, Garrod D, Lefort K, Dotto GP, Beer HD, Werner S. A novel Nrf2-miR-29-desmocollin-2 axis regulates desmosome function in keratinocytes. Nat Commun 2014; 5:5099. [PMID: 25283360 DOI: 10.1038/ncomms6099] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/28/2014] [Indexed: 02/08/2023] Open
Abstract
The Nrf2 transcription factor controls the expression of genes involved in the antioxidant defense system. Here, we identified Nrf2 as a novel regulator of desmosomes in the epidermis through the regulation of microRNAs. On Nrf2 activation, expression of miR-29a and miR-29b increases in cultured human keratinocytes and in mouse epidermis. Chromatin immunoprecipitation identified the Mir29ab1 and Mir29b2c genes as direct Nrf2 targets in keratinocytes. While binding of Nrf2 to the Mir29ab1 gene activates expression of miR-29a and -b, the Mir29b2c gene is silenced by DNA methylation. We identified desmocollin-2 (Dsc2) as a major target of Nrf2-induced miR-29s. This is functionally important, since Nrf2 activation in keratinocytes of transgenic mice causes structural alterations of epidermal desmosomes. Furthermore, the overexpression of miR-29a/b or knockdown of Dsc2 impairs the formation of hyper-adhesive desmosomes in keratinocytes, whereas Dsc2 overexpression has the opposite effect. These results demonstrate that a novel Nrf2-miR-29-Dsc2 axis controls desmosome function and cutaneous homeostasis.
Collapse
Affiliation(s)
- Svitlana Kurinna
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Matthias Schäfer
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Paola Ostano
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, 13900 Biella, Italy
| | - Emmanuel Karouzakis
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Giovanna Chiorino
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, 13900 Biella, Italy
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, 50933 Cologne, Germany
| | - Andreas Bachmann
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Steffen Gay
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - David Garrod
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Karine Lefort
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Gian-Paolo Dotto
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital Zurich, 8006 Zurich, Switzerland
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
35
|
Beyond expectations: novel insights into epidermal keratin function and regulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 311:265-306. [PMID: 24952920 DOI: 10.1016/b978-0-12-800179-0.00007-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The epidermis is a stratified epithelium that relies on its cytoskeleton and cell junctions to protect the body against mechanical injury, dehydration, and infections. Keratin intermediate filament proteins are involved in many of these functions by forming cell-specific cytoskeletal scaffolds crucial for the maintenance of cell and tissue integrity. In response to various stresses, the expression and organization of keratins are altered at transcriptional and posttranslational levels to restore tissue homeostasis. Failure to restore tissue homeostasis in the presence of keratin gene mutations results in acute and chronic skin disorders for which currently no rational therapies are available. Here, we review the recent progress on the role of keratins in cytoarchitecture, adhesion, signaling, and inflammation. By focusing on epidermal keratins, we illustrate the contribution of keratin isotypes to differentiated epithelial functions.
Collapse
|
36
|
Keratin 16 regulates innate immunity in response to epidermal barrier breach. Proc Natl Acad Sci U S A 2013; 110:19537-42. [PMID: 24218583 DOI: 10.1073/pnas.1309576110] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mutations in the type I keratin 16 (Krt16) and its partner type II keratin 6 (Krt6a, Krt6b) cause pachyonychia congenita (PC), a disorder typified by dystrophic nails, painful hyperkeratotic calluses in glabrous skin, and lesions involving other epithelial appendages. The pathophysiology of these symptoms and its relationship to settings in which Krt16 and Krt6 are induced in response to epidermal barrier stress are poorly understood. We report that hyperkeratotic calluses arising in the glabrous skin of individuals with PC and Krt16 null mice share a gene expression signature enriched in genes involved in inflammation and innate immunity, in particular damage-associated molecular patterns. Transcriptional hyper-activation of damage-associated molecular pattern genes occurs following de novo chemical or mechanical irritation to ear skin and in spontaneously arising skin lesions in Krt16 null mice. Genome-wide expression analysis of normal mouse tail skin and benign proliferative lesions reveals a tight, context-dependent coregulation of Krt16 and Krt6 with genes involved in skin barrier maintenance and innate immunity. Our results uncover a role for Krt16 in regulating epithelial inflammation that is relevant to genodermatoses, psoriasis, and cancer and suggest a avenue for the therapeutic management of PC and related disorders.
