1
|
Yamamoto R, Tanaka Y, Orii S, Shiba K, Inaba K, Kon T. Chlamydomonas IC97, an intermediate chain of the flagellar dynein f/I1, is required for normal flagellar and cellular motility. mSphere 2024; 9:e0055824. [PMID: 39601552 DOI: 10.1128/msphere.00558-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Motile flagella (also called "motile cilia") play a variety of important roles in lower and higher eukaryotes, including cellular motility and fertility. Flagellar motility is driven by several species of the gigantic motor-protein complexes, flagellar dyneins, that reside within these organelles. Among the flagellar-dynein species, a hetero-dimeric dynein called "IDA f/I1" has been shown to be particularly important in controlling the flagellar waveform, and defects in this dynein species in humans cause ciliopathies such as multiple morphological abnormalities of the flagella and asthenoteratozoospermia. IDA f/I1 is composed of many subunits, including two HCs (HCα and HCβ) and three ICs (IC140, IC138, and IC97), and among the three ICs of IDA f/I1, the exact molecular function(s) of IC97 in flagellar motility is not well understood. In this study, we isolated a Chlamydomonas mutant lacking IC97 and analyzed the phenotypes. The ic97 mutant phenocopied several aspects of the previously isolated IDA-f/I1-related mutants in Chlamydomonas and showed slow swimming compared to the wild type but retained the ability to phototaxis. Further analysis revealed that the mutant had low flagellar beat frequency and miscoordination between the two (cis- and trans-) flagella. In addition, the mutant cells swam in a comparatively straight path compared to the wild-type cells. Taken together, our results highlight the importance of proper assembly of IC97 in the IDA-f/I1 complex for the regulation of flagellar and cellular motility in Chlamydomonas and provide valuable insights into both the molecular functions of IC97 orthologs in higher eukaryotes and the pathogenetic mechanisms of human ciliopathies caused by IDA-f/I1 defects. IMPORTANCE IDA f/I1 is a hetero-dimeric flagellar dynein that is particularly important for the regulation of flagellar waveform and whose defects are associated with human ciliopathies. IC97 is an evolutionarily conserved intermediate chain of IDA f/I1, but the detailed molecular functions of IC97 in flagellar motility have not been elucidated. In this study, mutational and biochemical analyses of the previously uncharacterized Chlamydomonas ic97 mutant revealed that IC97 is required for both the normal flagellar and cellular motility. In particular, IC97 appears to play an important role in both the control of flagellar beat frequency and the coordination between the two (cis- and trans-) flagella in Chlamydomonas. Our results provide important insights into the regulation of IDA-f/I1 activity by IC97 and the pathogenetic mechanisms of human ciliopathies caused by IDA-f/I1 defects.
Collapse
Affiliation(s)
- Ryosuke Yamamoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Yui Tanaka
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Shunsuke Orii
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Takahide Kon
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Fu G, Augspurger K, Sakizadeh J, Reck J, Bower R, Tritschler D, Gui L, Nicastro D, Porter ME. The MBO2/FAP58 heterodimer stabilizes assembly of inner arm dynein b and reveals axoneme asymmetries involved in ciliary waveform. Mol Biol Cell 2024; 35:ar72. [PMID: 38568782 PMCID: PMC11151096 DOI: 10.1091/mbc.e23-11-0439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/05/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
Cilia generate three-dimensional waveforms required for cell motility and transport of fluid, mucus, and particles over the cell surface. This movement is driven by multiple dynein motors attached to nine outer doublet microtubules that form the axoneme. The outer and inner arm dyneins are organized into 96-nm repeats tandemly arrayed along the length of the doublets. Motility is regulated in part by projections from the two central pair microtubules that contact radial spokes located near the base of the inner dynein arms in each repeat. Although much is known about the structures and protein complexes within the axoneme, many questions remain about the regulatory mechanisms that allow the cilia to modify their waveforms in response to internal or external stimuli. Here, we used Chlamydomonas mbo (move backwards only) mutants with altered waveforms to identify at least two conserved proteins, MBO2/CCDC146 and FAP58/CCDC147, that form part of a L-shaped structure that varies between doublet microtubules. Comparative proteomics identified additional missing proteins that are altered in other motility mutants, revealing overlapping protein defects. Cryo-electron tomography and epitope tagging revealed that the L-shaped, MBO2/FAP58 structure interconnects inner dynein arms with multiple regulatory complexes, consistent with its function in modifying the ciliary waveform.
Collapse
Affiliation(s)
- Gang Fu
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Katherine Augspurger
- Department of Genetics, Cell Biology, and Genetics, University of Minnesota, Minneapolis, MN 55455
| | - Jason Sakizadeh
- Department of Genetics, Cell Biology, and Genetics, University of Minnesota, Minneapolis, MN 55455
| | - Jaimee Reck
- Department of Genetics, Cell Biology, and Genetics, University of Minnesota, Minneapolis, MN 55455
| | - Raqual Bower
- Department of Genetics, Cell Biology, and Genetics, University of Minnesota, Minneapolis, MN 55455
| | - Douglas Tritschler
- Department of Genetics, Cell Biology, and Genetics, University of Minnesota, Minneapolis, MN 55455
| | - Long Gui
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Daniela Nicastro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Mary E. Porter
- Department of Genetics, Cell Biology, and Genetics, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
3
|
Yamamoto C, Takahashi F, Suetsugu N, Yamada K, Yoshikawa S, Kohchi T, Kasahara M. The cAMP signaling module regulates sperm motility in the liverwort Marchantia polymorpha. Proc Natl Acad Sci U S A 2024; 121:e2322211121. [PMID: 38593080 PMCID: PMC11032487 DOI: 10.1073/pnas.2322211121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
Adenosine 3',5'-cyclic monophosphate (cAMP) is a universal signaling molecule that acts as a second messenger in various organisms. It is well established that cAMP plays essential roles across the tree of life, although the function of cAMP in land plants has long been debated. We previously identified the enzyme with both adenylyl cyclase (AC) and cAMP phosphodiesterase (PDE) activity as the cAMP-synthesis/hydrolysis enzyme COMBINED AC with PDE (CAPE) in the liverwort Marchantia polymorpha. CAPE is conserved in streptophytes that reproduce with motile sperm; however, the precise function of CAPE is not yet known. In this study, we demonstrate that the loss of function of CAPE in M. polymorpha led to male infertility due to impaired sperm flagellar motility. We also found that two genes encoding the regulatory subunits of cAMP-dependent protein kinase (PKA-R) were also involved in sperm motility. Based on these findings, it is evident that CAPE and PKA-Rs act as a cAMP signaling module that regulates sperm motility in M. polymorpha. Therefore, our results have shed light on the function of cAMP signaling and sperm motility regulators in land plants. This study suggests that cAMP signaling plays a common role in plant and animal sperm motility.
