1
|
Silva A, Prior R, D'Antonio M, Swinnen JV, Van Den Bosch L. Lipid metabolism alterations in peripheral neuropathies. Neuron 2025:S0896-6273(25)00262-4. [PMID: 40311611 DOI: 10.1016/j.neuron.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/14/2025] [Accepted: 04/07/2025] [Indexed: 05/03/2025]
Abstract
Alterations in lipid metabolism are increasingly recognized as central pathological hallmarks of inherited and acquired peripheral neuropathies. Correct lipid balance is critical for cellular homeostasis. However, the mechanisms linking lipid disturbances to cellular dysfunction and whether these changes are primary drivers or secondary effects of disease remain unresolved. This is particularly relevant in the peripheral nervous system, where the lipid-rich myelin integrity is critical for axonal function, and even subtle perturbations can cause widespread effects. This review explores the role of lipids as structural components as well as signaling molecules, emphasizing their metabolic role in peripheral neurons and Schwann cells. Additionally, we explore the genetic and environmental connections in both inherited and acquired peripheral neuropathies, respectively, which are known to affect lipid metabolism in peripheral neurons or Schwann cells. Overall, we highlight how understanding lipid-centric mechanisms could advance biomarker discovery and therapeutic interventions for peripheral nerve disorders.
Collapse
Affiliation(s)
- Alessio Silva
- KU Leuven, University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.
| | - Robert Prior
- KU Leuven, University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium; Department of Ophthalmology, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Maurizio D'Antonio
- Biology of Myelin Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Ludo Van Den Bosch
- KU Leuven, University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.
| |
Collapse
|
2
|
Zhang L, Wei Z, Dai Y, He F, Sun T. The role of CAPS in Ca 2+-regulated exocytosis: Promotion of vesicle tethering, priming, and fusion. Neuropharmacology 2025; 265:110247. [PMID: 39631678 DOI: 10.1016/j.neuropharm.2024.110247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Neurotransmitter and neuromodulator release by Ca2+-regulated exocytosis is essential for information transmisson between cells. Formation of SNARE complex (soluble N-ethylmaleimide sensitive factor attachment protein receptors) provide energy to bring vesicles and the plasma membranes together and catalyze membrane fusion. The "Ca2+-dependent activator protein for secretion" (CAPS) assumes a pivotal role in facilitating vesicle content release, not only in the nervous system but also in various other secretory tissues. In recent years, great progress has been made in the study of the mechanism of CAPS regulating vesicle secretion. In this review, we summarize recent advances toward the functions and molecular mechanisms of CAPSs in vesicle exocytosis, and contemplate future research directions that will illuminate the molecular mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Li Zhang
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China; Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuwan Dai
- Henan Provincial People's Hospital, 450003, Henan, China
| | - Fucheng He
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Ting Sun
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
3
|
Koppensteiner P, Bhandari P, Önal C, Borges-Merjane C, Le Monnier E, Roy U, Nakamura Y, Sadakata T, Sanbo M, Hirabayashi M, Rhee J, Brose N, Jonas P, Shigemoto R. GABA B receptors induce phasic release from medial habenula terminals through activity-dependent recruitment of release-ready vesicles. Proc Natl Acad Sci U S A 2024; 121:e2301449121. [PMID: 38346189 PMCID: PMC10895368 DOI: 10.1073/pnas.2301449121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
GABAB receptor (GBR) activation inhibits neurotransmitter release in axon terminals in the brain, except in medial habenula (MHb) terminals, which show robust potentiation. However, mechanisms underlying this enigmatic potentiation remain elusive. Here, we report that GBR activation on MHb terminals induces an activity-dependent transition from a facilitating, tonic to a depressing, phasic neurotransmitter release mode. This transition is accompanied by a 4.1-fold increase in readily releasable vesicle pool (RRP) size and a 3.5-fold increase of docked synaptic vesicles (SVs) at the presynaptic active zone (AZ). Strikingly, the depressing phasic release exhibits looser coupling distance than the tonic release. Furthermore, the tonic and phasic release are selectively affected by deletion of synaptoporin (SPO) and Ca2+-dependent activator protein for secretion 2 (CAPS2), respectively. SPO modulates augmentation, the short-term plasticity associated with tonic release, and CAPS2 retains the increased RRP for initial responses in phasic response trains. The cytosolic protein CAPS2 showed a SV-associated distribution similar to the vesicular transmembrane protein SPO, and they were colocalized in the same terminals. We developed the "Flash and Freeze-fracture" method, and revealed the release of SPO-associated vesicles in both tonic and phasic modes and activity-dependent recruitment of CAPS2 to the AZ during phasic release, which lasted several minutes. Overall, these results indicate that GBR activation translocates CAPS2 to the AZ along with the fusion of CAPS2-associated SVs, contributing to persistency of the RRP increase. Thus, we identified structural and molecular mechanisms underlying tonic and phasic neurotransmitter release and their transition by GBR activation in MHb terminals.