Collapse
|
37
|
Xu K, Tao T, Jie J, Lu X, Li X, Mehmood MA, He H, Liu Z, Xiao X, Yang J, Ma JX, Li W, Zhou Y, Liu Z. Increased importin 13 activity is associated with the pathogenesis of pterygium. Mol Vis 2013; 19:604-13. [PMID: 23559854 PMCID: PMC3611950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 03/18/2013] [Indexed: 10/26/2022] Open
Abstract
PURPOSE We previously reported that importin 13 (IPO13), a member of the importin-β family of nuclear import proteins, regulates nuclear import of the glucocorticoid receptor in airway epithelial cells, IPO13 serves as a potential marker for corneal epithelial progenitor cells, and IPO13 is associated with corneal cell proliferation. Here we investigated the role of IPO13 in the pathogenesis of pterygium and the underlying mechanism including interaction with other cell proliferation-related factors: keratin 17 (K17), a lesional protein and a member of the type I keratins, and c-Jun, a protein of the activator protein-1 complex. METHODS Tissue samples were collected from primary pterygia, recurrent pterygia, and normal conjunctiva to perform the following experiments: immunohistochemical measurement of IPO13 and K17. Pterygium epithelial cells (PECs) were cultured in keratinocyte serum-free defined medium to examine the expression of IPO13 and K17. Lentivirus-mediated silencing and overexpression IPO13 testing was conducted, and K17 alternation was evaluated with western blot and immunostaining. In addition, the translocation of c-Jun (a K17 regulator) was further examined after IPO13 was silenced. RESULTS IPO13 activity was significantly increased in the basal layer of the epithelium of the pterygium. In cultured PECs, overexpression or knockdown of the IPO13 gene increased or decreased PEC proliferation, respectively. IPO13 was colocalized with K17 in the epithelium of the pterygium, and overexpression or knockdown of the IPO13 gene induced upregulation or downregulation of K17 expression in PECs, respectively. In addition, silencing of the IPO13 gene blocked nuclear translocation of c-Jun. CONCLUSIONS We provided novel evidence that IPO13 may contribute to the pathogenesis of pterygium via modulation of K17 and c-Jun.
Collapse
Affiliation(s)
- Ke Xu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; School of Life Science of Xiamen Universtity, Key Laboratory for Cell Biology and Tumor Cell Engineering of The Ministry of the Education of China, Xiamen, China
| | - Tao Tao
- School of Life Science of Xiamen Universtity, Key Laboratory for Cell Biology and Tumor Cell Engineering of The Ministry of the Education of China, Xiamen, China
| | - Jing Jie
- Eye Institute and affiliated Xiamen Eye Center of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| | - Xiaodong Lu
- School of Life Science of Xiamen Universtity, Key Laboratory for Cell Biology and Tumor Cell Engineering of The Ministry of the Education of China, Xiamen, China
| | - Xuezhi Li
- Eye Institute and affiliated Xiamen Eye Center of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| | - Muhammad Aamer Mehmood
- Department of Bioinformatics and Biotechnology, Government College University Allama Iqbal road Faisalabad, Pakistan
| | - Hui He
- Eye Institute and affiliated Xiamen Eye Center of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| | - Zhen Liu
- Eye Institute and affiliated Xiamen Eye Center of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| | - Xinye Xiao
- Eye Institute and affiliated Xiamen Eye Center of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| | - Jie Yang
- Eye Institute and affiliated Xiamen Eye Center of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| | - Jian-xing Ma
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Wei Li
- Eye Institute and affiliated Xiamen Eye Center of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| | - Yueping Zhou
- Eye Institute and affiliated Xiamen Eye Center of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| | - Zuguo Liu
- Eye Institute and affiliated Xiamen Eye Center of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| |
Collapse
|
38
|
The involvement of NRF2 in lung cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:746432. [PMID: 23577226 PMCID: PMC3614183 DOI: 10.1155/2013/746432] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/20/2013] [Accepted: 02/26/2013] [Indexed: 12/22/2022]
Abstract
Nuclear factor, erythroid-derived 2, like 2 (NRF2) is a key regulator of antioxidants and cellular stress responses. The role of NRF2 in pulmonary neoplasia, a diverse disease for which few biomarkers exist, is complicated and appears to depend on several main factors including the existence of activating mutations in NRF2 and/or loss of function mutations in KEAP1 and the stage of carcinogenesis studied, particularly in the mouse models tested. Therapeutic strategies for lung cancer targeting NRF2 have observed mixed results, both anti- and protumorigenic effects; however, these differences seem to reflect the mutation status of NRF2 or KEAP1. In this paper, we will discuss the studies on human NRF2 and the mechanisms proposed, several mouse models using various mice deficient in NRF2, as well as xenograft models, and the chemotherapeutic strategies using the NRF2 pathway.
