1
|
Hopkinson M, Pitsillides AA. Extracellular matrix: Dystroglycan interactions-Roles for the dystrophin-associated glycoprotein complex in skeletal tissue dynamics. Int J Exp Pathol 2025; 106:e12525. [PMID: 39923120 PMCID: PMC11807010 DOI: 10.1111/iep.12525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 02/10/2025] Open
Abstract
Contributions made by the dystrophin-associated glycoprotein complex (DGC) to cell-cell and cell-extracellular matrix (ECM) interactions are vital in development, homeostasis and pathobiology. This review explores how DGC functions may extend to skeletal pathophysiology by appraising the known roles of its major ECM ligands, and likely associated DGC signalling pathways, in regulating cartilage and bone cell behaviour and emergent skeletal phenotypes. These considerations will be contextualised by highlighting the potential of studies into the role of the DGC in isolated chondrocytes, osteoblasts and osteoclasts, and by fuller deliberation of skeletal phenotypes that may emerge in very young mice lacking vital, yet diverse core elements of the DGC. Our review points to roles for individual DGC components-including the glycosylation of dystroglycan itself-beyond the establishment of membrane stability which clearly accounts for severe muscle phenotypes in muscular dystrophy. It implies that the short stature, low bone mineral density, poor bone health and greater fracture risk in these patients, which has been attributed due to primary deficiencies in muscle-evoked skeletal loading, may instead arise due to primary roles for the DGC in controlling skeletal tissue (re)modelling.
Collapse
Affiliation(s)
- Mark Hopkinson
- Skeletal Biology Group, Comparative Biomedical SciencesRoyal Veterinary CollegeLondonUK
| | - Andrew A. Pitsillides
- Skeletal Biology Group, Comparative Biomedical SciencesRoyal Veterinary CollegeLondonUK
| |
Collapse
|
2
|
Huang G, Ternes L, Lanciault C, MacPherson-Hawthorne K, Chang YH, Sears RC, Muschler JL. Suppression of dystroglycan function accompanies pancreatic acinar-to-ductal metaplasia and favours dysplasia development. J Pathol 2024; 264:411-422. [PMID: 39435649 PMCID: PMC11560643 DOI: 10.1002/path.6356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/04/2024] [Indexed: 10/23/2024]
Abstract
The basement membrane (BM) is among the predominant microenvironmental factors of normal epithelia and of precancerous epithelial lesions. Evidence suggests that the BM functions not only as a barrier to tumour invasion but also as an active tumour-suppressing signalling substrate during premalignancy. However, the molecular foundations of such mechanisms have not been elucidated. Here we explore potential tumour-suppressing functions of the BM during precancer evolution, focusing on the expression and function of the extracellular matrix receptor dystroglycan in the pancreas and pancreatic disease. We show that the dystroglycan protein is highly expressed in the acinar compartment of the normal pancreas but lower in the ductal compartment. Moreover, there is a strong suppression of dystroglycan protein expression with acinar-to-ductal metaplasia in chronic pancreatitis and in all stages of pancreatic precancer and cancer evolution, from acinar-to-ductal metaplasia to dysplasia to adenocarcinoma. The conditional knockout of dystroglycan in the murine pancreas produced little evidence of developmental or functional deficiency. However, conditional deletion of dystroglycan expression in the context of oncogenic Kras expression led to a clear acceleration of pancreatic disease evolution, including accelerated dysplasia development and decreased survival. These data establish dystroglycan as a suppressor of pancreatic dysplasia development and one that is muted in chronic pancreatitis and at the earliest stages of oncogene-induced transformation. We conclude that dystroglycan is an important mediator of the tumour-suppressing functions of the BM during precancer evolution and that reduced dystroglycan function increases cancer risk, highlighting the dynamics of cell-BM interactions as important determinants of early cancer progression. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Ge Huang
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Luke Ternes
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | | | | | - Young Hwan Chang
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Rosalie C. Sears
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
| | - John L. Muschler
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
3
|
Walentek P. Signaling Control of Mucociliary Epithelia: Stem Cells, Cell Fates, and the Plasticity of Cell Identity in Development and Disease. Cells Tissues Organs 2022; 211:736-753. [PMID: 33902038 PMCID: PMC8546001 DOI: 10.1159/000514579] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/19/2021] [Indexed: 01/25/2023] Open
Abstract
Mucociliary epithelia are composed of multiciliated, secretory, and stem cells and line various organs in vertebrates such as the respiratory tract. By means of mucociliary clearance, those epithelia provide a first line of defense against inhaled particles and pathogens. Mucociliary clearance relies on the correct composition of cell types, that is, the proper balance of ciliated and secretory cells. A failure to generate and to maintain correct cell type composition and function results in impaired clearance and high risk to infections, such as in congenital diseases (e.g., ciliopathies) as well as in acquired diseases, including asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). While it remains incompletely resolved how precisely cell types are specified and maintained in development and disease, many studies have revealed important mechanisms regarding the signaling control in mucociliary cell types in various species. Those studies not only provided insights into the signaling contribution to organ development and regeneration but also highlighted the remarkable plasticity of cell identity encountered in mucociliary maintenance, including frequent trans-differentiation events during homeostasis and specifically in disease. This review will summarize major findings and provide perspectives regarding the future of mucociliary research and the treatment of chronic airway diseases associated with tissue remodeling.
