1
|
Xu J, Zhang H, Ye H. Research progress on the role of fascia in skin wound healing. BURNS & TRAUMA 2025; 13:tkaf002. [PMID: 40248160 PMCID: PMC12001785 DOI: 10.1093/burnst/tkaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 04/19/2025]
Abstract
The skin, the human body's largest organ, is perpetually exposed to environmental factors, rendering it vulnerable to potential injuries. Fascia, a vital connective tissue that is extensively distributed throughout the body, fulfils multiple functions, including support, compartmentalization, and force transmission. The role of fascia in skin wound healing has recently attracted considerable attention. In addition to providing mechanical support, fascia significantly contributes to intercellular signalling and tissue repair, establishing itself as a crucial participant in wound healing. This review synthesises the latest advancements in fascia research and its implications for skin wound healing.
Collapse
Affiliation(s)
- Jiamin Xu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital; School of Basic Medical Sciences; Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Hongyan Zhang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital; School of Basic Medical Sciences; Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Haifeng Ye
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital; School of Basic Medical Sciences; Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, China
| |
Collapse
|
2
|
Van Campenhout R, Vinken M. Hepatic cell junctions: Pulling a double-duty. Liver Int 2024; 44:2873-2889. [PMID: 39115254 DOI: 10.1111/liv.16045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 10/25/2024]
Abstract
Cell junctions, including anchoring, occluding and communicating junctions, play an indispensable role in the structural and functional organization of multicellular tissues, including in liver. Specifically, hepatic cell junctions mediate intercellular adhesion and communication between liver cells. The establishment of the hepatic cell junction network is a prerequisite for normal liver functioning. Hepatic cell junctions indeed support liver-specific features and control essential aspects of the hepatic life cycle. This review paper summarizes the role of cell junctions and their components in relation to liver physiology, thereby also discussing their involvement in hepatic dysfunctionality, including liver disease and toxicity.
Collapse
Affiliation(s)
- Raf Van Campenhout
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
3
|
Noun T, Kurdi A, Maatouk N, Talhouk R, Dohna HZ. Investigating the interplay between the mir-183/182/96 cluster and the adherens junction pathway in early-stage breast cancer. Sci Rep 2024; 14:24711. [PMID: 39433788 PMCID: PMC11494207 DOI: 10.1038/s41598-024-73632-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/19/2024] [Indexed: 10/23/2024] Open
Abstract
Although the miR-183/182/96 cluster is overexpressed in breast cancer (BC), little is known about its role in the development of pre-carcinogenic lesions which harbor disrupted adherens junctions (AJ) and may promote BC. Here, we used microRNA and RNA sequencing data from The Cancer Genome Atlas (TCGA) Breast Cancer project to investigate the relationship between the miR-183/182/96 cluster and AJ signaling in early-stage BC. We found that all members of the cluster are significantly overexpressed in early-stage BC, the AJ signaling pathway is enriched for genes down-regulated in early-stage BC, and the AJ signaling pathway is enriched for experimentally validated targets of the miR-183/182/96 cluster. The expression of hsa-miR-182 correlates inversely with the mRNA expression of four of its target genes belonging to the AJ signaling pathway: WASF3, EGFR, MET, and CTNNA3. However, the correlations between hsa-miR-182 and AJ gene expression did not differ significantly between targets and non-targets of hsa-miR-182. This suggests that regulatory effects of microRNAs are less pronounced in cancer, as has been shown by other studies. Furthermore, WASF3, EGFR, and MET are oncogenes that tend to be upregulated in later BC stages, implying that the role of some AJ genes changes with different BC stages.
Collapse
Affiliation(s)
- Tala Noun
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Abdallah Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nour Maatouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Rabih Talhouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon.
| | - Heinrich Zu Dohna
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
4
|
Larionov A, Hammer CM, Fiedler K, Filgueira L. Dynamics of Endothelial Cell Diversity and Plasticity in Health and Disease. Cells 2024; 13:1276. [PMID: 39120307 PMCID: PMC11312403 DOI: 10.3390/cells13151276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Endothelial cells (ECs) are vital structural units of the cardiovascular system possessing two principal distinctive properties: heterogeneity and plasticity. Endothelial heterogeneity is defined by differences in tissue-specific endothelial phenotypes and their high predisposition to modification along the length of the vascular bed. This aspect of heterogeneity is closely associated with plasticity, the ability of ECs to adapt to environmental cues through the mobilization of genetic, molecular, and structural alterations. The specific endothelial cytoarchitectonics facilitate a quick structural cell reorganization and, furthermore, easy adaptation to the extrinsic and intrinsic environmental stimuli, known as the epigenetic landscape. ECs, as universally distributed and ubiquitous cells of the human body, play a role that extends far beyond their structural function in the cardiovascular system. They play a crucial role in terms of barrier function, cell-to-cell communication, and a myriad of physiological and pathologic processes. These include development, ontogenesis, disease initiation, and progression, as well as growth, regeneration, and repair. Despite substantial progress in the understanding of endothelial cell biology, the role of ECs in healthy conditions and pathologies remains a fascinating area of exploration. This review aims to summarize knowledge and concepts in endothelial biology. It focuses on the development and functional characteristics of endothelial cells in health and pathological conditions, with a particular emphasis on endothelial phenotypic and functional heterogeneity.
Collapse
Affiliation(s)
- Alexey Larionov
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Christian Manfred Hammer
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Klaus Fiedler
- Independent Researcher, CH-1700 Fribourg, Switzerland;
| | - Luis Filgueira
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| |
Collapse
|
5
|
Badaoui M, Chanson M. Intercellular Communication in Airway Epithelial Cell Regeneration: Potential Roles of Connexins and Pannexins. Int J Mol Sci 2023; 24:16160. [PMID: 38003349 PMCID: PMC10671439 DOI: 10.3390/ijms242216160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Connexins and pannexins are transmembrane proteins that can form direct (gap junctions) or indirect (connexons, pannexons) intercellular communication channels. By propagating ions, metabolites, sugars, nucleotides, miRNAs, and/or second messengers, they participate in a variety of physiological functions, such as tissue homeostasis and host defense. There is solid evidence supporting a role for intercellular signaling in various pulmonary inflammatory diseases where alteration of connexin/pannexin channel functional expression occurs, thus leading to abnormal intercellular communication pathways and contributing to pathophysiological aspects, such as innate immune defense and remodeling. The integrity of the airway epithelium, which is the first line of defense against invading microbes, is established and maintained by a repair mechanism that involves processes such as proliferation, migration, and differentiation. Here, we briefly summarize current knowledge on the contribution of connexins and pannexins to necessary processes of tissue repair and speculate on their possible involvement in the shaping of the airway epithelium integrity.
Collapse
Affiliation(s)
| | - Marc Chanson
- Department of Cell Physiology & Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland;
| |
Collapse
|
6
|
Sui B, Chen J, Ge D, Liang F, Wang H. Assembly Characterization of Human Equilibrium Nucleoside Transporter 1 (hENT1) by Inhibitor Probe-Based dSTORM Imaging. Anal Chem 2023. [PMID: 37276019 DOI: 10.1021/acs.analchem.3c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nucleoside transporters (NTs) play an important role in the metabolism of nucleoside substances and the efficacy of nucleoside drugs. Its spatial information related to biofunctions at the single-molecule level remains unclear, owing to the limitation of the existing labeling methods and traditional imaging methods. Therefore, we synthesize the inhibitor-based fluorescent probe SAENTA-Cy5 and apply direct stochastic optical reconstruction microscopy (dSTORM) to conduct refined observation of human equilibrative nucleoside transporter 1 (hENT1), the most important and famous member of NTs. We first demonstrate the labeling specificity and superiority of SAENTA-Cy5 to the antibody probe. Then, we found different assembly patterns of hENT1 on the apical and basal membranes, which are further investigated to be caused by varying associations of membrane carbohydrates, membrane classical functional domains (lipid rafts), and associated membrane proteins (EpCAM). Our work provides an efficient method for labeling hENT1, which contributes to realize fine observation of NTs. The findings on the assembly features and potential assembly mechanism of hENT1 promote a better understanding of its biofunction, which facilitates further investigations on how NTs work in the metabolism of nucleoside and nucleoside analogues.
Collapse
Affiliation(s)
- Binglin Sui
- Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei 430081, China
| | - Junling Chen
- Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei 430081, China
| | - Dian Ge
- Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei 430081, China
| | - Feng Liang
- Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei 430081, China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Research Center of Biomembranomics, 5625 Renmin Street, Changchun, Jilin 130022, China
| |
Collapse
|
7
|
The Multifaceted Role of Connexins in Tumor Microenvironment Initiation and Maintenance. BIOLOGY 2023; 12:biology12020204. [PMID: 36829482 PMCID: PMC9953436 DOI: 10.3390/biology12020204] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
Today's research on the processes of carcinogenesis and the vital activity of tumor tissues implies more attention be paid to constituents of the tumor microenvironment and their interactions. These interactions between cells in the tumor microenvironment can be mediated via different types of protein junctions. Connexins are one of the major contributors to intercellular communication. They form the gap junctions responsible for the transfer of ions, metabolites, peptides, miRNA, etc., between neighboring tumor cells as well as between tumor and stromal cells. Connexin hemichannels mediate purinergic signaling and bidirectional molecular transport with the extracellular environment. Additionally, connexins have been reported to localize in tumor-derived exosomes and facilitate the release of their cargo. A large body of evidence implies that the role of connexins in cancer is multifaceted. The pro- or anti-tumorigenic properties of connexins are determined by their abundance, localization, and functionality as well as their channel assembly and non-channel functions. In this review, we have summarized the data on the contribution of connexins to the formation of the tumor microenvironment and to cancer initiation and progression.