Collapse
Affiliation(s)
- Chiaki Yamamoto
- Department of Biotechnology, Graduate School of Life Sciences, Ritsumeikan University, Kusatsu525-8577, Japan
| | - Fumio Takahashi
- Department of Biotechnology, Graduate School of Life Sciences, Ritsumeikan University, Kusatsu525-8577, Japan
| | - Noriyuki Suetsugu
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo153-8902, Japan
| | - Kazumasa Yamada
- Department of Marine Science and Technology, Faculty of Marine Science and Technology, Fukui Prefectural University, Obama917-0003, Japan
| | - Shinya Yoshikawa
- Department of Marine Science and Technology, Faculty of Marine Science and Technology, Fukui Prefectural University, Obama917-0003, Japan
| | - Takayuki Kohchi
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto606-8502, Japan
| | - Masahiro Kasahara
- Department of Biotechnology, Graduate School of Life Sciences, Ritsumeikan University, Kusatsu525-8577, Japan
| |
Collapse
|
4
|
Fu G, Scarbrough C, Song K, Phan N, Wirschell M, Nicastro D. Structural organization of the intermediate and light chain complex of Chlamydomonas ciliary I1 dynein. FASEB J 2021; 35:e21646. [PMID: 33993568 DOI: 10.1096/fj.202001857r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 04/01/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022]
Abstract
Axonemal I1 dynein (dynein f) is the largest inner dynein arm in cilia and a key regulator of ciliary beating. It consists of two dynein heavy chains, and an intermediate chain/light chain (ICLC) complex. However, the structural organization of the nine ICLC subunits remains largely unknown. Here, we used biochemical and genetic approaches, and cryo-electron tomography imaging in Chlamydomonas to dissect the molecular architecture of the I1 dynein ICLC complex. Using a strain expressing SNAP-tagged IC140, tomography revealed the location of the IC140 N-terminus at the proximal apex of the ICLC structure. Mass spectrometry of a tctex2b mutant showed that TCTEX2B dynein light chain is required for the stable assembly of TCTEX1 and inner dynein arm interacting proteins IC97 and FAP120. The structural defects observed in tctex2b located these 4 subunits in the center and bottom regions of the ICLC structure, which overlaps with the location of the IC138 regulatory subcomplex, which contains IC138, IC97, FAP120, and LC7b. These results reveal the three-dimensional organization of the native ICLC complex and indicate potential protein-protein interactions that are involved in the pathway by which I1 regulates ciliary motility.
Collapse
Affiliation(s)
- Gang Fu
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China
| | - Chasity Scarbrough
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Kangkang Song
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nhan Phan
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Maureen Wirschell
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Daniela Nicastro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
5
|
Yamamoto R, Hwang J, Ishikawa T, Kon T, Sale WS. Composition and function of ciliary inner-dynein-arm subunits studied in Chlamydomonas reinhardtii. Cytoskeleton (Hoboken) 2021; 78:77-96. [PMID: 33876572 DOI: 10.1002/cm.21662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/30/2021] [Accepted: 04/15/2021] [Indexed: 11/09/2022]
Abstract
Motile cilia (also interchangeably called "flagella") are conserved organelles extending from the surface of many animal cells and play essential functions in eukaryotes, including cell motility and environmental sensing. Large motor complexes, the ciliary dyneins, are present on ciliary outer-doublet microtubules and drive movement of cilia. Ciliary dyneins are classified into two general types: the outer dynein arms (ODAs) and the inner dynein arms (IDAs). While ODAs are important for generation of force and regulation of ciliary beat frequency, IDAs are essential for control of the size and shape of the bend, features collectively referred to as waveform. Also, recent studies have revealed unexpected links between IDA components and human diseases. In spite of their importance, studies on IDAs have been difficult since they are very complex and composed for several types of IDA motors, each unique in composition and location in the axoneme. Thanks in part to genetic, biochemical, and structural analysis of Chlamydomonas reinhardtii, we are beginning to understand the organization and function of the ciliary IDAs. In this review, we summarize the composition of Chlamydomonas IDAs particularly focusing on each subunit, and discuss the assembly, conservation, and functional role(s) of these IDA subunits. Furthermore, we raise several additional questions/challenges regarding IDAs, and discuss future perspectives of IDA studies.
Collapse
Affiliation(s)
- Ryosuke Yamamoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Juyeon Hwang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Takashi Ishikawa
- Department of Biology and Chemistry, Paul Scherrer Institute, Villigen PSI, Switzerland.,Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Takahide Kon
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Winfield S Sale
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Cortese D, Wan KY. Control of Helical Navigation by Three-Dimensional Flagellar Beating. PHYSICAL REVIEW LETTERS 2021; 126:088003. [PMID: 33709750 DOI: 10.1103/physrevlett.126.088003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/10/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Helical swimming is a ubiquitous strategy for motile cells to generate self-gradients for environmental sensing. The model biflagellate Chlamydomonas reinhardtii rotates at a constant 1-2 Hz as it swims, but the mechanism is unclear. Here, we show unequivocally that the rolling motion derives from a persistent, nonplanar flagellar beat pattern. This is revealed by high-speed imaging and micromanipulation of live cells. We construct a fully 3D model to relate flagellar beating directly to the free-swimming trajectories. For realistic geometries, the model reproduces both the sense and magnitude of the axial rotation of live cells. We show that helical swimming requires further symmetry breaking between the two flagella. These functional differences underlie all tactic responses, particularly phototaxis. We propose a control strategy by which cells steer toward or away from light by modulating the sign of biflagellar dominance.