Collapse
Affiliation(s)
- Peter Walentek
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Chuyen A, Rulquin C, Daian F, Thomé V, Clément R, Kodjabachian L, Pasini A. The Scf/Kit pathway implements self-organized epithelial patterning. Dev Cell 2021; 56:795-810.e7. [PMID: 33756121 DOI: 10.1016/j.devcel.2021.02.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 12/22/2020] [Accepted: 02/22/2021] [Indexed: 01/11/2023]
Abstract
How global patterns emerge from individual cell behaviors is poorly understood. In the Xenopus embryonic epidermis, multiciliated cells (MCCs) are born in a random pattern within an inner mesenchymal layer and subsequently intercalate at regular intervals into an outer epithelial layer. Using video microscopy and mathematical modeling, we found that regular pattern emergence involves mutual repulsion among motile immature MCCs and affinity toward outer-layer intercellular junctions. Consistently, Arp2/3-mediated actin remodeling is required for MCC patterning. Mechanistically, we show that the Kit tyrosine kinase receptor, expressed in MCCs, and its ligand Scf, expressed in outer-layer cells, are both required for regular MCC distribution. Membrane-associated Scf behaves as a potent adhesive cue for MCCs, while its soluble form promotes their mutual repulsion. Finally, Kit expression is sufficient to confer order to a disordered heterologous cell population. This work reveals how a single signaling system can implement self-organized large-scale patterning.
Collapse
|
5
|
A 'tad' of hope in the fight against airway disease. Biochem Soc Trans 2021; 48:2347-2357. [PMID: 33079166 PMCID: PMC7614538 DOI: 10.1042/bst20200745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 11/17/2022]
Abstract
Xenopus tadpoles have emerged as a powerful in vivo model system to study mucociliary epithelia such as those found in the human airways. The tadpole skin has mucin-secreting cells, motile multi-ciliated cells, ionocytes (control local ionic homeostasis) and basal stem cells. This cellular architecture is very similar to the large airways of the human lungs and represents an easily accessible and experimentally tractable model system to explore the molecular details of mucociliary epithelia. Each of the cell types in the tadpole skin has a human equivalent and a conserved network of genes and signalling pathways for their differentiation has been discovered. Great insight into the function of each of the cell types has been achieved using the Xenopus model and this has enhanced our understanding of airway disease. This simple model has already had a profound impact on the field but, as molecular technologies (e.g. gene editing and live imaging) continue to develop apace, its use for understanding individual cell types and their interactions will likely increase. For example, its small size and genetic tractability make it an ideal model for live imaging of a mucociliary surface especially during environmental challenges such as infection. Further potential exists for the mimicking of human genetic mutations that directly cause airway disease and for the pre-screening of drugs against novel therapeutic targets.
Collapse
|
6
|
Yatsenko AS, Kucherenko MM, Xie Y, Urlaub H, Shcherbata HR. Exocyst-mediated membrane trafficking of the lissencephaly-associated ECM receptor dystroglycan is required for proper brain compartmentalization. eLife 2021; 10:63868. [PMID: 33620318 PMCID: PMC7929561 DOI: 10.7554/elife.63868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
To assemble a brain, differentiating neurons must make proper connections and establish specialized brain compartments. Abnormal levels of cell adhesion molecules disrupt these processes. Dystroglycan (Dg) is a major non-integrin cell adhesion receptor, deregulation of which is associated with dramatic neuroanatomical defects such as lissencephaly type II or cobblestone brain. The previously established Drosophila model for cobblestone lissencephaly was used to understand how Dg is regulated in the brain. During development, Dg has a spatiotemporally dynamic expression pattern, fine-tuning of which is crucial for accurate brain assembly. In addition, mass spectrometry analyses identified numerous components associated with Dg in neurons, including several proteins of the exocyst complex. Data show that exocyst-based membrane trafficking of Dg allows its distinct expression pattern, essential for proper brain morphogenesis. Further studies of the Dg neuronal interactome will allow identification of new factors involved in the development of dystroglycanopathies and advance disease diagnostics in humans.