Collapse
|
8
|
Serra R, Simard JM. Adherens, tight, and gap junctions in ependymal cells: A systematic review of their contribution to CSF-brain barrier. Front Neurol 2023; 14:1092205. [PMID: 37034077 PMCID: PMC10079940 DOI: 10.3389/fneur.2023.1092205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction The movement of fluids and solutes across the ependymal barrier, and their changes in physiologic and disease states are poorly understood. This gap in knowledge contributes strongly to treatment failures and complications in various neurological disorders. Methods We systematically searched and reviewed original research articles treating ependymal intercellular junctions on PubMed. Reviews, opinion papers, and abstracts were excluded. Research conducted on tissue samples, cell lines, CSF, and animal models was considered. Results A total of 45 novel articles treating tight, adherens and gap junctions of the ependyma were included in our review, spanning from 1960 to 2022. The findings of this review point toward a central and not yet fully characterized role of the ependymal lining ultrastructure in fluid flow interactions in the brain. In particular, tight junctions circumferentially line the apical equator of ependymal cells, changing between embryonal and adult life in several rodent models, shaping fluid and solute transit in this location. Further, adherens and gap junctions appear to have a pivotal role in several forms of congenital hydrocephalus. Conclusions These findings may provide an opportunity for medical management of CSF disorders, potentially allowing for tuning of CSF secretion and absorption. Beyond hydrocephalus, stroke, trauma, this information has relevance for metabolite clearance and drug delivery, with potential to affect many patients with a variety of neurological disorders. This critical look at intercellular junctions in ependyma and the surrounding interstitial spaces is meant to inspire future research on a central and rather unknown component of the CSF-brain interface.
Collapse
Affiliation(s)
- Riccardo Serra
- Department of Neurosurgery, University of Maryland, Baltimore, MD, United States
- *Correspondence: Riccardo Serra
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland, Baltimore, MD, United States
- Department of Pathology, University of Maryland, Baltimore, MD, United States
- Department of Physiology, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
9
|
Unal YC, Yavuz B, Ozcivici E, Mese G. The role of connexins in breast cancer: from misregulated cell communication to aberrant intracellular signaling. Tissue Barriers 2022; 10:1962698. [PMID: 34355641 PMCID: PMC8794248 DOI: 10.1080/21688370.2021.1962698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
In spite of clinical advancements and improved diagnostic techniques, breast cancers are the leading cause of cancer-associated deaths in women worldwide. Although 70% of early breast cancers can be cured, there are no efficient therapies against metastatic breast cancers. Several factors including connexins and gap junctions play roles in breast tumorigenesis. Connexins are critical for cellular processes as a linkage between connexin mutations and hereditary disorders demonstrated their importance for tissue homeostasis. Further, alterations in their expression, localization and channel activities were observed in many cancers including breast cancer. Both channel-dependent and independent functions of connexins were reported in initiation and progression of cancers. Unlike initial reports suggesting tumor suppressor functions, connexins and gap junctions have stage, context and isoform dependent effects in breast cancers similar to other cancers. In this review, we tried to describe the current understanding of connexins in tumorigenesis specifically in breast cancers.
Collapse
Affiliation(s)
- Yagmur Ceren Unal
- Faculty of Science, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Busra Yavuz
- Faculty of Science, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Engin Ozcivici
- Department of Bioengineering, Faculty of Engineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Gulistan Mese
- Faculty of Science, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| |
Collapse
|
10
|
Ray A, Mehta PP. Cysteine residues in the C-terminal tail of connexin32 regulate its trafficking. Cell Signal 2021; 85:110063. [PMID: 34146657 DOI: 10.1016/j.cellsig.2021.110063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 05/26/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022]
Abstract
Gap junctions (GJs) are formed by the assembly of constituent transmembrane proteins called connexins (Cxs). Aberrations in this assembly of Cxs are observed in several genetic diseases as well as in cancers. Hence it becomes imperative to understand the molecular mechanisms underlying such assembly defect. The polarized cells in the epithelia express Connexin32 (Cx32). The C-terminal tail (CT) of Cx32 orchestrates several aspects of GJ dynamics, function and growth. The study here was aimed at determining if post-translational modifications, specifically, palmitoylation of cysteine residues, present in the CT of Cx32, has any effect on GJ assembly. The CT of Cx32 was found to harbor three cysteine residues, which are likely to be modified by palmitoylation. The study here has revealed for the first time that Cx32 is palmitoylated at cysteine 217 (C217) in cell line derived from prostate tumors. However, it was found that mutating C217 to alanine affected neither the trafficking nor the ability of Cx32 to assemble into GJs. Intriguingly, it was discovered that mutating cysteine 280 and 283, only in combination, blocked the trafficking of Cx32 from the trans-Golgi network to the cell surface. The mutants showed reduced stability due to enhanced lysosomal degradation. Overall, the findings reveal the importance of the two C-terminal cysteine residues of Cx32 in regulating its trafficking and stability and hence its ability to assemble into GJs.
Collapse
Affiliation(s)
- Anuttoma Ray
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Parmender P Mehta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
11
|
Yang Y, Liu W, Wei J, Cui Y, Zhang D, Xie J. Transforming growth factor-β1-induced N-cadherin drives cell-cell communication through connexin43 in osteoblast lineage. Int J Oral Sci 2021; 13:15. [PMID: 33850101 PMCID: PMC8044142 DOI: 10.1038/s41368-021-00119-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/29/2020] [Accepted: 02/01/2021] [Indexed: 02/05/2023] Open
Abstract
Gap junction (GJ) has been indicated to have an intimate correlation with adhesion junction. However, the direct interaction between them partially remains elusive. In the current study, we aimed to elucidate the role of N-cadherin, one of the core components in adhesion junction, in mediating connexin 43, one of the functional constituents in gap junction, via transforming growth factor-β1(TGF-β1) induction in osteoblasts. We first elucidated the expressions of N-cadherin induced by TGF-β1 and also confirmed the upregulation of Cx43, and the enhancement of functional gap junctional intercellular communication (GJIC) triggered by TGF-β1 in both primary osteoblasts and MC3T3 cell line. Colocalization analysis and Co-IP experimentation showed that N-cadherin interacts with Cx43 at the site of cell-cell contact. Knockdown of N-cadherin by siRNA interference decreased the Cx43 expression and abolished the promoting effect of TGF-β1 on Cx43. Functional GJICs in living primary osteoblasts and MC3T3 cell line were also reduced. TGF-β1-induced increase in N-cadherin and Cx43 was via Smad3 activation, whereas knockdown of Smad3 signaling by using siRNA decreased the expressions of both N-cadherin and Cx43. Overall, these data indicate the direct interactions between N-cadherin and Cx43, and reveal the intervention of adhesion junction in functional gap junction in living osteoblasts.
Collapse
Affiliation(s)
- Yueyi Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenjing Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - JieYa Wei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Wan L, Jiang D, Correa-Gallegos D, Ramesh P, Zhao J, Ye H, Zhu S, Wannemacher J, Volz T, Rinkevich Y. Connexin43 gap junction drives fascia mobilization and repair of deep skin wounds. Matrix Biol 2021; 97:58-71. [PMID: 33508427 DOI: 10.1016/j.matbio.2021.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/23/2022]
Abstract
Deep and voluminous skin wounds are repaired with scars, by mobilization of fibroblasts and extracellular matrix from fascia, deep below the skin. The molecular trigger of this novel repair mechanism is incompletely understood. Here we reveal that the gap junction alpha-1 protein (Connexin43, Cx43) is the key to patch repair of deep wounds. By combining full-thickness wound models with fibroblast lineage specific transgenic lines, we show Cx43 expression is substantially upregulated in specialized fibroblasts of the fascia deep beneath the skin that are responsible for scar formation. Using live imaging of fascia fibroblasts and fate tracing of the fascia extracellular matrix we show that Cx43 inhibition disrupts calcium oscillations in cultured fibroblasts and that this inhibits collective migration of fascia EPFs necessary to mobilize fascia matrix into open wounds. Cell-cell communication through Cx43 thus mediates matrix movement and scar formation, and is necessary for patch repair of voluminous wounds. These mechanistic findings have broad clinical implications toward treating fibrosis, aggravated scarring and impaired wound healing.
