1
|
Downes KW, Zanetti G. Mechanisms of COPII coat assembly and cargo recognition in the secretory pathway. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00839-y. [PMID: 40133632 PMCID: PMC7617623 DOI: 10.1038/s41580-025-00839-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2025] [Indexed: 03/27/2025]
Abstract
One third of all proteins in eukaryotes transit between the endoplasmic reticulum (ER) and the Golgi to reach their functional destination inside or outside of the cell. During export, secretory proteins concentrate at transitional zones of the ER known as ER exit sites, where they are packaged into transport carriers formed by the highly conserved coat protein complex II (COPII). Despite long-standing knowledge of many of the fundamental pathways that govern traffic in the early secretory pathway, we still lack a complete mechanistic model to explain how the various steps of COPII-mediated ER exit are regulated to efficiently transport diverse cargoes. In this Review, we discuss the current understanding of the mechanisms underlying COPII-mediated vesicular transport, highlighting outstanding knowledge gaps. We focus on how coat assembly and disassembly dictate carrier morphogenesis, how COPII selectively recruits a vast number of cargo and cargo adaptors, and finally discuss how COPII mechanisms in mammals might have adapted to enable transport of large proteins.
Collapse
Affiliation(s)
- Katie W Downes
- Institute of Structural and Molecular Biology, UCL, London, UK
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK
- The Francis Crick Institute, London, UK
| | - Giulia Zanetti
- Institute of Structural and Molecular Biology, UCL, London, UK.
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK.
- The Francis Crick Institute, London, UK.
| |
Collapse
|
2
|
Takagi J, Takahashi H, Moriya KC, Nagano M, Fukao Y, Ueda H, Tamura K, Shimada T, Hara-Nishimura I. Plant-specific tail-anchored coiled-coil protein MAG3 stabilizes Golgi-associated ERESs to facilitate protein exit from the ER. Commun Biol 2025; 8:358. [PMID: 40038456 PMCID: PMC11880317 DOI: 10.1038/s42003-025-07602-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 01/24/2025] [Indexed: 03/06/2025] Open
Abstract
Endoplasmic reticulum exit sites (ERESs) are ER subdomains where coat protein complex II carriers are assembled for ER-to-Golgi transport. We previously proposed a dynamic capture-and-release model of ERESs by Golgi stacks in plants. However, how ERESs and Golgi stacks maintain a stable interaction in plant cells with vigorous cytoplasmic streaming is unknown. Here, we show that a plant-specific ER transmembrane protein, which we designate as MAG3, plays a crucial role in mediating the capture-and-release of ERESs in Arabidopsis. We isolated a mutant (mag3) defective in protein exit from the ER in seeds. MAG3 localized specifically to the ER-Golgi interface with Golgi-associated ERESs and remained there after ERES release. MAG3 deficiency caused a reduction in the amount of ERESs associated with each Golgi stack. MAG3 interacted with WPP DOMAIN PROTEINs, which are also plant-specific. These results suggest that plants have evolved a unique system to support ER-to-Golgi transport despite intracellular motility.
Collapse
Affiliation(s)
- Junpei Takagi
- Faculty of Science, Hokkaido University, Sapporo, Japan.
- Graduate School of Science, Kyoto University, Kyoto, Japan.
| | | | - Kenta C Moriya
- Center for Ecological Research, Kyoto University, Otsu, Japan
| | - Minoru Nagano
- Graduate School of Science, Kyoto University, Kyoto, Japan
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Yoichiro Fukao
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Haruko Ueda
- Graduate School of Science, Kyoto University, Kyoto, Japan
- Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Kentaro Tamura
- Graduate School of Science, Kyoto University, Kyoto, Japan
- Department of Environmental and Life Sciences, University of Shizuoka, Shizuoka, Japan
| | - Tomoo Shimada
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Ikuko Hara-Nishimura
- Graduate School of Science, Kyoto University, Kyoto, Japan.
- Faculty of Science and Engineering, Konan University, Kobe, Japan.
| |
Collapse
|
3
|
Yorimitsu T, Sato K. Potential ER tubular lumen sensing by intrinsically disordered regions. J Cell Sci 2025; 138:JCS263696. [PMID: 39925135 PMCID: PMC11959615 DOI: 10.1242/jcs.263696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 02/03/2025] [Indexed: 02/11/2025] Open
Abstract
Intrinsically disordered regions (IDRs) are known to sense the positive membrane curvature of vesicles and tubules. However, whether IDRs can sense the negative curvature of their luminal surfaces remains elusive. Here, we show that IDRs direct specific localization to endoplasmic reticulum (ER) tubules. In Saccharomyces cerevisiae, Sed4 interacts with Sec16 at the ER exit site (ERES) to promote ER export. Upon loss of this interaction, Sed4 failed to assemble at the ERES but was enriched in the ER tubules in a luminal region-dependent manner. Fusion of the Sed4 luminal region with Sec12 and Sec22, which localize throughout the ER, resulted in their enrichment in the tubules. The luminal regions of Sed4 or its homologs, predicted to be IDRs, localized to tubules when translocated alone into the ER lumen. The lumen-imported IDRs derived from cytosol-localizing Sec16 and Atg13 also exhibited tubule localization. Furthermore, Sed4 constructs in which the luminal region was replaced by these IDRs were concentrated at the ERES. Collectively, we suggest that the IDRs sense the properties of the tubule lumen, such as its surface, and facilitate Sed4 assembly at the ERES.
Collapse
Grants
- 18K06126, 21K06164 and 24K09361 Grant-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology
- 17KT0105, 19K06655 and 23K05692 Grant-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology
- 18K06126 Ministry of Education, Culture, Sports, Science and Technology
- University of Tokyo
Collapse
Affiliation(s)
- Tomohiro Yorimitsu
- Department of Life SciencesGraduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | - Ken Sato
- Department of Life SciencesGraduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
4
|
Kasberg W, Luong P, Swift KA, Audhya A. Nutrient deprivation alters the rate of COPII subunit recruitment at ER subdomains to tune secretory protein transport. Nat Commun 2023; 14:8140. [PMID: 38066006 PMCID: PMC10709328 DOI: 10.1038/s41467-023-44002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Co-assembly of the multilayered coat protein complex II (COPII) with the Sar1 GTPase at subdomains of the endoplasmic reticulum (ER) enables secretory cargoes to be concentrated efficiently within nascent transport intermediates, which subsequently deliver their contents to ER-Golgi intermediate compartments. Here, we define the spatiotemporal accumulation of native COPII subunits and secretory cargoes at ER subdomains under differing nutrient availability conditions using a combination of CRISPR/Cas9-mediated genome editing and live cell imaging. Our findings demonstrate that the rate of inner COPII coat recruitment serves as a determinant for the pace of cargo export, irrespective of COPII subunit expression levels. Moreover, increasing inner COPII coat recruitment kinetics is sufficient to rescue cargo trafficking deficits caused by acute nutrient limitation. Our findings are consistent with a model in which the rate of inner COPII coat addition acts as an important control point to regulate cargo export from the ER.
Collapse
Affiliation(s)
- William Kasberg
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Peter Luong
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Kevin A Swift
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706, USA.
| |
Collapse
|
5
|
Gallo R, Rai AK, McIntyre ABR, Meyer K, Pelkmans L. DYRK3 enables secretory trafficking by maintaining the liquid-like state of ER exit sites. Dev Cell 2023; 58:1880-1897.e11. [PMID: 37643612 DOI: 10.1016/j.devcel.2023.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 02/16/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023]
Abstract
The dual-specificity kinase DYRK3 controls the formation and dissolution of multiple biomolecular condensates, regulating processes including stress recovery and mitotic progression. Here, we report that DYRK3 functionally interacts with proteins associated with endoplasmic reticulum (ER) exit sites (ERESs) and that inhibition of DYRK3 perturbs the organization of the ERES-Golgi interface and secretory trafficking. DYRK3-mediated regulation of ERES depends on the N-terminal intrinsically disordered region (IDR) of the peripheral membrane protein SEC16A, which co-phase separates with ERES components to form liquid-like condensates on the surface of the ER. By modulating the liquid-like properties of ERES, we show that their physical state is essential for functional cargo trafficking through the early secretory pathway. Our findings support a mechanism whereby phosphorylation by DYRK3 and its reversal by serine-threonine phosphatases regulate the material properties of ERES to create a favorable physicochemical environment for directional membrane traffic in eukaryotic cells.
Collapse
Affiliation(s)
- Raffaella Gallo
- Department of Molecular Life Sciences, University of Zurich, 8046 Zurich, Switzerland
| | - Arpan Kumar Rai
- Department of Molecular Life Sciences, University of Zurich, 8046 Zurich, Switzerland.
| | - Alexa B R McIntyre
- Department of Molecular Life Sciences, University of Zurich, 8046 Zurich, Switzerland
| | - Katrina Meyer
- Department of Molecular Life Sciences, University of Zurich, 8046 Zurich, Switzerland
| | - Lucas Pelkmans
- Department of Molecular Life Sciences, University of Zurich, 8046 Zurich, Switzerland.
| |
Collapse
|
6
|
Yorimitsu T, Sato K. Sec16 and Sed4 interdependently function as interaction and localization partners at ER exit sites. J Cell Sci 2023; 136:308925. [PMID: 37158682 PMCID: PMC10184828 DOI: 10.1242/jcs.261094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/06/2023] [Indexed: 05/10/2023] Open
Abstract
COPII proteins assemble at ER exit sites (ERES) to form transport carriers. The initiation of COPII assembly in the yeast Saccharomyces cerevisiae is triggered by the ER membrane protein Sec12. Sec16, which plays a critical role in COPII organization, localizes to ERES independently of Sec12. However, the mechanism underlying Sec16 localization is poorly understood. Here, we show that a Sec12 homolog, Sed4, is concentrated at ERES and mediates ERES localization of Sec16. We found that the interaction between Sec16 and Sed4 ensures their correct localization to ERES. Loss of the interaction with Sec16 leads to redistribution of Sed4 from the ERES specifically to high-curvature ER areas, such as the tubules and edges of the sheets. The luminal domain of Sed4 mediates this distribution, which is required for Sed4, but not for Sec16, to be concentrated at ERES. We further show that the luminal domain and its O-mannosylation are involved in the self-interaction of Sed4. Our findings provide insight into how Sec16 and Sed4 function interdependently at ERES.