Collapse
Affiliation(s)
- Dario Cortese
- Living Systems Institute and College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Kirsty Y Wan
- Living Systems Institute and College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| |
Collapse
|
7
|
Zhang Y, Chen Y, Zheng J, Wang J, Duan S, Zhang W, Yan X, Zhu X. Vertebrate Dynein-f depends on Wdr78 for axonemal localization and is essential for ciliary beat. J Mol Cell Biol 2020; 11:383-394. [PMID: 30060180 PMCID: PMC7727262 DOI: 10.1093/jmcb/mjy043] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/11/2018] [Accepted: 07/27/2018] [Indexed: 12/23/2022] Open
Abstract
Motile cilia and flagella are microtubule-based organelles important for cell locomotion and extracellular liquid flow through beating. Although axonenal dyneins that drive ciliary beat have been extensively studied in unicellular Chlamydomonas, to what extent such knowledge can be applied to vertebrate is poorly known. In Chlamydomonas, Dynein-f controls flagellar waveforms but is dispensable for beating. The flagellar assembly of its heavy chains (HCs) requires its intermediate chain (IC) IC140 but not IC138. Here we show that, unlike its Chlamydomonas counterpart, vertebrate Dynein-f is essential for ciliary beat. We confirmed that Wdr78 is the vertebrate orthologue of IC138. Wdr78 associated with Dynein-f subunits such as Dnah2 (a HC) and Wdr63 (IC140 orthologue). It was expressed as a motile cilium-specific protein in mammalian cells. Depletion of Wdr78 or Dnah2 by RNAi paralyzed mouse ependymal cilia. Zebrafish Wdr78 morphants displayed ciliopathy-related phenotypes, such as curved bodies, hydrocephalus, abnormal otolith, randomized left-right asymmetry, and pronephric cysts, accompanied with paralyzed pronephric cilia. Furthermore, all the HCs and ICs of Dynein-f failed to localize in the Wdr78-depleted mouse ependymal cilia. Therefore, both the functions and subunit dependency of Dynein-f are altered in evolution, probably to comply with ciliary roles in higher organisms.
Collapse
Affiliation(s)
- Yirong Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Yawen Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Jianqun Zheng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Juan Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Shichao Duan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Wei Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Xiumin Yan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| |
Collapse
|
8
|
Amador GJ, Wei D, Tam D, Aubin-Tam ME. Fibrous Flagellar Hairs of Chlamydomonas reinhardtii Do Not Enhance Swimming. Biophys J 2020; 118:2914-2925. [PMID: 32502384 PMCID: PMC7300311 DOI: 10.1016/j.bpj.2020.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/06/2020] [Accepted: 04/27/2020] [Indexed: 01/18/2023] Open
Abstract
The flagella of Chlamydomonas reinhardtii possess fibrous ultrastructures of a nanometer-scale thickness known as mastigonemes. These structures have been widely hypothesized to enhance flagellar thrust; however, detailed hydrodynamic analysis supporting this claim is lacking. In this study, we present a comprehensive investigation into the hydrodynamic effects of mastigonemes using a genetically modified mutant lacking the fibrous structures. Through high-speed observations of freely swimming cells, we found the average and maximum swimming speeds to be unaffected by the presence of mastigonemes. In addition to swimming speeds, no significant difference was found for flagellar gait kinematics. After our observations of swimming kinematics, we present direct measurements of the hydrodynamic forces generated by flagella with and without mastigonemes. These measurements were conducted using optical tweezers, which enabled high temporal and spatial resolution of hydrodynamic forces. Through our measurements, we found no significant difference in propulsive flows due to the presence of mastigonemes. Direct comparison between measurements and fluid mechanical modeling revealed that swimming hydrodynamics were accurately captured without including mastigonemes on the modeled swimmer's flagella. Therefore, mastigonemes do not appear to increase the flagella's effective area while swimming, as previously thought. Our results refute the longstanding claim that mastigonemes enhance flagellar thrust in C. reinhardtii, and so, their function still remains enigmatic.
Collapse
Affiliation(s)
- Guillermo J Amador
- Laboratory for Aero and Hydrodynamics, Delft University of Technology, Delft, the Netherlands; Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Da Wei
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Daniel Tam
- Laboratory for Aero and Hydrodynamics, Delft University of Technology, Delft, the Netherlands.
| | - Marie-Eve Aubin-Tam
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
9
|
Dutcher SK. Asymmetries in the cilia of Chlamydomonas. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190153. [PMID: 31884924 PMCID: PMC7017335 DOI: 10.1098/rstb.2019.0153] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2019] [Indexed: 01/10/2023] Open
Abstract
The generation of ciliary waveforms requires the spatial and temporal regulation of dyneins. This review catalogues many of the asymmetric structures and proteins in the cilia of Chlamydomonas, a unicellular alga with two cilia that are used for motility in liquid medium. These asymmetries, which have been identified through mutant analysis, cryo-EM tomography and proteomics, provide a wealth of information to use for modelling how waveforms are generated and propagated. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Collapse
Affiliation(s)
- Susan K. Dutcher
- Department of Genetics, Washington University in St Louis, Saint Louis, MO, USA
| |
Collapse
|
10
|
Beneke T, Banecki K, Fochler S, Gluenz E. LAX28 is required for the stable assembly of the inner dynein arm f complex, and the tether and tether head complex in Leishmania flagella. J Cell Sci 2020; 133:jcs239855. [PMID: 31932510 PMCID: PMC7747692 DOI: 10.1242/jcs.239855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/12/2019] [Indexed: 12/26/2022] Open
Abstract
Motile eukaryotic flagella beat through coordinated activity of dynein motor proteins; however, the mechanisms of dynein coordination and regulation are incompletely understood. The inner dynein arm (IDA) f complex (also known as the I1 complex), and the tether and tether head (T/TH) complex are thought to be key regulators of dynein action but, unlike the IDA f complex, T/TH proteins remain poorly characterised. Here, we characterised T/TH-associated proteins in the protist Leishmania mexicana Proteome analysis of axonemes from null mutants for the CFAP44 T/TH protein showed that they lacked the IDA f protein IC140 and a novel 28-kDa axonemal protein, LAX28. Sequence analysis identified similarities between LAX28 and the uncharacterised human sperm tail protein TEX47, both sharing features with sensory BLUF-domain-containing proteins. Leishmania lacking LAX28, CFAP44 or IC140 retained some motility, albeit with reduced swimming speed and directionality and a propensity for flagellar curling. Expression of tagged proteins in different null mutant backgrounds showed that the axonemal localisation of LAX28 requires CFAP44 and IC140, and the axonemal localisations of CFAP44 and IC140 both depend on LAX28. These data demonstrate a role for LAX28 in motility and show mutual dependencies of IDA f and T/TH-associated proteins for axonemal assembly in Leishmania.