Collapse
Affiliation(s)
- Andriy S Yatsenko
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Mariya M Kucherenko
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Yuanbin Xie
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Research Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,University Medical Center Göttingen, Bioanalytics, Institute for Clinical Chemistry, Göttingen, Germany
| | - Halyna R Shcherbata
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany.,Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
7
|
Lewis M, Stracker TH. Transcriptional regulation of multiciliated cell differentiation. Semin Cell Dev Biol 2021; 110:51-60. [DOI: 10.1016/j.semcdb.2020.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/25/2020] [Accepted: 04/13/2020] [Indexed: 01/01/2023]
|
8
|
Collins C, Ventrella R, Mitchell BJ. Building a ciliated epithelium: Transcriptional regulation and radial intercalation of multiciliated cells. Curr Top Dev Biol 2020; 145:3-39. [PMID: 34074533 DOI: 10.1016/bs.ctdb.2020.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The epidermis of the Xenopus embryo has emerged as a powerful tool for studying the development of a ciliated epithelium. Interspersed throughout the epithelium are multiciliated cells (MCCs) with 100+ motile cilia that beat in a coordinated manner to generate fluid flow over the surface of the cell. MCCs are essential for various developmental processes and, furthermore, ciliary dysfunction is associated with numerous pathologies. Therefore, understanding the cellular mechanisms involved in establishing a ciliated epithelium are of particular interest. MCCs originate in the inner epithelial layer of Xenopus skin, where Notch signaling plays a critical role in determining which progenitors will adopt a ciliated cell fate. Then, activation of various transcriptional regulators, such as GemC1 and MCIDAS, initiate the MCC transcriptional program, resulting in centriole amplification and the formation of motile cilia. Following specification and differentiation, MCCs undergo the process of radial intercalation, where cells apically migrate from the inner layer to the outer epithelial layer. This process involves the cooperation of various cytoskeletal networks, activation of various signaling molecules, and changes in cell-ECM and cell-cell adhesion. Coordination of these cellular processes is required for complete incorporation into the outer epithelial layer and generation of a functional ciliated epithelium. Here, we highlight recent advances made in understanding the transcriptional cascades required for MCC specification and differentiation and the coordination of cellular processes that facilitate radial intercalation. Proper regulation of these signaling pathways and processes are the foundation for developing a ciliated epithelium.
Collapse
Affiliation(s)
- Caitlin Collins
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Rosa Ventrella
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Brian J Mitchell
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
9
|
Angerilli A, Smialowski P, Rupp RA. The Xenopus animal cap transcriptome: building a mucociliary epithelium. Nucleic Acids Res 2019; 46:8772-8787. [PMID: 30165493 PMCID: PMC6158741 DOI: 10.1093/nar/gky771] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/24/2018] [Indexed: 01/12/2023] Open
Abstract
With the availability of deep RNA sequencing, model organisms such as Xenopus offer an outstanding opportunity to investigate the genetic basis of vertebrate organ formation from its embryonic beginnings. Here we investigate dynamics of the RNA landscape during formation of the Xenopus tropicalis larval epidermis. Differentiation of non-neural ectoderm starts at gastrulation and takes about one day to produce a functional mucociliary epithelium, highly related to the one in human airways. To obtain RNA expression data, uncontaminated by non-epidermal tissues of the embryo, we use prospective ectodermal explants called Animal Caps (ACs), which differentiate autonomously into a ciliated epidermis. Their global transcriptome is investigated at three key timepoints, with a cumulative sequencing depth of ∼108 reads per developmental stage. This database is provided as online Web Tool to the scientific community. In this paper, we report on global changes in gene expression, an unanticipated diversity of mRNA splicing isoforms, expression patterns of repetitive DNA Elements, and the complexity of circular RNAs during this process. Computationally we derive transcription factor hubs from this data set, which may help in the future to define novel genetic drivers of epidermal differentiation in vertebrates.
Collapse
Affiliation(s)
- Alessandro Angerilli
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University München, D-82152 Martinsried, Germany
| | - Pawel Smialowski
- Bioinformatic Core Facility, Biomedical Center, Ludwig-Maximilians-University München, D-82152 Martinsried, Germany.,Helmholtz Zentrum München, Institute of Stem Cell Research, Ingolstädter Landstraße 1, D-85764 Neuherberg-München, Germany
| | - Ralph Aw Rupp
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University München, D-82152 Martinsried, Germany
| |
Collapse
|
10
|
Nickolls AR, Bönnemann CG. The roles of dystroglycan in the nervous system: insights from animal models of muscular dystrophy. Dis Model Mech 2018; 11:11/12/dmm035931. [PMID: 30578246 PMCID: PMC6307911 DOI: 10.1242/dmm.035931] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dystroglycan is a cell membrane protein that binds to the extracellular matrix in a variety of mammalian tissues. The α-subunit of dystroglycan (αDG) is heavily glycosylated, including a special O-mannosyl glycoepitope, relying upon this unique glycosylation to bind its matrix ligands. A distinct group of muscular dystrophies results from specific hypoglycosylation of αDG, and they are frequently associated with central nervous system involvement, ranging from profound brain malformation to intellectual disability without evident morphological defects. There is an expanding literature addressing the function of αDG in the nervous system, with recent reports demonstrating important roles in brain development and in the maintenance of neuronal synapses. Much of these data are derived from an increasingly rich array of experimental animal models. This Review aims to synthesize the information from such diverse models, formulating an up-to-date understanding about the various functions of αDG in neurons and glia of the central and peripheral nervous systems. Where possible, we integrate these data with our knowledge of the human disorders to promote translation from basic mechanistic findings to clinical therapies that take the neural phenotypes into account. Summary: Dystroglycan is a ubiquitous matrix receptor linked to brain and muscle disease. Unraveling the functions of this protein will inform basic and translational research on neural development and muscular dystrophies.