Collapse
Affiliation(s)
- Tomohiro Yorimitsu
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | - Ken Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
7
|
Kasberg W, Luong P, Swift KA, Audhya A. Nutrient deprivation alters the rate of COPII coat assembly to tune secretory protein transport. RESEARCH SQUARE 2023:rs.3.rs-2652351. [PMID: 36993182 PMCID: PMC10055522 DOI: 10.21203/rs.3.rs-2652351/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Co-assembly of the multilayered coat protein complex II (COPII) with the Sari GTPase at subdomains of the endoplasmic reticulum (ER) enables secretory cargoes to be concentrated efficiently within nascent transport intermediates, which subsequently deliver their contents to ER-Golgi intermediate compartments. Here, we define the spatiotemporal accumulation of native COPII subunits and secretory cargoes at ER subdomains under differing nutrient availability conditions using a combination of CRISPR/Cas9-mediated genome editing and live cell imaging. Our findings demonstrate that the rate of inner COPII coat assembly serves as a determinant for the pace of cargo export, irrespective of COPII subunit expression levels. Moreover, increasing inner COPII coat assembly kinetics is sufficient to rescue cargo trafficking deficits caused by acute nutrient limitation in a manner dependent on Sar1 GTPase activity. Our findings are consistent with a model in which the rate of inner COPII coat formation acts as an important control point to regulate cargo export from the ER.
Collapse
Affiliation(s)
- William Kasberg
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Peter Luong
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Kevin A. Swift
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706, USA
| |
Collapse
|
8
|
Van der Verren SE, Zanetti G. The small GTPase Sar1, control centre of COPII trafficking. FEBS Lett 2023; 597:865-882. [PMID: 36737236 DOI: 10.1002/1873-3468.14595] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Sar1 is a small GTPase of the ARF family. Upon exchange of GDP for GTP, Sar1 associates with the endoplasmic reticulum (ER) membrane and recruits COPII components, orchestrating cargo concentration and membrane deformation. Many aspects of the role of Sar1 and regulation of its GTP cycle remain unclear, especially as complexity increases in higher organisms that secrete a wider range of cargoes. This review focusses on the regulation of GTP hydrolysis and its role in coat assembly, as well as the mechanism of Sar1-induced membrane deformation and scission. Finally, we highlight the additional specialisation in higher eukaryotes and the outstanding questions on how Sar1 functions are orchestrated.
Collapse
Affiliation(s)
| | - Giulia Zanetti
- Institute of Structural and Molecular Biology, Birkbeck College London, UK
| |
Collapse
|
9
|
A tango for coats and membranes: New insights into ER-to-Golgi traffic. Cell Rep 2022; 38:110258. [DOI: 10.1016/j.celrep.2021.110258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/17/2021] [Accepted: 12/21/2021] [Indexed: 12/30/2022] Open
|
10
|
Nihei CI, Nakanishi M. Cargo selection in the early secretory pathway of African trypanosomes. Parasitol Int 2021; 84:102379. [PMID: 34000424 DOI: 10.1016/j.parint.2021.102379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/30/2021] [Accepted: 05/06/2021] [Indexed: 11/25/2022]
Abstract
Membrane and secretory proteins are synthesized by ribosomes and then enter the endoplasmic reticulum (ER) where they undergo glycosylation and quality control for proper folding. Subsequently, proteins are transported to the Golgi apparatus and then sorted to the plasma membrane or intracellular organelles. Transport vesicles are formed at ER-exit sites (ERES) on the ER with several coat protein complexes. Cargo proteins loaded into the vesicles are selected by specific interactions with cargo receptors and/or adaptors during vesicle formation. p24 family and intracellular lectin ERGIC-53-membrane proteins are the known cargo receptors acting in the early secretory pathway (ER-Golgi). Oligomerization of the cargo receptors have been suggested to play an important role in cargo selection and sorting via posttranslational modifications in fungi and metazoans. On the other hand, the mechanisms involved in the early secretory pathway in protozoa remain unclear. In this review, we focus on Trypanosoma brucei as a representative of protozoan and discuss differences and commonalities in the molecular mechanisms of its early secretory pathway compared with other organisms.
Collapse
Affiliation(s)
- Coh-Ichi Nihei
- Institute of Microbial Chemistry, Microbial Chemistry Research Foundation (BIKAKEN), 3-14-23, Kamiosaki, Shinagawa-ku, Tokyo 141-0023, Japan.
| | - Masayuki Nakanishi
- Laboratory of Biochemistry, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan.
| |
Collapse
|
11
|
Taku I, Hirai T, Makiuchi T, Shinzawa N, Iwanaga S, Annoura T, Nagamune K, Nozaki T, Saito-Nakano Y. Rab5b-Associated Arf1 GTPase Regulates Export of N-Myristoylated Adenylate Kinase 2 From the Endoplasmic Reticulum in Plasmodium falciparum. Front Cell Infect Microbiol 2021; 10:610200. [PMID: 33604307 PMCID: PMC7884776 DOI: 10.3389/fcimb.2020.610200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/17/2020] [Indexed: 01/08/2023] Open
Abstract
Plasmodium falciparum extensively remodels human erythrocytes by exporting hundreds of parasite proteins. This remodeling is closely linked to the Plasmodium virulence-related functions and immune evasion. The N-terminal export signal named PEXEL (Plasmodium export element) was identified to be important for the export of proteins beyond the PVM, however, the issue of how these PEXEL-positive proteins are transported and regulated by Rab GTPases from the endoplasmic reticulum (ER) to the cell surface has remained poorly understood. Previously, we identified new aspects of the trafficking of N-myristoylated adenylate kinase 2 (PfAK2), which lacks the PEXEL motif and is regulated by the PfRab5b GTPase. Overexpression of PfRab5b suppressed the transport of PfAK2 to the parasitophorous vacuole membrane and PfAK2 was accumulated in the punctate compartment within the parasite. Here, we report the identification of PfRab5b associated proteins and dissect the pathway regulated by PfRab5b. We isolated two membrane trafficking GTPases PfArf1 and PfRab1b by coimmunoprecipitation with PfRab5b and via mass analysis. PfArf1 and PfRab1b are both colocalized with PfRab5b adjacent to the ER in the early erythrocytic stage. A super-resolution microgram of the indirect immunofluorescence assay using PfArf1 or PfRab1b- expressing parasites revealed that PfArf1 and PfRab1b are localized to different ER subdomains. We used a genetic approach to expresses an active or inactive mutant of PfArf1 that specifically inhibited the trafficking of PfAK2 to the parasitophorous vacuole membrane. While expression of PfRab1b mutants did not affect in the PfAK2 transport. In contrast, the export of the PEXEL-positive protein Rifin was decreased by the expression of the inactive mutant of PfRab1b or PfArf1. These data indicate that the transport of PfAK2 and Rifin were recognized at the different ER subdomain by the two independent GTPases: PfAK2 is sorted by PfArf1 into the pathway for the PV, and the export of Rifin might be sequentially regulated by PfArf1 and PfRab1b.
Collapse
Affiliation(s)
- Izumi Taku
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Tomohiro Hirai
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Takashi Makiuchi
- Department of Parasitology, Tokai University School of Medicine, Isehara, Japan
| | - Naoaki Shinzawa
- Department of Environmental Parasitology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shiroh Iwanaga
- Department of Environmental Parasitology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Annoura
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kisaburo Nagamune
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Tomoyoshi Nozaki
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
12
|
Brown CJ, Gaunitz S, Wang Z, Strindelius L, Jacobson SC, Clemmer DE, Trinidad JC, Novotny MV. Glycoproteomic Analysis of Human Urinary Exosomes. Anal Chem 2020; 92:14357-14365. [PMID: 32985870 PMCID: PMC7875506 DOI: 10.1021/acs.analchem.0c01952] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exosomes represent a class of secreted biological vesicles, which have recently gained attention due to their function as intertissue and interorganism transporters of genetic materials, small molecules, lipids, and proteins. Although the protein constituents of these exosomes are often glycosylated, a large-scale characterization of the glycoproteome has not yet been completed. This study identified 3144 unique glycosylation events belonging to 378 glycoproteins and 604 unique protein sites of glycosylation. With these data, we investigated the level of glycan microheterogeneity within the urinary exosomes, finding on average 5.9 glycans per site. The glycan family abundance on individual proteins showed subtle differences, providing an additional level of molecular characterization compared to the unmodified proteome. Finally, we show protein site-specific changes in regard to the common urinary glycoprotein, uromodulin. While uromodulin is an individual case, these same site-specific analyses provide a way forward for developing diagnostic glycoprotein biomarkers with urine as a noninvasive biological fluid. This study represents an important first step in understanding the functional urinary glycoproteome.
Collapse
Affiliation(s)
- Christopher J Brown
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Stefan Gaunitz
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Ziyu Wang
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Lena Strindelius
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Stephen C Jacobson
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Jonathan C Trinidad
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Milos V Novotny
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| |
Collapse
|
13
|
Stancheva VG, Li XH, Hutchings J, Gomez-Navarro N, Santhanam B, Babu MM, Zanetti G, Miller EA. Combinatorial multivalent interactions drive cooperative assembly of the COPII coat. J Cell Biol 2020; 219:e202007135. [PMID: 32997735 PMCID: PMC7594496 DOI: 10.1083/jcb.202007135] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022] Open
Abstract
Protein secretion is initiated at the endoplasmic reticulum by the COPII coat, which self-assembles to form vesicles. Here, we examine the mechanisms by which a cargo-bound inner coat layer recruits and is organized by an outer scaffolding layer to drive local assembly of a stable structure rigid enough to enforce membrane curvature. An intrinsically disordered region in the outer coat protein, Sec31, drives binding with an inner coat layer via multiple distinct interfaces, including a newly defined charge-based interaction. These interfaces combinatorially reinforce each other, suggesting coat oligomerization is driven by the cumulative effects of multivalent interactions. The Sec31 disordered region could be replaced by evolutionarily distant sequences, suggesting plasticity in the binding interfaces. Such a multimodal assembly platform provides an explanation for how cells build a powerful yet transient scaffold to direct vesicle traffic.
