1
|
Dhungana P, Wei X, Meuti ME, Sim C. Genome-wide identification of PAR domain protein 1 (PDP1) targets through ChIP-seq reveals the regulation of diapause-specific characteristics in Culex pipiens. INSECT MOLECULAR BIOLOGY 2024; 33:777-791. [PMID: 38989821 PMCID: PMC11537818 DOI: 10.1111/imb.12943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
Insects use seasonal diapause as an alternative strategy to endure adverse seasons. This developmental trajectory is induced by environmental cues like short-day lengths in late summer and early fall, but how insects measure day length is unknown. The circadian clock has been implicated in regulating photoperiodic or seasonal responses in many insects, including the Northern house mosquito, Culex pipiens, which enters adult diapause. To investigate the potential control of diapause by circadian control, we employed ChIP-sequencing to identify the downstream targets of a circadian transcription factor, PAR domain protein 1 (PDP1), that contribute to the hallmark features of diapause. We identified the nearest genes in a 10 kb region of the anticipated PDP1 binding sites, listed prospective targets and searched for PDP1-specific binding sites. By examining the functional relevance to diapause-specific behaviours and modifications such as metabolic pathways, lifespan extension, cell cycle regulation and stress tolerance, eight genes were selected as targets and validated using ChIP-qPCR. In addition, qRT-PCR demonstrated that the mRNA abundance of PDP1 targets increased in the heads of diapausing females during the middle of the scotophase (ZT17) compared with the early photophase (ZT1), in agreement with the peak and trough of PDP1 abundance. Thus, our investigation uncovered the mechanism by which PDP1 might generate a diapause phenotype in insects.
Collapse
Affiliation(s)
- Prabin Dhungana
- Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Xueyan Wei
- Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Megan E. Meuti
- Department of Entomology, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Cheolho Sim
- Department of Biology, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
2
|
Ye Z, Ng CP, Liu H, Bao Q, Xu S, Zu D, He Y, Huang Y, Al-Aidaroos AQO, Guo K, Li J, Yaw LP, Xiong Q, Thura M, Zheng W, Guan F, Cheng X, Shi Y, Zeng Q. PRL1 and PRL3 promote macropinocytosis via its lipid phosphatase activity. Theranostics 2024; 14:3423-3438. [PMID: 38948056 PMCID: PMC11209707 DOI: 10.7150/thno.93127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/11/2024] [Indexed: 07/02/2024] Open
Abstract
PRL1 and PRL3, members of the protein tyrosine phosphatase family, have been associated with cancer metastasis and poor prognosis. Despite extensive research on their protein phosphatase activity, their potential role as lipid phosphatases remains elusive. Methods: We conducted comprehensive investigations to elucidate the lipid phosphatase activity of PRL1 and PRL3 using a combination of cellular assays, biochemical analyses, and protein interactome profiling. Functional studies were performed to delineate the impact of PRL1/3 on macropinocytosis and its implications in cancer biology. Results: Our study has identified PRL1 and PRL3 as lipid phosphatases that interact with phosphoinositide (PIP) lipids, converting PI(3,4)P2 and PI(3,5)P2 into PI(3)P on the cellular membranes. These enzymatic activities of PRLs promote the formation of membrane ruffles, membrane blebbing and subsequent macropinocytosis, facilitating nutrient extraction, cell migration, and invasion, thereby contributing to tumor development. These enzymatic activities of PRLs promote the formation of membrane ruffles, membrane blebbing and subsequent macropinocytosis. Additionally, we found a correlation between PRL1/3 expression and glioma development, suggesting their involvement in glioma progression. Conclusions: Combining with the knowledge that PRLs have been identified to be involved in mTOR, EGFR and autophagy, here we concluded the physiological role of PRL1/3 in orchestrating the nutrient sensing, absorbing and recycling via regulating macropinocytosis through its lipid phosphatase activity. This mechanism could be exploited by tumor cells facing a nutrient-depleted microenvironment, highlighting the potential therapeutic significance of targeting PRL1/3-mediated macropinocytosis in cancer treatment.
Collapse
Affiliation(s)
- Zu Ye
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Republic of Singapore, Singapore 138673
| | - Chee Ping Ng
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Republic of Singapore, Singapore 138673
| | - Haidong Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China
| | - Qimei Bao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China
| | - Shengfeng Xu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Dan Zu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China
| | - Yanhua He
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China
| | - Yixing Huang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- National Clinical Research Center for Children's Health, Department of Pulmonology of Children's Hospital, Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Abdul Qader Omer Al-Aidaroos
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Republic of Singapore, Singapore 138673
| | - Ke Guo
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Republic of Singapore, Singapore 138673
| | - Jie Li
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Republic of Singapore, Singapore 138673
| | - Lai Ping Yaw
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Republic of Singapore, Singapore 138673
| | - Qiancheng Xiong
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Republic of Singapore, Singapore 138673
| | - Min Thura
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Republic of Singapore, Singapore 138673
| | - Weihui Zheng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Republic of Singapore, Singapore 138673
| | - Fenghui Guan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Xiangdong Cheng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China
| | - Yin Shi
- National Clinical Research Center for Children's Health, Department of Pulmonology of Children's Hospital, Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qi Zeng
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Republic of Singapore, Singapore 138673
| |
Collapse
|
3
|
Li X, Ni J, Qing H, Quan Z. The Regulatory Mechanism of Rab21 in Human Diseases. Mol Neurobiol 2023; 60:5944-5953. [PMID: 37369821 DOI: 10.1007/s12035-023-03454-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023]
Abstract
Rab proteins are important components of small GTPases and play crucial roles in regulating intracellular transportation and cargo delivery. Maintaining the proper functions of Rab proteins is essential for normal cellular activities such as cell signaling, division, and survival. Due to their vital and irreplaceable role in regulating intracellular vesicle transportation, accumulated researches have shown that the abnormalities of Rab proteins and their effectors are closely related to human diseases. Here, this review focused on Rab21, a member of the Rab family, and introduced the structures and functions of Rab21, as well as the regulatory mechanisms of Rab21 in human diseases, including neurodegenerative diseases, cancer, and inflammation. In summary, we described in detail the role of Rab21 in human diseases and provide insights into the potential of Rab21 as a therapeutic target for diseases.
Collapse
Affiliation(s)
- Xinjian Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
4
|
Ghosh A, Venugopal A, Shinde D, Sharma S, Krishnan M, Mathre S, Krishnan H, Saha S, Raghu P. PI3P-dependent regulation of cell size and autophagy by phosphatidylinositol 5-phosphate 4-kinase. Life Sci Alliance 2023; 6:e202301920. [PMID: 37316298 PMCID: PMC10267561 DOI: 10.26508/lsa.202301920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023] Open
Abstract
Phosphatidylinositol 3-phosphate (PI3P) and phosphatidylinositol 5-phosphate (PI5P) are low-abundance phosphoinositides crucial for key cellular events such as endosomal trafficking and autophagy. Phosphatidylinositol 5-phosphate 4-kinase (PIP4K) is an enzyme that regulates PI5P in vivo but can act on both PI5P and PI3P in vitro. In this study, we report a role for PIP4K in regulating PI3P levels in Drosophila Loss-of-function mutants of the only Drosophila PIP4K gene show reduced cell size in salivary glands. PI3P levels are elevated in dPIP4K 29 and reverting PI3P levels back towards WT, without changes in PI5P levels, can rescue the reduced cell size. dPIP4K 29 mutants also show up-regulation in autophagy and the reduced cell size can be reverted by depleting Atg8a that is required for autophagy. Lastly, increasing PI3P levels in WT can phenocopy the reduction in cell size and associated autophagy up-regulation seen in dPIP4K 29 Thus, our study reports a role for a PIP4K-regulated PI3P pool in the control of autophagy and cell size.
Collapse
Affiliation(s)
- Avishek Ghosh
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| | | | - Dhananjay Shinde
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| | - Sanjeev Sharma
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| | - Meera Krishnan
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| | - Swarna Mathre
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| | - Harini Krishnan
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| | - Sankhanil Saha
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| | - Padinjat Raghu
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| |
Collapse
|
5
|
Hu L, Brichalli W, Li N, Chen S, Cheng Y, Liu Q, Xiong Y, Yu J. Myotubularin functions through actomyosin to interact with the Hippo pathway. EMBO Rep 2022; 23:e55851. [PMID: 36285521 PMCID: PMC9724681 DOI: 10.15252/embr.202255851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/01/2022] [Accepted: 10/07/2022] [Indexed: 12/12/2022] Open
Abstract
The Hippo pathway is an evolutionarily conserved developmental pathway that controls organ size by integrating diverse regulatory inputs, including actomyosin-mediated cytoskeletal tension. Despite established connections between the actomyosin cytoskeleton and the Hippo pathway, the upstream regulation of actomyosin in the Hippo pathway is less defined. Here, we identify the phosphoinositide-3-phosphatase Myotubularin (Mtm) as a novel upstream regulator of actomyosin that functions synergistically with the Hippo pathway during growth control. Mechanistically, Mtm regulates membrane phospholipid PI(3)P dynamics, which, in turn, modulates actomyosin activity through Rab11-mediated vesicular trafficking. We reveal PI(3)P dynamics as a novel mode of upstream regulation of actomyosin and establish Rab11-mediated vesicular trafficking as a functional link between membrane lipid dynamics and actomyosin activation in the context of growth control. Our study also shows that MTMR2, the human counterpart of Drosophila Mtm, has conserved functions in regulating actomyosin activity and tissue growth, providing new insights into the molecular basis of MTMR2-related peripheral nerve myelination and human disorders.