Collapse
|
39
|
Richard G, Choate K, Milstone L, Bale S. Management of ichthyosis and related conditions gene-based diagnosis and emerging gene-based therapy. Dermatol Ther 2013; 26:55-68. [PMID: 23384021 DOI: 10.1111/j.1529-8019.2012.01553.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Knowledge of the molecular basis of many inherited diseases has grown exponentially during the past decade. Inherited skin diseases, including the ichthyoses and related conditions, benefited from that explosion of information, much of which has relevance for the clinical setting. In this section, the authors review the genes now known to be involved in ichthyosis, the methods for detecting mutations in those genes in the clinical diagnostic laboratory, options for using that information for diagnosis and pregnancy/family planning decisions, and current and future therapies based on the knowledge of the molecular basis of the ichthyosis.
Collapse
|
40
|
Wang F, Tian F, Whitman SA, Zhang DD, Nishinaka T, Zhang N, Jiang T. Regulation of transforming growth factor β1-dependent aldose reductase expression by the Nrf2 signal pathway in human mesangial cells. Eur J Cell Biol 2012; 91:774-81. [PMID: 22951256 DOI: 10.1016/j.ejcb.2012.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/13/2012] [Accepted: 07/16/2012] [Indexed: 01/26/2023] Open
Abstract
Aldose reductase (AR) is a key enzyme in the alternative glucose metabolism pathway, the polyol pathway. To date, AR is known to be involved in several secondary complications of diabetes and various kidney diseases. The goal of this study was to elucidate how the Nrf2-anti-oxidant response element (ARE) signal pathway plays a role in TGFβ1's regulation of AR expression in human renal mesangial cells (HRMCs). As an in vitro model system, HRMCs were used to investigate AR mRNA by qPCR, protein by Western blot and enzymatic activity by spectrophotometric assay. The ability of TGFβ1 to induce reactive oxygen species (ROS) in cells was measured by electron-spin resonance (ESR) trapping method. Reporter assays were used to test the activity of the AR promoter region, and ChIP was employed to test the direct binding of Nrf2 with the endogenous AR promoter. Treatment of HRMCs with TGFβ1 up-regulated the expression of AR mRNA, protein, and activity level. Additionally, TGFβ1 rapidly increased cellular ROS levels, which in turn activated the Nrf2-ARE pathway. Either inhibition of ROS production or knockdown of Nrf2 in HRMCs decreased the TGFβ1-induction of AR expression. Nrf2 regulated AR luciferase activity specifically via two AREs within the AR promoter, and bound directly to the endogenous AR promoter. Furthermore, the TGFβ1-mediated expression of AR required Nrf2 and was significantly abrogated in Nrf2-/- cells. These data show the regulation of AR by TGFβ1 is induced by TGFβ1 stimulation of ROS, which activates the Nrf2-ARE pathway allowing Nrf2 to directly increase AR expression in HRMCs.
Collapse
Affiliation(s)
- Fei Wang
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Lieder F, Reisen F, Geppert T, Sollberger G, Beer HD, auf dem Keller U, Schäfer M, Detmar M, Schneider G, Werner S. Identification of UV-protective activators of nuclear factor erythroid-derived 2-related factor 2 (Nrf2) by combining a chemical library screen with computer-based virtual screening. J Biol Chem 2012; 287:33001-13. [PMID: 22851183 DOI: 10.1074/jbc.m112.383430] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear factor erythroid-derived 2-related factor 2 (Nrf2) is a master regulator of cellular antioxidant defense systems, and activation of this transcription factor is a promising strategy for protection of skin and other organs from environmental insults. To identify efficient Nrf2 activators in keratinocytes, we combined a chemical library screen with computer-based virtual screening. Among 14 novel Nrf2 activators, the most potent compound, a nitrophenyl derivative of 2-chloro-5-nitro-N-phenyl-benzamide, was characterized with regard to its molecular mechanism of action. This compound induced the expression of cytoprotective genes in keratinocytes isolated from wild-type but not from Nrf2-deficient mice. Most importantly, it showed low toxicity and protected primary human keratinocytes from UVB-induced cell death. Therefore, it represents a potential lead compound for the development of drugs for skin protection under stress conditions. Our study demonstrates that chemical library screening combined with advanced computational similarity searching is a powerful strategy for identification of bioactive compounds, and it points toward an innovative therapeutic approach against UVB-induced skin damage.