Collapse
Affiliation(s)
| | - Xiao-Han Li
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Joshua Hutchings
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK
| | | | | | | | - Giulia Zanetti
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK
| | | |
Collapse
|
14
|
Kriechbaumer V, Brandizzi F. The plant endoplasmic reticulum: an organized chaos of tubules and sheets with multiple functions. J Microsc 2020; 280:122-133. [PMID: 32426862 PMCID: PMC10895883 DOI: 10.1111/jmi.12909] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum is a fascinating organelle at the core of the secretory pathway. It is responsible for the synthesis of one third of the cellular proteome and, in plant cells, it produces receptors and transporters of hormones as well as the proteins responsible for the biosynthesis of critical components of a cellulosic cell wall. The endoplasmic reticulum structure resembles a spider-web network of interconnected tubules and cisternae that pervades the cell. The study of the dynamics and interaction of this organelles with other cellular structures such as the plasma membrane, the Golgi apparatus and the cytoskeleton, have been permitted by the implementation of fluorescent protein and advanced confocal imaging. In this review, we report on the findings that contributed towards the understanding of the endoplasmic reticulum morphology and function with the aid of fluorescent proteins, focusing on the contributions provided by pioneering work from the lab of the late Professor Chris Hawes.
Collapse
Affiliation(s)
- V Kriechbaumer
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, U.K
| | - F Brandizzi
- MSU-DOE Plant Research Laboratory, Department of Plant Biology, Michigan State University, East Lansing, Michigan, U.S.A
| |
Collapse
|
15
|
Cendrowski J, Kaczmarek M, Mazur M, Kuzmicz-Kowalska K, Jastrzebski K, Brewinska-Olchowik M, Kominek A, Piwocka K, Miaczynska M. Splicing variation of BMP2K balances abundance of COPII assemblies and autophagic degradation in erythroid cells. eLife 2020; 9:e58504. [PMID: 32795391 PMCID: PMC7473771 DOI: 10.7554/elife.58504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/13/2020] [Indexed: 12/26/2022] Open
Abstract
Intracellular transport undergoes remodeling upon cell differentiation, which involves cell type-specific regulators. Bone morphogenetic protein 2-inducible kinase (BMP2K) has been potentially implicated in endocytosis and cell differentiation but its molecular functions remained unknown. We discovered that its longer (L) and shorter (S) splicing variants regulate erythroid differentiation in a manner unexplainable by their involvement in AP-2 adaptor phosphorylation and endocytosis. However, both variants interact with SEC16A and could localize to the juxtanuclear secretory compartment. Variant-specific depletion approach showed that BMP2K isoforms constitute a BMP2K-L/S regulatory system that controls the distribution of SEC16A and SEC24B as well as SEC31A abundance at COPII assemblies. Finally, we found L to promote and S to restrict autophagic degradation and erythroid differentiation. Hence, we propose that BMP2K-L and BMP2K-S differentially regulate abundance and distribution of COPII assemblies as well as autophagy, possibly thereby fine-tuning erythroid differentiation.
Collapse
Affiliation(s)
- Jaroslaw Cendrowski
- Laboratory of Cell Biology, International Institute of Molecular and Cell BiologyWarsawPoland
| | - Marta Kaczmarek
- Laboratory of Cell Biology, International Institute of Molecular and Cell BiologyWarsawPoland
| | - Michał Mazur
- Laboratory of Cell Biology, International Institute of Molecular and Cell BiologyWarsawPoland
| | | | - Kamil Jastrzebski
- Laboratory of Cell Biology, International Institute of Molecular and Cell BiologyWarsawPoland
| | | | - Agata Kominek
- Laboratory of Cytometry, Nencki Institute of Experimental BiologyWarsawPoland
| | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental BiologyWarsawPoland
| | - Marta Miaczynska
- Laboratory of Cell Biology, International Institute of Molecular and Cell BiologyWarsawPoland
| |
Collapse
|
16
|
Takagi J, Kimori Y, Shimada T, Hara-Nishimura I. Dynamic Capture and Release of Endoplasmic Reticulum Exit Sites by Golgi Stacks in Arabidopsis. iScience 2020; 23:101265. [PMID: 32585594 PMCID: PMC7322076 DOI: 10.1016/j.isci.2020.101265] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/09/2020] [Accepted: 06/08/2020] [Indexed: 12/21/2022] Open
Abstract
Protein transport from the endoplasmic reticulum (ER) to Golgi stacks is mediated by the coat protein complex COPII, which is assembled at an ER subdomain called ER exit site (ERES). However, the dynamic relationship between ERESs and Golgi stacks is unknown. Here, we propose a dynamic capture-and-release model of ERESs by Golgi stacks in Arabidopsis thaliana. Using variable-angle epifluorescence microscopy with high-temporal-resolution imaging, COPII-component-bound ERESs were detected as punctate structures with sizes of 300–500 nm. Some punctate ERESs are distributed on ER tubules and sheet rims, whereas others gather around a Golgi stack in an ER-network cavity to form a beaded-ring structure. Free ERESs that wander into an ER cavity are captured by a Golgi stack in a cytoskeleton-independent manner. Then, they are released by the Golgi stack for recycling. The dynamic ERES cycling might contribute to efficient transfer of de novo synthesized cargo proteins from the ER to Golgi stacks. VAEM images show dynamic behavior of minimal punctate ERESs Most of punctate ERESs are distributed on the ER network tubes Several punctate ERESs contact with a Golgi stack in an ER network cavity ERESs are dynamically captured and released by Golgi stacks
Collapse
Affiliation(s)
- Junpei Takagi
- Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
| | - Yoshitaka Kimori
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| | - Tomoo Shimada
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | |
Collapse
|
17
|
Lopez S, Perez-Linero AM, Manzano-Lopez J, Sabido-Bozo S, Cortes-Gomez A, Rodriguez-Gallardo S, Aguilera-Romero A, Goder V, Muñiz M. Dual Independent Roles of the p24 Complex in Selectivity of Secretory Cargo Export from the Endoplasmic Reticulum. Cells 2020; 9:cells9051295. [PMID: 32456004 PMCID: PMC7291304 DOI: 10.3390/cells9051295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 11/22/2022] Open
Abstract
The cellular mechanisms that ensure the selectivity and fidelity of secretory cargo protein transport from the endoplasmic reticulum (ER) to the Golgi are still not well understood. The p24 protein complex acts as a specific cargo receptor for GPI-anchored proteins by facilitating their ER exit through a specialized export pathway in yeast. In parallel, the p24 complex can also exit the ER using the general pathway that exports the rest of secretory proteins with their respective cargo receptors. Here, we show biochemically that the p24 complex associates at the ER with other cargo receptors in a COPII-dependent manner, forming high-molecular weight multireceptor complexes. Furthermore, live cell imaging analysis reveals that the p24 complex is required to retain in the ER secretory cargos when their specific receptors are absent. This requirement does not involve neither the unfolded protein response nor the retrograde transport from the Golgi. Our results suggest that, in addition to its role as a cargo receptor in the specialized GPI-anchored protein pathway, the p24 complex also plays an independent role in secretory cargo selectivity during its exit through the general ER export pathway, preventing the non-selective bulk flow of native secretory cargos. This mechanism would ensure receptor-regulated cargo transport, providing an additional layer of regulation of secretory cargo selectivity during ER export.
Collapse
Affiliation(s)
- Sergio Lopez
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; (S.L.); (A.M.P.-L.); (J.M.-L.); (S.S.-B.); (A.C.-G.); (S.R.-G.); (A.A.-R.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Ana Maria Perez-Linero
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; (S.L.); (A.M.P.-L.); (J.M.-L.); (S.S.-B.); (A.C.-G.); (S.R.-G.); (A.A.-R.)
| | - Javier Manzano-Lopez
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; (S.L.); (A.M.P.-L.); (J.M.-L.); (S.S.-B.); (A.C.-G.); (S.R.-G.); (A.A.-R.)
| | - Susana Sabido-Bozo
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; (S.L.); (A.M.P.-L.); (J.M.-L.); (S.S.-B.); (A.C.-G.); (S.R.-G.); (A.A.-R.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Alejandro Cortes-Gomez
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; (S.L.); (A.M.P.-L.); (J.M.-L.); (S.S.-B.); (A.C.-G.); (S.R.-G.); (A.A.-R.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Sofia Rodriguez-Gallardo
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; (S.L.); (A.M.P.-L.); (J.M.-L.); (S.S.-B.); (A.C.-G.); (S.R.-G.); (A.A.-R.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Auxiliadora Aguilera-Romero
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; (S.L.); (A.M.P.-L.); (J.M.-L.); (S.S.-B.); (A.C.-G.); (S.R.-G.); (A.A.-R.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Veit Goder
- Department of Genetics, University of Seville, 41012 Seville, Spain;
| | - Manuel Muñiz
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; (S.L.); (A.M.P.-L.); (J.M.-L.); (S.S.-B.); (A.C.-G.); (S.R.-G.); (A.A.-R.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
- Correspondence: ; Tel.: +34-954556529
| |
Collapse
|
18
|
Yorimitsu T, Sato K. Sec16 function in ER export and autophagy is independent of its phosphorylation in Saccharomyces cerevisiae. Mol Biol Cell 2019; 31:149-156. [PMID: 31851588 PMCID: PMC7001475 DOI: 10.1091/mbc.e19-08-0477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Coat protein complex II (COPII) protein assembles at the endoplasmic reticulum exit site (ERES) to form vesicle carrier for transport from the ER to the Golgi apparatus. Sec16 has a critical role in COPII assembly to form ERES. Sec16∆565N mutant, which lacks the N-terminal 565 amino acids, is defective in ERES formation and ER export. Several phosphoproteomic studies have identified 108 phosphorylated Ser/Thr/Tyr residues in Sec16 of Saccharomyces cerevisiae, of which 30 residues are located in the truncated part of Sec16∆565N. The exact role of the phosphorylation in Sec16 function remains to be determined. Therefore, we analyzed nonphosphorylatable Sec16 mutants, in which all identified phosphorylation sites are substituted with Ala. These mutants show ERES and ER export comparable to those of wild-type Sec16, although the nonphosphorylatable mutant binds the COPII subunit Sec23 more efficiently than the wild-type protein. Because nutrient starvation–induced autophagy depends on Sec16, Sec16∆565N impairs autophagy, whereas the nonphosphorylatable mutants do not affect autophagy. We conclude that Sec16 phosphorylation is not essential for its function.