Collapse
Affiliation(s)
- Liang Hu
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsCTUSA
| | - Wyatt Brichalli
- Department of Anatomy & PhysiologyKansas State University College of Veterinary MedicineManhattanKSUSA
| | - Naren Li
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsCTUSA
| | - Shifan Chen
- Department of NeuroscienceUniversity of Connecticut School of MedicineFarmingtonCTUSA
| | - Yaqing Cheng
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsCTUSA
| | - Qinfang Liu
- Department of NeuroscienceUniversity of Connecticut School of MedicineFarmingtonCTUSA
| | - Yulan Xiong
- Department of NeuroscienceUniversity of Connecticut School of MedicineFarmingtonCTUSA
| | - Jianzhong Yu
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsCTUSA
| |
Collapse
|
6
|
Chua JP, Bedi K, Paulsen MT, Ljungman M, Tank EMH, Kim ES, McBride JP, Colón-Mercado JM, Ward ME, Weisman LS, Barmada SJ. Myotubularin-related phosphatase 5 is a critical determinant of autophagy in neurons. Curr Biol 2022; 32:2581-2595.e6. [PMID: 35580604 PMCID: PMC9233098 DOI: 10.1016/j.cub.2022.04.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 02/18/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022]
Abstract
Autophagy is a conserved, multi-step process of capturing proteolytic cargo in autophagosomes for lysosome degradation. The capacity to remove toxic proteins that accumulate in neurodegenerative disorders attests to the disease-modifying potential of the autophagy pathway. However, neurons respond only marginally to conventional methods for inducing autophagy, limiting efforts to develop therapeutic autophagy modulators for neurodegenerative diseases. The determinants underlying poor autophagy induction in neurons and the degree to which neurons and other cell types are differentially sensitive to autophagy stimuli are incompletely defined. Accordingly, we sampled nascent transcript synthesis and stabilities in fibroblasts, induced pluripotent stem cells (iPSCs), and iPSC-derived neurons (iNeurons), thereby uncovering a neuron-specific stability of transcripts encoding myotubularin-related phosphatase 5 (MTMR5). MTMR5 is an autophagy suppressor that acts with its binding partner, MTMR2, to dephosphorylate phosphoinositides critical for autophagy initiation and autophagosome maturation. We found that MTMR5 is necessary and sufficient to suppress autophagy in iNeurons and undifferentiated iPSCs. Using optical pulse labeling to visualize the turnover of endogenously encoded proteins in live cells, we observed that knockdown of MTMR5 or MTMR2, but not the unrelated phosphatase MTMR9, significantly enhances neuronal degradation of TDP-43, an autophagy substrate implicated in several neurodegenerative diseases. Our findings thus establish a regulatory mechanism of autophagy intrinsic to neurons and targetable for clearing disease-related proteins in a cell-type-specific manner. In so doing, our results not only unravel novel aspects of neuronal biology and proteostasis but also elucidate a strategy for modulating neuronal autophagy that could be of high therapeutic potential for multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Jason P. Chua
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lead contact
| | - Karan Bedi
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Michelle T. Paulsen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Erin S. Kim
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Jonathon P. McBride
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Michael E. Ward
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Lois S. Weisman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sami J. Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Nassari S, Lacarrière-Keïta C, Lévesque D, Boisvert FM, Jean S. Rab21 in enterocytes participates in intestinal epithelium maintenance. Mol Biol Cell 2022; 33:ar32. [PMID: 35171715 PMCID: PMC9250356 DOI: 10.1091/mbc.e21-03-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Membrane trafficking is defined as the vesicular transport of proteins into, out of, and throughout the cell. In intestinal enterocytes, defects in endocytic/recycling pathways result in impaired function and are linked to diseases. However, how these trafficking pathways regulate intestinal tissue homeostasis is poorly understood. Using the Drosophila intestine as an in vivo system, we investigated enterocyte-specific functions for the early endosomal machinery. We focused on Rab21, which regulates specific steps in early endosomal trafficking. Depletion of Rab21 in enterocytes led to abnormalities in intestinal morphology, with deregulated cellular equilibrium associated with a gain in mitotic cells and increased cell death. Increases in apoptosis and Yorkie signaling were responsible for compensatory proliferation and tissue inflammation. Using an RNAi screen, we identified regulators of autophagy and membrane trafficking that phenocopied Rab21 knockdown. We further showed that Rab21 knockdown-induced hyperplasia was rescued by inhibition of epidermal growth factor receptor signaling. Moreover, quantitative proteomics identified proteins affected by Rab21 depletion. Of these, we validated changes in apolipoprotein ApoLpp and the trehalose transporter Tret1-1, indicating roles for enterocyte Rab21 in lipid and carbohydrate homeostasis, respectively. Our data shed light on an important role for early endosomal trafficking, and Rab21, in enterocyte-mediated intestinal epithelium maintenance. [Media: see text] [Media: see text].
Collapse
Affiliation(s)
- Sonya Nassari
- Faculté de Médecine et des Sciences de la Santé, Department of Immunology and Cell Biology, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, Québec J1E 4K8, Canada
| | - Camille Lacarrière-Keïta
- Faculté de Médecine et des Sciences de la Santé, Department of Immunology and Cell Biology, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, Québec J1E 4K8, Canada
| | - Dominique Lévesque
- Faculté de Médecine et des Sciences de la Santé, Department of Immunology and Cell Biology, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, Québec J1E 4K8, Canada
| | - François-Michel Boisvert
- Faculté de Médecine et des Sciences de la Santé, Department of Immunology and Cell Biology, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, Québec J1E 4K8, Canada
| | - Steve Jean
- Faculté de Médecine et des Sciences de la Santé, Department of Immunology and Cell Biology, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, Québec J1E 4K8, Canada
| |
Collapse
|
8
|
Rounds JC, Corgiat EB, Ye C, Behnke JA, Kelly SM, Corbett AH, Moberg KH. The disease-associated proteins Drosophila Nab2 and Ataxin-2 interact with shared RNAs and coregulate neuronal morphology. Genetics 2022; 220:iyab175. [PMID: 34791182 PMCID: PMC8733473 DOI: 10.1093/genetics/iyab175] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 09/27/2021] [Indexed: 01/05/2023] Open
Abstract
Nab2 encodes the Drosophila melanogaster member of a conserved family of zinc finger polyadenosine RNA-binding proteins (RBPs) linked to multiple steps in post-transcriptional regulation. Mutation of the Nab2 human ortholog ZC3H14 gives rise to an autosomal recessive intellectual disability but understanding of Nab2/ZC3H14 function in metazoan nervous systems is limited, in part because no comprehensive identification of metazoan Nab2/ZC3H14-associated RNA transcripts has yet been conducted. Moreover, many Nab2/ZC3H14 functional protein partnerships remain unidentified. Here, we present evidence that Nab2 genetically interacts with Ataxin-2 (Atx2), which encodes a neuronal translational regulator, and that these factors coordinately regulate neuronal morphology, circadian behavior, and adult viability. We then present the first high-throughput identifications of Nab2- and Atx2-associated RNAs in Drosophila brain neurons using RNA immunoprecipitation-sequencing (RIP-Seq). Critically, the RNA interactomes of each RBP overlap, and Nab2 exhibits high specificity in its RNA associations in neurons in vivo, associating with a small fraction of all polyadenylated RNAs. The identities of shared associated transcripts (e.g., drk, me31B, stai) and of transcripts specific to Nab2 or Atx2 (e.g., Arpc2 and tea) promise insight into neuronal functions of, and genetic interactions between, each RBP. Consistent with prior biochemical studies, Nab2-associated neuronal RNAs are overrepresented for internal A-rich motifs, suggesting these sequences may partially mediate Nab2 target selection. These data support a model where Nab2 functionally opposes Atx2 in neurons, demonstrate Nab2 shares associated neuronal RNAs with Atx2, and reveal Drosophila Nab2 associates with a more specific subset of polyadenylated mRNAs than its polyadenosine affinity alone may suggest.
Collapse
Affiliation(s)
- J Christopher Rounds
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Edwin B Corgiat
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Changtian Ye
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Joseph A Behnke
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Seth M Kelly
- Department of Biology, The College of Wooster, Wooster, OH 44691, USA
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Kenneth H Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
9
|
Mammel AE, Delgado KC, Chin AL, Condon AF, Hill JQ, Aicher SA, Wang Y, Fedorov LM, Robinson FL. Distinct roles for the Charcot-Marie-tooth disease-causing endosomal regulators Mtmr5 and Mtmr13 in axon radial sorting and Schwann cell myelination. Hum Mol Genet 2021; 31:1216-1229. [PMID: 34718573 DOI: 10.1093/hmg/ddab311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 11/12/2022] Open
Abstract
The form of Charcot-Marie-Tooth type 4B (CMT4B) disease caused by mutations in myotubularin-related 5 (MTMR5; also called SET Binding Factor 1; SBF1) shows a spectrum of axonal and demyelinating nerve phenotypes. This contrasts with the CMT4B subtypes caused by MTMR2 or MTMR13 (SBF2) mutations, which are characterized by myelin outfoldings and classic demyelination. Thus, it is unclear whether MTMR5 plays an analogous or distinct role from that of its homolog, MTMR13, in the peripheral nervous system (PNS). MTMR5 and MTMR13 are pseudophosphatases predicted to regulate endosomal trafficking by activating Rab GTPases and binding to the phosphoinositide 3-phosphatase MTMR2. In the mouse PNS, Mtmr2 was required to maintain wild type levels of Mtmr5 and Mtmr13, suggesting that these factors function in discrete protein complexes. Genetic elimination of both Mtmr5 and Mtmr13 in mice led to perinatal lethality, indicating that the two proteins have partially redundant functions during embryogenesis. Loss of Mtmr5 in mice did not cause CMT4B-like myelin outfoldings. However, adult Mtmr5-/- mouse nerves contained fewer myelinated axons than control nerves, likely as a result of axon radial sorting defects. Consistently, Mtmr5 levels were highest during axon radial sorting and fell sharply after postnatal day seven. Our findings suggest that Mtmr5 and Mtmr13 ensure proper axon radial sorting and Schwann cell myelination, respectively, perhaps through their direct interactions with Mtmr2. This study enhances our understanding of the non-redundant roles of the endosomal regulators MTMR5 and MTMR13 during normal peripheral nerve development and disease.
Collapse
Affiliation(s)
- Anna E Mammel
- The Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.,Cell, Developmental & Cancer Biology Graduate Program, Oregon Health & Science University
| | - Katherine C Delgado
- The Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Andrea L Chin
- The Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Alec F Condon
- The Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.,Neuroscience Graduate Program, Oregon Health & Science University
| | - Jo Q Hill
- Department of Physiology and Pharmacology, Oregon Health & Science University
| | - Sue A Aicher
- Department of Physiology and Pharmacology, Oregon Health & Science University
| | - Yingming Wang
- OHSU Transgenic Mouse Models Shared Resource, Knight Cancer Institute, Oregon Health & Science University
| | - Lev M Fedorov
- OHSU Transgenic Mouse Models Shared Resource, Knight Cancer Institute, Oregon Health & Science University
| | - Fred L Robinson
- The Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.,Vollum Institute, Oregon Health & Science University
| |
Collapse
|
10
|
Miao H, Vanderleest TE, Budhathoki R, Loerke D, Blankenship JT. A PtdIns(3,4,5)P 3 dispersal switch engages cell ratcheting at specific cell surfaces. Dev Cell 2021; 56:2579-2591.e4. [PMID: 34525342 DOI: 10.1016/j.devcel.2021.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 07/02/2021] [Accepted: 08/19/2021] [Indexed: 12/31/2022]
Abstract
Force generation in epithelial tissues is often pulsatile, with actomyosin networks generating contractile forces before cyclically disassembling. This pulsed nature of cytoskeletal forces implies that there must be ratcheting mechanisms that drive processive transformations in cell shape. Previous work has shown that force generation is coordinated with endocytic remodeling; however, how ratcheting becomes engaged at specific cell surfaces remains unclear. Here, we report that PtdIns(3,4,5)P3 is a critical lipid-based cue for ratcheting engagement. The Sbf RabGEF binds to PIP3, and disruption of PIP3 reveals a dramatic switching behavior in which medial ratcheting is activated and epithelial cells begin globally constricting apical surfaces. PIP3 enrichments are developmentally regulated, with mesodermal cells having high apical PIP3 while germband cells have higher interfacial PIP3. Finally, we show that JAK/STAT signaling constitutes a second pathway that combinatorially regulates Sbf/Rab35 recruitment. Our results elucidate a complex lipid-dependent regulatory machinery that directs ratcheting engagement in epithelial tissues.
Collapse
Affiliation(s)
- Hui Miao
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | | | - Rashmi Budhathoki
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Dinah Loerke
- Department of Physics, University of Denver, Denver, CO 80208, USA
| | - J Todd Blankenship
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA.
| |
Collapse
|
11
|
Yu S, Luo F, Jin LH. Rab5 and Rab11 maintain hematopoietic homeostasis by restricting multiple signaling pathways in Drosophila. eLife 2021; 10:60870. [PMID: 33560224 PMCID: PMC7891935 DOI: 10.7554/elife.60870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 02/08/2021] [Indexed: 12/26/2022] Open
Abstract
The hematopoietic system of Drosophila is a powerful genetic model for studying hematopoiesis, and vesicle trafficking is important for signal transduction during various developmental processes; however, its interaction with hematopoiesis is currently largely unknown. In this article, we selected three endosome markers, Rab5, Rab7, and Rab11, that play a key role in membrane trafficking and determined whether they participate in hematopoiesis. Inhibiting Rab5 or Rab11 in hemocytes or the cortical zone (CZ) significantly induced cell overproliferation and lamellocyte formation in circulating hemocytes and lymph glands and disrupted blood cell progenitor maintenance. Lamellocyte formation involves the JNK, Toll, and Ras/EGFR signaling pathways. Notably, lamellocyte formation was also associated with JNK-dependent autophagy. In conclusion, we identified Rab5 and Rab11 as novel regulators of hematopoiesis, and our results advance the understanding of the mechanisms underlying the maintenance of hematopoietic homeostasis as well as the pathology of blood disorders such as leukemia.