Collapse
Affiliation(s)
| | - Pradeep Bhandari
- Institute of Science and Technology Austria, Klosterneuburg3400, Austria
| | - Cihan Önal
- Institute of Science and Technology Austria, Klosterneuburg3400, Austria
| | | | - Elodie Le Monnier
- Institute of Science and Technology Austria, Klosterneuburg3400, Austria
| | - Utsa Roy
- Institute of Science and Technology Austria, Klosterneuburg3400, Austria
| | - Yukihiro Nakamura
- Department of Pharmacology, Jikei University School of Medicine, Nishishinbashi, Minato-ku, Tokyo105-8461, Japan
| | - Tetsushi Sadakata
- Advanced Scientific Research Leaders Development Unit, Gunma University Graduate School of Medicine, Maebashi, Gunma371-8511, Japan
| | - Makoto Sanbo
- Section of Mammalian Transgenesis, National Institute for Physiological Sciences, Okazaki444-8585, Japan
| | - Masumi Hirabayashi
- Section of Mammalian Transgenesis, National Institute for Physiological Sciences, Okazaki444-8585, Japan
| | - JeongSeop Rhee
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
| | - Peter Jonas
- Institute of Science and Technology Austria, Klosterneuburg3400, Austria
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria, Klosterneuburg3400, Austria
| |
Collapse
|
4
|
Omar-Hmeadi M, Guček A, Barg S. Local PI(4,5)P 2 signaling inhibits fusion pore expansion during exocytosis. Cell Rep 2023; 42:112036. [PMID: 36701234 DOI: 10.1016/j.celrep.2023.112036] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 11/04/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Phosphatidylinositol(4,5)bisphosphate (PI(4,5)P2) is an important signaling phospholipid that is required for regulated exocytosis and some forms of endocytosis. The two processes share a topologically similar pore structure that connects the vesicle lumen with the outside. Widening of the fusion pore during exocytosis leads to cargo release, while its closure initiates kiss&run or cavicapture endocytosis. We show here, using live-cell total internal reflection fluorescence (TIRF) microscopy of insulin granule exocytosis, that transient accumulation of PI(4,5)P2 at the release site recruits components of the endocytic fission machinery and stalls the late fusion pore expansion that is required for peptide release. The absence of clathrin differentiates this mechanism from clathrin-mediated endocytosis. Knockdown of phosphatidylinositol-phosphate-5-kinase-1c or optogenetic recruitment of 5-phosphatase reduces PI(4,5)P2 transients and accelerates fusion pore expansion, suggesting that acute PI(4,5)P2 synthesis is involved. Thus, local phospholipid signaling inhibits fusion pore expansion and peptide release through an unconventional endocytic mechanism.
Collapse
Affiliation(s)
- Muhmmad Omar-Hmeadi
- Department of Medical Cell Biology, Uppsala University, BMC Box 571, 751 23 Uppsala, Sweden
| | - Alenka Guček
- Department of Medical Cell Biology, Uppsala University, BMC Box 571, 751 23 Uppsala, Sweden
| | - Sebastian Barg
- Department of Medical Cell Biology, Uppsala University, BMC Box 571, 751 23 Uppsala, Sweden.