Collapse
Affiliation(s)
- Tomohiro Yorimitsu
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | - Ken Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
19
|
Genome-wide synthetic lethal CRISPR screen identifies FIS1 as a genetic interactor of ALS-linked C9ORF72. Brain Res 2019; 1728:146601. [PMID: 31843624 PMCID: PMC7539795 DOI: 10.1016/j.brainres.2019.146601] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/22/2022]
Abstract
Mutations in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis (ALS). Both toxic gain of function and loss of function pathogenic mechanisms have been proposed. Accruing evidence from mouse knockout studies point to a role for C9ORF72 as a regulator of immune function. To provide further insight into its cellular function, we performed a genome-wide synthetic lethal CRISPR screen in human myeloid cells lacking C9ORF72. We discovered a strong synthetic lethal genetic interaction between C9ORF72 and FIS1, which encodes a mitochondrial membrane protein involved in mitochondrial fission and mitophagy. Mass spectrometry experiments revealed that in C9ORF72 knockout cells, FIS1 strongly bound to a class of immune regulators that activate the receptor for advanced glycation end (RAGE) products and trigger inflammatory cascades. These findings present a novel genetic interactor for C9ORF72 and suggest a compensatory role for FIS1 in suppressing inflammatory signaling in the absence of C9ORF72.
Collapse
|
20
|
Dickinson MS, Anderson LN, Webb-Robertson BJM, Hansen JR, Smith RD, Wright AT, Hybiske K. Proximity-dependent proteomics of the Chlamydia trachomatis inclusion membrane reveals functional interactions with endoplasmic reticulum exit sites. PLoS Pathog 2019; 15:e1007698. [PMID: 30943267 PMCID: PMC6464245 DOI: 10.1371/journal.ppat.1007698] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 04/15/2019] [Accepted: 03/12/2019] [Indexed: 11/18/2022] Open
Abstract
Chlamydia trachomatis is the most common cause of bacterial sexually transmitted infection, responsible for millions of infections each year. Despite this high prevalence, the elucidation of the molecular mechanisms of Chlamydia pathogenesis has been difficult due to limitations in genetic tools and its intracellular developmental cycle. Within a host epithelial cell, chlamydiae replicate within a vacuole called the inclusion. Many Chlamydia-host interactions are thought to be mediated by the Inc family of type III secreted proteins that are anchored in the inclusion membrane, but their array of host targets are largely unknown. To investigate how the inclusion membrane proteome changes over the course of an infected cell, we have adapted the APEX2 system of proximity-dependent biotinylation. APEX2 is capable of specifically labeling proteins within a 20 nm radius in living cells. We transformed C. trachomatis to express the enzyme APEX2 fused to known inclusion membrane proteins, allowing biotinylation and purification of inclusion-associated proteins. Using quantitative mass spectrometry against APEX2 labeled samples, we identified over 400 proteins associated with the inclusion membrane at early, middle, and late stages of epithelial cell infection. This system was sensitive enough to detect inclusion interacting proteins early in the developmental cycle, at 8 hours post infection, a previously intractable time point. Mass spectrometry analysis revealed a novel, early association between C. trachomatis inclusions and endoplasmic reticulum exit sites (ERES), functional regions of the ER where COPII-coated vesicles originate. Pharmacological and genetic disruption of ERES function severely restricted early chlamydial growth and the development of infectious progeny. APEX2 is therefore a powerful in situ approach for identifying critical protein interactions on the membranes of pathogen-containing vacuoles. Furthermore, the data derived from proteomic mapping of Chlamydia inclusions has illuminated an important functional role for ERES in promoting chlamydial developmental growth.
Collapse
Affiliation(s)
- Mary S. Dickinson
- Department of Global Health, Graduate Program in Pathobiology, University of Washington, Seattle, WA, United States of America
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Reemerging Infectious Disease (CERID), University of Washington, Seattle, WA, United States of America
| | - Lindsey N. Anderson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | | | - Joshua R. Hansen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Aaron T. Wright
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States of America
- The Gene and Linda Voiland College of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, United States of America
| | - Kevin Hybiske
- Department of Global Health, Graduate Program in Pathobiology, University of Washington, Seattle, WA, United States of America
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Reemerging Infectious Disease (CERID), University of Washington, Seattle, WA, United States of America
| |
Collapse
|
21
|
Kurokawa K, Nakano A. The ER exit sites are specialized ER zones for the transport of cargo proteins from the ER to the Golgi apparatus. J Biochem 2019; 165:109-114. [PMID: 30304445 DOI: 10.1093/jb/mvy080] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 10/05/2018] [Indexed: 12/29/2022] Open
Abstract
The endoplasmic reticulum (ER) is a multifunctional organelle, including secretory protein biogenesis, lipid synthesis, drug metabolism, Ca2+ signalling and so on. Since the ER is a single continuous membrane structure, it includes distinct zones responsible for its different functions. The export of newly synthesized proteins from the ER is facilitated via coat protein complex II (COPII)-coated vesicles, which form in specialized zones within the ER, called the ER exit sites (ERES) or transitional ER. In this review, we highlight recent advances in our understanding of the structural organization of ERES, the correlation between the ERES and Golgi organization, and the faithful cargo transport mechanism from the ERES to the Golgi.
Collapse
Affiliation(s)
- Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
22
|
Aridor M. COPII gets in shape: Lessons derived from morphological aspects of early secretion. Traffic 2018; 19:823-839. [DOI: 10.1111/tra.12603] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/26/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Meir Aridor
- Department of Cell Biology; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
| |
Collapse
|
23
|
McCaughey J, Stephens DJ. COPII-dependent ER export in animal cells: adaptation and control for diverse cargo. Histochem Cell Biol 2018; 150:119-131. [PMID: 29916038 PMCID: PMC6096569 DOI: 10.1007/s00418-018-1689-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2018] [Indexed: 12/31/2022]
Abstract
The export of newly synthesized proteins from the endoplasmic reticulum is fundamental to the ongoing maintenance of cell and tissue structure and function. After co-translational translocation into the ER, proteins destined for downstream intracellular compartments or secretion from the cell are sorted and packaged into transport vesicles by the COPII coat protein complex. The fundamental discovery and characterization of the pathway has now been augmented by a greater understanding of the role of COPII in diverse aspects of cell function. We now have a deep understanding of how COPII contributes to the trafficking of diverse cargoes including extracellular matrix molecules, developmental signalling proteins, and key metabolic factors such as lipoproteins. Structural and functional studies have shown that the COPII coat is both highly flexible and subject to multiple modes of regulation. This has led to new discoveries defining roles of COPII in development, autophagy, and tissue organization. Many of these newly emerging features of the canonical COPII pathway are placed in a context of procollagen secretion because of the fundamental interest in how a coat complex that typically generates 80-nm transport vesicles can package a cargo reported to be over 300 nm. Here we review the current understanding of COPII and assess the current consensus on its role in packaging diverse cargo proteins.
Collapse
Affiliation(s)
- Janine McCaughey
- Cell Biology Laboratories, School of Biochemistry, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - David J Stephens
- Cell Biology Laboratories, School of Biochemistry, University Walk, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
24
|
Hanna MG, Peotter JL, Frankel EB, Audhya A. Membrane Transport at an Organelle Interface in the Early Secretory Pathway: Take Your Coat Off and Stay a While: Evolution of the metazoan early secretory pathway. Bioessays 2018; 40:e1800004. [PMID: 29741780 PMCID: PMC6166410 DOI: 10.1002/bies.201800004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/09/2018] [Indexed: 01/25/2023]
Abstract
Most metazoan organisms have evolved a mildly acidified and calcium diminished sorting hub in the early secretory pathway commonly referred to as the Endoplasmic Reticulum-Golgi intermediate compartment (ERGIC). These membranous vesicular-tubular clusters are found tightly juxtaposed to ER subdomains that are competent for the production of COPII-coated transport carriers. In contrast to many unicellular systems, metazoan COPII carriers largely transit just a few hundred nanometers to the ERGIC, prior to COPI-dependent transport on to the cis-Golgi. The mechanisms underlying formation and maintenance of ERGIC membranes are poorly defined. However, recent evidence suggests an important role for Trk-fused gene (TFG) in regulating the integrity of the ER/ERGIC interface. Moreover, in the absence of cytoskeletal elements to scaffold tracks on which COPII carriers might move, TFG appears to promote anterograde cargo transport by locally tethering COPII carriers adjacent to ERGIC membranes. This action, regulated in part by the intrinsically disordered domain of TFG, provides sufficient time for COPII coat disassembly prior to heterotypic membrane fusion and cargo delivery to the ERGIC.