Collapse
Affiliation(s)
- Shichao Yu
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Fangzhou Luo
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Li Hua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
12
|
Ma CIJ, Yang Y, Kim T, Chen CH, Polevoy G, Vissa M, Burgess J, Brill JA. An early endosome-derived retrograde trafficking pathway promotes secretory granule maturation. J Cell Biol 2020; 219:133712. [PMID: 32045479 PMCID: PMC7055004 DOI: 10.1083/jcb.201808017] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/30/2019] [Accepted: 12/20/2019] [Indexed: 02/08/2023] Open
Abstract
Regulated secretion is a fundamental cellular process in which biologically active molecules stored in long-lasting secretory granules (SGs) are secreted in response to external stimuli. Many studies have described mechanisms responsible for biogenesis and secretion of SGs, but how SGs mature remains poorly understood. In a genetic screen, we discovered a large number of endolysosomal trafficking genes required for proper SG maturation, indicating that maturation of SGs might occur in a manner similar to lysosome-related organelles (LROs). CD63, a tetraspanin known to decorate LROs, also decorates SG membranes and facilitates SG maturation. Moreover, CD63-mediated SG maturation requires type II phosphatidylinositol 4 kinase (PI4KII)-dependent early endosomal sorting and accumulation of phosphatidylinositol 4-phosphate (PI4P) on SG membranes. In addition, the PI4P effector Past1 is needed for formation of stable PI4KII-containing endosomal tubules associated with this process. Our results reveal that maturation of post-Golgi-derived SGs requires trafficking via the endosomal system, similar to mechanisms employed by LROs.
Collapse
Affiliation(s)
- Cheng-I J Ma
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Yitong Yang
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Taeah Kim
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Human Biology Program, University of Toronto, Toronto, ON, Canada
| | - Chang Hua Chen
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Human Biology Program, University of Toronto, Toronto, ON, Canada
| | - Gordon Polevoy
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Miluska Vissa
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jason Burgess
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Julie A Brill
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Granger N, Luján Feliu-Pascual A, Spicer C, Ricketts S, Hitti R, Forman O, Hersheson J, Houlden H. Charcot-Marie-Tooth type 4B2 demyelinating neuropathy in miniature Schnauzer dogs caused by a novel splicing SBF2 (MTMR13) genetic variant: a new spontaneous clinical model. PeerJ 2019; 7:e7983. [PMID: 31772832 PMCID: PMC6875392 DOI: 10.7717/peerj.7983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/02/2019] [Indexed: 01/23/2023] Open
Abstract
Background Charcot-Marie-Tooth (CMT) disease is the most common neuromuscular disorder in humans affecting 40 out of 100,000 individuals. In 2008, we described the clinical, electrophysiological and pathological findings of a demyelinating motor and sensory neuropathy in Miniature Schnauzer dogs, with a suspected autosomal recessive mode of inheritance based on pedigree analysis. The discovery of additional cases has followed this work and led to a genome-wide association mapping approach to search for the underlying genetic cause of the disease. Methods For genome wide association screening, genomic DNA samples from affected and unaffected dogs were genotyped using the Illumina CanineHD SNP genotyping array. SBF2 and its variant were sequenced using primers and PCRs. RNA was extracted from muscle of an unaffected and an affected dog and RT-PCR performed. Immunohistochemistry for myelin basic protein was performed on peripheral nerve section specimens. Results The genome-wide association study gave an indicative signal on canine chromosome 21. Although the signal was not of genome-wide significance due to the small number of cases, the SBF2 (also known as MTMR13) gene within the region of shared case homozygosity was a strong positional candidate, as 22 genetic variants in the gene have been associated with demyelinating forms of Charcot-Marie-Tooth disease in humans. Sequencing of SBF2 in cases revealed a splice donor site genetic variant, resulting in cryptic splicing and predicted early termination of the protein based on RNA sequencing results. Conclusions This study reports the first genetic variant in Miniature Schnauzer dogs responsible for the occurrence of a demyelinating peripheral neuropathy with abnormally folded myelin. This discovery establishes a genotype/phenotype correlation in affected Miniature Schnauzers that can be used for the diagnosis of these dogs. It further supports the dog as a natural model of a human disease; in this instance, Charcot-Marie-Tooth disease. It opens avenues to search the biological mechanisms responsible for the disease and to test new therapies in a non-rodent large animal model. In particular, recent gene editing methods that led to the restoration of dystrophin expression in a canine model of muscular dystrophy could be applied to other canine models such as this before translation to humans.
Collapse
Affiliation(s)
- Nicolas Granger
- Royal Veterinary College, University of London, Hatfield, United Kingdom.,Bristol Veterinary Specialists, CVS Referrals, Bristol, United Kingdom
| | | | - Charlotte Spicer
- Department of Molecular Neuroscience, UCL Institute of Neurology & National Hospital for Neurology and Neurosurgery & London, London, United Kingdom
| | - Sally Ricketts
- Kennel Club Genetics Centre, Animal Health Trust, Newmarket, United Kingdom
| | - Rebekkah Hitti
- Kennel Club Genetics Centre, Animal Health Trust, Newmarket, United Kingdom
| | - Oliver Forman
- Kennel Club Genetics Centre, Animal Health Trust, Newmarket, United Kingdom
| | - Joshua Hersheson
- Department of Molecular Neuroscience, UCL Institute of Neurology & National Hospital for Neurology and Neurosurgery & London, London, United Kingdom
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology & National Hospital for Neurology and Neurosurgery & London, London, United Kingdom
| |
Collapse
|
14
|
Sheffield DA, Jepsen MR, Feeney SJ, Bertucci MC, Sriratana A, Naughtin MJ, Dyson JM, Coppel RL, Mitchell CA. The myotubularin MTMR4 regulates phagosomal phosphatidylinositol 3-phosphate turnover and phagocytosis. J Biol Chem 2019; 294:16684-16697. [PMID: 31543504 DOI: 10.1074/jbc.ra119.009133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/11/2019] [Indexed: 01/31/2023] Open
Abstract
Macrophage phagocytosis is required for effective clearance of invading bacteria and other microbes. Coordinated phosphoinositide signaling is critical both for phagocytic particle engulfment and subsequent phagosomal maturation to a degradative organelle. Phosphatidylinositol 3-phosphate (PtdIns(3)P) is a phosphoinositide that is rapidly synthesized and degraded on phagosomal membranes, where it recruits FYVE domain- and PX motif-containing proteins that promote phagosomal maturation. However, the molecular mechanisms that regulate PtdIns(3)P removal from the phagosome have remained unclear. We report here that a myotubularin PtdIns(3)P 3-phosphatase, myotubularin-related protein-4 (MTMR4), regulates macrophage phagocytosis. MTMR4 overexpression reduced and siRNA-mediated Mtmr4 silencing increased levels of cell-surface immunoglobulin receptors (i.e. Fcγ receptors (FcγRs)) on RAW 264.7 macrophages, associated with altered pseudopodal F-actin. Furthermore, MTMR4 negatively regulated the phagocytosis of IgG-opsonized particles, indicating that MTMR4 inhibits FcγR-mediated phagocytosis, and was dynamically recruited to phagosomes of macrophages during phagocytosis. MTMR4 overexpression decreased and Mtmr4-specific siRNA expression increased the duration of PtdIns(3)P on phagosomal membranes. Macrophages treated with Mtmr4-specific siRNA were more resistant to Mycobacterium marinum-induced phagosome arrest, associated with increased maturation of mycobacterial phagosomes, indicating that extended PtdIns(3)P signaling on phagosomes in the Mtmr4-knockdown cells permitted trafficking of phagosomes to acidic late endosomal and lysosomal compartments. In conclusion, our findings indicate that MTMR4 regulates PtdIns(3)P degradation in macrophages and thereby controls phagocytosis and phagosomal maturation.
Collapse
Affiliation(s)
- David A Sheffield
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.,Department of Microbiology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Malene R Jepsen
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Sandra J Feeney
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Micka C Bertucci
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Absorn Sriratana
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Monica J Naughtin
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Jennifer M Dyson
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Ross L Coppel
- Department of Microbiology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Christina A Mitchell
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
15
|
Binda C, Génier S, Degrandmaison J, Picard S, Fréchette L, Jean S, Marsault E, Parent JL. L-type prostaglandin D synthase regulates the trafficking of the PGD 2 DP1 receptor by interacting with the GTPase Rab4. J Biol Chem 2019; 294:16865-16883. [PMID: 31575663 DOI: 10.1074/jbc.ra119.008233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/27/2019] [Indexed: 12/28/2022] Open
Abstract
Accumulating evidence indicates that G protein-coupled receptors (GPCRs) interact with Rab GTPases during their intracellular trafficking. How GPCRs recruit and activate the Rabs is unclear. Here, we report that depletion of endogenous L-type prostaglandin D synthase (L-PGDS) in HeLa cells inhibited recycling of the prostaglandin D2 (PGD2) DP1 receptor (DP1) to the cell surface after agonist-induced internalization and that L-PGDS overexpression had the opposite effect. Depletion of endogenous Rab4 prevented l-PGDS-mediated recycling of DP1, and l-PGDS depletion inhibited Rab4-dependent recycling of DP1, indicating that both proteins are mutually involved in this pathway. DP1 stimulation promoted its interaction through its intracellular C terminus with Rab4, which was increased by l-PGDS. Confocal microscopy revealed that DP1 activation induces l-PGDS/Rab4 co-localization. l-PGDS/Rab4 and DP1/Rab4 co-immunoprecipitation levels were increased by DP1 agonist treatment. Pulldown assays with purified GST-l-PGDS and His6-Rab4 indicated that both proteins interact directly. l-PGDS interacted preferentially with the inactive, GDP-locked Rab4S22N variant rather than with WT Rab4 or with constitutively active Rab4Q67L proteins. Overexpression and depletion experiments disclosed that l-PGDS partakes in Rab4 activation following DP1 stimulation. Experiments with deletion mutants and synthetic peptides revealed that amino acids 85-92 in l-PGDS are involved in its interaction with Rab4 and in its effect on DP1 recycling. Of note, GTPγS loading and time-resolved FRET assays with purified proteins suggested that l-PGDS enhances GDP-GTP exchange on Rab4. Our results reveal how l-PGDS, which produces the agonist for DP1, regulates DP1 recycling by participating in Rab4 recruitment and activation.