Collapse
Affiliation(s)
- Tom Beneke
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Katherine Banecki
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Sophia Fochler
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
11
|
Lin J, Le TV, Augspurger K, Tritschler D, Bower R, Fu G, Perrone C, O’Toole ET, Mills KV, Dymek E, Smith E, Nicastro D, Porter ME. FAP57/WDR65 targets assembly of a subset of inner arm dyneins and connects to regulatory hubs in cilia. Mol Biol Cell 2019; 30:2659-2680. [PMID: 31483737 PMCID: PMC6761771 DOI: 10.1091/mbc.e19-07-0367] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/22/2019] [Accepted: 08/29/2019] [Indexed: 01/19/2023] Open
Abstract
Ciliary motility depends on both the precise spatial organization of multiple dynein motors within the 96 nm axonemal repeat and the highly coordinated interactions between different dyneins and regulatory complexes located at the base of the radial spokes. Mutations in genes encoding cytoplasmic assembly factors, intraflagellar transport factors, docking proteins, dynein subunits, and associated regulatory proteins can all lead to defects in dynein assembly and ciliary motility. Significant progress has been made in the identification of dynein subunits and extrinsic factors required for preassembly of dynein complexes in the cytoplasm, but less is known about the docking factors that specify the unique binding sites for the different dynein isoforms on the surface of the doublet microtubules. We have used insertional mutagenesis to identify a new locus, IDA8/BOP2, required for targeting the assembly of a subset of inner dynein arms (IDAs) to a specific location in the 96 nm repeat. IDA8 encodes flagellar-associated polypeptide (FAP)57/WDR65, a highly conserved WD repeat, coiled coil domain protein. Using high resolution proteomic and structural approaches, we find that FAP57 forms a discrete complex. Cryo-electron tomography coupled with epitope tagging and gold labeling reveal that FAP57 forms an extended structure that interconnects multiple IDAs and regulatory complexes.
Collapse
Affiliation(s)
- Jianfeng Lin
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Thuc Vy Le
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| | - Katherine Augspurger
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| | - Douglas Tritschler
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| | - Raqual Bower
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| | - Gang Fu
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Catherine Perrone
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| | - Eileen T. O’Toole
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Kristyn VanderWaal Mills
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| | - Erin Dymek
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - Elizabeth Smith
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - Daniela Nicastro
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Mary E. Porter
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
12
|
Kubo T, Hou Y, Cochran DA, Witman GB, Oda T. A microtubule-dynein tethering complex regulates the axonemal inner dynein f (I1). Mol Biol Cell 2018. [PMID: 29540525 PMCID: PMC5921573 DOI: 10.1091/mbc.e17-11-0689] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
FAP44 and FAP43/FAP244 form a complex that tethers the Inner dynein subspecies f to the microtubule in Chlamydomonas flagella. The tether complex regulates flagellar motility by restraining conformational change in the dynein motor. Motility of cilia/flagella is generated by a coordinated activity of thousands of dyneins. Inner dynein arms (IDAs) are particularly important for the formation of ciliary/flagellar waveforms, but the molecular mechanism of IDA regulation is poorly understood. Here we show using cryoelectron tomography and biochemical analyses of Chlamydomonas flagella that a conserved protein FAP44 forms a complex that tethers IDA f (I1 dynein) head domains to the A-tubule of the axonemal outer doublet microtubule. In wild-type flagella, IDA f showed little nucleotide-dependent movement except for a tilt in the f β head perpendicular to the microtubule-sliding direction. In the absence of the tether complex, however, addition of ATP and vanadate caused a large conformational change in the IDA f head domains, suggesting that the movement of IDA f is mechanically restricted by the tether complex. Motility defects in flagella missing the tether demonstrates the importance of the IDA f-tether interaction in the regulation of ciliary/flagellar beating.
Collapse
Affiliation(s)
- Tomohiro Kubo
- Department of Anatomy and Structural Biology, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Yuqing Hou
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Deborah A Cochran
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655
| | - George B Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Toshiyuki Oda
- Department of Anatomy and Structural Biology, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
13
|
Fu G, Wang Q, Phan N, Urbanska P, Joachimiak E, Lin J, Wloga D, Nicastro D. The I1 dynein-associated tether and tether head complex is a conserved regulator of ciliary motility. Mol Biol Cell 2018. [PMID: 29514928 PMCID: PMC5921572 DOI: 10.1091/mbc.e18-02-0142] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Motile cilia are essential for propelling cells and moving fluids across tissues. The activity of axonemal dynein motors must be precisely coordinated to generate ciliary motility, but their regulatory mechanisms are not well understood. The tether and tether head (T/TH) complex was hypothesized to provide mechanical feedback during ciliary beating because it links the motor domains of the regulatory I1 dynein to the ciliary doublet microtubule. Combining genetic and biochemical approaches with cryoelectron tomography, we identified FAP44 and FAP43 (plus the algae-specific, FAP43-redundant FAP244) as T/TH components. WT-mutant comparisons revealed that the heterodimeric T/TH complex is required for the positional stability of the I1 dynein motor domains, stable anchoring of CK1 kinase, and proper phosphorylation of the regulatory IC138-subunit. T/TH also interacts with inner dynein arm d and radial spoke 3, another important motility regulator. The T/TH complex is a conserved regulator of I1 dynein and plays an important role in the signaling pathway that is critical for normal ciliary motility.