Collapse
Affiliation(s)
- Michael G. Hanna
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health 440 Henry Mall, Madison, WI 53706, USA,
| | - Jennifer L. Peotter
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health 440 Henry Mall, Madison, WI 53706, USA,
| | - E. B. Frankel
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health 440 Henry Mall, Madison, WI 53706, USA,
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health 440 Henry Mall, Madison, WI 53706, USA,
| |
Collapse
|
25
|
Abstract
Plant vacuoles are multifunctional organelles. On the one hand, most vegetative tissues develop lytic vacuoles that have a role in degradation. On the other hand, seed cells have two types of storage vacuoles: protein storage vacuoles (PSVs) in endosperm and embryonic cells and metabolite storage vacuoles in seed coats. Vacuolar proteins and metabolites are synthesized on the endoplasmic reticulum and then transported to the vacuoles via Golgi-dependent and Golgi-independent pathways. Proprotein precursors delivered to the vacuoles are converted into their respective mature forms by vacuolar processing enzyme, which also regulates various kinds of programmed cell death in plants. We summarize two types of vacuolar membrane dynamics that occur during defense responses: vacuolar membrane collapse to attack viral pathogens and fusion of vacuolar and plasma membranes to attack bacterial pathogens. We also describe the chemical defense against herbivores brought about by the presence of PSVs in the idioblast myrosin cell.
Collapse
Affiliation(s)
- Tomoo Shimada
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
| | - Junpei Takagi
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
| | - Takuji Ichino
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
| | - Makoto Shirakawa
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Ikuko Hara-Nishimura
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
| |
Collapse
|
26
|
Suda Y, Kurokawa K, Nakano A. Regulation of ER-Golgi Transport Dynamics by GTPases in Budding Yeast. Front Cell Dev Biol 2018; 5:122. [PMID: 29473037 PMCID: PMC5810278 DOI: 10.3389/fcell.2017.00122] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/28/2017] [Indexed: 01/21/2023] Open
Abstract
A large number of proteins are synthesized de novo in the endoplasmic reticulum (ER). They are transported through the Golgi apparatus and then delivered to their proper destinations. The ER and the Golgi play a central role in protein processing and sorting and show dynamic features in their forms. Ras super family small GTPases mediate the protein transport through and between these organelles. The ER-localized GTPase, Sar1, facilitates the formation of COPII transport carriers at the ER exit sites (ERES) on the ER for the transport of cargo proteins from the ER to the Golgi. The Golgi-localized GTPase, Arf1, controls intra-Golgi, and Golgi-to-ER transport of cargo proteins by the formation of COPI carriers. Rab GTPases localized at the Golgi, which are responsible for fusion of membranes, are thought to establish the identities of compartments. Recent evidence suggests that these small GTPases regulate not only discrete sites for generation/fusion of transport carriers, but also membrane dynamics of the organelles where they locate to ensure the integrity of transport. Here we summarize the current understandings about the membrane traffic between these organelles and highlight the cutting-edge advances from super-resolution live imaging of budding yeast, Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Yasuyuki Suda
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Saitama, Japan.,Laboratory of Molecular Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Saitama, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Saitama, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
27
|
Abstract
In eukaryotes, distinct transport vesicles functionally connect various intracellular compartments. These carriers mediate transport of membranes for the biogenesis and maintenance of organelles, secretion of cargo proteins and peptides, and uptake of cargo into the cell. Transport vesicles have distinct protein coats that assemble on a donor membrane where they can select cargo and curve the membrane to form a bud. A multitude of structural elements of coat proteins have been solved by X-ray crystallography. More recently, the architectures of the COPI and COPII coats were elucidated in context with their membrane by cryo-electron tomography. Here, we describe insights gained from the structures of these two coat lattices and discuss the resulting functional implications.
Collapse
Affiliation(s)
- Julien Béthune
- Heidelberg University Biochemistry Centre, 69120 Heidelberg, Germany; ,
| | - Felix T Wieland
- Heidelberg University Biochemistry Centre, 69120 Heidelberg, Germany; ,
| |
Collapse
|
28
|
TFG facilitates outer coat disassembly on COPII transport carriers to promote tethering and fusion with ER-Golgi intermediate compartments. Proc Natl Acad Sci U S A 2017; 114:E7707-E7716. [PMID: 28851831 DOI: 10.1073/pnas.1709120114] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The conserved coat protein complex II (COPII) mediates the initial steps of secretory protein trafficking by assembling onto subdomains of the endoplasmic reticulum (ER) in two layers to generate cargo-laden transport carriers that ultimately fuse with an adjacent ER-Golgi intermediate compartment (ERGIC). Here, we demonstrate that Trk-fused gene (TFG) binds directly to the inner layer of the COPII coat. Specifically, the TFG C terminus interacts with Sec23 through a shared interface with the outer COPII coat and the cargo receptor Tango1/cTAGE5. Our findings indicate that TFG binding to Sec23 outcompetes these other associations in a concentration-dependent manner and ultimately promotes outer coat dissociation. Additionally, we demonstrate that TFG tethers vesicles harboring the inner COPII coat, which contributes to their clustering between the ER and ERGIC in cells. Together, our studies define a mechanism by which COPII transport carriers are retained locally at the ER/ERGIC interface after outer coat disassembly, which is a prerequisite for fusion with ERGIC membranes.
Collapse
|
29
|
Saito K, Maeda M, Katada T. Regulation of the Sar1 GTPase Cycle Is Necessary for Large Cargo Secretion from the Endoplasmic Reticulum. Front Cell Dev Biol 2017; 5:75. [PMID: 28879181 PMCID: PMC5572378 DOI: 10.3389/fcell.2017.00075] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/10/2017] [Indexed: 12/22/2022] Open
Abstract
Proteins synthesized within the endoplasmic reticulum (ER) are transported to the Golgi via coat protein complex II (COPII)-coated vesicles. The formation of COPII-coated vesicles is regulated by the GTPase cycle of Sar1. Activated Sar1 is recruited to ER membranes and forms a pre-budding complex with cargoes and the inner-coat complex. The outer-coat complex then stimulates Sar1 inactivation and completes vesicle formation. The mechanisms of forming transport carriers are well-conserved among species; however, in mammalian cells, several cargo molecules such as collagen, and chylomicrons are too large to be accommodated in conventional COPII-coated vesicles. Thus, special cargo-receptor complexes are required for their export from the ER. cTAGE5/TANGO1 complexes and their isoforms have been identified as cargo receptors for these macromolecules. Recent reports suggest that the cTAGE5/TANGO1 complex interacts with the GEF and the GAP of Sar1 and tightly regulates its GTPase cycle to accomplish large cargo secretion.
Collapse
Affiliation(s)
- Kota Saito
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of TokyoTokyo, Japan
| | - Miharu Maeda
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of TokyoTokyo, Japan
| | - Toshiaki Katada
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of TokyoTokyo, Japan
| |
Collapse
|
30
|
Iwasaki H, Yorimitsu T, Sato K. Microscopy analysis of reconstituted COPII coat polymerization and Sec16 dynamics. J Cell Sci 2017; 130:2893-2902. [PMID: 28747320 DOI: 10.1242/jcs.203844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/14/2017] [Indexed: 01/10/2023] Open
Abstract
The COPII coat and the small GTPase Sar1 mediate protein export from the endoplasmic reticulum (ER) via specialized domains known as the ER exit sites. The peripheral ER protein Sec16 has been proposed to organize ER exit sites. However, it remains unclear how these molecules drive COPII coat polymerization. Here, we characterized the spatiotemporal relationships between the Saccharomyces cerevisiae COPII components during their polymerization by performing fluorescence microscopy of an artificial planar membrane. We demonstrated that Sar1 dissociates from the membrane shortly after the COPII coat recruitment, and Sar1 is then no longer required for the COPII coat to bind to the membrane. Furthermore, we found that Sec16 is incorporated within the COPII-cargo clusters, and that this is dependent on the Sar1 GTPase cycle. These data show how Sar1 drives the polymerization of COPII coat and how Sec16 is spatially distributed during COPII coat polymerization.
Collapse
Affiliation(s)
- Hirohiko Iwasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Tomohiro Yorimitsu
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Ken Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
31
|
Cook MS, Cazin C, Amoyel M, Yamamoto S, Bach E, Nystul T. Neutral Competition for Drosophila Follicle and Cyst Stem Cell Niches Requires Vesicle Trafficking Genes. Genetics 2017; 206:1417-1428. [PMID: 28512187 PMCID: PMC5500140 DOI: 10.1534/genetics.117.201202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/10/2017] [Indexed: 12/03/2022] Open
Abstract
The process of selecting for cellular fitness through competition plays a critical role in both development and disease. The germarium, a structure at the tip of the ovariole of a Drosophila ovary, contains two follicle stem cells (FSCs) that undergo neutral competition for the stem cell niche. Using the FSCs as a model, we performed a genetic screen through a collection of 126 mutants in essential genes on the X chromosome to identify candidates that increase or decrease competition for the FSC niche. We identified ∼55 and 6% of the mutations screened as putative FSC hypo- or hyper-competitors, respectively. We found that a large majority of mutations in vesicle trafficking genes (11 out of the 13 in the collection of mutants) are candidate hypo-competition alleles, and we confirmed the hypo-competition phenotype for four of these alleles. We also show that Sec16 and another COPII vesicle trafficking component, Sar1, are required for follicle cell differentiation. Lastly, we demonstrate that, although some components of vesicle trafficking are also required for neutral competition in the cyst stem cells of the testis, there are important tissue-specific differences. Our results demonstrate a critical role for vesicle trafficking in stem cell niche competition and differentiation, and we identify a number of putative candidates for further exploration.