Collapse
Affiliation(s)
- Alec R Nickolls
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.,Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Sedzinski J, Hannezo E, Tu F, Biro M, Wallingford JB. RhoA regulates actin network dynamics during apical surface emergence in multiciliated epithelial cells. J Cell Sci 2017; 130:420-428. [PMID: 28089989 PMCID: PMC5278671 DOI: 10.1242/jcs.194704] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/10/2016] [Indexed: 12/18/2022] Open
Abstract
Homeostatic replacement of epithelial cells from basal precursors is a multistep process involving progenitor cell specification, radial intercalation and, finally, apical surface emergence. Recent data demonstrate that actin-based pushing under the control of the formin protein Fmn1 drives apical emergence in nascent multiciliated epithelial cells (MCCs), but little else is known about this actin network or the control of Fmn1. Here, we explore the role of the small GTPase RhoA in MCC apical emergence. Disruption of RhoA function reduced the rate of apical surface expansion and decreased the final size of the apical domain. Analysis of cell shapes suggests that RhoA alters the balance of forces exerted on the MCC apical surface. Finally, quantitative time-lapse imaging and fluorescence recovery after photobleaching studies argue that RhoA works in concert with Fmn1 to control assembly of the specialized apical actin network in MCCs. These data provide new molecular insights into epithelial apical surface assembly and could also shed light on mechanisms of apical lumen formation.
Collapse
Affiliation(s)
- Jakub Sedzinski
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Edouard Hannezo
- Cavendish Laboratory, Department of Physics, J.J. Thomson Avenue, University of Cambridge, Cambridge CB3 0HE, UK
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Fan Tu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Maté Biro
- Centenary Institute of Cancer Medicine and Cell Biology, Locked Bag 6, Newtown, New South Wales 2042, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
12
|
McClenahan FK, Sharma H, Shan X, Eyermann C, Colognato H. Dystroglycan Suppresses Notch to Regulate Stem Cell Niche Structure and Function in the Developing Postnatal Subventricular Zone. Dev Cell 2016; 38:548-66. [PMID: 27569418 DOI: 10.1016/j.devcel.2016.07.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 05/09/2016] [Accepted: 07/21/2016] [Indexed: 01/11/2023]
Abstract
While the extracellular matrix (ECM) is known to regulate neural stem cell quiescence in the adult subventricular zone (SVZ), the function of ECM in the developing SVZ remains unknown. Here, we report that the ECM receptor dystroglycan regulates a unique developmental restructuring of ECM in the early postnatal SVZ. Dystroglycan is furthermore required for ependymal cell differentiation and assembly of niche pinwheel structures, at least in part by suppressing Notch activation in radial glial cells, which leads to the increased expression of MCI, Myb, and FoxJ1, transcriptional regulators necessary for acquisition of the multiciliated phenotype. Dystroglycan also regulates perinatal radial glial cell proliferation and transition into intermediate gliogenic progenitors, such that either acute or constitutive loss of function in dystroglycan results in increased oligodendrogenesis. These findings reveal a role for dystroglycan in orchestrating both the assembly and function of the SVZ neural stem cell niche.
Collapse
Affiliation(s)
- Freyja K McClenahan
- Department of Pharmacology, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | - Himanshu Sharma
- Department of Pharmacology, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | - Xiwei Shan
- Department of Pharmacology, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | - Christopher Eyermann
- Department of Pharmacology, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | - Holly Colognato
- Department of Pharmacology, Stony Brook University, Stony Brook, NY 11794-8651, USA.
| |
Collapse
|
13
|
Sedzinski J, Hannezo E, Tu F, Biro M, Wallingford JB. Emergence of an Apical Epithelial Cell Surface In Vivo. Dev Cell 2016; 36:24-35. [PMID: 26766441 DOI: 10.1016/j.devcel.2015.12.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/07/2015] [Accepted: 12/10/2015] [Indexed: 12/22/2022]
Abstract
Epithelial sheets are crucial components of all metazoan animals, enclosing organs and protecting the animal from its environment. Epithelial homeostasis poses unique challenges, as addition of new cells and loss of old cells must be achieved without disrupting the fluid-tight barrier and apicobasal polarity of the epithelium. Several studies have identified cell biological mechanisms underlying extrusion of cells from epithelia, but far less is known of the converse mechanism by which new cells are added. Here, we combine molecular, pharmacological, and laser-dissection experiments with theoretical modeling to characterize forces driving emergence of an apical surface as single nascent cells are added to a vertebrate epithelium in vivo. We find that this process involves the interplay between cell-autonomous actin-generated pushing forces in the emerging cell and mechanical properties of neighboring cells. Our findings define the forces driving this cell behavior, contributing to a more comprehensive understanding of epithelial homeostasis.