Collapse
Affiliation(s)
- Gang Fu
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Qian Wang
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Nhan Phan
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Paulina Urbanska
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Jianfeng Lin
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Daniela Nicastro
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75235
| |
Collapse
|
14
|
Horani A, Ustione A, Huang T, Firth AL, Pan J, Gunsten SP, Haspel JA, Piston DW, Brody SL. Establishment of the early cilia preassembly protein complex during motile ciliogenesis. Proc Natl Acad Sci U S A 2018; 115:E1221-E1228. [PMID: 29358401 PMCID: PMC5819421 DOI: 10.1073/pnas.1715915115] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Motile cilia are characterized by dynein motor units, which preassemble in the cytoplasm before trafficking into the cilia. Proteins required for dynein preassembly were discovered by finding human mutations that result in absent ciliary motors, but little is known about their expression, function, or interactions. By monitoring ciliogenesis in primary airway epithelial cells and MCIDAS-regulated induced pluripotent stem cells, we uncovered two phases of expression of preassembly proteins. An early phase, composed of HEATR2, SPAG1, and DNAAF2, preceded other preassembly proteins and was independent of MCIDAS regulation. The early preassembly proteins colocalized within perinuclear foci that also contained dynein arm proteins. These proteins also interacted based on immunoprecipitation and Förster resonance energy transfer (FRET) studies. FRET analysis of HEAT domain deletions and human mutations showed that HEATR2 interacted with itself and SPAG1 at multiple HEAT domains, while DNAAF2 interacted with SPAG1. Human mutations in HEATR2 did not affect this interaction, but triggered the formation of p62/Sequestosome-1-positive aggregates containing the early preassembly proteins, suggesting that degradation of an early preassembly complex is responsible for disease and pointing to key regions required for HEATR2 scaffold stability. We speculate that HEATR2 is an early scaffold for the initiation of dynein complex assembly in motile cilia.
Collapse
Affiliation(s)
- Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110;
| | - Alessandro Ustione
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Tao Huang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Amy L Firth
- Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033
| | - Jiehong Pan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Sean P Gunsten
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Jeffrey A Haspel
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - David W Piston
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Steven L Brody
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
15
|
The Bardet-Biedl syndrome protein complex is an adapter expanding the cargo range of intraflagellar transport trains for ciliary export. Proc Natl Acad Sci U S A 2018; 115:E934-E943. [PMID: 29339469 DOI: 10.1073/pnas.1713226115] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bardet-Biedl syndrome (BBS) is a ciliopathy resulting from defects in the BBSome, a conserved protein complex. BBSome mutations affect ciliary membrane composition, impairing cilia-based signaling. The mechanism by which the BBSome regulates ciliary membrane content remains unknown. Chlamydomonas bbs mutants lack phototaxis and accumulate phospholipase D (PLD) in the ciliary membrane. Single particle imaging revealed that PLD comigrates with BBS4 by intraflagellar transport (IFT) while IFT of PLD is abolished in bbs mutants. BBSome deficiency did not alter the rate of PLD entry into cilia. Membrane association and the N-terminal 58 residues of PLD are sufficient and necessary for BBSome-dependent transport and ciliary export. The replacement of PLD's ciliary export sequence (CES) caused PLD to accumulate in cilia of cells with intact BBSomes and IFT. The buildup of PLD inside cilia impaired phototaxis, revealing that PLD is a negative regulator of phototactic behavior. We conclude that the BBSome is a cargo adapter ensuring ciliary export of PLD on IFT trains to regulate phototaxis.
Collapse
|
16
|
Viswanadha R, Sale WS, Porter ME. Ciliary Motility: Regulation of Axonemal Dynein Motors. Cold Spring Harb Perspect Biol 2017; 9:9/8/a018325. [PMID: 28765157 DOI: 10.1101/cshperspect.a018325] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ciliary motility is crucial for the development and health of many organisms. Motility depends on the coordinated activity of multiple dynein motors arranged in a precise pattern on the outer doublet microtubules. Although significant progress has been made in elucidating the composition and organization of the dyneins, a comprehensive understanding of dynein regulation is lacking. Here, we focus on two conserved signaling complexes located at the base of the radial spokes. These include the I1/f inner dynein arm associated with radial spoke 1 and the calmodulin- and spoke-associated complex and the nexin-dynein regulatory complex associated with radial spoke 2. Current research is focused on understanding how these two axonemal hubs coordinate and regulate the dynein motors and ciliary motility.
Collapse
Affiliation(s)
- Rasagnya Viswanadha
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Winfield S Sale
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Mary E Porter
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
17
|
Reck J, Schauer AM, VanderWaal Mills K, Bower R, Tritschler D, Perrone CA, Porter ME. The role of the dynein light intermediate chain in retrograde IFT and flagellar function in Chlamydomonas. Mol Biol Cell 2016; 27:2404-22. [PMID: 27251063 PMCID: PMC4966982 DOI: 10.1091/mbc.e16-03-0191] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/26/2016] [Indexed: 12/28/2022] Open
Abstract
The assembly of cilia and flagella depends on the activity of two microtubule motor complexes, kinesin-2 and dynein-2/1b, but the specific functions of the different subunits are poorly defined. Here we analyze Chlamydomonas strains expressing different amounts of the dynein 1b light intermediate chain (D1bLIC). Disruption of D1bLIC alters the stability of the dynein 1b complex and reduces both the frequency and velocity of retrograde intraflagellar transport (IFT), but it does not eliminate retrograde IFT. Flagellar assembly, motility, gliding, and mating are altered in a dose-dependent manner. iTRAQ-based proteomics identifies a small subset of proteins that are significantly reduced or elevated in d1blic flagella. Transformation with D1bLIC-GFP rescues the mutant phenotypes, and D1bLIC-GFP assembles into the dynein 1b complex at wild-type levels. D1bLIC-GFP is transported with anterograde IFT particles to the flagellar tip, dissociates into smaller particles, and begins processive retrograde IFT in <2 s. These studies demonstrate the role of D1bLIC in facilitating the recycling of IFT subunits and other proteins, identify new components potentially involved in the regulation of IFT, flagellar assembly, and flagellar signaling, and provide insight into the role of D1bLIC and retrograde IFT in other organisms.