| |
Collapse
|
5
|
Zhang L, Li L, Wei Z, Zhou H, Liu H, Wang S, Ren Y, Dai T, Wang J, Hu Z, Ma C. The C 2 and PH domains of CAPS constitute an effective PI(4,5)P2-binding unit essential for Ca 2+-regulated exocytosis. Structure 2023; 31:424-434.e6. [PMID: 36863339 DOI: 10.1016/j.str.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/05/2023] [Accepted: 02/03/2023] [Indexed: 03/04/2023]
Abstract
Ca2+-dependent activator proteins for secretion (CAPSs) are required for Ca2+-regulated exocytosis in neurons and neuroendocrine cells. CAPSs contain a pleckstrin homology (PH) domain that binds PI(4,5)P2-membrane. There is also a C2 domain residing adjacent to the PH domain, but its function remains unclear. In this study, we solved the crystal structure of the CAPS-1 C2PH module. The structure showed that the C2 and PH tandem packs against one another mainly via hydrophobic residues. With this interaction, the C2PH module exhibited enhanced binding to PI(4,5)P2-membrane compared with the isolated PH domain. In addition, we identified a new PI(4,5)P2-binding site on the C2 domain. Disruption of either the tight interaction between the C2 and PH domains or the PI(4,5)P2-binding sites on both domains significantly impairs CAPS-1 function in Ca2+-regulated exocytosis at the Caenorhabditis elegans neuromuscular junction (NMJ). These results suggest that the C2 and PH domains constitute an effective unit to promote Ca2+-regulated exocytosis.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Li
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Ziqing Wei
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hao Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Haowen Liu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yijing Ren
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Tiankai Dai
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jiafan Wang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Zhitao Hu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Stojilkovic SS, Balla T. PI(4,5)P2-dependent and -independent roles of PI4P in the control of hormone secretion by pituitary cells. Front Endocrinol (Lausanne) 2023; 14:1118744. [PMID: 36777340 PMCID: PMC9911653 DOI: 10.3389/fendo.2023.1118744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 01/28/2023] Open
Abstract
Plasma membrane and organelle membranes are home to seven phosphoinositides, an important class of low-abundance anionic signaling lipids that contribute to cellular functions by recruiting cytoplasmic proteins or interacting with the cytoplasmic domains of membrane proteins. Here, we briefly review the functions of three phosphoinositides, PI4P, PI(4,5)P2, and PI(3,4,5)P3, in cellular signaling and exocytosis, focusing on hormone-producing pituitary cells. PI(4,5)P2, acting as a substrate for phospholipase C, plays a key role in the control of pituitary cell functions, including hormone synthesis and secretion. PI(4,5)P2 also acts as a substrate for class I PI3-kinases, leading to the generation of two intracellular messengers, PI(3,4,5)P3 and PI(3,4)P2, which act through their intracellular effectors, including Akt. PI(4,5)P2 can also influence the release of pituitary hormones acting as an intact lipid to regulate ion channel gating and concomitant calcium signaling, as well as the exocytic pathway. Recent findings also show that PI4P is not only a precursor of PI(4,5)P2, but also a key signaling molecule in many cell types, including pituitary cells, where it controls hormone secretion in a PI(4,5)P2-independent manner.