Collapse
Affiliation(s)
- Franziska Lieder
- Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chamcheu JC, Wood GS, Siddiqui IA, Syed DN, Adhami VM, Teng JM, Mukhtar H. Progress towards genetic and pharmacological therapies for keratin genodermatoses: current perspective and future promise. Exp Dermatol 2012; 21:481-9. [PMID: 22716242 PMCID: PMC3556927 DOI: 10.1111/j.1600-0625.2012.01534.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hereditary keratin disorders of the skin and its appendages comprise a large group of clinically heterogeneous disfiguring blistering and ichthyotic diseases, primarily characterized by the loss of tissue integrity, blistering and hyperkeratosis in severely affected tissues. Pathogenic mutations in keratins cause these afflictions. Typically, these mutations in concert with characteristic features have formed the basis for improved disease diagnosis, prognosis and most recently therapy development. Examples include epidermolysis bullosa simplex, keratinopathic ichthyosis, pachyonychia congenita and several other tissue-specific hereditary keratinopathies. Understanding the molecular and genetic events underlying skin dysfunction has initiated alternative treatment approaches that may provide novel therapeutic opportunities for affected patients. Animal and in vitro disease modelling studies have shed more light on molecular pathogenesis, further defining the role of keratins in disease processes and promoting the translational development of new gene and pharmacological therapeutic strategies. Given that the molecular basis for these monogenic disorders is well established, gene therapy and drug discovery targeting pharmacological compounds with the ability to reinforce the compromised cytoskeleton may lead to promising new therapeutic strategies for treating hereditary keratinopathies. In this review, we will summarize and discuss recent advances in the preclinical and clinical modelling and development of gene, natural product, pharmacological and protein-based therapies for these disorders, highlighting the feasibility of new approaches for translational clinical therapy.
Collapse
Affiliation(s)
- Jean Christopher Chamcheu
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Singla A, Moons DS, Snider NT, Wagenmaker ER, Jayasundera VB, Omary MB. Oxidative stress, Nrf2 and keratin up-regulation associate with Mallory-Denk body formation in mouse erythropoietic protoporphyria. Hepatology 2012; 56:322-31. [PMID: 22334478 PMCID: PMC3389581 DOI: 10.1002/hep.25664] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 01/27/2012] [Indexed: 01/02/2023]
Abstract
UNLABELLED Mallory-Denk bodies (MDBs) are hepatocyte inclusions commonly seen in steatohepatitis. They are induced in mice by feeding 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) for 12 weeks, which also causes porphyrin accumulation. Erythropoietic protoporphyria (EPP) is caused by mutations in ferrochelatase (fch), and a fraction of EPP patients develop liver disease that is phenocopied in Fech(m1Pas) mutant (fch/fch) mice, which have an inactivating fch mutation. fch/fch mice develop spontaneous MDBs, but the molecular factors involved in their formation and whether they relate to DDC-induced MDBs are unknown. We tested the hypothesis that fch mutation creates a molecular milieu that mimics experimental drug-induced MDBs. In 13- and 20-week-old fch/fch mice, serum alkaline phosphatase, alanine aminotransferase, and bile acids were increased. The 13-week-old fch/fch mice did not develop histologically evident MDBs but manifested biochemical alterations required for MDB formation, including increased transglutaminase-2 and keratin overexpression, with a greater keratin 8 (K8)-to-keratin 18 (K18) ratio, which are critical for drug-induced MDB formation. In 20-week-old fch/fch mice, spontaneous MDBs were readily detected histologically and biochemically. Short-term (3-week) DDC feeding markedly induced MDB formation in 20-week-old fch/fch mice. Under basal conditions, old fch/fch mice had significant alterations in mitochondrial oxidative-stress markers, including increased protein oxidation, decreased proteasomal activity, reduced adenosine triphosphate content, and Nrf2 (redox sensitive transcription factor) up-regulation. Nrf2 knockdown in HepG2 cells down-regulated K8, but not K18. CONCLUSION Fch/fch mice develop age-associated spontaneous MDBs, with a marked propensity for rapid MDB formation upon exposure to DDC, and therefore provide a genetic model for MDB formation. Inclusion formation in the fch/fch mice involves oxidative stress which, together with Nrf2-mediated increase in K8, promotes MDB formation.