Collapse
Affiliation(s)
- Jaimee Reck
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 R&D Systems, Minneapolis, MN 55413
| | - Alexandria M Schauer
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108
| | - Kristyn VanderWaal Mills
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 Anoka Technical College, Anoka, MN 55303
| | - Raqual Bower
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Douglas Tritschler
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Catherine A Perrone
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 Medtronic, Minneapolis, MN 55432
| | - Mary E Porter
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
18
|
Wilson CS, Chang AJ, Greene R, Machado S, Parsons MW, Takats TA, Zambetti LJ, Springer AL. Knockdown of Inner Arm Protein IC138 in Trypanosoma brucei Causes Defective Motility and Flagellar Detachment. PLoS One 2015; 10:e0139579. [PMID: 26555902 PMCID: PMC4640498 DOI: 10.1371/journal.pone.0139579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 09/15/2015] [Indexed: 12/23/2022] Open
Abstract
Motility in the protozoan parasite Trypanosoma brucei is conferred by a single flagellum, attached alongside the cell, which moves the cell forward using a beat that is generated from tip-to-base. We are interested in characterizing components that regulate flagellar beating, in this study we extend the characterization of TbIC138, the ortholog of a dynein intermediate chain that regulates axonemal inner arm dynein f/I1. TbIC138 was tagged In situ-and shown to fractionate with the inner arm components of the flagellum. RNAi knockdown of TbIC138 resulted in significantly reduced protein levels, mild growth defect and significant motility defects. These cells tended to cluster, exhibited slow and abnormal motility and some cells had partially or fully detached flagella. Slight but significant increases were observed in the incidence of mis-localized or missing kinetoplasts. To document development of the TbIC138 knockdown phenotype over time, we performed a detailed analysis of flagellar detachment and motility changes over 108 hours following induction of RNAi. Abnormal motility, such as slow twitching or irregular beating, was observed early, and became progressively more severe such that by 72 hours-post-induction, approximately 80% of the cells were immotile. Progressively more cells exhibited flagellar detachment over time, but this phenotype was not as prevalent as immotility, affecting less than 60% of the population. Detached flagella had abnormal beating, but abnormal beating was also observed in cells with no flagellar detachment, suggesting that TbIC138 has a direct, or primary, effect on the flagellar beat, whereas detachment is a secondary phenotype of TbIC138 knockdown. Our results are consistent with the role of TbIC138 as a regulator of motility, and has a phenotype amenable to more extensive structure-function analyses to further elucidate its role in the control of flagellar beat in T. brucei.
Collapse
Affiliation(s)
- Corinne S. Wilson
- Department of Biology, Siena College, Loudonville, New York, United States of America
| | - Alex J. Chang
- Department of Biology, Amherst College, Amherst, Massachusetts, United States of America
| | - Rebecca Greene
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Sulynn Machado
- Department of Biology, Amherst College, Amherst, Massachusetts, United States of America
| | - Matthew W. Parsons
- Department of Biology, Amherst College, Amherst, Massachusetts, United States of America
| | - Taylor A. Takats
- Department of Biology, Siena College, Loudonville, New York, United States of America
| | - Luke J. Zambetti
- Department of Biology, Amherst College, Amherst, Massachusetts, United States of America
| | - Amy L. Springer
- Department of Biology, Siena College, Loudonville, New York, United States of America
- * E-mail:
| |
Collapse
|
19
|
Saegusa Y, Yoshimura K. cAMP controls the balance of the propulsive forces generated by the two flagella of Chlamydomonas. Cytoskeleton (Hoboken) 2015; 72:412-21. [PMID: 26257199 DOI: 10.1002/cm.21235] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 02/03/2023]
Abstract
The motility of cilia and flagella of eukaryotic cells is controlled by second messengers such as Ca(2+), cAMP, and cGMP. In this study, the cAMP-dependent control of flagellar bending of Chlamydomonas is investigated by applying cAMP through photolysis of 4,5-dimethoxy-2-nitrobenzyl adenosine 3',5'-cyclicmonophosphate (caged cAMP). When cAMP is applied to demembranated and reactivated cells, cells begin to swim with a larger helical path. This change is due to a larger turn about the axis normal to the anterior-posterior axis, indicating an increased imbalance in the propulsive forces generated by the cis-flagellum (flagellum nearer to the eyespot) and trans-flagellum (flagellum farther from the eyespot). Consistently, when cAMP is applied to isolated axonemes, some axonemes show attenuated motility whereas others do not. Axonemes from uni1 mutants, which have only trans-flagella, do not respond to cAMP. These observations indicate that cAMP controls the balance of the forces generated by cis- and trans-flagella in Chlamydomonas.
Collapse
Affiliation(s)
- Yu Saegusa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan.,Kichijo Girls' School, Musashino, 180-0002, Japan
| | - Kenjiro Yoshimura
- Department of Machinery and Control Systems, Shibaura Institute of Technology, Saitama, 337-8570, Japan
| |
Collapse
|
20
|
Awata J, Song K, Lin J, King SM, Sanderson MJ, Nicastro D, Witman GB. DRC3 connects the N-DRC to dynein g to regulate flagellar waveform. Mol Biol Cell 2015; 26:2788-800. [PMID: 26063732 PMCID: PMC4571338 DOI: 10.1091/mbc.e15-01-0018] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/26/2015] [Accepted: 06/03/2015] [Indexed: 01/30/2023] Open
Abstract
The nexin-dynein regulatory complex (N-DRC), which is a major hub for the control of flagellar motility, contains at least 11 different subunits. A major challenge is to determine the location and function of each of these subunits within the N-DRC. We characterized a Chlamydomonas mutant defective in the N-DRC subunit DRC3. Of the known N-DRC subunits, the drc3 mutant is missing only DRC3. Like other N-DRC mutants, the drc3 mutant has a defect in flagellar motility. However, in contrast to other mutations affecting the N-DRC, drc3 does not suppress flagellar paralysis caused by loss of radial spokes. Cryo-electron tomography revealed that the drc3 mutant lacks a portion of the N-DRC linker domain, including the L1 protrusion, part of the distal lobe, and the connection between these two structures, thus localizing DRC3 to this part of the N-DRC. This and additional considerations enable us to assign DRC3 to the L1 protrusion. Because the L1 protrusion is the only non-dynein structure in contact with the dynein g motor domain in wild-type axonemes and this is the only N-DRC-dynein connection missing in the drc3 mutant, we conclude that DRC3 interacts with dynein g to regulate flagellar waveform.