Collapse
Affiliation(s)
- Matthew S Cook
- Center for Reproductive Sciences, University of California, San Francisco, California 94143-0452
- Department of Anatomy, University of California, San Francisco, California 94143-0452
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, California 94143-0452
| | - Coralie Cazin
- The Helen and Martin Kimmel Center for Stem Cell Biology, New York University School of Medicine, New York 10016
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York 10016
| | - Marc Amoyel
- The Helen and Martin Kimmel Center for Stem Cell Biology, New York University School of Medicine, New York 10016
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York 10016
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, United Kingdom
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
| | - Erika Bach
- The Helen and Martin Kimmel Center for Stem Cell Biology, New York University School of Medicine, New York 10016
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York 10016
| | - Todd Nystul
- Center for Reproductive Sciences, University of California, San Francisco, California 94143-0452
- Department of Anatomy, University of California, San Francisco, California 94143-0452
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, California 94143-0452
| |
Collapse
|
32
|
Moderate Expression of SEC16 Increases Protein Secretion by Saccharomyces cerevisiae. Appl Environ Microbiol 2017; 83:AEM.03400-16. [PMID: 28476767 DOI: 10.1128/aem.03400-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/27/2017] [Indexed: 12/21/2022] Open
Abstract
The yeast Saccharomyces cerevisiae is widely used to produce biopharmaceutical proteins. However, the limited capacity of the secretory pathway may reduce its productivity. Here, we increased the secretion of a heterologous α-amylase, a model protein used for studying the protein secretory pathway in yeast, by moderately overexpressing SEC16, which is involved in protein translocation from the endoplasmic reticulum to the Golgi apparatus. The moderate overexpression of SEC16 increased α-amylase secretion by generating more endoplasmic reticulum exit sites. The production of reactive oxygen species resulting from the heterologous α-amylase production was reduced. A genome-wide expression analysis indicated decreased endoplasmic reticulum stress in the strain that moderately overexpressed SEC16, which was consistent with a decreased volume of the endoplasmic reticulum. Additionally, fewer mitochondria were observed. Finally, the moderate overexpression of SEC16 was shown to improve the secretion of two other recombinant proteins, Trichoderma reesei endoglucanase I and Rhizopus oryzae glucan-1,4-α-glucosidase, indicating that this mechanism is of general relevance.IMPORTANCE There is an increasing demand for recombinant proteins to be used as enzymes and pharmaceuticals. The yeast Saccharomyces cerevisiae is a cell factory that is widely used to produce recombinant proteins. Our study revealed that moderate overexpression of SEC16 increased recombinant protein secretion in S. cerevisiae This new strategy can be combined with other targets to engineer cell factories to efficiently produce protein in the future.
Collapse
|
33
|
Tang BL. Sec16 in conventional and unconventional exocytosis: Working at the interface of membrane traffic and secretory autophagy? J Cell Physiol 2017; 232:3234-3243. [PMID: 28160489 DOI: 10.1002/jcp.25842] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/03/2017] [Indexed: 12/22/2022]
Abstract
Sec16 is classically perceived to be a scaffolding protein localized to the transitional endoplasmic reticulum (tER) or the ER exit sites (ERES), and has a conserved function in facilitating coat protein II (COPII) complex-mediated ER exit. Recent findings have, however, pointed toward a role for Sec16 in unconventional exocytosis of certain membrane proteins, such as the Cystic fibrosis transmembrane conductance regulator (CFTR) in mammalian cells, and possibly also α-integrin in certain contexts of Drosophila development. In this regard, Sec16 interacts with components of a recently deciphered pathway of stress-induced unconventional exocytosis, which is dependent on the tether protein Golgi reassembly stacking proteins (GRASPs) and the autophagy pathway. Intriguingly, Sec16 also appears to be post-translationally modified by autophagy-related signaling processes. Sec16 is known to be phosphorylated by the atypical extracellular signal regulated kinase 7 (Erk7) upon serum and amino acid starvation, both represent conditions that trigger autophagy. Recent work has also shown that Sec16 is phosphorylated, and thus regulated by the prominent autophagy-initiating Unc-51-like autophagy activating kinase 1 (Ulk1), as well as another autophagy modulator Leucine-rich repeat kinase 2 (Lrrk2). The picture emerging from Sec16's network of physical and functional interactors allows the speculation that Sec16 is situated (and may in yet undefined ways function) at the interface between COPII-mediated exocytosis of conventional vesicular traffic and the GRASP/autophagy-dependent mode of unconventional exocytosis.
Collapse
Affiliation(s)
- Bor Luen Tang
- Departmentof Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| |
Collapse
|
34
|
Maeda M, Katada T, Saito K. TANGO1 recruits Sec16 to coordinately organize ER exit sites for efficient secretion. J Cell Biol 2017; 216:1731-1743. [PMID: 28442536 PMCID: PMC5461033 DOI: 10.1083/jcb.201703084] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 12/27/2022] Open
Abstract
Mammalian endoplasmic reticulum (ER) exit sites export a variety of cargo molecules including oversized cargoes such as collagens. However, the mechanisms of their assembly and organization are not fully understood. TANGO1L is characterized as a collagen receptor, but the function of TANGO1S remains to be investigated. Here, we show that direct interaction between both isoforms of TANGO1 and Sec16 is not only important for their correct localization but also critical for the organization of ER exit sites. The depletion of TANGO1 disassembles COPII components as well as membrane-bound ER-resident complexes, resulting in fewer functional ER exit sites and delayed secretion. The ectopically expressed TANGO1 C-terminal domain responsible for Sec16 binding in mitochondria is capable of recruiting Sec16 and other COPII components. Moreover, TANGO1 recruits membrane-bound macromolecular complexes consisting of cTAGE5 and Sec12 to the ER exit sites. These data suggest that mammalian ER exit sites are organized by TANGO1 acting as a scaffold, in cooperation with Sec16 for efficient secretion.
Collapse
Affiliation(s)
- Miharu Maeda
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Toshiaki Katada
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Kota Saito
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
35
|
Abstract
Protein secretion mediated by the secretory transport pathway is an important cellular process in eukaryotic cells. In the conventional secretory transport pathway, newly synthesized proteins pass through several endomembrane compartments en route to their specific destinations. Transport of secretory proteins between different compartments is shuttled by small, membrane-enclosed vesicles. To ensure the fidelity of transport, eukaryotic cells employ elaborate molecular machineries to accurately sort newly synthesized proteins into specific transport vesicles and precisely deliver these transport vesicles to distinct acceptor compartments. In this review, we summarize the molecular machineries that regulate each step of vesicular transport in the secretory transport pathway in yeast and animal cells.
Collapse
Affiliation(s)
- Yusong Guo
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Feng Yang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiao Tang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
36
|
Gomez-Navarro N, Miller E. Protein sorting at the ER-Golgi interface. J Cell Biol 2016; 215:769-778. [PMID: 27903609 PMCID: PMC5166505 DOI: 10.1083/jcb.201610031] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/02/2016] [Accepted: 11/17/2016] [Indexed: 01/01/2023] Open
Abstract
In this review, Gomez-Navarro and Miller summarize the principles of cargo sorting by the vesicle traffic machinery and consider the diverse mechanisms by which cargo proteins are selected and captured into different transport vesicles. Protein traffic is of critical importance for normal cellular physiology. In eukaryotes, spherical transport vesicles move proteins and lipids from one internal membrane-bound compartment to another within the secretory pathway. The process of directing each individual protein to a specific destination (known as protein sorting) is a crucial event that is intrinsically linked to vesicle biogenesis. In this review, we summarize the principles of cargo sorting by the vesicle traffic machinery and consider the diverse mechanisms by which cargo proteins are selected and captured into different transport vesicles. We focus on the first two compartments of the secretory pathway: the endoplasmic reticulum and Golgi. We provide an overview of the complexity and diversity of cargo adaptor function and regulation, focusing on recent mechanistic discoveries that have revealed insight into protein sorting in cells.
Collapse
Affiliation(s)
- Natalia Gomez-Navarro
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| | - Elizabeth Miller
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| |
Collapse
|
37
|
Sec16 alternative splicing dynamically controls COPII transport efficiency. Nat Commun 2016; 7:12347. [PMID: 27492621 PMCID: PMC4980449 DOI: 10.1038/ncomms12347] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/24/2016] [Indexed: 12/18/2022] Open
Abstract
The transport of secretory proteins from the endoplasmic reticulum (ER) to the Golgi depends on COPII-coated vesicles. While the basic principles of the COPII machinery have been identified, it remains largely unknown how COPII transport is regulated to accommodate tissue- or activation-specific differences in cargo load and identity. Here we show that activation-induced alternative splicing of Sec16 controls adaptation of COPII transport to increased secretory cargo upon T-cell activation. Using splice-site blocking morpholinos and CRISPR/Cas9-mediated genome engineering, we show that the number of ER exit sites, COPII dynamics and transport efficiency depend on Sec16 alternative splicing. As the mechanistic basis, we suggest the C-terminal Sec16 domain to be a splicing-controlled protein interaction platform, with individual isoforms showing differential abilities to recruit COPII components. Our work connects the COPII pathway with alternative splicing, adding a new regulatory layer to protein secretion and its adaptation to changing cellular environments. The transport of secretory proteins from the endoplasmic reticulum to the Golgi depends on COPII-coated vesicles. Here, the authors show that activation-induced alternative splicing of Sec16 controls adaptation of COPII transport to increased secretory cargo upon T cell activation.
Collapse
|
38
|
Kurokawa K, Suda Y, Nakano A. Sar1 localizes at the rims of COPII-coated membranes in vivo. J Cell Sci 2016; 129:3231-7. [PMID: 27432890 PMCID: PMC5047700 DOI: 10.1242/jcs.189423] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/12/2016] [Indexed: 12/31/2022] Open
Abstract
The Sar1 GTPase controls coat assembly on coat protein complex II (COPII)-coated vesicles, which mediate protein transport from the endoplasmic reticulum (ER) to the Golgi. The GTP-bound form of Sar1, activated by the ER-localized guanine nucleotide exchange factor (GEF) Sec12, associates with the ER membrane. GTP hydrolysis by Sar1, stimulated by the COPII-vesicle-localized GTPase-activating protein (GAP) Sec23, in turn causes Sar1 to dissociate from the membrane. Thus, Sar1 is cycled between active and inactive states, and on and off vesicle membranes, but its precise spatiotemporal regulation remains unknown. Here, we examined Sar1 localization on COPII-coated membranes in living Saccharomyces cerevisiae cells. Two-dimensional (2D) observation demonstrated that Sar1 showed modest accumulation around the ER exit sites (ERES) in a manner that was dependent on Sec16 function. Detailed three-dimensional (3D) observation further demonstrated that Sar1 localized at the rims of the COPII-coated membranes, but was excluded from the rest of the COPII membranes. Additionally, a GTP-locked form of Sar1 induced abnormally enlarged COPII-coated structures and covered the entirety of these structures. These results suggested that the reversible membrane association of Sar1 GTPase leads to its localization being restricted to the rims of COPII-coated membranes in vivo.