Collapse
Affiliation(s)
- Li Wan
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Munich, Germany
| | - Dongsheng Jiang
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Munich, Germany
| | - Donovan Correa-Gallegos
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Munich, Germany
| | - Pushkar Ramesh
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Munich, Germany
| | - Jiakuan Zhao
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Munich, Germany
| | - Haifeng Ye
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Munich, Germany
| | - Shaohua Zhu
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Munich, Germany
| | - Juliane Wannemacher
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Munich, Germany
| | - Thomas Volz
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Dermatology and Allergology, Munich, Germany
| | - Yuval Rinkevich
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Munich, Germany; Helmholtz Zentrum München, Institute of Regenerative Biology and Medicine, Munich, Germany.
| |
Collapse
|
13
|
Weadick B, Nayak D, Persaud AK, Hung SW, Raj R, Campbell MJ, Chen W, Li J, Williams TM, Govindarajan R. EMT-Induced Gemcitabine Resistance in Pancreatic Cancer Involves the Functional Loss of Equilibrative Nucleoside Transporter 1. Mol Cancer Ther 2020; 20:410-422. [PMID: 33298588 DOI: 10.1158/1535-7163.mct-20-0316] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/02/2020] [Accepted: 11/19/2020] [Indexed: 11/16/2022]
Abstract
Epithelial-mesenchymal transition (EMT) in cancer cells drives cancer chemoresistance, yet the molecular events of EMT that underpin the acquisition of chemoresistance are poorly understood. Here, we demonstrate a loss of gemcitabine chemosensitivity facilitated by human equilibrative nucleoside transporter 1 (ENT1) during EMT in pancreatic cancer and identify that cadherin switching from the epithelial (E) to neuronal (N) type, a hallmark of EMT, contributes to this loss. Our findings demonstrate that N-cadherin decreases ENT1 expression, membrane localization, and gemcitabine transport, while E-cadherin augments each of these. Besides E- and N-cadherin, another epithelial cell adhesion molecule, EpCAM, played a more prominent role in determining ENT1 membrane localization. Forced expression of EpCAM opposed cadherin switching with restored ENT1 expression, membrane localization, and gemcitabine transport in EMT-committed pancreatic cancer cells. In gemcitabine-treated mice, EpCAM-positive tumors had high ENT1 expression and reduced metastasis, whereas tumors with N-cadherin expression resisted gemcitabine treatment and formed extensive secondary metastatic nodules. Tissue microarray profiling and multiplexed IHC analysis of pancreatic cancer patient-derived primary tumors revealed EpCAM and ENT1 cell surface coexpression is favored, and ENT1 plasma membrane expression positively predicted median overall survival times in patients treated with adjuvant gemcitabine. Together, our findings identify ENT1 as an inadvertent target of EMT signaling mediated by cadherin switching and provide a mechanism by which mesenchymal pancreatic cancer cells evade gemcitabine therapy during EMT.
Collapse
Affiliation(s)
- Brenna Weadick
- Division of Pharmaceutics and Pharmacology, The Ohio State University College of Pharmacy, Columbus, Ohio
| | - Debasis Nayak
- Division of Pharmaceutics and Pharmacology, The Ohio State University College of Pharmacy, Columbus, Ohio
| | - Avinash K Persaud
- Division of Pharmaceutics and Pharmacology, The Ohio State University College of Pharmacy, Columbus, Ohio
| | - Sau Wai Hung
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia
| | - Radhika Raj
- Division of Pharmaceutics and Pharmacology, The Ohio State University College of Pharmacy, Columbus, Ohio
| | - Moray J Campbell
- Division of Pharmaceutics and Pharmacology, The Ohio State University College of Pharmacy, Columbus, Ohio
| | - Wei Chen
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Junan Li
- Division of Pharmaceutics and Pharmacology, The Ohio State University College of Pharmacy, Columbus, Ohio
| | - Terence M Williams
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Rajgopal Govindarajan
- Division of Pharmaceutics and Pharmacology, The Ohio State University College of Pharmacy, Columbus, Ohio. .,Translational Therapeutics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
14
|
Meng L, Yan D. NLR-1/CASPR Anchors F-Actin to Promote Gap Junction Formation. Dev Cell 2020; 55:574-587.e3. [PMID: 33238150 DOI: 10.1016/j.devcel.2020.10.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/05/2020] [Accepted: 10/28/2020] [Indexed: 12/31/2022]
Abstract
Gap junctions are present in most tissues and play essential roles in various biological processes. However, we know surprisingly little about the molecular mechanisms underlying gap junction formation. Here, we uncover the essential role of a conserved EGF- and laminin-G-domain-containing protein nlr-1/CASPR in the regulation of gap junction formation in multiple tissues across different developmental stages in C. elegans. NLR-1 is located in the gap junction perinexus, a region adjacent to but not overlapping with gap junctions, and forms puncta before the clusters of gap junction channels appear on the membrane. We show that NLR-1 can directly bind to actin to recruit F-actin networks at the gap junction formation plaque, and the formation of F-actin patches plays a critical role in the assembly of gap junction channels. Our findings demonstrate that nlr-1/CASPR acts as an early stage signal for gap junction formation through anchoring of F-actin networks.
Collapse
Affiliation(s)
- Lingfeng Meng
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Dong Yan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Regeneration Next, and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
15
|
Gap Junctions between Endothelial Cells Are Disrupted by Circulating Extracellular Vesicles from Sickle Cell Patients with Acute Chest Syndrome. Int J Mol Sci 2020; 21:ijms21238884. [PMID: 33255173 PMCID: PMC7727676 DOI: 10.3390/ijms21238884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
Intercellular junctions maintain the integrity of the endothelium. We previously found that the adherens and tight junctions between endothelial cells are disrupted by plasma extracellular vesicles from patients with sickle cell disease (especially those with Acute Chest Syndrome). In the current study, we evaluated the effects of these vesicles on endothelial gap junctions. The vesicles from sickle cell patients (isolated during episodes of Acute Chest Syndrome) disrupted gap junction structures earlier and more severely than the other classes of intercellular junctions (as detected by immunofluorescence). These vesicles were much more potent than those isolated at baseline from the same subject. The treatment of endothelial cells with these vesicles led to reduced levels of connexin43 mRNA and protein. These vesicles severely reduced intercellular communication (transfer of microinjected Neurobiotin). Our data suggest a hierarchy of progressive disruption of different intercellular connections between endothelial cells by circulating extracellular vesicles that may contribute to the pathophysiology of the endothelial disturbances in sickle cell disease.
Collapse
|
16
|
Warawdekar UM, Jain V, Patel H, Nanda A, Kamble V. Modifying gap junction communication in cancer therapy. Curr Res Transl Med 2020; 69:103268. [PMID: 33069641 DOI: 10.1016/j.retram.2020.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/07/2020] [Accepted: 09/22/2020] [Indexed: 12/24/2022]
Abstract
AIM Drug delivery is crucial for therapeutic efficacy and gap junction communication channels (GJIC) facilitate movement within the tumour. Pro-drug activation, a modality of cancer therapy leads to Ganciclovir triphosphate (GCV-TP) incorporation into newly synthesized DNA resulting in cell death. The objective was to enhance, with Histone deacetylase inhibitors (HDACi) and All Trans Retinoic Acid (ATRA), GJIC, crucial for drug delivery, and with combination, abrogate the observed detrimental effect of Dexamethasone (DXM). METHODS Cell lines (NT8E, and HeLa) were pre-treated with Valproic Acid (VPA) (1 mM), 4 Phenyl Butyrate (4PB) (2 mM), ATRA (10 μM) and Dexamethasone (1 μM). Protein quantitated with the Bicinchoninic (BCA) assay for cell lysates, membrane and soluble fractions was assessed with Western blotting for Connexins (43, 26 and 32) and E-Cadherin. A qRT-PCR was done for CX 43-GJA1, CX 26-GJB2, CX 32-GJB1 and E-Cadherin, and normalized with Glyceraldehyde Phosphate dehydrogenase (GAPDH). Further, localization of Connexins (CX) and E-Cadherin, GJIC competence, pre-clinical in-vitro studies and the mechanism of cell death were evaluated. RESULTS There was no toxicity or change in growth patterns observed with the drugs. In both the cell lines CX 43 localized to the membrane whereas CX 32 and CX 26 were present but not membrane bound. E-Cadherin was present on the membrane in NT8E and completely absent in HeLa cells. Effects of HDACi, DXM and ATRA were seen on the expression of Connexins and E-Cadherin in both the cell lines. NT8E and HeLa cell lines showed enhanced GJIC with 4PB [30 %], VPA [36 %] and ATRA [54 %] with a 60 % increase in cytotoxicity and an abrogation of Dexamethasone inhibition on combination with VPA or ATRA. CONCLUSION An enhancement of GJIC function by HDACi and ATRA increased cytotoxicity and could be effective in the presence of Dexamethasone, when combined with ATRA or VPA.
Collapse
Affiliation(s)
- Ujjwala M Warawdekar
- CRI Lab 1, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India.
| | - Vaishali Jain
- CRI Lab 1, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Himani Patel
- CRI Lab 1, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Adyasha Nanda
- CRI Lab 1, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Vishal Kamble
- CRI Lab 1, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| |
Collapse
|
17
|
Xiong B, Liu M, Zhang C, Hao Y, Zhang P, Chen L, Tang X, Zhang H, Zhao Y. Alginate oligosaccharides enhance small intestine cell integrity and migration ability. Life Sci 2020; 258:118085. [DOI: 10.1016/j.lfs.2020.118085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/10/2020] [Accepted: 07/08/2020] [Indexed: 01/27/2023]
|
18
|
Liu W, Cui Y, Wei J, Sun J, Zheng L, Xie J. Gap junction-mediated cell-to-cell communication in oral development and oral diseases: a concise review of research progress. Int J Oral Sci 2020; 12:17. [PMID: 32532966 PMCID: PMC7293327 DOI: 10.1038/s41368-020-0086-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/30/2020] [Accepted: 05/19/2020] [Indexed: 02/05/2023] Open
Abstract
Homoeostasis depends on the close connection and intimate molecular exchange between extracellular, intracellular and intercellular networks. Intercellular communication is largely mediated by gap junctions (GJs), a type of specialized membrane contact composed of variable number of channels that enable direct communication between cells by allowing small molecules to pass directly into the cytoplasm of neighbouring cells. Although considerable evidence indicates that gap junctions contribute to the functions of many organs, such as the bone, intestine, kidney, heart, brain and nerve, less is known about their role in oral development and disease. In this review, the current progress in understanding the background of connexins and the functions of gap junctions in oral development and diseases is discussed. The homoeostasis of tooth and periodontal tissues, normal tooth and maxillofacial development, saliva secretion and the integrity of the oral mucosa depend on the proper function of gap junctions. Knowledge of this pattern of cell-cell communication is required for a better understanding of oral diseases. With the ever-increasing understanding of connexins in oral diseases, therapeutic strategies could be developed to target these membrane channels in various oral diseases and maxillofacial dysplasia.