Collapse
Affiliation(s)
- Junya Awata
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Kangkang Song
- Biology Department and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454
| | - Jianfeng Lin
- Biology Department and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454
| | - Stephen M King
- Department of Molecular Biology and Biophysics and Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT 06030
| | - Michael J Sanderson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655
| | - Daniela Nicastro
- Biology Department and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454
| | - George B Witman
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655
| |
Collapse
|
21
|
Viswanadha R, Hunter EL, Yamamoto R, Wirschell M, Alford LM, Dutcher SK, Sale WS. The ciliary inner dynein arm, I1 dynein, is assembled in the cytoplasm and transported by IFT before axonemal docking. Cytoskeleton (Hoboken) 2014; 71:573-86. [PMID: 25252184 DOI: 10.1002/cm.21192] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 01/11/2023]
Abstract
To determine mechanisms of assembly of ciliary dyneins, we focused on the Chlamydomonas inner dynein arm, I1 dynein, also known as dynein f. I1 dynein assembles in the cytoplasm as a 20S complex similar to the 20S I1 dynein complex isolated from the axoneme. The intermediate chain subunit, IC140 (IDA7), and heavy chains (IDA1, IDA2) are required for 20S I1 dynein preassembly in the cytoplasm. Unlike I1 dynein derived from the axoneme, the cytoplasmic 20S I1 complex will not rebind I1-deficient axonemes in vitro. To test the hypothesis that I1 dynein is transported to the distal tip of the cilia for assembly in the axoneme, we performed cytoplasmic complementation in dikaryons formed between wild-type and I1 dynein mutant cells. Rescue of I1 dynein assembly in mutant cilia occurred first at the distal tip and then proceeded toward the proximal axoneme. Notably, in contrast to other combinations, I1 dynein assembly was significantly delayed in dikaryons formed between ida7 and ida3. Furthermore, rescue of I1 dynein assembly required new protein synthesis in the ida7 × ida3 dikaryons. On the basis of the additional observations, we postulate that IDA3 is required for 20S I1 dynein transport. Cytoplasmic complementation in dikaryons using the conditional kinesin-2 mutant, fla10-1 revealed that transport of I1 dynein is dependent on kinesin-2 activity. Thus, I1 dynein complex assembly depends upon IFT for transport to the ciliary distal tip prior to docking in the axoneme.
Collapse
Affiliation(s)
- Rasagnya Viswanadha
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | | | | | | | | | | | | |
Collapse
|
22
|
Kamiya R, Yagi T. Functional Diversity of Axonemal Dyneins as Assessed by in Vitro and in Vivo Motility Assays ofChlamydomonasMutants. Zoolog Sci 2014; 31:633-44. [DOI: 10.2108/zs140066] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Oda T, Yanagisawa H, Yagi T, Kikkawa M. Mechanosignaling between central apparatus and radial spokes controls axonemal dynein activity. ACTA ACUST UNITED AC 2014; 204:807-19. [PMID: 24590175 PMCID: PMC3941055 DOI: 10.1083/jcb.201312014] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nonspecific intermolecular collision between the central pair apparatus and radial spokes underlies a mechanosensing mechanism that regulates dynein activity in Chlamydomonas flagella. Cilia/flagella are conserved organelles that generate fluid flow in eukaryotes. The bending motion of flagella requires concerted activity of dynein motors. Although it has been reported that the central pair apparatus (CP) and radial spokes (RSs) are important for flagellar motility, the molecular mechanism underlying CP- and RS-mediated dynein regulation has not been identified. In this paper, we identified nonspecific intermolecular collision between CP and RS as one of the regulatory mechanisms for flagellar motility. By combining cryoelectron tomography and motility analyses of Chlamydomonasreinhardtii flagella, we show that binding of streptavidin to RS heads paralyzed flagella. Moreover, the motility defect in a CP projection mutant could be rescued by the addition of exogenous protein tags on RS heads. Genetic experiments demonstrated that outer dynein arms are the major downstream effectors of CP- and RS-mediated regulation of flagellar motility. These results suggest that mechanosignaling between CP and RS regulates dynein activity in eukaryotic flagella.
Collapse
Affiliation(s)
- Toshiyuki Oda
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
24
|
Hendrickson TW, Goss JL, Seaton CA, Rohrs HW. The IC138 and IC140 intermediate chains of the I1 axonemal dynein complex bind directly to tubulin. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3265-3271. [PMID: 24080090 DOI: 10.1016/j.bbamcr.2013.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 09/18/2013] [Accepted: 09/19/2013] [Indexed: 11/17/2022]
Abstract
Dyneins are minus end directed microtubule motors that play a critical role in ciliary and flagellar movement. Ciliary dyneins, also known as axonemal dyneins, are characterized based on their location on the axoneme, either as outer dynein arms or inner dynein arms. The I1 dynein is the best-characterized subspecies of the inner dynein arms; however the interactions between many of the components of the I1 complex and the axoneme are not well defined. In an effort to elucidate the interactions in which the I1 components are involved, we performed zero-length crosslinking on axonemes and studied the crosslinked products formed by the I1 intermediate chains, IC138 and IC140. Our data indicate that IC138 and IC140 bind directly to microtubules. Mass-spectrometry analysis of the crosslinked product identified both α- and β-tubulin as the IC138 and IC140 binding partners. This was further confirmed by crosslinking experiments carried out on purified I1 fractions bound to Taxol-stabilized microtubules. Furthermore, the interaction between IC140 and tubulin is lost when IC138 is absent. Our studies support previous findings that intermediate chains play critical roles in the assembly, axonemal targeting and regulation of the I1 dynein complex.