Collapse
Affiliation(s)
- Chantal Binda
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.,Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Samuel Génier
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.,Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Jade Degrandmaison
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.,Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Samuel Picard
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.,Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.,Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Louis Fréchette
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.,Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Steve Jean
- Département d'Anatomie et de Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Eric Marsault
- Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.,Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Jean-Luc Parent
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada .,Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| |
Collapse
|
16
|
Miao H, Vanderleest TE, Jewett CE, Loerke D, Blankenship JT. Cell ratcheting through the Sbf RabGEF directs force balancing and stepped apical constriction. J Cell Biol 2019; 218:3845-3860. [PMID: 31562231 PMCID: PMC6829657 DOI: 10.1083/jcb.201905082] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/05/2019] [Accepted: 08/17/2019] [Indexed: 01/02/2023] Open
Abstract
Miao et al. show that a membrane trafficking pathway centered on Sbf and Rab35 is essential for the irreversibility of pulsed contractile events during apical constriction. Sbf/Rab35 disruption leads to a convoluted cell surface, suggesting that membrane remodeling is essential for the construction of effective actomyosin networks. During Drosophila melanogaster gastrulation, the invagination of the prospective mesoderm is driven by the pulsed constriction of apical surfaces. Here, we address the mechanisms by which the irreversibility of pulsed events is achieved while also permitting uniform epithelial behaviors to emerge. We use MSD-based analyses to identify contractile steps and find that when a trafficking pathway initiated by Sbf is disrupted, contractile steps become reversible. Sbf localizes to tubular, apical surfaces and associates with Rab35, where it promotes Rab GTP exchange. Interestingly, when Sbf/Rab35 function is compromised, the apical plasma membrane becomes deeply convoluted, and nonuniform cell behaviors begin to emerge. Consistent with this, Sbf/Rab35 appears to prefigure and organize the apical surface for efficient Myosin function. Finally, we show that Sbf/Rab35/CME directs the plasma membrane to Rab11 endosomes through a dynamic interaction with Rab5 endosomes. These results suggest that periodic ratcheting events shift excess membrane from cell apices into endosomal pathways to permit reshaping of actomyosin networks and the apical surface.
Collapse
Affiliation(s)
- Hui Miao
- Department of Biological Sciences, University of Denver, Denver, CO
| | | | - Cayla E Jewett
- Department of Biological Sciences, University of Denver, Denver, CO
| | - Dinah Loerke
- Department of Physics, University of Denver, Denver, CO
| | | |
Collapse
|
17
|
Del Olmo T, Lacarrière-Keïta C, Normandin C, Jean D, Boisvert FM, Jean S. RAB21 interacts with TMED10 and modulates its localization and abundance. Biol Open 2019; 8:bio.045336. [PMID: 31455601 PMCID: PMC6777364 DOI: 10.1242/bio.045336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Membrane trafficking controls vesicular transport of cargo between cellular compartments. Vesicular trafficking is essential for cellular homeostasis and dysfunctional trafficking is linked to several pathologies such as neurodegenerative diseases. Following endocytosis, early endosomes act as sorting stations of internalized materials, routing cargo toward various fates. One important class of membrane trafficking regulators are RAB GTPases. RAB21 has been associated with multiple functions and regulates integrin internalization, endosomal sorting of specific clathrin-independent cargo and autophagy. Although RAB21 is mostly associated with early endosomes, it has been shown to mediate a specific sorting event at the Golgi. From mass spectrometry data, we identified a GTP-favored interaction between RAB21 and TMED10 and 9, essential regulators of COPI and COPII vesicles. Using RAB21 knockout cells, we describe the role of RAB21 in modulating TMED10 Golgi localization. Taken together, our study suggests a new potential function of RAB21 in modulating TMED10 trafficking, with relevance to neurodegenerative disorders. Summary: A small early endosomal RAB GTPase is found to interact with p24 family members, with potential impacts on p24 functions.
Collapse
Affiliation(s)
- Tomas Del Olmo
- Faculté de Médecine et des Sciences de la Santé, Département d'anatomie et de biologie cellulaire, Université de Sherbrooke, 3201, Rue Jean Mignault, Sherbrooke, Québec, Canada J1E 4K8
| | - Camille Lacarrière-Keïta
- Faculté de Médecine et des Sciences de la Santé, Département d'anatomie et de biologie cellulaire, Université de Sherbrooke, 3201, Rue Jean Mignault, Sherbrooke, Québec, Canada J1E 4K8
| | - Caroline Normandin
- Faculté de Médecine et des Sciences de la Santé, Département d'anatomie et de biologie cellulaire, Université de Sherbrooke, 3201, Rue Jean Mignault, Sherbrooke, Québec, Canada J1E 4K8
| | - Dominique Jean
- Faculté de Médecine et des Sciences de la Santé, Département d'anatomie et de biologie cellulaire, Université de Sherbrooke, 3201, Rue Jean Mignault, Sherbrooke, Québec, Canada J1E 4K8
| | - François-Michel Boisvert
- Faculté de Médecine et des Sciences de la Santé, Département d'anatomie et de biologie cellulaire, Université de Sherbrooke, 3201, Rue Jean Mignault, Sherbrooke, Québec, Canada J1E 4K8
| | - Steve Jean
- Faculté de Médecine et des Sciences de la Santé, Département d'anatomie et de biologie cellulaire, Université de Sherbrooke, 3201, Rue Jean Mignault, Sherbrooke, Québec, Canada J1E 4K8
| |
Collapse
|
18
|
Bilanges B, Posor Y, Vanhaesebroeck B. PI3K isoforms in cell signalling and vesicle trafficking. Nat Rev Mol Cell Biol 2019; 20:515-534. [PMID: 31110302 DOI: 10.1038/s41580-019-0129-z] [Citation(s) in RCA: 348] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PI3Ks are a family of lipid kinases that phosphorylate intracellular inositol lipids to regulate signalling and intracellular vesicular traffic. Mammals have eight isoforms of PI3K, divided into three classes. The class I PI3Ks generate 3-phosphoinositide lipids, which directly activate signal transduction pathways. In addition to being frequently genetically activated in cancer, similar mutations in class I PI3Ks have now also been found in a human non-malignant overgrowth syndrome and a primary immune disorder that predisposes to lymphoma. The class II and class III PI3Ks are regulators of membrane traffic along the endocytic route, in endosomal recycling and autophagy, with an often indirect effect on cell signalling. Here, we summarize current knowledge of the different PI3K classes and isoforms, focusing on recently uncovered biological functions and the mechanisms by which these kinases are activated. Deeper insight into the PI3K isoforms will undoubtedly continue to contribute to a better understanding of fundamental cell biological processes and, ultimately, of human disease.
Collapse
Affiliation(s)
- Benoit Bilanges
- UCL Cancer Institute, University College London, London, UK.
| | - York Posor
- UCL Cancer Institute, University College London, London, UK.
| | | |
Collapse
|
19
|
Dziedziech A, Schmid M, Arefin B, Kienzle T, Krautz R, Theopold U. Data on Drosophila clots and hemocyte morphologies using GFP-tagged secretory proteins: Prophenoloxidase and transglutaminase. Data Brief 2019; 25:104229. [PMID: 31367663 PMCID: PMC6646922 DOI: 10.1016/j.dib.2019.104229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/20/2019] [Accepted: 07/01/2019] [Indexed: 11/09/2022] Open
Abstract
Insect hemolymph coagulation: Kinetics of classically and non-classically secreted clotting factors Schmid et al., 2019. The linked article demonstrates the localization of two secretory proteins in Drosophila melanogaster, Prophenoloxidase (PPO2) and Transglutaminase-A (Tg) in hemocytes as well the clot with different tissue-specific drivers. Here we provide further data for the usefulness of the GFP-tagged version of the two crosslinking enzymes that are involved in clot hardening. The morphology of crystal cells is described using GFP-tagged PPO2 rather than with the use of antibodies in ex vivo hemolymph preparations. The use of the GFP-tagged proteins PPO2 and Tg is shown in additional contexts.
Collapse
Affiliation(s)
- Alexis Dziedziech
- Stockholm University, Department of Molecular Biosciences, Svante Arrhenius Väg 20C, SE, 10691 Sweden
| | - Martin Schmid
- Stockholm University, Department of Molecular Biosciences, Svante Arrhenius Väg 20C, SE, 10691 Sweden
| | - Badrul Arefin
- Stockholm University, Department of Molecular Biosciences, Svante Arrhenius Väg 20C, SE, 10691 Sweden
| | - Thomas Kienzle
- Stockholm University, Department of Molecular Biosciences, Svante Arrhenius Väg 20C, SE, 10691 Sweden
| | - Robert Krautz
- Stockholm University, Department of Molecular Biosciences, Svante Arrhenius Väg 20C, SE, 10691 Sweden
| | - Ulrich Theopold
- Stockholm University, Department of Molecular Biosciences, Svante Arrhenius Väg 20C, SE, 10691 Sweden
| |
Collapse
|
20
|
Nakada-Tsukui K, Watanabe N, Maehama T, Nozaki T. Phosphatidylinositol Kinases and Phosphatases in Entamoeba histolytica. Front Cell Infect Microbiol 2019; 9:150. [PMID: 31245297 PMCID: PMC6563779 DOI: 10.3389/fcimb.2019.00150] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Phosphatidylinositol (PtdIns) metabolism is indispensable in eukaryotes. Phosphoinositides (PIs) are phosphorylated derivatives of PtdIns and consist of seven species generated by reversible phosphorylation of the inositol moieties at the positions 3, 4, and 5. Each of the seven PIs has a unique subcellular and membrane domain distribution. In the enteric protozoan parasite Entamoeba histolytica, it has been previously shown that the PIs phosphatidylinositol 3-phosphate (PtdIns3P), PtdIns(4,5)P2, and PtdIns(3,4,5)P3 are localized to phagosomes/phagocytic cups, plasma membrane, and phagocytic cups, respectively. The localization of these PIs in E. histolytica is similar to that in mammalian cells, suggesting that PIs have orthologous functions in E. histolytica. In contrast, the conservation of the enzymes that metabolize PIs in this organism has not been well-documented. In this review, we summarized the full repertoire of the PI kinases and PI phosphatases found in E. histolytica via a genome-wide survey of the current genomic information. E. histolytica appears to have 10 PI kinases and 23 PI phosphatases. It has a panel of evolutionarily conserved enzymes that generate all the seven PI species. However, class II PI 3-kinases, type II PI 4-kinases, type III PI 5-phosphatases, and PI 4P-specific phosphatases are not present. Additionally, regulatory subunits of class I PI 3-kinases and type III PI 4-kinases have not been identified. Instead, homologs of class I PI 3-kinases and PTEN, a PI 3-phosphatase, exist as multiple isoforms, which likely reflects that elaborate signaling cascades mediated by PtdIns(3,4,5)P3 are present in this organism. There are several enzymes that have the nuclear localization signal: one phosphatidylinositol phosphate (PIP) kinase, two PI 3-phosphatases, and one PI 5-phosphatase; this suggests that PI metabolism also has conserved roles related to nuclear functions in E. histolytica, as it does in model organisms.
Collapse
Affiliation(s)
- Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Natsuki Watanabe
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tomohiko Maehama
- Division of Molecular and Cellular Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Schmid MR, Dziedziech A, Arefin B, Kienzle T, Wang Z, Akhter M, Berka J, Theopold U. Insect hemolymph coagulation: Kinetics of classically and non-classically secreted clotting factors. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 109:63-71. [PMID: 30974174 DOI: 10.1016/j.ibmb.2019.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
In most insects, hemolymph coagulation, which is analogous to mammalian blood clotting, involves close collaboration between humoral and cellular components. To gain insights into the secretion of cellular clotting factors, we created tagged versions of three different clotting factors. Our focus was on factors which are released in a non-classical manner and to characterize them in comparison to a protein that is classically released, namely Glutactin (Glt). Transglutaminase-A (Tg) and Prophenoloxidase 2 (PPO2), both of which lack signal peptide sequences, have been previously demonstrated to be released from plasmatocytes and crystal cells (CCs) respectively, the two hemocyte classes in naïve larvae. We found that at the molecular level, Tg secretion resembles the release of tissue transglutaminase in mammals. Specifically, Drosophila Tg is associated with vesicular membranes and remains membrane-bound after release, in contrast to Glt, which we found localizes to a different class of vesicles and is integrated into clot fibers. PPO2 on the other hand, is set free from CCs through cytolysis. We confirm that PPO2 is a central component of the cytosolic crystals and find that the distribution of PPO2 appears to vary across crystals and cells. We propose a tentative scheme for the secretory events during early and late hemolymph coagulation.