Collapse
Affiliation(s)
- Amika Singla
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-5622
| | - David S. Moons
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109-5622
| | - Natasha T. Snider
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-5622
| | - Elizabeth R. Wagenmaker
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-5622
| | - V. Bernadene Jayasundera
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-5622
| | - M. Bishr Omary
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-5622,Department of Medicine, University of Michigan Medical School, Ann Arbor, MI 48109-5622,To whom correspondence should be addressed: Bishr Omary, University of Michigan Medical School, Department of Molecular & Integrative Physiology, 7744 Medical Science Building II, 1137 Catherine St., Ann Arbor, MI 48109, Phone: 734-764-4376, Fax: 734-936-8813,
| |
Collapse
|
44
|
Chen H, Li J, Li H, Hu Y, Tevebaugh W, Yamamoto M, Que J, Chen X. Transcript profiling identifies dynamic gene expression patterns and an important role for Nrf2/Keap1 pathway in the developing mouse esophagus. PLoS One 2012; 7:e36504. [PMID: 22567161 PMCID: PMC3342176 DOI: 10.1371/journal.pone.0036504] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 04/02/2012] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND AIMS Morphological changes during human and mouse esophageal development have been well characterized. However, changes at the molecular level in the course of esophageal morphogenesis remain unclear. This study aims to globally profile critical genes and signaling pathways during the development of mouse esophagus. By using microarray analysis this study also aims to determine how the Nrf2/Keap1 pathway regulates the morphogenesis of the esophageal epithelium. METHODS Gene expression microarrays were used to survey gene expression in the esophagus at three critical phases: specification, metaplasia and maturation. The esophagi were isolated from wild-type, Nrf2(-/-), Keap1(-/-), or Nrf2(-/-)Keap1(-/-) embryos or young adult mice. Array data were statistically analyzed for differentially expressed genes and pathways. Histochemical and immunohistochemical staining were used to verify potential involvement of the Wnt pathway, Pparβ/δ and the PI3K/Akt pathway in the development of esophageal epithelium. RESULTS Dynamic gene expression patterns accompanied the morphological changes of the developing esophagus at critical phases. Particularly, the Nrf2/Keap1 pathway had a baseline activity in the metaplasia phase and was further activated in the maturation phase. The Wnt pathway was active early and became inactive later in the metaplasia phase. In addition, Keap1(-/-) mice showed increased expression of Nrf2 downstream targets and genes involved in keratinization. Microarray and immunostaining data also suggested that esophageal hyperkeratosis in the Keap1(-/-) mice was due to activation of Pparβ/δ and the PI3K/Akt pathway. CONCLUSIONS Morphological changes of the esophageal epithelium are associated with dynamic changes in gene expression. Nrf2/Keap1 pathway activity is required for maturation of mouse esophageal epithelium.
Collapse
Affiliation(s)
- Hao Chen
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, North Carolina, United States of America
| | - Jianying Li
- Frontier Bioinformatics Solution, LLC, Cary, North Carolina, United States of America
| | - Haiyan Li
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, United States of America
| | - Yuhui Hu
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, North Carolina, United States of America
| | - Whitney Tevebaugh
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, North Carolina, United States of America
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jianwen Que
- Department of Biomedical Genetics, University of Rochester, Rochester, New York, United States of America
| | - Xiaoxin Chen
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, North Carolina, United States of America
- Division of Gastroenterology and Hepatology, Center of Esophageal Disease and Swallowing, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
45
|
Coulombe PA, Lee CH. Defining keratin protein function in skin epithelia: epidermolysis bullosa simplex and its aftermath. J Invest Dermatol 2012; 132:763-75. [PMID: 22277943 PMCID: PMC3279600 DOI: 10.1038/jid.2011.450] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Epidermolysis bullosa simplex (EBS) is a rare genetic condition typified by superficial bullous lesions following incident frictional trauma to the skin. Most cases of EBS are due to dominantly acting mutations in keratin 14 (K14) or K5, the type I and II intermediate filament (IF) proteins that copolymerize to form a pancytoplasmic network of 10 nm filaments in basal keratinocytes of epidermis and related epithelia. Defects in K5-K14 filament network architecture cause basal keratinocytes to become fragile, and account for their rupture upon exposure to mechanical trauma. The discovery of the etiology and pathophysiology of EBS was intimately linked to the quest for an understanding of the properties and function of keratin filaments in skin epithelia. Since then, continued cross-fertilization between basic science efforts and clinical endeavors has highlighted several additional functional roles for keratin proteins in the skin, suggested new avenues for effective therapies for keratin-based diseases, and expanded our understanding of the remarkable properties of the skin as an organ system.