Collapse
Affiliation(s)
- Jakub Sedzinski
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Edouard Hannezo
- Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Fan Tu
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Maté Biro
- Centenary Institute of Cancer Medicine and Cell Biology, Locked Bag 6, Newtown, NSW 2042, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - John B Wallingford
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA; Patterson Labs, University of Texas, 2401 Speedway, Austin, TX 78712, USA.
| |
Collapse
|
14
|
Genetic Engineering of Dystroglycan in Animal Models of Muscular Dystrophy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:635792. [PMID: 26380289 PMCID: PMC4561298 DOI: 10.1155/2015/635792] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 03/11/2015] [Indexed: 01/24/2023]
Abstract
In skeletal muscle, dystroglycan (DG) is the central component of the dystrophin-glycoprotein complex (DGC), a multimeric protein complex that ensures a strong mechanical link between the extracellular matrix and the cytoskeleton. Several muscular dystrophies arise from mutations hitting most of the components of the DGC. Mutations within the DG gene (DAG1) have been recently associated with two forms of muscular dystrophy, one displaying a milder and one a more severe phenotype. This review focuses specifically on the animal (murine and others) model systems that have been developed with the aim of directly engineering DAG1 in order to study the DG function in skeletal muscle as well as in other tissues. In the last years, conditional animal models overcoming the embryonic lethality of the DG knock-out in mouse have been generated and helped clarifying the crucial role of DG in skeletal muscle, while an increasing number of studies on knock-in mice are aimed at understanding the contribution of single amino acids to the stability of DG and to the possible development of muscular dystrophy.
Collapse
|
15
|
Cibois M, Luxardi G, Chevalier B, Thomé V, Mercey O, Zaragosi LE, Barbry P, Pasini A, Marcet B, Kodjabachian L. BMP signalling controls the construction of vertebrate mucociliary epithelia. Development 2015; 142:2352-63. [PMID: 26092849 DOI: 10.1242/dev.118679] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 05/13/2015] [Indexed: 01/14/2023]
Abstract
Despite the importance of mucociliary epithelia in animal physiology, the mechanisms controlling their establishment are poorly understood. Using the developing Xenopus epidermis and regenerating human upper airways, we reveal the importance of BMP signalling for the construction of vertebrate mucociliary epithelia. In Xenopus, attenuation of BMP activity is necessary for the specification of multiciliated cells (MCCs), ionocytes and small secretory cells (SSCs). Conversely, BMP activity is required for the proper differentiation of goblet cells. Our data suggest that the BMP and Notch pathways interact to control fate choices in the developing epidermis. Unexpectedly, BMP activity is also necessary for the insertion of MCCs, ionocytes and SSCs into the surface epithelium. In human, BMP inhibition also strongly stimulates the formation of MCCs in normal and pathological (cystic fibrosis) airway samples, whereas BMP overactivation has the opposite effect. This work identifies the BMP pathway as a key regulator of vertebrate mucociliary epithelium differentiation and morphogenesis.
Collapse
Affiliation(s)
- Marie Cibois
- Aix-Marseille Université, CNRS, IBDM, Marseille 13288, France
| | | | | | - Virginie Thomé
- Aix-Marseille Université, CNRS, IBDM, Marseille 13288, France
| | - Olivier Mercey
- CNRS, IPMC, Sophia-Antipolis 06560, France University of Nice Sophia Antipolis (UNS), IPMC, Sophia-Antipolis 06560, France
| | - Laure-Emmanuelle Zaragosi
- CNRS, IPMC, Sophia-Antipolis 06560, France University of Nice Sophia Antipolis (UNS), IPMC, Sophia-Antipolis 06560, France
| | | | - Andrea Pasini
- Aix-Marseille Université, CNRS, IBDM, Marseille 13288, France
| | - Brice Marcet
- CNRS, IPMC, Sophia-Antipolis 06560, France University of Nice Sophia Antipolis (UNS), IPMC, Sophia-Antipolis 06560, France
| | | |
Collapse
|
16
|
The dystroglycan: Nestled in an adhesome during embryonic development. Dev Biol 2015; 401:132-42. [DOI: 10.1016/j.ydbio.2014.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/23/2014] [Accepted: 07/08/2014] [Indexed: 01/11/2023]
|
17
|
Garcovich S, Migaldi M, Reggiani Bonetti L, Capizzi R, Massimo L, Boninsegna A, Arena V, Cufino V, Scannone D, Sgambato A. Loss of alpha-dystroglycan expression in cutaneous melanocytic lesions. J Eur Acad Dermatol Venereol 2015; 30:1031-3. [PMID: 25765870 DOI: 10.1111/jdv.13087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- S Garcovich
- Institute of Dermatology, A. Gemelli University Hospital, Università Cattolica del Sacro Cuore, Rome, Italy
| | - M Migaldi
- Department of Pathology, Università di Modena e Reggio Emilia, Modena, Italy
| | - L Reggiani Bonetti
- Department of Pathology, Università di Modena e Reggio Emilia, Modena, Italy
| | - R Capizzi
- Institute of Dermatology, A. Gemelli University Hospital, Università Cattolica del Sacro Cuore, Rome, Italy
| | - L Massimo
- Department of Pathology, Università di Modena e Reggio Emilia, Modena, Italy
| | - A Boninsegna
- Institute of General Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - V Arena
- Institute of Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - V Cufino
- Institute of General Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - D Scannone
- Institute of General Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - A Sgambato
- Institute of General Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
18
|
Buisson N, Sirour C, Moreau N, Denker E, Le Bouffant R, Goullancourt A, Darribère T, Bello V. An adhesome comprising laminin, dystroglycan and myosin IIA is required during notochord development in Xenopus laevis. Development 2014; 141:4569-79. [PMID: 25359726 DOI: 10.1242/dev.116103] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dystroglycan (Dg) is a transmembrane receptor for laminin that must be expressed at the right time and place in order to be involved in notochord morphogenesis. The function of Dg was examined in Xenopus laevis embryos by knockdown of Dg and overexpression and replacement of the endogenous Dg with a mutated form of the protein. This analysis revealed that Dg is required for correct laminin assembly, for cell polarization during mediolateral intercalation and for proper differentiation of vacuoles. Using mutations in the cytoplasmic domain, we identified two sites that are involved in cell polarization and are required for mediolateral cell intercalation, and a site that is required for vacuolation. Furthermore, using a proteomic analysis, the cytoskeletal non-muscle myosin IIA has been identified for the first time as a molecular link between the Dg-cytoplasmic domain and cortical actin. The data allowed us to identify the adhesome laminin-Dg-myosin IIA as being required to maintain the cortical actin cytoskeleton network during vacuolation, which is crucial to maintain the shape of notochordal cells.