Collapse
Affiliation(s)
- Martin R Schmid
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, SE-106 91, Stockholm, Sweden.
| | - Alexis Dziedziech
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, SE-106 91, Stockholm, Sweden.
| | - Badrul Arefin
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, SE-106 91, Stockholm, Sweden.
| | - Thomas Kienzle
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, SE-106 91, Stockholm, Sweden.
| | - Zhi Wang
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, SE-106 91, Stockholm, Sweden.
| | - Munira Akhter
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, SE-106 91, Stockholm, Sweden.
| | - Jakub Berka
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, SE-106 91, Stockholm, Sweden.
| | - Ulrich Theopold
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
22
|
Pareyson D, Stojkovic T, Reilly MM, Leonard-Louis S, Laurà M, Blake J, Parman Y, Battaloglu E, Tazir M, Bellatache M, Bonello-Palot N, Lévy N, Sacconi S, Guimarães-Costa R, Attarian S, Latour P, Solé G, Megarbane A, Horvath R, Ricci G, Choi BO, Schenone A, Gemelli C, Geroldi A, Sabatelli M, Luigetti M, Santoro L, Manganelli F, Quattrone A, Valentino P, Murakami T, Scherer SS, Dankwa L, Shy ME, Bacon CJ, Herrmann DN, Zambon A, Tramacere I, Pisciotta C, Magri S, Previtali SC, Bolino A. A multicenter retrospective study of charcot-marie-tooth disease type 4B (CMT4B) associated with mutations in myotubularin-related proteins (MTMRs). Ann Neurol 2019; 86:55-67. [PMID: 31070812 DOI: 10.1002/ana.25500] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/23/2019] [Accepted: 05/05/2019] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Charcot-Marie-Tooth (CMT) disease 4B1 and 4B2 (CMT4B1/B2) are characterized by recessive inheritance, early onset, severe course, slowed nerve conduction, and myelin outfoldings. CMT4B3 shows a more heterogeneous phenotype. All are associated with myotubularin-related protein (MTMR) mutations. We conducted a multicenter, retrospective study to better characterize CMT4B. METHODS We collected clinical and genetic data from CMT4B subjects in 18 centers using a predefined minimal data set including Medical Research Council (MRC) scores of nine muscle pairs and CMT Neuropathy Score. RESULTS There were 50 patients, 21 of whom never reported before, carrying 44 mutations, of which 21 were novel and six representing novel disease associations of known rare variants. CMT4B1 patients had significantly more-severe disease than CMT4B2, with earlier onset, more-frequent motor milestones delay, wheelchair use, and respiratory involvement as well as worse MRC scores and motor CMT Examination Score components despite younger age at examination. Vocal cord involvement was common in both subtypes, whereas glaucoma occurred in CMT4B2 only. Nerve conduction velocities were similarly slowed in both subtypes. Regression analyses showed that disease severity is significantly associated with age in CMT4B1. Slopes are steeper for CMT4B1, indicating faster disease progression. Almost none of the mutations in the MTMR2 and MTMR13 genes, responsible for CMT4B1 and B2, respectively, influence the correlation between disease severity and age, in agreement with the hypothesis of a complete loss of function of MTMR2/13 proteins for such mutations. INTERPRETATION This is the largest CMT4B series ever reported, demonstrating that CMT4B1 is significantly more severe than CMT4B2, and allowing an estimate of prognosis. ANN NEUROL 2019.
Collapse
Affiliation(s)
- Davide Pareyson
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Tanya Stojkovic
- Hôpital Pitié-Salpêtrière, AP-HP, Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Paris, France
| | - Mary M Reilly
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Sarah Leonard-Louis
- Hôpital Pitié-Salpêtrière, AP-HP, Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Paris, France
| | - Matilde Laurà
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Julian Blake
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom.,Department of Clinical Neurophysiology, Norfolk and Norwich University Hospital, Norfolk, United Kingdom
| | - Yesim Parman
- Istanbul University, Istanbul Faculty of Medicine, Neurology Dep. Istanbul, Turkey
| | - Esra Battaloglu
- Bogazici University, Department of Molecular Biology and Genetics, Istanbul, Turkey
| | - Meriem Tazir
- Laboratoire de Recherche en Neurosciences Service de Neurologie, CHU, Alger, Algeria
| | - Mounia Bellatache
- Laboratoire de Recherche en Neurosciences Service de Neurologie, CHU, Alger, Algeria
| | - Nathalie Bonello-Palot
- Department of Medical Genetics, Timone Hospital, Marseille, France.2, Aix-Marseille University, INSERM, MMG, U1251, Marseille, France
| | - Nicolas Lévy
- Department of Medical Genetics, Timone Hospital, Marseille, France.2, Aix-Marseille University, INSERM, MMG, U1251, Marseille, France
| | - Sabrina Sacconi
- Université Côte d'Azur, Service Système Nerveux Périphérique, Muscle et SLA, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Raquel Guimarães-Costa
- Hôpital Pitié-Salpêtrière, AP-HP, Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Paris, France
| | - Sharham Attarian
- Reference center for neuromuscular disorders and ALS, CHU La Timone, Aix-Marseille University, Marseille, France
| | - Philippe Latour
- Center of Biology and Pathology Laboratory of Molecular Neurogenetics, Hospices Civils, Lyon, France
| | - Guilhem Solé
- Reference center for neuromuscular disorders AOC (Atlantique Occitanie Caraibes), CHU de Bordeaux, Bordeaux, France
| | - André Megarbane
- Institut Jérôme Lejeune, Paris, France.,INOVIE, Beirut, Lebanon
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Giulia Ricci
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Angelo Schenone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and MATERNAL Infantile Sciences, University of Genoa, and IRCCS Policlinico San Martino, Genoa, Italy
| | - Chiara Gemelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and MATERNAL Infantile Sciences, University of Genoa, and IRCCS Policlinico San Martino, Genoa, Italy
| | - Alessandro Geroldi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and MATERNAL Infantile Sciences, University of Genoa, and IRCCS Policlinico San Martino, Genoa, Italy
| | - Mario Sabatelli
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS. Centro Clinico Nemo Adulti Rome, Rome, Italy.,Università Cattolica del Sacro Cuore. Sede di Roma, Rome, Italy
| | - Marco Luigetti
- Università Cattolica del Sacro Cuore. Sede di Roma, Rome, Italy.,UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Lucio Santoro
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Naples, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Naples, Italy
| | - Aldo Quattrone
- Department of Neurology, Università Magna Graecia di Catanzaro, Catanzaro, Italy
| | - Paola Valentino
- Department of Neurology, Università Magna Graecia di Catanzaro, Catanzaro, Italy
| | | | - Steven S Scherer
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Lois Dankwa
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael E Shy
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa, IA
| | - Chelsea J Bacon
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa, IA
| | | | - Alberto Zambon
- Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Irene Tramacere
- Department of Research and Clinical Development, Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Pisciotta
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefania Magri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefano C Previtali
- Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alessandra Bolino
- Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
23
|
Gong B, Li Z, Xiao W, Li G, Ding S, Meng A, Jia S. Sec14l3 potentiates VEGFR2 signaling to regulate zebrafish vasculogenesis. Nat Commun 2019; 10:1606. [PMID: 30962435 PMCID: PMC6453981 DOI: 10.1038/s41467-019-09604-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) regulates vasculogenesis by using its tyrosine kinase receptors. However, little is known about whether Sec14-like phosphatidylinositol transfer proteins (PTP) are involved in this process. Here, we show that zebrafish sec14l3, one of the family members, specifically participates in artery and vein formation via regulating angioblasts and subsequent venous progenitors’ migration during vasculogenesis. Vascular defects caused by sec14l3 depletion are partially rescued by restoration of VEGFR2 signaling at the receptor or downstream effector level. Biochemical analyses show that Sec14l3/SEC14L2 physically bind to VEGFR2 and prevent it from dephosphorylation specifically at the Y1175 site by peri-membrane tyrosine phosphatase PTP1B, therefore potentiating VEGFR2 signaling activation. Meanwhile, Sec14l3 and SEC14L2 interact with RAB5A/4A and facilitate the formation of their GTP-bound states, which might be critical for VEGFR2 endocytic trafficking. Thus, we conclude that Sec14l3 controls vasculogenesis in zebrafish via the regulation of VEGFR2 activation. The growth factor VEGF is known to regulate vasculogenesis but the downstream pathways activated are unclear. Here, the authors report that Sec14l3, a member of the PITP (phosphatidyl inositol transfer proteins) family regulates the formation of zebrafish vasculature by promoting VEGFR2 endocytic trafficking.
Collapse
Affiliation(s)
- Bo Gong
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Zhihao Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Wanghua Xiao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Guangyuan Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Shihui Ding
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Anming Meng
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
| | - Shunji Jia
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
24
|
Gulluni F, De Santis MC, Margaria JP, Martini M, Hirsch E. Class II PI3K Functions in Cell Biology and Disease. Trends Cell Biol 2019; 29:339-359. [DOI: 10.1016/j.tcb.2019.01.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/21/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022]
|
25
|
Margaria JP, Ratto E, Gozzelino L, Li H, Hirsch E. Class II PI3Ks at the Intersection between Signal Transduction and Membrane Trafficking. Biomolecules 2019; 9:E104. [PMID: 30884740 PMCID: PMC6468456 DOI: 10.3390/biom9030104] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/01/2019] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
Phosphorylation of inositol phospholipids by the family of phosphoinositide 3-kinases (PI3Ks) is crucial in controlling membrane lipid composition and regulating a wide range of intracellular processes, which include signal transduction and vesicular trafficking. In spite of the extensive knowledge on class I PI3Ks, recent advances in the study of the three class II PI3Ks (PIK3C2A, PIK3C2B and PIK3C2G) reveal their distinct and non-overlapping cellular roles and localizations. By finely tuning membrane lipid composition in time and space among different cellular compartments, this class of enzymes controls many cellular processes, such as proliferation, survival and migration. This review focuses on the recent developments regarding the coordination of membrane trafficking and intracellular signaling of class II PI3Ks through the confined phosphorylation of inositol phospholipids.
Collapse
Affiliation(s)
- Jean Piero Margaria
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy.
| | - Edoardo Ratto
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy.
| | - Luca Gozzelino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy.
| | - Huayi Li
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy.
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy.
| |
Collapse
|
26
|
Del Olmo T, Lauzier A, Normandin C, Larcher R, Lecours M, Jean D, Lessard L, Steinberg F, Boisvert FM, Jean S. APEX2-mediated RAB proximity labeling identifies a role for RAB21 in clathrin-independent cargo sorting. EMBO Rep 2019; 20:e47192. [PMID: 30610016 PMCID: PMC6362359 DOI: 10.15252/embr.201847192] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 12/26/2022] Open
Abstract
RAB GTPases are central modulators of membrane trafficking. They are under the dynamic regulation of activating guanine exchange factors (GEFs) and inactivating GTPase-activating proteins (GAPs). Once activated, RABs recruit a large spectrum of effectors to control trafficking functions of eukaryotic cells. Multiple proteomic studies, using pull-down or yeast two-hybrid approaches, have identified a number of RAB interactors. However, due to the in vitro nature of these approaches and inherent limitations of each technique, a comprehensive definition of RAB interactors is still lacking. By comparing quantitative affinity purifications of GFP:RAB21 with APEX2-mediated proximity labeling of RAB4a, RAB5a, RAB7a, and RAB21, we find that APEX2 proximity labeling allows for the comprehensive identification of RAB regulators and interactors. Importantly, through biochemical and genetic approaches, we establish a novel link between RAB21 and the WASH and retromer complexes, with functional consequences on cargo sorting. Hence, APEX2-mediated proximity labeling of RAB neighboring proteins represents a new and efficient tool to define RAB functions.