Collapse
Affiliation(s)
- Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yasuyuki Suda
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Laboratory of Molecular Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
39
|
Tanabe T, Maeda M, Saito K, Katada T. Dual function of cTAGE5 in collagen export from the endoplasmic reticulum. Mol Biol Cell 2016; 27:2008-13. [PMID: 27170179 PMCID: PMC4927275 DOI: 10.1091/mbc.e16-03-0180] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/06/2016] [Indexed: 11/22/2022] Open
Abstract
Two functionally irreplaceable and molecularly separable modules in cTAGE5 are both required for collagen VII export from the ER. The concentration of Sec12 induced by cTAGE5 serves for efficient production of activated Sar1 around ER exit sites, and the GTPase cycle of Sar1 seems to be required for collagen VII export from the ER. Two independent functions of cTAGE5 have been reported in collagen VII export from the endoplasmic reticulum (ER). cTAGE5 not only forms a cargo receptor complex with TANGO1, but it also acts as a scaffold to recruit Sec12, a guanine-nucleotide exchange factor for Sar1 GTPase, to ER exit sites. However, the relationship between the two functions remains unclear. Here we isolated point mutants of cTAGE5 that lost Sec12-binding ability but retained binding to TANGO1. Although expression of the mutant alone could not rescue the defects in collagen VII secretion mediated by cTAGE5 knockdown, coexpression with Sar1, but not with the GTPase-deficient mutant, recovered secretion. The expression of Sar1 alone failed to rescue collagen secretion in cTAGE5-depleted cells. Taken together, these results suggest that two functionally irreplaceable and molecularly separable modules in cTAGE5 are both required for collagen VII export from the ER. The recruitment of Sec12 by cTAGE5 contributes to efficient activation of Sar1 in the vicinity of ER exit sites. In addition, the GTPase cycle of Sar1 appears to be responsible for collagen VII exit from the ER.
Collapse
Affiliation(s)
- Tomoya Tanabe
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Miharu Maeda
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Kota Saito
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Toshiaki Katada
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
40
|
Hanna MG, Mela I, Wang L, Henderson RM, Chapman ER, Edwardson JM, Audhya A. Sar1 GTPase Activity Is Regulated by Membrane Curvature. J Biol Chem 2015; 291:1014-27. [PMID: 26546679 PMCID: PMC4714187 DOI: 10.1074/jbc.m115.672287] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Indexed: 12/15/2022] Open
Abstract
The majority of biosynthetic secretory proteins initiate their journey through the endomembrane system from specific subdomains of the endoplasmic reticulum. At these locations, coated transport carriers are generated, with the Sar1 GTPase playing a critical role in membrane bending, recruitment of coat components, and nascent vesicle formation. How these events are appropriately coordinated remains poorly understood. Here, we demonstrate that Sar1 acts as the curvature-sensing component of the COPII coat complex and highlight the ability of Sar1 to bind more avidly to membranes of high curvature. Additionally, using an atomic force microscopy-based approach, we further show that the intrinsic GTPase activity of Sar1 is necessary for remodeling lipid bilayers. Consistent with this idea, Sar1-mediated membrane remodeling is dramatically accelerated in the presence of its guanine nucleotide-activating protein (GAP), Sec23-Sec24, and blocked upon addition of guanosine-5′-[(β,γ)-imido]triphosphate, a poorly hydrolysable analog of GTP. Our results also indicate that Sar1 GTPase activity is stimulated by membranes that exhibit elevated curvature, potentially enabling Sar1 membrane scission activity to be spatially restricted to highly bent membranes that are characteristic of a bud neck. Taken together, our data support a stepwise model in which the amino-terminal amphipathic helix of GTP-bound Sar1 stably penetrates the endoplasmic reticulum membrane, promoting local membrane deformation. As membrane bending increases, Sar1 membrane binding is elevated, ultimately culminating in GTP hydrolysis, which may destabilize the bilayer sufficiently to facilitate membrane fission.
Collapse
Affiliation(s)
- Michael G Hanna
- From the Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Ioanna Mela
- the Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD Cambridge, United Kingdom, and
| | - Lei Wang
- From the Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Robert M Henderson
- the Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD Cambridge, United Kingdom, and
| | - Edwin R Chapman
- the Department of Neuroscience, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705
| | - J Michael Edwardson
- the Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD Cambridge, United Kingdom, and
| | - Anjon Audhya
- From the Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53706,
| |
Collapse
|
41
|
Sakaguchi A, Sato M, Sato K, Gengyo-Ando K, Yorimitsu T, Nakai J, Hara T, Sato K, Sato K. REI-1 Is a Guanine Nucleotide Exchange Factor Regulating RAB-11 Localization and Function in C. elegans Embryos. Dev Cell 2015; 35:211-221. [PMID: 26506309 DOI: 10.1016/j.devcel.2015.09.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/18/2015] [Accepted: 09/18/2015] [Indexed: 11/29/2022]
Abstract
The small GTPase Rab11 dynamically changes its location to regulate various cellular processes such as endocytic recycling, secretion, and cytokinesis. However, our knowledge of its upstream regulators is still limited. Here, we identify the RAB-11-interacting protein-1 (REI-1) as a unique family of guanine nucleotide exchange factors (GEFs) for RAB-11 in Caenorhabditis elegans. Although REI-1 and its human homolog SH3-binding protein 5 do not contain any known Rab-GEF domains, they exhibited strong GEF activity toward Rab11 in vitro. In C. elegans, REI-1 is expressed in the germline and co-localizes with RAB-11 on the late-Golgi membranes. The loss of REI-1 specifically impaired the targeting of RAB-11 to the late-Golgi compartment and the recycling endosomes in embryos and further reduced the RAB-11 distribution to the cleavage furrow, which resulted in cytokinesis delay. These results suggest that REI-1 is a GEF specifically regulating the RAB-11 localization and functions in early embryos.
Collapse
Affiliation(s)
- Aisa Sakaguchi
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Miyuki Sato
- Laboratory of Molecular Membrane Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Katsuya Sato
- Laboratory of Molecular Membrane Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Keiko Gengyo-Ando
- Brain Science Institute, Saitama University, Saitama, Saitama 338-8570, Japan
| | - Tomohiro Yorimitsu
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Junichi Nakai
- Brain Science Institute, Saitama University, Saitama, Saitama 338-8570, Japan
| | - Taichi Hara
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Ken Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan.
| |
Collapse
|
42
|
Abstract
Protein export from the endoplasmic reticulum (ER), the first step in protein transport through the secretory pathway, is mediated by coatomer protein II (COPII)-coated vesicles at ER exit sites. COPII coat assembly on the ER is well understood and the conserved large hydrophilic protein Sec16 clearly has a role to play in COPII coat dynamics. Sec16 localizes to ER exit sites, its loss of function impairs their functional organization in all species where it has been studied, and it interacts with COPII coat subunits. However, its exact function in COPII dynamics is debated, as Sec16 is proposed to act as a scaffold to recruit COPII components and as a device to regulate the Sar1 activity in uncoating, in such a way that the coat is released only when the vesicle is fully formed and loaded with cargo. Furthermore, Sec16 has been shown to respond to nutrient signalling, thus coupling environmental stimuli to secretory capacity.
Collapse
|
43
|
Saito K, Katada T. Mechanisms for exporting large-sized cargoes from the endoplasmic reticulum. Cell Mol Life Sci 2015; 72:3709-20. [PMID: 26082182 PMCID: PMC4565863 DOI: 10.1007/s00018-015-1952-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 05/18/2015] [Accepted: 06/08/2015] [Indexed: 12/14/2022]
Abstract
Cargo proteins exported from the endoplasmic reticulum to the Golgi apparatus are typically transported in coat protein complex II (COPII)-coated vesicles of 60–90 nm diameter. Several cargo molecules including collagens and chylomicrons form structures that are too large to be accommodated by these vesicles, but their secretion still requires COPII proteins. Here, we first review recent progress on large cargo secretions derived especially from animal models and human diseases, which indicate the importance of COPII proteins. We then discuss the recent isolation of specialized factors that modulate the process of COPII-dependent cargo formation to facilitate the exit of large-sized cargoes from the endoplasmic reticulum. Based on these findings, we propose a model that describes the importance of the GTPase cycle for secretion of oversized cargoes. Next, we summarize reports that describe the structures of COPII proteins and how these results provide insight into the mechanism of assembly of the large cargo carriers. Finally, we discuss what issues remain to be solved in the future.
Collapse
Affiliation(s)
- Kota Saito
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Toshiaki Katada
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
44
|
Iwasaki H, Yorimitsu T, Sato K. Distribution of Sec24 isoforms to each ER exit site is dynamically regulated in Saccharomyces cerevisiae. FEBS Lett 2015; 589:1234-9. [PMID: 25896017 DOI: 10.1016/j.febslet.2015.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/27/2015] [Accepted: 04/06/2015] [Indexed: 02/05/2023]
Abstract
COPII vesicles are formed at specific subdomains of the ER, termed ER exit sites (ERESs). Depending on the cell type, ERESs number from a few to several hundred per cell. However, whether these ERESs are functionally and compositionally identical at the cellular level remains unclear. Our live cell-imaging analysis in Saccharomyces cerevisiae revealed that the isoforms of cargo-adaptor subunits are unequally distributed to each ERES at steady state, whereas this distribution is altered in response to UPR activation. These results suggest that in S. cerevisiae cargo loading to ERES is dynamically controlled in response to environmental changes.