Collapse
Affiliation(s)
- Wenjing Liu
- State Key Laboratory of Oral Diseases & National Clinical Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases & National Clinical Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jieya Wei
- State Key Laboratory of Oral Diseases & National Clinical Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianxun Sun
- State Key Laboratory of Oral Diseases & National Clinical Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases & National Clinical Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases & National Clinical Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
19
|
McClure MJ, Ramey AN, Rashid M, Boyan BD, Schwartz Z. Integrin-α7 signaling regulates connexin 43, M-cadherin, and myoblast fusion. Am J Physiol Cell Physiol 2019; 316:C876-C887. [PMID: 30892939 DOI: 10.1152/ajpcell.00282.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regenerative medicine treatments for severe skeletal muscle injuries are limited, resulting in persistent functional deficits. Clinical options include neglecting the wound with the expectation that fibrosis will develop or using an autologous muscle graft with minimal functional improvement. A regenerative matrix can be used, but muscle fiber development on these matrices remains a challenge in vivo. Here, we explored the fundamental mechanisms that mediate cell-substrate signaling and its effect on cell-cell communication during myoblast fusion and tube formation to improve outcomes following implantation of matrices used to stimulate muscle regeneration. We previously reported that integrin-α7 was increased on anisotropic biomaterials, suggesting a role for α7β1 signaling in myoblast communication via connexin 43 and M-cadherin. Our results demonstrated that α7 silencing blocked expression of myogenic differentiation factor 1 (Myod), myogenin (Myog), myogenic factor 6 (Myf6), myosin heavy chain type 1 (Myh1), and transmembrane protein 8c (Tmem8c), indicating that myoblast fusion was inhibited. Expression of α5 and M-cadherin decreased but β1 and connexin 43 increased. We examined protein production and observed reduced extracellular-signal regulated kinase 1/2 (ERK) in α7-silenced cells that correlated with upregulation of connexin 43 and M-cadherin, suggesting a compensatory pathway. These results indicate that α7 signaling plays a critical role in ex vivo fusion and implicates a relationship with connexin 43 and M-cadherin.
Collapse
Affiliation(s)
- Michael J McClure
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University , Richmond, Virginia
| | - Allison N Ramey
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University , Richmond, Virginia
| | - Mashaba Rashid
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University , Richmond, Virginia
| | - Barbara D Boyan
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University , Richmond, Virginia.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology , Atlanta, Georgia
| | - Zvi Schwartz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University , Richmond, Virginia.,Department of Periodontics, University of Texas Health Sciences Center at San Antonio , San Antonio, Texas
| |
Collapse
|
20
|
PI3k and Stat3: Oncogenes that are Required for Gap Junctional, Intercellular Communication. Cancers (Basel) 2019; 11:cancers11020167. [PMID: 30717267 PMCID: PMC6406562 DOI: 10.3390/cancers11020167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/21/2019] [Accepted: 01/26/2019] [Indexed: 12/12/2022] Open
Abstract
Gap junctional, intercellular communication (GJIC) is interrupted in cells transformed by oncogenes such as activated Src. The Src effector, Ras, is required for this effect, so that Ras inhibition restores GJIC in Src-transformed cells. Interestingly, the inhibition of the Src effector phosphatidyl-inositol-3 kinase (PI3k) or Signal Transducer and Activator of Transcription-3 (Stat3) pathways does not restore GJIC. In the contrary, inhibition of PI3k or Stat3 in non-transformed rodent fibroblasts or epithelial cells or certain human lung carcinoma lines with extensive GJIC inhibits communication, while mutational activation of PI3k or Stat3 increases GJIC. Therefore, it appears that oncogenes such as activated Src have a dual role upon GJIC; acting as inhibitors of communication through the Ras pathway, and as activators through activation of PI3k or Stat3. In the presence of high Src activity the inhibitory functions prevail so that the net effect is gap junction closure. PI3k and Stat3 constitute potent survival signals, so that their inhibition in non-transformed cells triggers apoptosis which, in turn, has been independently demonstrated to suppress GJIC. The interruption of gap junctional communication would confine the apoptotic event to single cells and this might be essential for the maintenance of tissue integrity. We hypothesize that the GJIC activation by PI3k or Stat3 may be linked to their survival function.
Collapse
|
21
|
Fukuda S, Akiyama M, Harada H, Nakahama KI. Effect of gap junction-mediated intercellular communication on TGF-β induced epithelial-to-mesenchymal transition. Biochem Biophys Res Commun 2018; 508:928-933. [PMID: 30545634 DOI: 10.1016/j.bbrc.2018.12.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 02/08/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is the process in which epithelial cells lose cell polarity and cell adhesion with surrounding cells to obtain migratory and invasive abilities. On the other hand, the expression of connexin is decreased or lacked in the many types of tumor cells. This study examined the effect of gap junctional intercellular communication (GJIC) on EMT induced by the transforming growth factor-β1 (TGF-β1). To investigate the effect of GJIC on EMT in U2OS cells, smooth muscle 22-α (sm22α) promoter-driven luciferase reporter gene was introduced into Cx43-expressing cells (U2OS-Luc Cx43) and into the control parental cell line (U2OS-Luc). TGF-β1 induced the expression of EMT markers and the sm22α promoter activity of U2OS-Luc cells. Sm22α promoter activity of U2OS cells was neither dependent on the expression of Cx43 nor on the establishment of GJIC among U2OS cells. Furthermore, we found that the homocellular communication among tumor cells did not affected the tumor cell growth and migration. However, we revealed that tumor cell density was an important factor for tumor cells to acquire metastatic phenotype. Interestingly, the co-culture of U2OS cells with osteoblasts revealed that sm22α promoter activity was inhibited only by the GJIC established between these two cell types. These results suggest that normal osteoblast cells negatively regulate the EMT of tumor cells, at least in part. Thus, Cx43-mediated GJIC may have anti-metastatic activity in tumor cells. Our findings provide a new insight into the role of GJIC in cancer progression and metastasis and identify potential therapeutic targets for the treatment of cancer.
Collapse
Affiliation(s)
- Shuhei Fukuda
- Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan; Department of Oral and Maxillofacial Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Masako Akiyama
- Research Administration Division, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Ken-Ichi Nakahama
- Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
22
|
Wang H, Tian L, Liu J, Goldstein A, Bado I, Zhang W, Arenkiel BR, Li Z, Yang M, Du S, Zhao H, Rowley DR, Wong STC, Gugala Z, Zhang XHF. The Osteogenic Niche Is a Calcium Reservoir of Bone Micrometastases and Confers Unexpected Therapeutic Vulnerability. Cancer Cell 2018; 34:823-839.e7. [PMID: 30423299 PMCID: PMC6239211 DOI: 10.1016/j.ccell.2018.10.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 07/10/2018] [Accepted: 10/02/2018] [Indexed: 02/06/2023]
Abstract
The fate of disseminated tumor cells is largely determined by microenvironment (ME) niche. The osteogenic niche promotes cancer cell proliferation and bone metastasis progression. We investigated the underlying mechanisms using pre-clinical models and analyses of clinical data. We discovered that the osteogenic niche serves as a calcium (Ca) reservoir for cancer cells through gap junctions. Cancer cells cannot efficiently absorb Ca from ME, but depend on osteogenic cells to increase intracellular Ca concentration. The Ca signaling, together with previously identified mammalian target of rapamycin signaling, promotes bone metastasis progression. Interestingly, effective inhibition of these pathways can be achieved by danusertib, or a combination of everolimus and arsenic trioxide, which provide possibilities of eliminating bone micrometastases using clinically established drugs.