Collapse
Affiliation(s)
- Nicolas Buisson
- Sorbonne Universités, UPMC Univ. Paris 06, UMR CNRS 7622, Laboratoire de Biologie du Développement, 75252 Paris, Cedex 05, France
| | - Cathy Sirour
- Sorbonne Universités, UPMC Univ. Paris 06, UMR CNRS 7009, Observatoire Océanographique, Villefranche-sur-mer 06230, France
| | - Nicole Moreau
- Sorbonne Universités, UPMC Univ. Paris 06, UMR CNRS 7622, Laboratoire de Biologie du Développement, 75252 Paris, Cedex 05, France
| | - Elsa Denker
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, Bergen N-5008, Norway
| | - Ronan Le Bouffant
- Sorbonne Universités, UPMC Univ. Paris 06, UMR CNRS 7622, Laboratoire de Biologie du Développement, 75252 Paris, Cedex 05, France
| | - Aline Goullancourt
- Sorbonne Universités, UPMC Univ. Paris 06, UMR CNRS 7622, Laboratoire de Biologie du Développement, 75252 Paris, Cedex 05, France
| | - Thierry Darribère
- Sorbonne Universités, UPMC Univ. Paris 06, UMR CNRS 7622, Laboratoire de Biologie du Développement, 75252 Paris, Cedex 05, France
| | - Valérie Bello
- Sorbonne Universités, UPMC Univ. Paris 06, UMR CNRS 7622, Laboratoire de Biologie du Développement, 75252 Paris, Cedex 05, France
| |
Collapse
|
19
|
Abstract
Animal development requires a carefully orchestrated cascade of cell fate specification events and cellular movements. A surprisingly small number of choreographed cellular behaviours are used repeatedly to shape the animal body plan. Among these, cell intercalation lengthens or spreads a tissue at the expense of narrowing along an orthogonal axis. Key steps in the polarization of both mediolaterally and radially intercalating cells have now been clarified. In these different contexts, intercalation seems to require a distinct combination of mechanisms, including adhesive changes that allow cells to rearrange, cytoskeletal events through which cells exert the forces needed for cell neighbour exchange, and in some cases the regulation of these processes through planar cell polarity.
Collapse
|
20
|
Keil KP, Abler LL, Mehta V, Altmann HM, Laporta J, Plisch EH, Suresh M, Hernandez LL, Vezina CM. DNA methylation of E-cadherin is a priming mechanism for prostate development. Dev Biol 2014; 387:142-53. [PMID: 24503032 DOI: 10.1016/j.ydbio.2014.01.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/20/2013] [Accepted: 01/23/2014] [Indexed: 12/31/2022]
Abstract
In prostate and other epithelial cancers, E-cadherin (CDH1) is downregulated inappropriately by DNA methylation to promote an invasive phenotype. Though cancer frequently involves a reawakening of developmental signaling pathways, whether DNA methylation of Cdh1 occurs during organogenesis has not been determined. Here we show that DNA methylation of Cdh1 mediates outgrowth of developing prostate ducts. During the three-day gestational window leading up to and including prostate ductal initiation, Cdh1 promoter methylation increases and its mRNA and protein abundance decreases in epithelium giving rise to prostatic buds. DNA methylation is required for prostate specification, ductal outgrowth, and branching morphogenesis. All three endpoints are impaired by a DNA methylation inhibitor, which also decreases Cdh1 promoter methylation and increases Cdh1 mRNA and protein abundance. A CDH1 function-blocking antibody restores prostatic identity, bud outgrowth, and potentiates epithelial differentiation in the presence of the DNA methylation inhibitor. This is the first study to mechanistically link acquired changes in DNA methylation to the normal process of prostate organogenesis. We propose a novel mechanism whereby Cdh1 promoter methylation restricts Cdh1 abundance in developing prostate epithelium to create a permissive environment for prostatic bud outgrowth. Thus, DNA methylation primes the prostate primordium to respond to developmental cues mediating outgrowth, differentiation and maturation of the ductal network.