Collapse
Affiliation(s)
- Hirohiko Iwasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Tomohiro Yorimitsu
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Ken Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
45
|
Johnson A, Bhattacharya N, Hanna M, Pennington JG, Schuh AL, Wang L, Otegui MS, Stagg SM, Audhya A. TFG clusters COPII-coated transport carriers and promotes early secretory pathway organization. EMBO J 2015; 34:811-27. [PMID: 25586378 DOI: 10.15252/embj.201489032] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In mammalian cells, cargo-laden secretory vesicles leave the endoplasmic reticulum (ER) en route to ER-Golgi intermediate compartments (ERGIC) in a manner dependent on the COPII coat complex. We report here that COPII-coated transport carriers traverse a submicron, TFG (Trk-fused gene)-enriched zone at the ER/ERGIC interface. The architecture of TFG complexes as determined by three-dimensional electron microscopy reveals the formation of flexible, octameric cup-like structures, which are able to self-associate to generate larger polymers in vitro. In cells, loss of TFG function dramatically slows protein export from the ER and results in the accumulation of COPII-coated carriers throughout the cytoplasm. Additionally, the tight association between ER and ERGIC membranes is lost in the absence of TFG. We propose that TFG functions at the ER/ERGIC interface to locally concentrate COPII-coated transport carriers and link exit sites on the ER to ERGIC membranes. Our findings provide a new mechanism by which COPII-coated carriers are retained near their site of formation to facilitate rapid fusion with neighboring ERGIC membranes upon uncoating, thereby promoting interorganellar cargo transport.
Collapse
Affiliation(s)
- Adam Johnson
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | | | - Michael Hanna
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Janice G Pennington
- Departments of Botany and Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Amber L Schuh
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Lei Wang
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Marisa S Otegui
- Departments of Botany and Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Scott M Stagg
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
46
|
Ito Y, Uemura T, Nakano A. Formation and maintenance of the Golgi apparatus in plant cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 310:221-87. [PMID: 24725428 DOI: 10.1016/b978-0-12-800180-6.00006-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Golgi apparatus plays essential roles in intracellular trafficking, protein and lipid modification, and polysaccharide synthesis in eukaryotic cells. It is well known for its unique stacked structure, which is conserved among most eukaryotes. However, the mechanisms of biogenesis and maintenance of the structure, which are deeply related to ER-Golgi and intra-Golgi transport systems, have long been mysterious. Now having extremely powerful microscopic technologies developed for live-cell imaging, the plant Golgi apparatus provides an ideal system to resolve the question. The plant Golgi apparatus has unique features that are not conserved in other kingdoms, which will also give new insights into the Golgi functions in plant life. In this review, we will summarize the features of the plant Golgi apparatus and transport mechanisms around it, with a focus on recent advances in Golgi biogenesis by live imaging of plants cells.
Collapse
Affiliation(s)
- Yoko Ito
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomohiro Uemura
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan; Live Cell Molecular Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan.
| |
Collapse
|
47
|
Cho HJ, Yu J, Xie C, Rudrabhatla P, Chen X, Wu J, Parisiadou L, Liu G, Sun L, Ma B, Ding J, Liu Z, Cai H. Leucine-rich repeat kinase 2 regulates Sec16A at ER exit sites to allow ER-Golgi export. EMBO J 2014; 33:2314-31. [PMID: 25201882 DOI: 10.15252/embj.201487807] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) has been associated with Parkinson's disease (PD) and other disorders. However, its normal physiological functions and pathogenic properties remain elusive. Here we show that LRRK2 regulates the anterograde ER-Golgi transport through anchoring Sec16A at the endoplasmic reticulum exit sites (ERES). LRRK2 interacted and co-localized with Sec16A, a key protein in the formation of ERES. Lrrk2 depletion caused a dispersion of Sec16A from ERES and impaired ER export. In neurons, LRRK2 and Sec16A showed extensive co-localization at the dendritic ERES (dERES) that locally regulate the transport of proteins to the dendritic spines. A loss of Lrrk2 affected the association of Sec16A with dERES and impaired the activity-dependent targeting of glutamate receptors onto the cell/synapse surface. Furthermore, the PD-related LRRK2 R1441C missense mutation in the GTPase domain interfered with the interaction of LRRK2 with Sec16A and also affected ER-Golgi transport, while LRRK2 kinase activity was not required for these functions. Therefore, our findings reveal a new physiological function of LRRK2 in ER-Golgi transport, suggesting ERES dysfunction may contribute to the pathogenesis of PD.
Collapse
Affiliation(s)
- Hyun Jin Cho
- Transgenics Section, Laboratory of Neurogenetics National Institute on Aging National Institutes of Health, Bethesda, MD, USA
| | - Jia Yu
- Transgenics Section, Laboratory of Neurogenetics National Institute on Aging National Institutes of Health, Bethesda, MD, USA
| | - Chengsong Xie
- Transgenics Section, Laboratory of Neurogenetics National Institute on Aging National Institutes of Health, Bethesda, MD, USA
| | - Parvathi Rudrabhatla
- Laboratory of Neurochemistry and Laboratory of Neurobiology National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Xi Chen
- Transgenics Section, Laboratory of Neurogenetics National Institute on Aging National Institutes of Health, Bethesda, MD, USA
| | - Junbing Wu
- Transgenics Section, Laboratory of Neurogenetics National Institute on Aging National Institutes of Health, Bethesda, MD, USA
| | - Loukia Parisiadou
- Transgenics Section, Laboratory of Neurogenetics National Institute on Aging National Institutes of Health, Bethesda, MD, USA
| | - Guoxiang Liu
- Transgenics Section, Laboratory of Neurogenetics National Institute on Aging National Institutes of Health, Bethesda, MD, USA
| | - Lixin Sun
- Transgenics Section, Laboratory of Neurogenetics National Institute on Aging National Institutes of Health, Bethesda, MD, USA
| | - Bo Ma
- Transgenics Section, Laboratory of Neurogenetics National Institute on Aging National Institutes of Health, Bethesda, MD, USA
| | - Jinhui Ding
- Bioinformatics Core, Laboratory of Neurogenetics National Institute on Aging, Bethesda, MD, USA
| | - Zhihua Liu
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases National Institutes of Health, Bethesda, MD, USA Institute of Biophysics Chinese Academy of Sciences, Beijing, China
| | - Huaibin Cai
- Transgenics Section, Laboratory of Neurogenetics National Institute on Aging National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
48
|
Saito K, Yamashiro K, Shimazu N, Tanabe T, Kontani K, Katada T. Concentration of Sec12 at ER exit sites via interaction with cTAGE5 is required for collagen export. ACTA ACUST UNITED AC 2014; 206:751-62. [PMID: 25202031 PMCID: PMC4164946 DOI: 10.1083/jcb.201312062] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
By interacting with the collagen cargo receptor component cTAGE5, Sec12 concentrates at ER exit sites and generates the high levels of GTP-bound Sar1 necessary for export of collagen to the Golgi. Mechanisms for exporting variably sized cargo from the endoplasmic reticulum (ER) using the same machinery remain poorly understood. COPII-coated vesicles, which transport secretory proteins from the ER to the Golgi apparatus, are typically 60–90 nm in diameter. However, collagen, which forms a trimeric structure that is too large to be accommodated by conventional transport vesicles, is also known to be secreted via a COPII-dependent process. In this paper, we show that Sec12, a guanine-nucleotide exchange factor for Sar1 guanosine triphosphatase, is concentrated at ER exit sites and that this concentration of Sec12 is specifically required for the secretion of collagen VII but not other proteins. Furthermore, Sec12 recruitment to ER exit sites is organized by its direct interaction with cTAGE5, a previously characterized collagen cargo receptor component, which functions together with TANGO1 at ER exit sites. These findings suggest that the export of large cargo requires high levels of guanosine triphosphate–bound Sar1 generated by Sec12 localized at ER exit sites.
Collapse
Affiliation(s)
- Kota Saito
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Koh Yamashiro
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Noriko Shimazu
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoya Tanabe
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenji Kontani
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshiaki Katada
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
49
|
Kodera C, Yorimitsu T, Sato K. Sec23 homolog Nel1 is a novel GTPase-activating protein for Sar1 but does not function as a subunit of the coat protein complex II (COPII) coat. J Biol Chem 2014; 289:21423-32. [PMID: 24947508 DOI: 10.1074/jbc.m114.553917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The coat protein complex II (COPII) generates transport carriers from the endoplasmic reticulum (ER) under the control of the small GTPase Sar1. Sec23 is well known as a structural component of the COPII coat and as a GTPase-activating protein (GAP) for Sar1. Here, we showed that Saccharomyces cerevisiae contains a novel Sec23 paralog, Nel1, which appears not to function as a subunit of the COPII coat. Nel1 does not associate with any of the COPII components, but it exhibits strong Sar1 GAP activity. We also demonstrated that the chromosomal deletion of NEL1 leads to a significant growth defect in the temperature-sensitive sar1D32G background, suggesting a possible functional link between these proteins. In contrast to Sec23, which is predominantly localized at ER exit sites on the ER membrane, a major proportion of Nel1 is localized throughout the cytosol. Our findings highlight a possible role of Nel1 as a novel GAP for Sar1.
Collapse
Affiliation(s)
- Chie Kodera
- From the Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 and
| | - Tomohiro Yorimitsu
- the Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Ken Sato
- From the Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 and the Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
50
|
Papanikou E, Glick BS. Golgi compartmentation and identity. Curr Opin Cell Biol 2014; 29:74-81. [PMID: 24840895 DOI: 10.1016/j.ceb.2014.04.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/07/2014] [Accepted: 04/24/2014] [Indexed: 10/25/2022]
Abstract
Recent work supports the idea that cisternae of the Golgi apparatus can be assigned to three classes, which correspond to discrete stages of cisternal maturation. Each stage has a unique pattern of membrane traffic. At the first stage, cisternae form in association with the ER at multifunctional membrane assembly stations. At the second stage, cisternae synthesize carbohydrates while exchanging material via COPI vesicles. At the third stage, cisternae of the trans-Golgi network segregate into domains and produce transport carriers with the aid of specific lipids and the actin cytoskeleton. These processes are coordinated by cascades of Rab and Arf/Arl GTPases.
Collapse
Affiliation(s)
- Effrosyni Papanikou
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, United States
| | - Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, United States.
| |
Collapse
|