Collapse
Affiliation(s)
- Hai Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Lin Tian
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jun Liu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Amit Goldstein
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Igor Bado
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Weijie Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Benjamin R Arenkiel
- Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; McNair Medical Institute, Baylor College of Medicine, BCM600, One Baylor Plaza, Houston, TX 77030, USA
| | - Zonghai Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| | - Meng Yang
- Department of General Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Shiyu Du
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Hong Zhao
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA
| | - David R Rowley
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Stephen T C Wong
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA
| | - Zbigniew Gugala
- Department of Orthopaedic Surgery & Rehabilitation, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; McNair Medical Institute, Baylor College of Medicine, BCM600, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
23
|
Ray A, Katoch P, Jain N, Mehta PP. Dileucine-like motifs in the C-terminal tail of connexin32 control its endocytosis and assembly into gap junctions. J Cell Sci 2018; 131:jcs207340. [PMID: 29361528 PMCID: PMC5897717 DOI: 10.1242/jcs.207340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/11/2018] [Indexed: 12/11/2022] Open
Abstract
Defects in assembly of gap junction-forming proteins, called connexins (Cxs), are observed in a variety of cancers. Connexin32 (Cx32; also known as GJB1) is expressed by the polarized cells in epithelia. We discovered two dileucine-based motifs, which govern the intracellular sorting and endocytosis of transmembrane proteins, in the C-terminal tail of Cx32 and explored their role in regulating its endocytosis and gap junction-forming abilities in pancreatic and prostate cancer cells. One motif, designated as LI, was located near the juxtamembrane domain, whereas the other, designated as LL, was located distally. We also discovered a non-canonical motif, designated as LR, in the C-terminal tail. Our results showed that rendering these motifs non-functional had no effect on the intracellular sorting of Cx32. However, rendering the LL or LR motif nonfunctional enhanced the formation of gap junctions by inhibiting Cx32 endocytosis by the clathrin-mediated pathway. Rendering the LI motif nonfunctional inhibited gap junction formation by augmenting the endocytosis of Cx32 via the LL and LR motifs. Our studies have defined distinct roles of these motifs in regulating the endocytosis of Cx32 and its gap junction-forming ability.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Anuttoma Ray
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Parul Katoch
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nimansha Jain
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Parmender P Mehta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
24
|
Corticosterone impairs gap junctions in the prefrontal cortical and hippocampal astrocytes via different mechanisms. Neuropharmacology 2018; 131:20-30. [DOI: 10.1016/j.neuropharm.2017.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/28/2017] [Accepted: 12/03/2017] [Indexed: 01/20/2023]
|
25
|
Mody HR, Hung SW, Naidu K, Lee H, Gilbert CA, Hoang TT, Pathak RK, Manoharan R, Muruganandan S, Govindarajan R. SET contributes to the epithelial-mesenchymal transition of pancreatic cancer. Oncotarget 2017; 8:67966-67979. [PMID: 28978088 PMCID: PMC5620228 DOI: 10.18632/oncotarget.19067] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/22/2017] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer has a devastating prognosis due to 80-90% of diagnostic cases occurring when metastasis has already presented. Activation of the epithelial-mesenchymal transition (EMT) is a prerequisite for metastasis because it allows for the dissemination of tumor cells to blood stream and secondary organs. Here, we sought to determine the role of SET oncoprotein, an endogenous inhibitor of PP2A, in EMT and pancreatic tumor progression. Among the two major isoforms of SET (isoform 1 and isoform 2), higher protein levels of SET isoform 2 were identified in aggressive pancreatic cancer cell lines. Overexpressing SET isoform 2, and to a lesser extent SET isoform 1, in epithelial cell lines promoted EMT-like features by inducing mesenchymal characteristics and promoting cellular proliferation, migration, invasion, and colony formation. Consistently, knockdown of SET isoforms in the mesenchymal cell line partially resisted these characteristics and promoted epithelial features. SET-induced EMT was likely facilitated by increased N-cadherin overexpression, decreased PP2A activity and/or increased expression of key EMT-driving transcription factors. Additionally, SET overexpression activated the Rac1/JNK/c-Jun signaling pathway that induced transcriptional activation of N-cadherin expression. In vivo, SET isoform 2 overexpression significantly correlated with increased N-cadherin in human PDAC and to tumor burden and metastatic ability in an orthotopic mouse tumor model. These findings identify a new role for SET in cancer and have implications for the design and targeting of SET for intervening pancreatic tumor progression.
Collapse
Affiliation(s)
- Hardik R Mody
- Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA.,Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, GA, USA
| | - Sau Wai Hung
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, GA, USA
| | - Kineta Naidu
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, USA
| | - Haesung Lee
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, USA
| | - Caitlin A Gilbert
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, USA
| | - Toan Thanh Hoang
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, USA
| | - Rakesh K Pathak
- Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA
| | - Radhika Manoharan
- Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA
| | - Shanmugam Muruganandan
- Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA
| | - Rajgopal Govindarajan
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA.,Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, GA, USA
| |
Collapse
|
26
|
Leithe E, Mesnil M, Aasen T. The connexin 43 C-terminus: A tail of many tales. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:48-64. [PMID: 28526583 DOI: 10.1016/j.bbamem.2017.05.008] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 10/19/2022]
Abstract
Connexins are chordate gap junction channel proteins that, by enabling direct communication between the cytosols of adjacent cells, create a unique cell signalling network. Gap junctional intercellular communication (GJIC) has important roles in controlling cell growth and differentiation and in tissue development and homeostasis. Moreover, several non-canonical connexin functions unrelated to GJIC have been discovered. Of the 21 members of the human connexin family, connexin 43 (Cx43) is the most widely expressed and studied. The long cytosolic C-terminus (CT) of Cx43 is subject to extensive post-translational modifications that modulate its intracellular trafficking and gap junction channel gating. Moreover, the Cx43 CT contains multiple domains involved in protein interactions that permit crosstalk between Cx43 and cytoskeletal and regulatory proteins. These domains endow Cx43 with the capacity to affect cell growth and differentiation independently of GJIC. Here, we review the current understanding of the regulation and unique functions of the Cx43 CT, both as an essential component of full-length Cx43 and as an independent signalling hub. We highlight the complex regulatory and signalling networks controlled by the Cx43 CT, including the extensive protein interactome that underlies both gap junction channel-dependent and -independent functions. We discuss these data in relation to the recent discovery of the direct translation of specific truncated forms of Cx43. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Edward Leithe
- Department of Molecular Oncology, Institute for Cancer Research, University of Oslo, NO-0424 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, NO-0424 Oslo, Norway
| | - Marc Mesnil
- STIM Laboratory ERL 7368 CNRS - Faculté des Sciences Fondamentales et Appliquées, Université de Poitiers, Poitiers 86073, France
| | - Trond Aasen
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, 08035 Barcelona, Spain.
| |
Collapse
|
27
|
Go RE, Kim CW, Jeon SY, Byun YS, Jeung EB, Nam KH, Choi KC. Fludioxonil induced the cancer growth and metastasis via altering epithelial-mesenchymal transition via an estrogen receptor-dependent pathway in cellular and xenografted breast cancer models. ENVIRONMENTAL TOXICOLOGY 2017; 32:1439-1454. [PMID: 27539251 DOI: 10.1002/tox.22337] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/30/2016] [Accepted: 08/08/2016] [Indexed: 06/06/2023]
Abstract
Fludioxonil is an antifungal agent used in agricultural applications that is present at measurable amounts in fruits and vegetables. In this study, the effects of fludioxonil on cancer cell viability, epithelial-mesenchymal transition (EMT), and metastasis were examined in MCF-7 clonal variant breast cancer cell (MCF-7 CV cells) with estrogen receptors (ERs). MCF-7 CV cells were cultured with 0.1% DMSO (control), 17β-estradiol (E2; 1 ×10-9 M, positive control), or fludioxonil (10-5 -10-8 M). MTT assay revealed that fludioxonil increased MCF-7 CV cell proliferation 1.2 to 1.5 times compared to the control, while E2 markedly increased the cell proliferation by about 3.5 times. When the samples were co-treated with ICI 182,780 (10-8 M), an ER antagonist, fludioxonil-induced cell proliferation was reversed to the level of the control. Protein levels of cyclin E1, cyclin D1, Snail, and N-cadherin increased in response to fludioxonil as the reaction to E2, but these increases were not observed when fludioxonil was administered with ICI 182,780. Moreover, the protein level of p21 and E-cadherin decreased in response to treatment with fludioxonil, but remained at the control level when co-treated with ICI 182,780. In xenografted mouse models transplanted with MCF-7 CV cells, fludioxonil significantly increased the tumor mass formation by about 2.5 times as E2 did when compared to vehicle (0.1% DMSO) during the experimental period (80 days). Immunohistochemistry revealed that the protein level of proliferating cell nuclear antigen (PCNA), Snail, and cathepsin D increased in response to fludioxonil as the reaction to E2. These results imply that fludioxonil may have a potential to induce growth or metastatic behaviors of breast cancer by regulation of the expression of cell cycle-, EMT-, and metastasis-related genes via the ER-dependent pathway. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1439-1454, 2017.
Collapse
Affiliation(s)
- Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Cho-Won Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - So-Ye Jeon
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Yong-Sub Byun
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Ochang-eup, Cheongwon-gun, Chungbuk, Republic of Korea
| | - Eui-Bae Jeung
- Laboratory of Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ki-Hoan Nam
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Ochang-eup, Cheongwon-gun, Chungbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
28
|
Li H, Spagnol G, Zheng L, Stauch KL, Sorgen PL. Regulation of Connexin43 Function and Expression by Tyrosine Kinase 2. J Biol Chem 2016; 291:15867-80. [PMID: 27235399 DOI: 10.1074/jbc.m116.727008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Indexed: 11/06/2022] Open
Abstract
Connexin43 (Cx43) assembly and degradation, the regulation of electrical and metabolic coupling, as well as modulating the interaction with other proteins, involve phosphorylation. Here, we identified and characterized the biological significance of a novel tyrosine kinase that phosphorylates Cx43, tyrosine kinase 2 (Tyk2). Activation of Tyk2 led to a decrease in Cx43 gap junction communication by increasing the turnover rate of Cx43 from the plasma membrane. Tyk2 directly phosphorylated Cx43 residues Tyr-247 and Tyr-265, leading to indirect phosphorylation on residues Ser-279/Ser-282 (MAPK) and Ser-368 (PKC). Although this phosphorylation pattern is similar to what has been observed following Src activation, the response caused by Tyk2 occurred when Src was inactive in NRK cells. Knockdown of Tyk2 at the permissive temperature (active v-Src) in LA-25 cells decreased Cx43 phosphorylation, indicating that although activation of Tyk2 and v-Src leads to phosphorylation of the same Cx43CT residues, they are not identical in level at each site. Additionally, angiotensin II activation of Tyk2 increased the intracellular protein level of Cx43 via STAT3. These findings indicate that, like Src, Tyk2 can also inhibit gap junction communication by phosphorylating Cx43.