Collapse
Affiliation(s)
- Kimberly P Keil
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706, USA
| | - Lisa L Abler
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706, USA
| | - Vatsal Mehta
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706, USA
| | - Helene M Altmann
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706, USA
| | - Jimena Laporta
- Department of Dairy Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Erin H Plisch
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - M Suresh
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Laura L Hernandez
- Department of Dairy Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Chad M Vezina
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706, USA.
| |
Collapse
|
21
|
Chung MI, Kwon T, Tu F, Brooks ER, Gupta R, Meyer M, Baker JC, Marcotte EM, Wallingford JB. Coordinated genomic control of ciliogenesis and cell movement by RFX2. eLife 2014; 3:e01439. [PMID: 24424412 PMCID: PMC3889689 DOI: 10.7554/elife.01439] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/27/2013] [Indexed: 12/16/2022] Open
Abstract
The mechanisms linking systems-level programs of gene expression to discrete cell biological processes in vivo remain poorly understood. In this study, we have defined such a program for multi-ciliated epithelial cells (MCCs), a cell type critical for proper development and homeostasis of the airway, brain and reproductive tracts. Starting from genomic analysis of the cilia-associated transcription factor Rfx2, we used bioinformatics and in vivo cell biological approaches to gain insights into the molecular basis of cilia assembly and function. Moreover, we discovered a previously un-recognized role for an Rfx factor in cell movement, finding that Rfx2 cell-autonomously controls apical surface expansion in nascent MCCs. Thus, Rfx2 coordinates multiple, distinct gene expression programs in MCCs, regulating genes that control cell movement, ciliogenesis, and cilia function. As such, the work serves as a paradigm for understanding genomic control of cell biological processes that span from early cell morphogenetic events to terminally differentiated cellular functions. DOI: http://dx.doi.org/10.7554/eLife.01439.001.
Collapse
Affiliation(s)
- Mei-I Chung
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| | - Taejoon Kwon
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| | - Fan Tu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| | - Eric R Brooks
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| | - Rakhi Gupta
- Department of Genetics, Stanford University, Stanford, United States
| | - Matthew Meyer
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| | - Julie C Baker
- Department of Genetics, Stanford University, Stanford, United States
| | - Edward M Marcotte
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, United States
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, United States
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
- Howard Hughes Medical Institute, University of Texas at Austin, Austin, United States
| |
Collapse
|
22
|
Johnson EK, Li B, Yoon JH, Flanigan KM, Martin PT, Ervasti J, Montanaro F. Identification of new dystroglycan complexes in skeletal muscle. PLoS One 2013; 8:e73224. [PMID: 23951345 PMCID: PMC3738564 DOI: 10.1371/journal.pone.0073224] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/18/2013] [Indexed: 01/16/2023] Open
Abstract
The dystroglycan complex contains the transmembrane protein β-dystroglycan and its interacting extracellular mucin-like protein α-dystroglycan. In skeletal muscle fibers, the dystroglycan complex plays an important structural role by linking the cytoskeletal protein dystrophin to laminin in the extracellular matrix. Mutations that affect any of the proteins involved in this structural axis lead to myofiber degeneration and are associated with muscular dystrophies and congenital myopathies. Because loss of dystrophin in Duchenne muscular dystrophy (DMD) leads to an almost complete loss of dystroglycan complexes at the myofiber membrane, it is generally assumed that the vast majority of dystroglycan complexes within skeletal muscle fibers interact with dystrophin. The residual dystroglycan present in dystrophin-deficient muscle is thought to be preserved by utrophin, a structural homolog of dystrophin that is up-regulated in dystrophic muscles. However, we found that dystroglycan complexes are still present at the myofiber membrane in the absence of both dystrophin and utrophin. Our data show that only a minority of dystroglycan complexes associate with dystrophin in wild type muscle. Furthermore, we provide evidence for at least three separate pools of dystroglycan complexes within myofibers that differ in composition and are differentially affected by loss of dystrophin. Our findings indicate a more complex role of dystroglycan in muscle than currently recognized and may help explain differences in disease pathology and severity among myopathies linked to mutations in DAPC members.