Collapse
Affiliation(s)
- Tomas Del Olmo
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Annie Lauzier
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Caroline Normandin
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Raphaëlle Larcher
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mia Lecours
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Dominique Jean
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Louis Lessard
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Florian Steinberg
- Center for Biological Systems Analysis (ZBSA), Faculty of Biology, Albert Ludwigs Universitaet Freiburg, Freiburg, Germany
| | - François-Michel Boisvert
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Steve Jean
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
27
|
Molecular Basis for Membrane Recruitment by the PX and C2 Domains of Class II Phosphoinositide 3-Kinase-C2α. Structure 2018; 26:1612-1625.e4. [DOI: 10.1016/j.str.2018.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/05/2018] [Accepted: 08/23/2018] [Indexed: 11/17/2022]
|
28
|
Laššuthová P, Vill K, Erdem-Ozdamar S, Schröder JM, Topaloglu H, Horvath R, Müller-Felber W, Bansagi B, Schlotter-Weigel B, Gläser D, Neupauerová J, Sedláčková L, Staněk D, Mazanec R, Weis J, Seeman P, Senderek J. Novel SBF2 mutations and clinical spectrum of Charcot-Marie-Tooth neuropathy type 4B2. Clin Genet 2018; 94:467-472. [PMID: 30028002 DOI: 10.1111/cge.13417] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/04/2018] [Accepted: 07/17/2018] [Indexed: 12/27/2022]
Abstract
Biallelic SBF2 mutations cause Charcot-Marie-Tooth disease type 4B2 (CMT4B2), a sensorimotor neuropathy with autosomal recessive inheritance and association with glaucoma. Since the discovery of the gene mutation, only few additional patients have been reported. We identified seven CMT4B2 families with nine different SBF2 mutations. Revisiting genetic and clinical data from our cohort and the literature, SBF2 variants were private mutations, including exon-deletion and de novo variants. The neuropathy typically started in the first decade after normal early motor development, was predominantly motor and had a rather moderate course. Electrophysiology and nerve biopsies indicated demyelination and excess myelin outfoldings constituted a characteristic feature. While neuropathy was >90% penetrant at age 10 years, glaucoma was absent in ~40% of cases but sometimes developed with age. Consequently, SBF2 mutation analysis should not be restricted to individuals with coincident neuropathy and glaucoma, and CMT4B2 patients without glaucoma should be followed for increased intraocular pressure. The presence of exon-deletion and de novo mutations demands comprehensive mutation scanning and family studies to ensure appropriate diagnostic approaches and genetic counseling.
Collapse
Affiliation(s)
- P Laššuthová
- DNA Laboratory, Department of Pediatric Neurology, Charles University and University Hospital Motol, Prague, Czech Republic
| | - K Vill
- Department of Pediatric Neurology, Dr. v. Hauner Children's Hospital, LMU Munich, Munich, Germany
| | - S Erdem-Ozdamar
- Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - J M Schröder
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - H Topaloglu
- Department of Pediatric Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - R Horvath
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - W Müller-Felber
- Department of Pediatric Neurology, Dr. v. Hauner Children's Hospital, LMU Munich, Munich, Germany
| | - B Bansagi
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - B Schlotter-Weigel
- Friedrich-Baur-Institute, Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - D Gläser
- Genetikum, Center for Human Genetics, Neu-Ulm, Germany
| | - J Neupauerová
- DNA Laboratory, Department of Pediatric Neurology, Charles University and University Hospital Motol, Prague, Czech Republic
| | - L Sedláčková
- DNA Laboratory, Department of Pediatric Neurology, Charles University and University Hospital Motol, Prague, Czech Republic
| | - D Staněk
- DNA Laboratory, Department of Pediatric Neurology, Charles University and University Hospital Motol, Prague, Czech Republic
| | - R Mazanec
- Department of Neurology, Charles University and University Hospital Motol, Prague, Czech Republic
| | - J Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - P Seeman
- DNA Laboratory, Department of Pediatric Neurology, Charles University and University Hospital Motol, Prague, Czech Republic
| | - J Senderek
- Friedrich-Baur-Institute, Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
29
|
Patrício-Rodrigues C, Teodoro R. Postsynaptic Rab GTPases and Exocyst: a screen at the Drosophila neuromuscular junction. ACTA ACUST UNITED AC 2018. [DOI: 10.19185/matters.201807000005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Rab11 activity and PtdIns(3)P turnover removes recycling cargo from endosomes. Nat Chem Biol 2018; 14:801-810. [DOI: 10.1038/s41589-018-0086-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 05/10/2018] [Indexed: 12/12/2022]
|
31
|
Nagpal A, Hassan A, Ndamukong I, Avramova Z, Baluška F. Myotubularins, PtdIns5P, and ROS in ABA-mediated stomatal movements in dehydrated Arabidopsis seedlings. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:259-266. [PMID: 32291040 DOI: 10.1071/fp17116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/23/2017] [Indexed: 06/11/2023]
Abstract
Myotubularins (MTMs) are lipid phosphoinositide 3-phosphate phosphatases and the product of their enzyme activity - phosphoinositide 5-phosphate (PtdIns5P) - functions as a signalling molecule in pathways involved in membrane dynamics and cell signalling. Two Arabidopsis genes, AtMTM1 and AtMTM2, encode enzymatically active phosphatases but although AtMTM1 deficiency results in increased tolerance to dehydration stress and a decrease in cellular PtdIns5P, the role of AtMTM2 is less clear, as it does not contribute to the PtdIns5P pool upon dehydration stress. Here we analysed the involvement of AtMTM1, AtMTM2 and PtdIns5P in the response of Arabidopsis seedlings to dehydration stress/ABA, and found that both AtMTM1 and AtMTM2 were involved but affected oppositely stomata movement and the accumulation of reactive oxygen species (ROS, e.g. H2O2). Acting as a secondary messenger in the ABA-induced ROS production in guard cells, PtdIns5P emerges as an evolutionarily conserved signalling molecule that calibrates cellular ROS under stress. We propose the biological relevance of the counteracting AtMTM1 and AtMTM2 activities is to balance the ABA-induced ROS accumulation and cellular homeostasis under dehydration stress.
Collapse
Affiliation(s)
- Akanksha Nagpal
- IZMB, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Ammar Hassan
- IZMB, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Ivan Ndamukong
- School of Biological Sciences, UNL, Lincoln, NE 68588-6008, USA
| | - Zoya Avramova
- School of Biological Sciences, UNL, Lincoln, NE 68588-6008, USA
| | | |
Collapse
|
32
|
Robinson DC, Mammel AE, Logan AM, Larson AA, Schmidt EJ, Condon AF, Robinson FL. An In Vitro Model of Charcot-Marie-Tooth Disease Type 4B2 Provides Insight Into the Roles of MTMR13 and MTMR2 in Schwann Cell Myelination. ASN Neuro 2018; 10:1759091418803282. [PMID: 30419760 PMCID: PMC6236487 DOI: 10.1177/1759091418803282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 01/16/2023] Open
Abstract
Charcot-Marie-Tooth Disorder Type 4B (CMT4B) is a demyelinating peripheral neuropathy caused by mutations in myotubularin-related (MTMR) proteins 2, 13, or 5 (CMT4B1/2/3), which regulate phosphoinositide turnover and endosomal trafficking. Although mouse models of CMT4B2 exist, an in vitro model would make possible pharmacological and reverse genetic experiments needed to clarify the role of MTMR13 in myelination. We have generated such a model using Schwann cell-dorsal root ganglion (SC-DRG) explants from Mtmr13-/- mice. Myelin sheaths in mutant cultures contain outfoldings highly reminiscent of those observed in the nerves of Mtmr13-/- mice and CMT4B2 patients. Mtmr13-/- SC-DRG explants also contain reduced Mtmr2, further supporting a role of Mtmr13 in stabilizing Mtmr2. Elevated PI(3,5)P2 has been implicated as a cause of myelin outfoldings in Mtmr2-/- models. In contrast, the role of elevated PI3P or PI(3,5)P2 in promoting outfoldings in Mtmr13-/- models is unclear. We found that over-expression of MTMR2 in Mtmr13-/- SC-DRGs moderately reduced the prevalence of myelin outfoldings. Thus, a manipulation predicted to lower PI3P and PI(3,5)P2 partially suppressed the phenotype caused by Mtmr13 deficiency. We also explored the relationship between CMT4B2-like myelin outfoldings and kinases that produce PI3P and PI(3,5)P2 by analyzing nerve pathology in mice lacking both Mtmr13 and one of two specific PI 3-kinases. Intriguingly, the loss of vacuolar protein sorting 34 or PI3K-C2β in Mtmr13-/- mice had no impact on the prevalence of myelin outfoldings. In aggregate, our findings suggest that the MTMR13 scaffold protein likely has critical functions other than stabilizing MTMR2 to achieve an adequate level of PI 3-phosphatase activity.
Collapse
Affiliation(s)
- Danielle C. Robinson
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
- Neuroscience Graduate Program, Oregon Health &
Science University, Portland, OR, USA
| | - Anna E. Mammel
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
- Cell, Developmental & Cancer Biology Graduate
Program, Oregon Health & Science University, Portland, OR,
USA
| | - Anne M. Logan
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
- Neuroscience Graduate Program, Oregon Health &
Science University, Portland, OR, USA
| | - Aubree A. Larson
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
| | - Eric J. Schmidt
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
| | - Alec F. Condon
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
- Neuroscience Graduate Program, Oregon Health &
Science University, Portland, OR, USA
| | - Fred L. Robinson
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
- Vollum Institute, Oregon Health & Science
University, Portland, OR, USA
| |
Collapse
|
33
|
Wallroth A, Haucke V. Phosphoinositide conversion in endocytosis and the endolysosomal system. J Biol Chem 2017; 293:1526-1535. [PMID: 29282290 DOI: 10.1074/jbc.r117.000629] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Phosphoinositides (PIs) are phospholipids that perform crucial cell functions, ranging from cell migration and signaling to membrane trafficking, by serving as signposts of compartmental membrane identity. Although phosphatidylinositol 4,5-bisphosphate, 3-phosphate, and 3,5-bisphosphate are commonly considered as hallmarks of the plasma membrane, endosomes, and lysosomes, these compartments contain other functionally important PIs. Here, we review the roles of PIs in different compartments of the endolysosomal system in mammalian cells and discuss the mechanisms that spatiotemporally control PI conversion in endocytosis and endolysosomal membrane dynamics during endosome maturation and sorting. As defective PI conversion underlies human genetic diseases, including inherited myopathies, neurological disorders, and cancer, PI-converting enzymes represent potential targets for drug-based therapies.