Collapse
Affiliation(s)
- Hanjun Li
- From the University of Nebraska Medical Center, Omaha, Nebraska 68105
| | - Gaelle Spagnol
- From the University of Nebraska Medical Center, Omaha, Nebraska 68105
| | - Li Zheng
- From the University of Nebraska Medical Center, Omaha, Nebraska 68105
| | - Kelly L Stauch
- From the University of Nebraska Medical Center, Omaha, Nebraska 68105
| | - Paul L Sorgen
- From the University of Nebraska Medical Center, Omaha, Nebraska 68105
| |
Collapse
|
29
|
Katoch P, Mitra S, Ray A, Kelsey L, Roberts BJ, Wahl JK, Johnson KR, Mehta PP. The carboxyl tail of connexin32 regulates gap junction assembly in human prostate and pancreatic cancer cells. J Biol Chem 2015; 290:4647-4662. [PMID: 25548281 PMCID: PMC4335205 DOI: 10.1074/jbc.m114.586057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 12/23/2014] [Indexed: 12/20/2022] Open
Abstract
Connexins, the constituent proteins of gap junctions, are transmembrane proteins. A connexin (Cx) traverses the membrane four times and has one intracellular and two extracellular loops with the amino and carboxyl termini facing the cytoplasm. The transmembrane and the extracellular loop domains are highly conserved among different Cxs, whereas the carboxyl termini, often called the cytoplasmic tails, are highly divergent. We have explored the role of the cytoplasmic tail of Cx32, a Cx expressed in polarized and differentiated cells, in regulating gap junction assembly. Our results demonstrate that compared with the full-length Cx32, the cytoplasmic tail-deleted Cx32 is assembled into small gap junctions in human pancreatic and prostatic cancer cells. Our results further document that the expression of the full-length Cx32 in cells, which express the tail-deleted Cx32, increases the size of gap junctions, whereas the expression of the tail-deleted Cx32 in cells, which express the full-length Cx32, has the opposite effect. Moreover, we show that the tail is required for the clustering of cell-cell channels and that in cells expressing the tail-deleted Cx32, the expression of cell surface-targeted cytoplasmic tail alone is sufficient to enhance the size of gap junctions. Our live-cell imaging data further demonstrate that gap junctions formed of the tail-deleted Cx32 are highly mobile compared with those formed of full-length Cx32. Our results suggest that the cytoplasmic tail of Cx32 is not required to initiate the assembly of gap junctions but for their subsequent growth and stability. Our findings suggest that the cytoplasmic tail of Cx32 may be involved in regulating the permeability of gap junctions by regulating their size.
Collapse
Affiliation(s)
- Parul Katoch
- From the Department of Biochemistry and Molecular Biology, Department of Oral Biology, Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Shalini Mitra
- From the Department of Biochemistry and Molecular Biology, Department of Oral Biology, Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Anuttoma Ray
- From the Department of Biochemistry and Molecular Biology, Department of Oral Biology, Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Linda Kelsey
- From the Department of Biochemistry and Molecular Biology, Department of Oral Biology, Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Brett J Roberts
- From the Department of Biochemistry and Molecular Biology, Department of Oral Biology, Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - James K Wahl
- From the Department of Biochemistry and Molecular Biology, Department of Oral Biology, Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Keith R Johnson
- From the Department of Biochemistry and Molecular Biology, Department of Oral Biology, Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Parmender P Mehta
- From the Department of Biochemistry and Molecular Biology, Department of Oral Biology, Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198.
| |
Collapse
|
30
|
Kelsey L, Katoch P, Ray A, Mitra S, Chakraborty S, Lin MF, Mehta PP. Vitamin D3 regulates the formation and degradation of gap junctions in androgen-responsive human prostate cancer cells. PLoS One 2014; 9:e106437. [PMID: 25188420 PMCID: PMC4154685 DOI: 10.1371/journal.pone.0106437] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 08/06/2014] [Indexed: 11/19/2022] Open
Abstract
1α-25(OH)2 vitamin D3 (1-25D), an active hormonal form of Vitamin D3, is a well-known chemopreventive and pro-differentiating agent. It has been shown to inhibit the growth of several prostate cancer cell lines. Gap junctions, formed of proteins called connexins (Cx), are ensembles of cell-cell channels, which permit the exchange of small growth regulatory molecules between adjoining cells. Cell-cell communication mediated by gap junctional channels is an important homeostatic control mechanism for regulating cell growth and differentiation. We have investigated the effect of 1-25D on the formation and degradation of gap junctions in an androgen-responsive prostate cancer cell line, LNCaP, which expresses retrovirally-introduced Cx32. Connexin32 is expressed by the luminal and well-differentiated cells of normal prostate and prostate tumors. Our results document that 1-25D enhances the expression of Cx32 and its subsequent assembly into gap junctions. Our results further show that 1-25D prevents androgen-regulated degradation of Cx32, post-translationally, independent of androgen receptor (AR)-mediated signaling. Finally, our findings document that formation of gap junctions sensitizes Cx32-expressing LNCaP cells to the growth inhibitory effects of 1-25D and alters their morphology. These findings suggest that the growth-inhibitory effects of 1-25D in LNCaP cells may be related to its ability to modulate the assembly of Cx32 into gap junctions.
Collapse
Affiliation(s)
- Linda Kelsey
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Parul Katoch
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Anuttoma Ray
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Shalini Mitra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Souvik Chakraborty
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ming-Fong Lin
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Parmender P. Mehta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
31
|
Wang H, Kane AW, Lee C, Ahn S. Gli3 repressor controls cell fates and cell adhesion for proper establishment of neurogenic niche. Cell Rep 2014; 8:1093-104. [PMID: 25127137 DOI: 10.1016/j.celrep.2014.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 06/13/2014] [Accepted: 07/03/2014] [Indexed: 10/24/2022] Open
Abstract
Neural stem cells (NSCs) in the subventricular zone (SVZ) rely on environmental signals provided by the neurogenic niche for their proper function. However, little is known about the initial steps of niche establishment, as embryonic radial glia transition to postnatal NSCs. Here, we identify Gli3 repressor (Gli3R), a component of the Sonic hedgehog (Shh) pathway, as a critical factor controlling both cell-type specification and structural organization of the developing SVZ. We demonstrate that Gli3R expressed in radial glia temporally regulates gp130/STAT3 signaling at the transcriptional level to suppress glial characteristics in differentiating ependymal cells. In addition, Gli3R maintains the proper level of Numb in ependymal cells to allow localization of cell adhesion molecules such as vascular cell adhesion molecule (VCAM) and E-cadherin. Thus, our findings reveal a role for Gli3R as a mediator of niche establishment and provide insights into the conditions required for proper SVZ neurogenic niche formation.
Collapse
Affiliation(s)
- Hui Wang
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna W Kane
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; Brown-NIH Graduate Partnership Program, Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Cheol Lee
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sohyun Ahn
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
32
|
Connexins: mechanisms regulating protein levels and intercellular communication. FEBS Lett 2014; 588:1212-20. [PMID: 24457202 DOI: 10.1016/j.febslet.2014.01.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 11/21/2022]
Abstract
Intercellular communication can occur through gap junction channels, which are comprised of connexin proteins. Therefore, levels of connexins can directly correlate with gap junctional intercellular communication. Because gap junctions have a critical role in maintaining cellular homeostasis, the regulation of connexin protein levels is important. In the connexin life cycle, connexin protein levels can be modified through differential gene transcription or altered through trafficking and degradation mechanisms. More recently, significant attention has been directed to the pathways that cells utilize to increase or decrease connexin levels and thus indirectly, gap junctional communication. Here, we review the studies revealing the mechanisms that affect connexin protein levels and gap junctional intercellular communication.
Collapse
|
33
|
Defamie N, Chepied A, Mesnil M. Connexins, gap junctions and tissue invasion. FEBS Lett 2014; 588:1331-8. [PMID: 24457198 DOI: 10.1016/j.febslet.2014.01.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 12/14/2022]
Abstract
Formation of metastases negatively impacts the survival prognosis of cancer patients. Globally, if the various steps involved in their formation are relatively well identified, the molecular mechanisms responsible for the emergence of invasive cancer cells are still incompletely resolved. Elucidating what are the mechanisms that allow cancer cells to evade from the tumor is a crucial point since it is the first step of the metastatic potential of a solid tumor. In order to be invasive, cancer cells have to undergo transformations such as down-regulation of cell-cell adhesions, modification of cell-matrix adhesions and acquisition of proteolytic properties. These transformations are accompanied by the capacity to "activate" stromal cells, which may favor the motility of the invasive cells through the extracellular matrix. Since modulation of gap junctional intercellular communication is known to be involved in cancer, we were interested to consider whether these different transformations necessary for the acquisition of invasive phenotype are related with gap junctions and their structural proteins, the connexins. In this review, emerging roles of connexins and gap junctions in the process of tissue invasion are proposed.