Collapse
Affiliation(s)
- Stanko S. Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Stanko S. Stojilkovic,
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
7
|
Enrich C, Lu A, Tebar F, Rentero C, Grewal T. Ca 2+ and Annexins - Emerging Players for Sensing and Transferring Cholesterol and Phosphoinositides via Membrane Contact Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:393-438. [PMID: 36988890 DOI: 10.1007/978-3-031-21547-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Maintaining lipid composition diversity in membranes from different organelles is critical for numerous cellular processes. However, many lipids are synthesized in the endoplasmic reticulum (ER) and require delivery to other organelles. In this scenario, formation of membrane contact sites (MCS) between neighbouring organelles has emerged as a novel non-vesicular lipid transport mechanism. Dissecting the molecular composition of MCS identified phosphoinositides (PIs), cholesterol, scaffolding/tethering proteins as well as Ca2+ and Ca2+-binding proteins contributing to MCS functioning. Compelling evidence now exists for the shuttling of PIs and cholesterol across MCS, affecting their concentrations in distinct membrane domains and diverse roles in membrane trafficking. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at the plasma membrane (PM) not only controls endo-/exocytic membrane dynamics but is also critical in autophagy. Cholesterol is highly concentrated at the PM and enriched in recycling endosomes and Golgi membranes. MCS-mediated cholesterol transfer is intensely researched, identifying MCS dysfunction or altered MCS partnerships to correlate with de-regulated cellular cholesterol homeostasis and pathologies. Annexins, a conserved family of Ca2+-dependent phospholipid binding proteins, contribute to tethering and untethering events at MCS. In this chapter, we will discuss how Ca2+ homeostasis and annexins in the endocytic compartment affect the sensing and transfer of cholesterol and PIs across MCS.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
| | - Albert Lu
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Wills RC, Hammond GRV. PI(4,5)P2: signaling the plasma membrane. Biochem J 2022; 479:2311-2325. [PMID: 36367756 PMCID: PMC9704524 DOI: 10.1042/bcj20220445] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022]
Abstract
In the almost 70 years since the first hints of its existence, the phosphoinositide, phosphatidyl-D-myo-inositol 4,5-bisphosphate has been found to be central in the biological regulation of plasma membrane (PM) function. Here, we provide an overview of the signaling, transport and structural roles the lipid plays at the cell surface in animal cells. These include being substrate for second messenger generation, direct modulation of receptors, control of membrane traffic, regulation of ion channels and transporters, and modulation of the cytoskeleton and cell polarity. We conclude by re-evaluating PI(4,5)P2's designation as a signaling molecule, instead proposing a cofactor role, enabling PM-selective function for many proteins.
Collapse
Affiliation(s)
- Rachel C. Wills
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Gerald R. V. Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| |
Collapse
|
9
|
Li T, Cheng Q, Wang S, Ma C. Rabphilin 3A binds the N-peptide of SNAP-25 to promote SNARE complex assembly in exocytosis. eLife 2022; 11:e79926. [PMID: 36173100 PMCID: PMC9522249 DOI: 10.7554/elife.79926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Exocytosis of secretory vesicles requires the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins and small GTPase Rabs. As a Rab3/Rab27 effector protein on secretory vesicles, Rabphilin 3A was implicated to interact with SNAP-25 to regulate vesicle exocytosis in neurons and neuroendocrine cells, yet the underlying mechanism remains unclear. In this study, we have characterized the physiologically relevant binding sites between Rabphilin 3A and SNAP-25. We found that an intramolecular interplay between the N-terminal Rab-binding domain and C-terminal C2AB domain enables Rabphilin 3A to strongly bind the SNAP-25 N-peptide region via its C2B bottom α-helix. Disruption of this interaction significantly impaired docking and fusion of vesicles with the plasma membrane in rat PC12 cells. In addition, we found that this interaction allows Rabphilin 3A to accelerate SNARE complex assembly. Furthermore, we revealed that this interaction accelerates SNARE complex assembly via inducing a conformational switch from random coils to α-helical structure in the SNAP-25 SNARE motif. Altogether, our data suggest that the promotion of SNARE complex assembly by binding the C2B bottom α-helix of Rabphilin 3A to the N-peptide of SNAP-25 underlies a pre-fusion function of Rabphilin 3A in vesicle exocytosis.
Collapse
Affiliation(s)
- Tianzhi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| | - Qiqi Cheng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| | - Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
10
|
Synaptic Secretion and Beyond: Targeting Synapse and Neurotransmitters to Treat Neurodegenerative Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9176923. [PMID: 35923862 PMCID: PMC9343216 DOI: 10.1155/2022/9176923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/16/2022] [Accepted: 06/04/2022] [Indexed: 11/17/2022]
Abstract
The nervous system is important, because it regulates the physiological function of the body. Neurons are the most basic structural and functional unit of the nervous system. The synapse is an asymmetric structure that is important for neuronal function. The chemical transmission mode of the synapse is realized through neurotransmitters and electrical processes. Based on vesicle transport, the abnormal information transmission process in the synapse can lead to a series of neurorelated diseases. Numerous proteins and complexes that regulate the process of vesicle transport, such as SNARE proteins, Munc18-1, and Synaptotagmin-1, have been identified. Their regulation of synaptic vesicle secretion is complicated and delicate, and their defects can lead to a series of neurodegenerative diseases. This review will discuss the structure and functions of vesicle-based synapses and their roles in neurons. Furthermore, we will analyze neurotransmitter and synaptic functions in neurodegenerative diseases and discuss the potential of using related drugs in their treatment.