Collapse
Affiliation(s)
- Alexander Wallroth
- From the Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin and
| | - Volker Haucke
- From the Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin and .,the Faculty of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
34
|
Del Signore SJ, Biber SA, Lehmann KS, Heimler SR, Rosenfeld BH, Eskin TL, Sweeney ST, Rodal AA. dOCRL maintains immune cell quiescence by regulating endosomal traffic. PLoS Genet 2017; 13:e1007052. [PMID: 29028801 PMCID: PMC5656325 DOI: 10.1371/journal.pgen.1007052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 10/25/2017] [Accepted: 10/04/2017] [Indexed: 01/07/2023] Open
Abstract
Lowe Syndrome is a developmental disorder characterized by eye, kidney, and neurological pathologies, and is caused by mutations in the phosphatidylinositol-5-phosphatase OCRL. OCRL plays diverse roles in endocytic and endolysosomal trafficking, cytokinesis, and ciliogenesis, but it is unclear which of these cellular functions underlie specific patient symptoms. Here, we show that mutation of Drosophila OCRL causes cell-autonomous activation of hemocytes, which are macrophage-like cells of the innate immune system. Among many cell biological defects that we identified in docrl mutant hemocytes, we pinpointed the cause of innate immune cell activation to reduced Rab11-dependent recycling traffic and concomitantly increased Rab7-dependent late endosome traffic. Loss of docrl amplifies multiple immune-relevant signals, including Toll, Jun kinase, and STAT, and leads to Rab11-sensitive mis-sorting and excessive secretion of the Toll ligand Spåtzle. Thus, docrl regulation of endosomal traffic maintains hemocytes in a poised, but quiescent state, suggesting mechanisms by which endosomal misregulation of signaling may contribute to symptoms of Lowe syndrome. Lowe syndrome is a developmental disorder characterized by severe kidney, eye, and neurological symptoms, and is caused by mutations in the gene OCRL. OCRL has been shown to control many steps of packaging and transport of materials within cells, though it remains unclear which of these disrupted transport steps cause each of the many symptoms in Lowe syndrome patients. We found that in fruit flies, loss of OCRL caused transport defects at specific internal compartments in innate immune cells, resulting in amplification of multiple critical inflammatory signals. Similar inflammatory signals have been implicated in forms of epilepsy, which is a primary symptom in Lowe syndrome patients. Thus, our work uncovers a new function for OCRL in animals, and opens an exciting new avenue of investigation into how loss of OCRL causes the symptoms of Lowe syndrome.
Collapse
Affiliation(s)
- Steven J. Del Signore
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Sarah A. Biber
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Katherine S. Lehmann
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Stephanie R. Heimler
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Benjamin H. Rosenfeld
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Tania L. Eskin
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Sean T. Sweeney
- Department of Biology, University of York, York, United Kingdom
| | - Avital A. Rodal
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
35
|
Yoshida A, Hayashi H, Tanabe K, Fujita A. Segregation of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate into distinct microdomains on the endosome membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017. [PMID: 28648675 DOI: 10.1016/j.bbamem.2017.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Phosphatidylinositol 4-phosphate (PtdIns(4)P) is the immediate precursor of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), which is located on the cytoplasmic leaflet of the plasma membrane and has been reported to possess multiple cellular functions. Although PtdIns(4)P and PtdIns(4,5)P2 have been reported to localize to multiple intracellular compartments and to each function as regulatory molecules, their generation, regulation and functions in most intracellular compartments are not well-defined. To analyze PtdIns(4)P and PtdIns(4,5)P2 distributions, at a nanoscale, we employed an electron microscopy technique that specifically labels PtdIns(4)P and PtdIns(4,5)P2 on the freeze-fracture replica of intracellular biological membranes. This method minimizes the possibility of artificial perturbation, because molecules in the membrane are physically immobilized in situ. Using this technique, we found that PtdIns(4)P was localized to the cytoplasmic leaflet of Golgi apparatus and vesicular-shaped structures. The PtdIns(4,5)P2 labeling was observed in the cytoplasmic leaflet of the mitochondrial inner membrane and vesicular-shaped structures. Double labeling of PtdIns(4)P and PtdIns(4,5)P2 with endosome markers illustrated that PtdIns(4)P and PtdIns(4,5)P2 were mainly localized to the late endosome/lysosome and early endosome, respectively. PtdIns(4)P and PtdIns(4,5)P2 were colocalized in some endosomes, with the two phospholipids separated into distinct microdomains on the same endosomes. This is the first report showing, at a nanoscale, segregation of PtdIns(4)P- and PtdIns(4,5)P2-enriched microdomains in the endosome, of likely importance for endosome functionality.
Collapse
Affiliation(s)
- Akane Yoshida
- Field of Veterinary Pathobiology, Basic Veterinary Science, Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Hiroki Hayashi
- Field of Veterinary Pathobiology, Basic Veterinary Science, Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Kenji Tanabe
- Medical Research Institute, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Akikazu Fujita
- Field of Veterinary Pathobiology, Basic Veterinary Science, Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan.
| |
Collapse
|
36
|
Yuan Q, Ren C, Xu W, Petri B, Zhang J, Zhang Y, Kubes P, Wu D, Tang W. PKN1 Directs Polarized RAB21 Vesicle Trafficking via RPH3A and Is Important for Neutrophil Adhesion and Ischemia-Reperfusion Injury. Cell Rep 2017; 19:2586-2597. [PMID: 28636945 PMCID: PMC5548392 DOI: 10.1016/j.celrep.2017.05.080] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/18/2017] [Accepted: 05/24/2017] [Indexed: 01/08/2023] Open
Abstract
Polarized vesicle transport plays an important role in cell polarization, but the mechanisms underlying this process and its role in innate immune responses are not well understood. Here, we describe a phosphorylation-regulated polarization mechanism that is important for neutrophil adhesion to endothelial cells during inflammatory responses. We show that the protein kinase PKN1 phosphorylates RPH3A, which enhances binding of RPH3A to guanosine triphosphate (GTP)-bound RAB21. These interactions are important for polarized localization of RAB21 and RPH3A in neutrophils, which leads to PIP5K1C90 polarization. Consistent with the roles of PIP5K1C90 polarization, the lack of PKN1 or RPH3A impairs neutrophil integrin activation, adhesion to endothelial cells, and infiltration in inflammatory models. Furthermore, myeloid-specific loss of PKN1 decreases tissue injury in a renal ischemia-reperfusion model. Thus, this study characterizes a mechanism for protein polarization in neutrophils and identifies a potential protein kinase target for therapeutic intervention in reperfusion-related tissue injury.
Collapse
Affiliation(s)
- Qianying Yuan
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA
| | - Chunguang Ren
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA
| | - Wenwen Xu
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA
| | - Björn Petri
- Snyder Institute for Chronic Diseases Mouse Phenomics Resource Laboratory, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jiasheng Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yong Zhang
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA
| | - Paul Kubes
- Snyder Institute for Chronic Diseases Mouse Phenomics Resource Laboratory, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Dianqing Wu
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Wenwen Tang
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
37
|
Sun Z, Xie Y, Chen Y, Yang Q, Quan Z, Dai R, Qing H. Rab21, a Novel PS1 Interactor, Regulates γ-Secretase Activity via PS1 Subcellular Distribution. Mol Neurobiol 2017; 55:3841-3855. [PMID: 28547526 DOI: 10.1007/s12035-017-0606-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/08/2017] [Indexed: 01/09/2023]
Abstract
γ-Secretase has been a therapeutical target for its key role in cleaving APP to generate β-amyloid (Aβ), the primary constituents of senile plaques and a hallmark of Alzheimer's disease (AD) pathology. Recently, γ-secretase-associating proteins showed promising role in specifically modulating APP processing while sparing Notch signaling; however, the underlying mechanism is still unclear. A co-immunoprecipitation (Co-IP) coupled with mass spectrometry proteomic assay for Presenilin1 (PS1, the catalytic subunit of γ-secretase) was firstly conducted to find more γ-secretase-associating proteins. Gene ontology analysis of these results identified Rab21 as a potential PS1 interacting protein, and the interaction between them was validated by reciprocal Co-IP and immunofluorescence assay. Then, molecular and biochemical methods were used to investigate the effect of Rab21 on APP processing. Results showed that overexpression of Rab21 enhanced Aβ generation, while silencing of Rab21 reduced the accumulation of Aβ, which resulted due to change in γ-secretase activity rather than α- or β-secretase. Finally, we demonstrated that Rab21 had no effect on γ-secretase complex synthesis or metabolism but enhanced PS1 endocytosis and translocation to late endosome/lysosome. In conclusion, we identified a novel γ-secretase-associating protein Rab21 and illustrate that Rab21 promotes γ-secretase internalization and translocation to late endosome/lysosome. Moreover, silencing of Rab21 decreases the γ-secretase activity in APP processing thus production of Aβ. All these results open new gateways towards the understanding of γ-secretase-associating proteins in APP processing and make inhibition of Rab21 a promising strategy for AD therapy.
Collapse
Affiliation(s)
- Zhenzhen Sun
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Yujie Xie
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Yintong Chen
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Qinghu Yang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Zhenzhen Quan
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Rongji Dai
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Hong Qing
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| |
Collapse
|
38
|
WANTED - Dead or alive: Myotubularins, a large disease-associated protein family. Adv Biol Regul 2016; 63:49-58. [PMID: 27666502 DOI: 10.1016/j.jbior.2016.09.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 09/13/2016] [Accepted: 09/13/2016] [Indexed: 11/21/2022]
Abstract
Myotubularins define a large family of proteins conserved through evolution. Several members are mutated in different neuromuscular diseases including centronuclear myopathies and Charcot-Marie-Tooth (CMT) neuropathies, or are linked to a predisposition to obesity and cancer. While some members have phosphatase activity against the 3-phosphate of phosphoinositides, regulating the phosphorylation status of PtdIns3P and PtdIns(3,5)P2 implicated in membrane trafficking and autophagy, and producing PtdIns5P, others lack key residues in the catalytic site and are classified as dead-phosphatases. However, these dead phosphatases regulate phosphoinositide-dependent cellular pathways by binding to catalytically active myotubularins. Here we review previous studies on the molecular regulation and physiological roles of myotubularins. We also used the recent myotubularins three-dimensional structures to underline key residues that are mutated in neuromuscular diseases and required for enzymatic activity. In addition, through database mining and analysis, expression profile and specific isoforms of the different myotubularins are described in depth, as well as a revisited protein interaction network. Comparison of the interactome and expression data for each myotubularin highlights specific protein complexes and tissues where myotubularins should have a key regulatory role.
Collapse
|
39
|
Rab11 and phosphoinositides: A synergy of signal transducers in the control of vesicular trafficking. Adv Biol Regul 2016; 63:132-139. [PMID: 27658318 DOI: 10.1016/j.jbior.2016.09.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 09/13/2016] [Indexed: 12/11/2022]
Abstract
Rab11 and phosphoinositides are signal transducers able to direct the delivery of membrane components to the cell surface. Rab11 is a small GTPase that, by cycling from an active to an inactive state, controls key events of vesicular transport, while phosphoinositides are major determinants of membrane identity, modulating compartmentalized small GTPase function. By sharing common effectors, these two signal transducers synergistically direct vesicular traffic to specific intracellular membranes. This review focuses on the latest advances regarding the mechanisms that ensure the compartmentalized regulation of Rab11 function through its interaction with phosphoinositides.
Collapse
|
40
|
Pueyo JI, Magny EG, Sampson CJ, Amin U, Evans IR, Bishop SA, Couso JP. Hemotin, a Regulator of Phagocytosis Encoded by a Small ORF and Conserved across Metazoans. PLoS Biol 2016; 14:e1002395. [PMID: 27015288 PMCID: PMC4807881 DOI: 10.1371/journal.pbio.1002395] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/29/2016] [Indexed: 12/12/2022] Open
Abstract
Translation of hundreds of small ORFs (smORFs) of less than 100 amino acids has recently been revealed in vertebrates and Drosophila. Some of these peptides have essential and conserved cellular functions. In Drosophila, we have predicted a particular smORF class encoding ~80 aa hydrophobic peptides, which may function in membranes and cell organelles. Here, we characterise hemotin, a gene encoding an 88aa transmembrane smORF peptide localised to early endosomes in Drosophila macrophages. hemotin regulates endosomal maturation during phagocytosis by repressing the cooperation of 14-3-3ζ with specific phosphatidylinositol (PI) enzymes. hemotin mutants accumulate undigested phagocytic material inside enlarged endo-lysosomes and as a result, hemotin mutants have reduced ability to fight bacteria, and hence, have severely reduced life span and resistance to infections. We identify Stannin, a peptide involved in organometallic toxicity, as the Hemotin functional homologue in vertebrates, showing that this novel regulator of phagocytic processing is widely conserved, emphasizing the significance of smORF peptides in cell biology and disease.