Collapse
Affiliation(s)
- Norah Defamie
- Team IP2C, STIM laboratory, University of Poitiers, CNRS ERL 7368, 1 rue Georges Bonnet, B36, 86073 Poitiers Cedex9, France.
| | - Amandine Chepied
- Team IP2C, STIM laboratory, University of Poitiers, CNRS ERL 7368, 1 rue Georges Bonnet, B36, 86073 Poitiers Cedex9, France.
| | - Marc Mesnil
- Team IP2C, STIM laboratory, University of Poitiers, CNRS ERL 7368, 1 rue Georges Bonnet, B36, 86073 Poitiers Cedex9, France.
| |
Collapse
|
34
|
Mutation of Human Connexin43 Amino Acids S279/S282 Increases Protein Stability Upon Treatment with Epidermal Growth Factor. Cell Biochem Biophys 2014; 69:379-84. [DOI: 10.1007/s12013-013-9811-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Cochrane K, Su V, Lau AF. The connexin43-interacting protein, CIP85, mediates the internalization of connexin43 from the plasma membrane. ACTA ACUST UNITED AC 2013; 20:53-66. [PMID: 23586710 DOI: 10.3109/15419061.2013.784745] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CIP85 was previously identified as a connexin43 (Cx43)-interacting protein that is ubiquitously expressed in multiple mammalian tissues and cell types. The interaction between the SH3 domain of CIP85 and a proline-rich region of Cx43 has previously been associated with an increased rate of Cx43 turnover through lysosomal mechanisms. This report presents biochemical and immunofluorescence evidence that overexpression of CIP85 reduced the presence of Cx43 in gap junction plaques at the plasma membrane. Furthermore, this effect was dependent upon the interaction of CIP85 with Cx43 at the plasma membrane. These results indicate that CIP85 increases Cx43 turnover by accelerating the internalization of Cx43 from the plasma membrane. CIP85 was also observed to interact with clathrin, which suggested a role for CIP85 in the clathrin-mediated internalization of Cx43.
Collapse
Affiliation(s)
- Kimberly Cochrane
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | | |
Collapse
|
36
|
Johnson KE, Mitra S, Katoch P, Kelsey LS, Johnson KR, Mehta PP. Phosphorylation on Ser-279 and Ser-282 of connexin43 regulates endocytosis and gap junction assembly in pancreatic cancer cells. Mol Biol Cell 2013; 24:715-33. [PMID: 23363606 PMCID: PMC3596244 DOI: 10.1091/mbc.e12-07-0537] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The molecular mechanisms regulating the assembly of connexins (Cxs) into gap junctions are poorly understood. Using human pancreatic tumor cell lines BxPC3 and Capan-1, which express Cx26 and Cx43, we show that, upon arrival at the cell surface, the assembly of Cx43 is impaired. Connexin43 fails to assemble, because it is internalized by clathrin-mediated endocytosis. Assembly is restored upon expressing a sorting-motif mutant of Cx43, which does not interact with the AP2 complex, and by expressing mutants that cannot be phosphorylated on Ser-279 and Ser-282. The mutants restore assembly by preventing clathrin-mediated endocytosis of Cx43. Our results also document that the sorting-motif mutant is assembled into gap junctions in cells in which the expression of endogenous Cx43 has been knocked down. Remarkably, Cx43 mutants that cannot be phosphorylated on Ser-279 or Ser-282 are assembled into gap junctions only when connexons are composed of Cx43 forms that can be phosphorylated on these serines and forms in which phosphorylation on these serines is abolished. Based on the subcellular fate of Cx43 in single and contacting cells, our results document that the endocytic itinerary of Cx43 is altered upon cell-cell contact, which causes Cx43 to traffic by EEA1-negative endosomes en route to lysosomes. Our results further show that gap-junctional plaques formed of a sorting motif-deficient mutant of Cx43, which is unable to be internalized by the clathrin-mediated pathway, are predominantly endocytosed in the form of annular junctions. Thus the differential phosphorylation of Cx43 on Ser-279 and Ser-282 is fine-tuned to control Cx43's endocytosis and assembly into gap junctions.
Collapse
Affiliation(s)
- Kristen E Johnson
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | | | |
Collapse
|
37
|
Shirkoohi R. Epithelial mesenchymal transition from a natural gestational orchestration to a bizarre cancer disturbance. Cancer Sci 2012. [PMID: 23181983 DOI: 10.1111/cas.12074] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The epithelial to mesenchymal transition (EMT), a pathologic phenomenon in cancer, has a twin in the embryonic period of life. In the first one, its promotion will cause metastasis to become a life-threatening stage of cancer, while in the second it will lead to organogenesis, which is necessary for all living creatures. There is one more from this phenomenon, which occurs during the wound healing process and if dys-regulated can lead to fibrosis. In both there are stimulants in common and one that are different. Stages start from cell-cell junction dissociation followed by morphological changes and behavioral and essence alterations. To control the EMT as a bizarre disturbance in cancer and metastasis, initially it is better to understand the wonder of natural gestational orchestration in early life. In this review, first the structure of the two heads of the spectrum is described followed by the cellular and micro-environmental alterations during this phenomenon. Understanding cellular behavior in this process and what makes them invasive resistant stemness cells will be of great importance in highlighting roads to cancer treatment.
Collapse
Affiliation(s)
- Reza Shirkoohi
- Genetic Group, Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Guo Y, Wang N, Gao YM, Yao JF, Li Y, Yin CJ, Zhang WJ. Treatment with baicalin up-regulates the expression of connexion 26 and connexion 43 in human hepatocellular carcinoma cell line SMMC-7721. Shijie Huaren Xiaohua Zazhi 2012; 20:3197-3202. [DOI: 10.11569/wcjd.v20.i33.3197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of treatment with baicalin on the expression of connexion 26 (Cx26) and connexion 43 (Cx43) in human hepatocellular cell line SMMC-7721.
METHODS: SMMC-7721 cells were randomly divided into 4 groups: normal control group, low-dose (10 mg/L) baicalin group, medium-dose (20 mg/L) baicalin group, and high-dose (40 mg/L) baicalin group. Gap junction intercellular communication (GJIC) was measured by scrap loading/dye transfer assay (SL/DT). The expression of Cx26 and Cx43 mRNAs in SMMC-7721 cells was determined by RT-PCR. The expression of Cx26 protein was detected by Western blot, and that of Cx43 protein was detected by immunohistochemistry.
RESULTS: Compared to the normal control group, the expression of Cx26 mRNA and protein was significantly enhanced in SMMC-7721 cells treated with low, medium and high concentrations of baicalin (mRNA: 0.148 ± 0.111, 10.253 ± 0.222, 17.283 ± 0.024 vs 0.138 ± 0.111; all P < 0.05; protein: 0.516 ± 0.029, 0.759 ± 0.020, 1.019 ± 0.076 vs 0.367 ± 0.029; all P < 0.05). Compared to the normal control group, the expression of Cx43 mRNA showed no significant changes, but the expression of Cx43 protein was significantly enhanced in SMMC-7721 cells treated with different concentrations of baicalin.
CONCLUSION: Restoration or enhancement of GJIC induced by up-regulation of Cx26 and Cx43 is likely to be an important molecular mechanism by which baicalin inhibits tumor growth.
Collapse
|
39
|
Degradation of connexins through the proteasomal, endolysosomal and phagolysosomal pathways. J Membr Biol 2012; 245:389-400. [PMID: 22772442 DOI: 10.1007/s00232-012-9461-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/20/2012] [Indexed: 01/23/2023]
Abstract
Connexins comprise gap junction channels, which create a direct conduit between the cytoplasms of adjacent cells and provide for intercellular communication. Therefore, the level of total cellular connexin protein can have a direct influence on the level of intercellular communication. Control of connexin protein levels can occur through different mechanisms during the connexin life cycle, such as by regulation of connexin gene expression and turnover of existing protein. The degradation of connexins has been extensively studied, revealing proteasomal, endolysosomal and more recently autophagosomal degradation mechanisms that modulate connexin turnover and, subsequently, affect intercellular communication. Here, we review the current knowledge of connexin degradation pathways.
Collapse
|
40
|
Kelsey L, Katoch P, Johnson KE, Batra SK, Mehta PP. Retinoids regulate the formation and degradation of gap junctions in androgen-responsive human prostate cancer cells. PLoS One 2012; 7:e32846. [PMID: 22514600 PMCID: PMC3326013 DOI: 10.1371/journal.pone.0032846] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/31/2012] [Indexed: 12/13/2022] Open
Abstract
The retinoids, the natural or synthetic derivatives of Vitamin A (retinol), are essential for the normal development of prostate and have been shown to modulate prostate cancer progression in vivo as well as to modulate growth of several prostate cancer cell lines. 9-cis-retinoic acid and all-trans-retinoic acid are the two most important metabolites of retinol. Gap junctions, formed of proteins called connexins, are ensembles of intercellular channels that permit the exchange of small growth regulatory molecules between adjoining cells. Gap junctional communication is instrumental in the control of cell growth. We examined the effect of 9-cis-retinoic acid and all-trans retinoic acid on the formation and degradation of gap junctions as well as on junctional communication in an androgen-responsive prostate cancer cell line, LNCaP, which expressed retrovirally introduced connexin32, a connexin expressed by the luminal cells and well-differentiated cells of prostate tumors. Our results showed that 9-cis-retinoic acid and all-trans retinoic acid enhanced the assembly of connexin32 into gap junctions. Our results further showed that 9-cis-retinoic acid and all-trans-retinoic acid prevented androgen-regulated degradation of gap junctions, post-translationally, independent of androgen receptor mediated signaling. Finally, our findings showed that formation of gap junctions sensitized connexin32-expressing LNCaP cells to the growth modifying effects of 9-cis-retinoic acid, all-trans-retinoic acid and androgens. Thus, the effects of retinoids and androgens on growth and the formation and degradation of gap junctions and their function might be related to their ability to modulate prostate growth and cancer.