Collapse
Affiliation(s)
- Eric K. Johnson
- Center for Gene Therapy, the Research Institute at Nationwide Children’s Hospital, and The Ohio State University Biochemistry Program, Columbus, Ohio, United States of America
- Ohio State Biochemistry Program, the Ohio State University, Columbus, Ohio, United States of America
| | - Bin Li
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jung Hae Yoon
- Center for Gene Therapy, the Research Institute at Nationwide Children’s Hospital, and The Ohio State University Biochemistry Program, Columbus, Ohio, United States of America
| | - Kevin M. Flanigan
- Center for Gene Therapy, the Research Institute at Nationwide Children’s Hospital, and The Ohio State University Biochemistry Program, Columbus, Ohio, United States of America
- Department of Pediatrics, the Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Paul T. Martin
- Center for Gene Therapy, the Research Institute at Nationwide Children’s Hospital, and The Ohio State University Biochemistry Program, Columbus, Ohio, United States of America
- Department of Pediatrics, the Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - James Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Federica Montanaro
- Center for Gene Therapy, the Research Institute at Nationwide Children’s Hospital, and The Ohio State University Biochemistry Program, Columbus, Ohio, United States of America
- Ohio State Biochemistry Program, the Ohio State University, Columbus, Ohio, United States of America
- Department of Pediatrics, the Ohio State University College of Medicine, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
23
|
Breitkreutz D, Koxholt I, Thiemann K, Nischt R. Skin basement membrane: the foundation of epidermal integrity--BM functions and diverse roles of bridging molecules nidogen and perlecan. BIOMED RESEARCH INTERNATIONAL 2013; 2013:179784. [PMID: 23586018 PMCID: PMC3618921 DOI: 10.1155/2013/179784] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 01/18/2013] [Accepted: 01/28/2013] [Indexed: 02/06/2023]
Abstract
The epidermis functions in skin as first defense line or barrier against environmental impacts, resting on extracellular matrix (ECM) of the dermis underneath. Both compartments are connected by the basement membrane (BM), composed of a set of distinct glycoproteins and proteoglycans. Herein we are reviewing molecular aspects of BM structure, composition, and function regarding not only (i) the dermoepidermal interface but also (ii) the resident microvasculature, primarily focusing on the per se nonscaffold forming components perlecan and nidogen-1 and nidogen-2. Depletion or functional deficiencies of any BM component are lethal at some stage of development or around birth, though BM defects vary between organs and tissues. Lethality problems were overcome by developmental stage- and skin-specific gene targeting or by cell grafting and organotypic (3D) cocultures of normal or defective cells, which allows recapitulating BM formation de novo. Thus, evidence is accumulating that BM assembly and turnover rely on mechanical properties and composition of the adjacent ECM and the dynamics of molecular assembly, including further "minor" local components, nidogens largely functioning as catalysts or molecular adaptors and perlecan as bridging stabilizer. Collectively, orchestration of BM assembly, remodeling, and the role of individual players herein are determined by the developmental, tissue-specific, or functional context.
Collapse
Affiliation(s)
- Dirk Breitkreutz
- Department of Dermatology, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany.
| | | | | | | |
Collapse
|
24
|
Abstract
Astrocytes, the most prominent glial cell type in the brain, send specialized processes named endfeet, which enwrap blood vessels and express a large molecular repertoire dedicated to the physiology of the vascular system. One of the most striking properties of astrocyte endfeet is their enrichment in gap junction protein connexins 43 and 30 (Cx43 and Cx30) allowing for direct intercellular trafficking of ions and small signaling molecules through perivascular astroglial networks. The contribution of astroglial connexins to the physiology of the brain vascular system has never been addressed. Here, we show that Cx43 and Cx30 expression at the level of perivascular endfeet starts from postnatal days 2 and 12 and is fully mature at postnatal days 15 and 20, respectively, indicating that astroglial perivascular connectivity occurs and develops during postnatal blood-brain barrier (BBB) maturation. We demonstrate that mice lacking Cx30 and Cx43 in GFAP (glial fibrillary acidic protein)-positive cells display astrocyte endfeet edema and a partial loss of the astroglial water channel aquaporin-4 and β-dystroglycan, a transmembrane receptor anchoring astrocyte endfeet to the perivascular basal lamina. Furthermore, the absence of astroglial connexins weakens the BBB, which opens upon increased hydrostatic vascular pressure and shear stress. These results demonstrate that astroglial connexins are necessary to maintain BBB integrity.
Collapse
|
25
|
Brancaccio A. DAG1, no gene for RNA regulation? Gene 2012; 497:79-82. [PMID: 22310381 DOI: 10.1016/j.gene.2012.01.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/07/2011] [Accepted: 01/19/2012] [Indexed: 02/07/2023]
Abstract
DAG1 encodes for a precursor protein that liberates the two subunits featured by the dystroglycan (DG) adhesion complex that are involved in an increasing number of cellular functions in a wide variety of cells and tissues. Aside from the proteolytic events producing the α and β subunits, especially the former undergoes extensive "post-production" modifications taking place within the ER/Golgi where its core protein is both N- and O-decorated with sugars. These post-translational events, that are mainly orchestrated by a plethora of certified, or putative, glycosyltransferases, prelude to the excocytosis-mediated trafficking and targeting of the DG complex to the plasma membrane. Extensive genetic and biochemical evidences have been accumulated so far on α-DG glycosylation, while little is know on possible regulatory events underlying the chromatine activation, transcription or post-transcription (splicing and escape from the nucleus) of DAG1 or of its mRNA. A scenario is envisaged in which cells would use a sort of preferential, and scarcely regulated, route for DAG1 activation, that would imply fast mRNA transcription, maturation and export to the cytosol, and would prelude to the multiple time-consuming enzymatic post-translational activities needed for its glycosylation. Such a provocative view might be helpful to trigger future work aiming at disclosing the complete molecular mechanisms underlying DAG1 activation and at improving our knowledge of any pre-translational step that is involved in dystroglycan regulation.
Collapse
|