Collapse
Affiliation(s)
| | - Jonathan L Goss
- Department of Biology, Morehouse College, Atlanta, GA 30314, USA
| | - Charles A Seaton
- Department of Biology, Morehouse College, Atlanta, GA 30314, USA; Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Henry W Rohrs
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| |
Collapse
|
25
|
Yamamoto R, Song K, Yanagisawa HA, Fox L, Yagi T, Wirschell M, Hirono M, Kamiya R, Nicastro D, Sale WS. The MIA complex is a conserved and novel dynein regulator essential for normal ciliary motility. ACTA ACUST UNITED AC 2013; 201:263-78. [PMID: 23569216 PMCID: PMC3628515 DOI: 10.1083/jcb.201211048] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The MIA complex, composed of FAP100 and FAP73, interacts with I1 dynein components and is required for normal ciliary beat frequency. Axonemal dyneins must be precisely regulated and coordinated to produce ordered ciliary/flagellar motility, but how this is achieved is not understood. We analyzed two Chlamydomonas reinhardtii mutants, mia1 and mia2, which display slow swimming and low flagellar beat frequency. We found that the MIA1 and MIA2 genes encode conserved coiled-coil proteins, FAP100 and FAP73, respectively, which form the modifier of inner arms (MIA) complex in flagella. Cryo–electron tomography of mia mutant axonemes revealed that the MIA complex was located immediately distal to the intermediate/light chain complex of I1 dynein and structurally appeared to connect with the nexin–dynein regulatory complex. In axonemes from mutants that lack both the outer dynein arms and the MIA complex, I1 dynein failed to assemble, suggesting physical interactions between these three axonemal complexes and a role for the MIA complex in the stable assembly of I1 dynein. The MIA complex appears to regulate I1 dynein and possibly outer arm dyneins, which are both essential for normal motility.
Collapse
Affiliation(s)
- Ryosuke Yamamoto
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cryoelectron tomography reveals doublet-specific structures and unique interactions in the I1 dynein. Proc Natl Acad Sci U S A 2012; 109:E2067-76. [PMID: 22733763 DOI: 10.1073/pnas.1120690109] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cilia and flagella are highly conserved motile and sensory organelles in eukaryotes, and defects in ciliary assembly and motility cause many ciliopathies. The two-headed I1 inner arm dynein is a critical regulator of ciliary and flagellar beating. To understand I1 architecture and function better, we analyzed the 3D structure and composition of the I1 dynein in Chlamydomonas axonemes by cryoelectron tomography and subtomogram averaging. Our data revealed several connections from the I1 dynein to neighboring structures that are likely to be important for assembly and/or regulation, including a tether linking one I1 motor domain to the doublet microtubule and doublet-specific differences potentially contributing to the asymmetrical distribution of dynein activity required for ciliary beating. We also imaged three I1 mutants and analyzed their polypeptide composition using 2D gel-based proteomics. Structural and biochemical comparisons revealed the likely location of the regulatory IC138 phosphoprotein and its associated subcomplex. Overall, our studies demonstrate that I1 dynein is connected to multiple structures within the axoneme, and therefore ideally positioned to integrate signals that regulate ciliary motility.
Collapse
|
27
|
Brown JM, Dipetrillo CG, Smith EF, Witman GB. A FAP46 mutant provides new insights into the function and assembly of the C1d complex of the ciliary central apparatus. J Cell Sci 2012; 125:3904-13. [PMID: 22573824 DOI: 10.1242/jcs.107151] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Virtually all motile eukaryotic cilia and flagella have a '9+2' axoneme in which nine doublet microtubules surround two singlet microtubules. Associated with the central pair of microtubules are protein complexes that form at least seven biochemically and structurally distinct central pair projections. Analysis of mutants lacking specific projections has indicated that each may play a unique role in the control of flagellar motility. One of these is the C1d projection previously shown to contain the proteins FAP54, FAP46, FAP74 and FAP221/Pcdp1, which exhibits Ca(2+)-sensitive calmodulin binding. Here we report the isolation and characterization of a Chlamydomonas reinhardtii null mutant for FAP46. This mutant, fap46-1, lacks the C1d projection and has impaired motility, confirming the importance of this projection for normal flagellar movement. Those cells that are motile have severe defects in phototaxis and the photoshock response, underscoring a role for the C1d projection in Ca(2+)-mediated flagellar behavior. The data also reveal for the first time that the C1d projection is involved in the control of interdoublet sliding velocity. Our studies further identify a novel C1d subunit that we term C1d-87, give new insight into relationships between the C1d subunits, and provide evidence for multiple sites of calmodulin interaction within the C1d projection. These results represent significant advances in our understanding of an important but little studied axonemal structure.
Collapse
Affiliation(s)
- Jason M Brown
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | |
Collapse
|
28
|
Boesger J, Wagner V, Weisheit W, Mittag M. Application of phosphoproteomics to find targets of casein kinase 1 in the flagellum of chlamydomonas. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2012; 2012:581460. [PMID: 23316220 PMCID: PMC3536430 DOI: 10.1155/2012/581460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/10/2012] [Indexed: 05/09/2023]
Abstract
The green biflagellate alga Chlamydomonas reinhardtii serves as model for studying structural and functional features of flagella. The axoneme of C. reinhardtii anchors a network of kinases and phosphatases that control motility. One of them, Casein Kinase 1 (CK1), is known to phosphorylate the Inner Dynein Arm I1 Intermediate Chain 138 (IC138), thereby regulating motility. CK1 is also involved in regulating the circadian rhythm of phototaxis and is relevant for the formation of flagella. By a comparative phosphoproteome approach, we determined phosphoproteins in the flagellum that are targets of CK1. Thereby, we applied the specific CK1 inhibitor CKI-7 that causes significant changes in the flagellum phosphoproteome and reduces the swimming velocity of the cells. In the CKI-7-treated cells, 14 phosphoproteins were missing compared to the phosphoproteome of untreated cells, including IC138, and four additional phosphoproteins had a reduced number of phosphorylation sites. Notably, inhibition of CK1 causes also novel phosphorylation events, indicating that it is part of a kinase network. Among them, Glycogen Synthase Kinase 3 is of special interest, because it is involved in the phosphorylation of key clock components in flies and mammals and in parallel plays an important role in the regulation of assembly in the flagellum.
Collapse
Affiliation(s)
- Jens Boesger
- Institute of General Botany and Plant Physiology, Friedrich Schiller University Jena, Am Planetarium 1, 07743 Jena, Germany
| | - Volker Wagner
- Institute of General Botany and Plant Physiology, Friedrich Schiller University Jena, Am Planetarium 1, 07743 Jena, Germany
| | - Wolfram Weisheit
- Institute of General Botany and Plant Physiology, Friedrich Schiller University Jena, Am Planetarium 1, 07743 Jena, Germany
| | - Maria Mittag
- Institute of General Botany and Plant Physiology, Friedrich Schiller University Jena, Am Planetarium 1, 07743 Jena, Germany
- *Maria Mittag:
| |
Collapse
|