Collapse
Affiliation(s)
| | | | | | | | - Parmender P. Mehta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
41
|
Bejarano E, Girao H, Yuste A, Patel B, Marques C, Spray DC, Pereira P, Cuervo AM. Autophagy modulates dynamics of connexins at the plasma membrane in a ubiquitin-dependent manner. Mol Biol Cell 2012; 23:2156-69. [PMID: 22496425 PMCID: PMC3364179 DOI: 10.1091/mbc.e11-10-0844] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Connexins modulate intercellular communication when assembled in gap junctions. Compromised macroautophagy increases cellular communication due to failure to degrade connexins at gap junctions. Nedd4-mediated ubiquitinylation of the connexin molecule is required to trigger its autophagy-dependent internalization and degradation. Different pathways contribute to the turnover of connexins, the main structural components of gap junctions (GJs). The cellular pool of connexins targeted to each pathway and the functional consequences of degradation through these degradative pathways are unknown. In this work, we focused on the contribution of macroautophagy to connexin degradation. Using pharmacological and genetic blockage of macroautophagy both in vitro and in vivo, we found that the cellular pool targeted by this autophagic system is primarily the one organized into GJs. Interruption of connexins' macroautophagy resulted in their retention at the plasma membrane in the form of functional GJs and subsequent increased GJ-mediated intercellular diffusion. Up-regulation of macroautophagy alone is not sufficient to induce connexin internalization and degradation. To better understand what factors determine the autophagic degradation of GJ connexins, we analyzed the changes undergone by the fraction of plasma membrane connexin 43 targeted for macroautophagy and the sequence of events that trigger this process. We found that Nedd4-mediated ubiquitinylation of the connexin molecule is required to recruit the adaptor protein Eps15 to the GJ and to initiate the autophagy-dependent internalization and degradation of connexin 43. This study reveals a novel regulatory role for macroautophagy in GJ function that is directly dependent on the ubiquitinylation of plasma membrane connexins.
Collapse
Affiliation(s)
- Eloy Bejarano
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Nola S, Erasmus JC, Braga VMM. Quantitative and robust assay to measure cell-cell contact assembly and maintenance. Methods Mol Biol 2012; 827:143-155. [PMID: 22144273 DOI: 10.1007/978-1-61779-442-1_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Epithelial junction formation and maintenance are multistep processes that rely on the clustering of macromolecular complexes. These events are highly regulated by signalling pathways that involve Rho small GTPases. Usually, when analysing the contribution of different components of Rho-dependent pathways to cell-cell adhesion, the localisation of adhesion receptors at junctions is evaluated by immunofluorescence. However, we find that this method has limitations on the quantification (dynamic range), ability to detect partial phenotypes and to differentiate between the participation of a given regulatory protein in assembly and/or maintenance of cell-cell contacts.In this chapter, we describe a suitable method, the aggregation assay, in which we adapted a quantitative strategy to allow objective and reproducible detection of partial phenotypes. Importantly, this methodology estimates the ability of cells to form junctions and their resistance to mechanical shearing forces (stabilisation).
Collapse
Affiliation(s)
- Sébastien Nola
- Faculty of Medicine, Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, UK
| | | | | |
Collapse
|
43
|
Hervé JC, Derangeon M, Sarrouilhe D, Giepmans BNG, Bourmeyster N. Gap junctional channels are parts of multiprotein complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1844-65. [PMID: 22197781 DOI: 10.1016/j.bbamem.2011.12.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 11/28/2011] [Accepted: 12/06/2011] [Indexed: 12/16/2022]
Abstract
Gap junctional channels are a class of membrane channels composed of transmembrane channel-forming integral membrane proteins termed connexins, innexins or pannexins that mediate direct cell-to-cell or cell-to extracellular medium communication in almost all animal tissues. The activity of these channels is tightly regulated, particularly by intramolecular modifications as phosphorylations of proteins and via the formation of multiprotein complexes where pore-forming subunits bind to auxiliary channel subunits and associate with scaffolding proteins that play essential roles in channel localization and activity. Scaffolding proteins link signaling enzymes, substrates, and potential effectors (such as channels) into multiprotein signaling complexes that may be anchored to the cytoskeleton. Protein-protein interactions play essential roles in channel localization and activity and, besides their cell-to-cell channel-forming functions, gap junctional proteins now appear involved in different cellular functions (e.g. transcriptional and cytoskeletal regulations). The present review summarizes the recent progress regarding the proteins capable of interacting with junctional proteins and highlights the function of these protein-protein interactions in cell physiology and aberrant function in diseases. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and functions.
Collapse
Affiliation(s)
- Jean-Claude Hervé
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, CNRS, Poitiers, France.
| | | | | | | | | |
Collapse
|
44
|
Straub BK, Rickelt S, Zimbelmann R, Grund C, Kuhn C, Iken M, Ott M, Schirmacher P, Franke WW. E-N-cadherin heterodimers define novel adherens junctions connecting endoderm-derived cells. ACTA ACUST UNITED AC 2011; 195:873-87. [PMID: 22105347 PMCID: PMC3257573 DOI: 10.1083/jcb.201106023] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intercellular junctions play a pivotal role in tissue development and function and also in tumorigenesis. In epithelial cells, decrease or loss of E-cadherin, the hallmark molecule of adherens junctions (AJs), and increase of N-cadherin are widely thought to promote carcinoma progression and metastasis. In this paper, we show that this "cadherin switch" hypothesis does not hold for diverse endoderm-derived cells and cells of tumors derived from them. We show that the cadherins in a major portion of AJs in these cells can be chemically cross-linked in E-N heterodimers. We also show that cells possessing E-N heterodimer AJs can form semistable hemihomotypic AJs with purely N-cadherin-based AJs of mesenchymally derived cells, including stroma cells. We conclude that these heterodimers are the major AJ constituents of several endoderm-derived tissues and tumors and that the prevailing concept of antagonistic roles of these two cadherins in developmental and tumor biology has to be reconsidered.
Collapse
Affiliation(s)
- Beate K Straub
- Helmholtz Group for Cell Biology, German Cancer Research Center, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Leithe E, Sirnes S, Fykerud T, Kjenseth A, Rivedal E. Endocytosis and post-endocytic sorting of connexins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1870-9. [PMID: 21996040 DOI: 10.1016/j.bbamem.2011.09.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/19/2011] [Accepted: 09/28/2011] [Indexed: 12/15/2022]
Abstract
The connexins constitute a family of integral membrane proteins that form intercellular channels, enabling adjacent cells in solid tissues to directly exchange ions and small molecules. These channels assemble into distinct plasma membrane domains known as gap junctions. Gap junction intercellular communication plays critical roles in numerous cellular processes, including control of cell growth and differentiation, maintenance of tissue homeostasis and embryonic development. Gap junctions are dynamic plasma membrane domains, and there is increasing evidence that modulation of endocytosis and post-endocytic trafficking of connexins are important mechanisms for regulating the level of functional gap junctions at the plasma membrane. The emerging picture is that multiple pathways exist for endocytosis and sorting of connexins to lysosomes, and that these pathways are differentially regulated in response to physiological and pathophysiological stimuli. Recent studies suggest that endocytosis and lysosomal degradation of connexins is controlled by a complex interplay between phosphorylation and ubiquitination. This review summarizes recent progress in understanding the molecular mechanisms involved in endocytosis and post-endocytic sorting of connexins, and the relevance of these processes to the regulation of gap junction intercellular communication under normal and pathophysiological conditions. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
Affiliation(s)
- Edward Leithe
- Department of Cancer Prevention, Oslo University Hospital, Oslo, Norway
| | | | | | | | | |
Collapse
|
46
|
Ubiquitin-mediated internalization of connexin43 is independent of the canonical endocytic tyrosine-sorting signal. Biochem J 2011; 437:255-67. [DOI: 10.1042/bj20102059] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gap junctions are specialized cell–cell contacts that provide direct intercellular communication between eukaryotic cells. The tyrosine-sorting signal (YXXØ), present at amino acids 286–289 of Cx43 (connexin43), has been implicated in the internalization of the protein. In recent years, ubiquitination of Cx43 has also been proposed to regulate gap junction intercellular communication; however, the underlying mechanism and molecular players involved remain elusive. In the present study, we demonstrate that ubiquitinated Cx43 is internalized through a mechanism that is independent of the YXXØ signal. Indeed, expression of a Cx43–Ub (ubiquitin) chimaera was shown to drive the internalization of a mutant Cx43 in which the YXXØ motif was eliminated. Immunofluorescence, cycloheximide-chase and cell-surface-protein biotinylation experiments demonstrate that oligomerization of Cx43–Ub into hemichannels containing wild-type Cx43 or mutant Cx43Y286A is sufficient to drive the internalization of the protein. Furthermore, the internalization of Cx43 induced by Cx43–Ub was shown to depend on its interaction with epidermal growth factor receptor substrate 15.
Collapse
|