Collapse
Affiliation(s)
- José I. Pueyo
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Emile G. Magny
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | | | - Unum Amin
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Iwan R. Evans
- Department of Infection and Immunity and the Bateson Centre, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| | - Sarah A. Bishop
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Juan P. Couso
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
- * E-mail:
| |
Collapse
|
41
|
Marat AL, Haucke V. Phosphatidylinositol 3-phosphates-at the interface between cell signalling and membrane traffic. EMBO J 2016; 35:561-79. [PMID: 26888746 DOI: 10.15252/embj.201593564] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/26/2016] [Indexed: 12/31/2022] Open
Abstract
Phosphoinositides (PIs) form a minor class of phospholipids with crucial functions in cell physiology, ranging from cell signalling and motility to a role as signposts of compartmental membrane identity. Phosphatidylinositol 3-phosphates are present at the plasma membrane and within the endolysosomal system, where they serve as key regulators of both cell signalling and of intracellular membrane traffic. Here, we provide an overview of the metabolic pathways that regulate cellular synthesis of PI 3-phosphates at distinct intracellular sites and discuss the mechanisms by which these lipids regulate cell signalling and membrane traffic. Finally, we provide a framework for how PI 3-phosphate metabolism is integrated into the cellular network.
Collapse
Affiliation(s)
- Andrea L Marat
- Leibniz Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Volker Haucke
- Leibniz Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| |
Collapse
|
42
|
Dysregulation of ErbB Receptor Trafficking and Signaling in Demyelinating Charcot-Marie-Tooth Disease. Mol Neurobiol 2016; 54:87-100. [PMID: 26732592 DOI: 10.1007/s12035-015-9668-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/17/2015] [Indexed: 12/12/2022]
Abstract
Charcot-Marie-Tooth (CMT) disease is the most common inherited peripheral neuropathy with the majority of cases involving demyelination of peripheral nerves. The pathogenic mechanisms of demyelinating CMT remain unclear, and no effective therapy currently exists for this disease. The discovery that mutations in different genes can cause a similar phenotype of demyelinating peripheral neuropathy raises the possibility that there may be convergent mechanisms leading to demyelinating CMT pathogenesis. Increasing evidence indicates that ErbB receptor-mediated signaling plays a major role in the control of Schwann cell-axon communication and myelination in the peripheral nervous system. Recent studies reveal that several demyelinating CMT-linked proteins are novel regulators of endocytic trafficking and/or phosphoinositide metabolism that may affect ErbB receptor signaling. Emerging data have begun to suggest that dysregulation of ErbB receptor trafficking and signaling in Schwann cells may represent a common pathogenic mechanism in multiple subtypes of demyelinating CMT. In this review, we focus on the roles of ErbB receptor trafficking and signaling in regulation of peripheral nerve myelination and discuss the emerging evidence supporting the potential involvement of altered ErbB receptor trafficking and signaling in demyelinating CMT pathogenesis and the possibility of modulating these trafficking and signaling processes for treating demyelinating peripheral neuropathy.
Collapse
|
43
|
Essential role of class II PI3K-C2α in platelet membrane morphology. Blood 2015; 126:1128-37. [DOI: 10.1182/blood-2015-03-636670] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/15/2015] [Indexed: 11/20/2022] Open
Abstract
Key Points
PI3K-C2α controls platelet membrane structure and remodeling. PI3K-C2α is a key regulator of a basal housekeeping PI3P pool in platelets.
Collapse
|
44
|
PI3K-C2α: One enzyme for two products coupling vesicle trafficking and signal transduction. FEBS Lett 2015; 589:1552-8. [DOI: 10.1016/j.febslet.2015.05.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 12/20/2022]
|
45
|
Hatzihristidis T, Desai N, Hutchins AP, Meng TC, Tremblay ML, Miranda-Saavedra D. A Drosophila-centric view of protein tyrosine phosphatases. FEBS Lett 2015; 589:951-66. [PMID: 25771859 DOI: 10.1016/j.febslet.2015.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 12/30/2022]
Abstract
Most of our knowledge on protein tyrosine phosphatases (PTPs) is derived from human pathologies and mouse knockout models. These models largely correlate well with human disease phenotypes, but can be ambiguous due to compensatory mechanisms introduced by paralogous genes. Here we present the analysis of the PTP complement of the fruit fly and the complementary view that PTP studies in Drosophila will accelerate our understanding of PTPs in physiological and pathological conditions. With only 44 PTP genes, Drosophila represents a streamlined version of the human complement. Our integrated analysis places the Drosophila PTPs into evolutionary and functional contexts, thereby providing a platform for the exploitation of the fly for PTP research and the transfer of knowledge onto other model systems.
Collapse
Affiliation(s)
- Teri Hatzihristidis
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, Montreal, Québec H3A 1A3, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Nikita Desai
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, Montreal, Québec H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Andrew P Hutchins
- Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Tzu-Ching Meng
- Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan; Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Michel L Tremblay
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, Montreal, Québec H3A 1A3, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
| | - Diego Miranda-Saavedra
- World Premier International (WPI) Immunology Frontier Research Center (IFReC), Osaka University, 3-1 Yamadaoka, Suita 565-0871, Osaka, Japan; Centro de Biología Molecular Severo Ochoa, CSIC/Universidad Autónoma de Madrid, 28049 Madrid, Spain; IE Business School, IE University, María de Molina 31 bis, 28006 Madrid, Spain.
| |
Collapse
|
46
|
Jean S, Cox S, Nassari S, Kiger AA. Starvation-induced MTMR13 and RAB21 activity regulates VAMP8 to promote autophagosome-lysosome fusion. EMBO Rep 2015; 16:297-311. [PMID: 25648148 DOI: 10.15252/embr.201439464] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Autophagy, the process for recycling cytoplasm in the lysosome, depends on membrane trafficking. We previously identified Drosophila Sbf as a Rab21 guanine nucleotide exchange factor (GEF) that acts with Rab21 in endosomal trafficking. Here, we show that Sbf/MTMR13 and Rab21 have conserved functions required for starvation-induced autophagy. Depletion of Sbf/MTMR13 or Rab21 blocked endolysosomal trafficking of VAMP8, a SNARE required for autophagosome-lysosome fusion. We show that starvation induces Sbf/MTMR13 GEF and RAB21 activity, as well as their induced binding to VAMP8 (or closest Drosophila homolog, Vamp7). MTMR13 is required for RAB21 activation, VAMP8 interaction and VAMP8 endolysosomal trafficking, defining a novel GEF-Rab-effector pathway. These results identify starvation-responsive endosomal regulators and trafficking that tunes membrane demands with changing autophagy status.
Collapse
Affiliation(s)
- Steve Jean
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Sarah Cox
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Sonya Nassari
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Amy A Kiger
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
47
|
Hoogeboom R, Tolar P. Molecular Mechanisms of B Cell Antigen Gathering and Endocytosis. Curr Top Microbiol Immunol 2015; 393:45-63. [PMID: 26336965 DOI: 10.1007/82_2015_476] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Generation of high-affinity, protective antibodies requires B cell receptor (BCR) signaling, as well as antigen internalization and presentation to helper T cells. B cell antigen internalization is initiated by antigen capture, either from solution or from immune synapses formed on the surface of antigen-presenting cells, and proceeds via clathrin-dependent endocytosis and intracellular routing to late endosomes. Although the components of this pathway are still being discovered, it has become clear that antigen internalization is actively regulated by BCR signaling at multiple steps and, vice versa, that localization of the BCR along the endocytic pathway modulates signaling. Accordingly, defects in BCR internalization or trafficking contribute to enhanced B cell activation in models of autoimmune diseases and in B cell lymphomas. In this review, we discuss how BCR signaling complexes regulate each of the steps of this endocytic process and why defects along this pathway manifest as hyperactive B cell responses in vivo.
Collapse
Affiliation(s)
- Robbert Hoogeboom
- Division of Immune Cell Biology, National Institute for Medical Research, Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London, NW7 1AA, UK
| | - Pavel Tolar
- Division of Immune Cell Biology, National Institute for Medical Research, Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London, NW7 1AA, UK.
| |
Collapse
|
48
|
Shisheva A, Sbrissa D, Ikonomov O. Plentiful PtdIns5P from scanty PtdIns(3,5)P2 or from ample PtdIns? PIKfyve-dependent models: Evidence and speculation (response to: DOI 10.1002/bies.201300012). Bioessays 2014; 37:267-77. [PMID: 25404370 DOI: 10.1002/bies.201400129] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recently, we have presented data supporting the notion that PIKfyve not only produces the majority of constitutive phosphatidylinositol 5-phosphate (PtdIns5P) in mammalian cells but that it does so through direct synthesis from PtdIns. Another group, albeit obtaining similar data, suggests an alternative pathway whereby the low-abundance PtdIns(3,5)P2 undergoes hydrolysis by unidentified 3-phosphatases, thereby serving as a precursor for most of PtdIns5P. Here, we review the experimental evidence supporting constitutive synthesis of PtdIns5P from PtdIns by PIKfyve. We further emphasize that the experiments presented in support of the alternative pathway are also compatible with a direct mechanism for PIKfyve-catalyzed synthesis of PtdIns5P. While agreeing with the authors that constitutive PtdIns5P could theoretically be produced from PtdIns(3,5)P2 by 3-dephosphorylation, we argue that until direct evidence for such an alternative pathway is obtained, we should adhere to the existing experimental evidence and quantitative considerations, which favor direct PIKfyve-catalyzed synthesis for most constitutive PtdIns5P.
Collapse
Affiliation(s)
- Assia Shisheva
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | |
Collapse
|
49
|
Abstract
The phosphoinositide 3-kinase (PI3K) family is important to nearly all aspects of cell and tissue biology and central to human cancer, diabetes and aging. PI3Ks are spatially regulated and multifunctional, and together, act at nearly all membranes in the cell to regulate a wide range of signaling, membrane trafficking and metabolic processes. There is a broadening recognition of the importance of distinct roles for each of the three different PI3K classes (I, II and III), as well as for the different isoforms within each class. Ongoing issues include the need for a better understanding of the in vivo complexity of PI3K regulation and cellular functions. This Cell Science at a Glance article and the accompanying poster summarize the biochemical activities, cellular roles and functional requirements for the three classes of PI3Ks. In doing so, we aim to provide an overview of the parallels, the key differences and crucial interplays between the regulation and roles of the three PI3K classes.
Collapse
Affiliation(s)
- Steve Jean
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | | |
Collapse
|
50
|
Abstract
The specific interaction of phosphoinositides with proteins is critical for a plethora of cellular processes, including cytoskeleton remodelling, mitogenic signalling, ion channel regulation and membrane traffic. The spatiotemporal restriction of different phosphoinositide species helps to define compartments within the cell, and this is particularly important for membrane trafficking within both the secretory and endocytic pathways. Phosphoinositide homoeostasis is tightly regulated by a large number of inositol kinases and phosphatases, which respectively phosphorylate and dephosphorylate distinct phosphoinositide species. Many of these enzymes have been implicated in regulating membrane trafficking and, accordingly, their dysregulation has been linked to a number of human diseases. In the present review, we focus on the inositol phosphatases, concentrating on their roles in membrane trafficking and the human diseases with which they have been associated.
Collapse
|