Collapse
Affiliation(s)
- Pierre A Coulombe
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
46
|
Abstract
The term 'keratin' is generally accepted to refer to the epithelial keratins of soft and hard epithelial tissues such as: skin, cornea, hair and nail. Since their initial characterization, the total number of mammalian keratins has increased to 54, including 28 type I and 26 type II keratins. Inherited defects that weaken the keratin load-bearing cytoskeleton produce phenotypes characterized by fragility of specific subsets of epithelial tissues. The vast majority of mutations are either missense or small in-frame in-del mutations and disease severity often relates to the position of the mutation in relation to the rod domain. The most complex epithelial structure in humans, the hair follicle, contains trichocyte ('hard') keratin filaments and approximately half of the 54 functional human keratin genes are trichocyte keratins. So far, only four of these have been linked to human genetic disorders: monilethrix, hair-nail ectodermal dysplasia, pseudofolliculitis barbae and woolly hair, while the majority of the hair keratins remain unlinked to human phenotypes. Keratin disorders are a classical group of dominant-negative genetic disorders, representing a large healthcare burden, especially within dermatology. Recent advances in RNA interference therapeutics, particularly in the form of small-interfering RNAs, represent a potential therapy route for keratin disorders through selectively silencing the mutant allele. To date, mutant-specific siRNAs for epidermolysis bullosa simplex, pachyonychia congenita and Messmann epithelial corneal dystrophy-causing missense mutations have been developed and proven to have unprecedented specificity and potency. This could herald the dawn of a new era in translational medical research applied to genetics.
Collapse
Affiliation(s)
- W H Irwin McLean
- Division of Molecular Medicine, Colleges of Life Sciences and Medicine, Dentistry & Nursing, University of Dundee, Dundee, UK.
| | | |
Collapse
|
47
|
Deconstructing the skin: cytoarchitectural determinants of epidermal morphogenesis. Nat Rev Mol Cell Biol 2011; 12:565-80. [PMID: 21860392 DOI: 10.1038/nrm3175] [Citation(s) in RCA: 346] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To provide a stable environmental barrier, the epidermis requires an integrated network of cytoskeletal elements and cellular junctions. Nevertheless, the epidermis ranks among the body's most dynamic tissues, continually regenerating itself and responding to cutaneous insults. As keratinocytes journey from the basal compartment towards the cornified layers, they completely reorganize their adhesive junctions and cytoskeleton. These architectural components are more than just rivets and scaffolds - they are active participants in epidermal morphogenesis that regulate epidermal polarization, signalling and barrier formation.
Collapse
|
48
|
Törmä H. Regulation of keratin expression by retinoids. DERMATO-ENDOCRINOLOGY 2011; 3:136-40. [PMID: 22110773 DOI: 10.4161/derm.3.3.15026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 01/25/2011] [Indexed: 11/19/2022]
Abstract
Vitamin A and its natural and synthetic metabolites (retinoids) affect growth and differentiation of human skin and among the genes affected by retinoids in epidermis are keratin genes. Keratins are intermediate filament proteins that have essential functions in maintaining the structural integrity of epidermis and its appendages. Their expressions are under strict control to produce keratins that are optimally adapted to their environment. In this article, retinoid regulation of keratin expression in cultured human epidermal keratinocytes and in human skin in vivo will be reviewed. The direct and indirect mechanisms involved will be discussed and novel therapeutic strategies will be proposed for utilizing retinoids in skin disorders due to keratin mutations (e.g., epidermolysis bullosa simplex and epidermolytic ichthyosis).
Collapse
Affiliation(s)
- Hans Törmä
- Department of Medical Sciences/Dermatology; Uppsala University; Uppsala, Sweden
| |
Collapse
|