Collapse
|
11
|
Fadil SA, Janetopoulos C. The Polarized Redistribution of the Contractile Vacuole to the Rear of the Cell is Critical for Streaming and is Regulated by PI(4,5)P2-Mediated Exocytosis. Front Cell Dev Biol 2022; 9:765316. [PMID: 35928786 PMCID: PMC9344532 DOI: 10.3389/fcell.2021.765316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/20/2021] [Indexed: 12/05/2022] Open
Abstract
Dictyostelium discoideum amoebae align in a head to tail manner during the process of streaming during fruiting body formation. The chemoattractant cAMP is the chemoattractant regulating cell migration during this process and is released from the rear of cells. The process by which this cAMP release occurs has eluded investigators for many decades, but new findings suggest that this release can occur through expulsion during contractile vacuole (CV) ejection. The CV is an organelle that performs several functions inside the cell including the regulation of osmolarity, and discharges its content via exocytosis. The CV localizes to the rear of the cell and appears to be part of the polarity network, with the localization under the influence of the plasma membrane (PM) lipids, including the phosphoinositides (PIs), among those is PI(4,5)P2, the most abundant PI on the PM. Research on D. discoideum and neutrophils have shown that PI(4,5)P2 is enriched at the rear of migrating cells. In several systems, it has been shown that the essential regulator of exocytosis is through the exocyst complex, mediated in part by PI(4,5)P2-binding. This review features the role of the CV complex in D. discoideum signaling with a focus on the role of PI(4,5)P2 in regulating CV exocytosis and localization. Many of the regulators of these processes are conserved during evolution, so the mechanisms controlling exocytosis and membrane trafficking in D. discoideum and mammalian cells will be discussed, highlighting their important functions in membrane trafficking and signaling in health and disease.
Collapse
Affiliation(s)
- Sana A. Fadil
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
- Department of Natural product, Faculty of Pharmacy, King Abdulaziz University, Saudia Arabia
| | - Chris Janetopoulos
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
- The Science Research Institute, Albright College, Reading, PA, United States
- The Department of Cell Biology at Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Chris Janetopoulos,
| |
Collapse
|
12
|
Munc13 structural transitions and oligomers that may choreograph successive stages in vesicle priming for neurotransmitter release. Proc Natl Acad Sci U S A 2022; 119:2121259119. [PMID: 35135883 PMCID: PMC8851502 DOI: 10.1073/pnas.2121259119] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 12/24/2022] Open
Abstract
The speed of neural information processing in the human central nervous system is ultimately determined by the speed of chemical transmission at synapses, because action potentials have relatively short distances to traverse. The release of synaptic vesicles containing neurotransmitters must therefore be remarkably fast as compared to other forms of membrane fusion. Six separate SNARE complexes cooperate to achieve this. But how can exactly six copies be assembled under every vesicle? Here we report that six copies of the key molecular chaperone that assembles the SNAREs can arrange themselves into a closed hexagon, providing the likely answer. How can exactly six SNARE complexes be assembled under each synaptic vesicle? Here we report cryo-EM crystal structures of the core domain of Munc13, the key chaperone that initiates SNAREpin assembly. The functional core of Munc13, consisting of C1–C2B–MUN–C2C (Munc13C) spontaneously crystallizes between phosphatidylserine-rich bilayers in two distinct conformations, each in a radically different oligomeric state. In the open conformation (state 1), Munc13C forms upright trimers that link the two bilayers, separating them by ∼21 nm. In the closed conformation, six copies of Munc13C interact to form a lateral hexamer elevated ∼14 nm above the bilayer. Open and closed conformations differ only by a rigid body rotation around a flexible hinge, which when performed cooperatively assembles Munc13 into a lateral hexamer (state 2) in which the key SNARE assembly-activating site of Munc13 is autoinhibited by its neighbor. We propose that each Munc13 in the lateral hexamer ultimately assembles a single SNAREpin, explaining how only and exactly six SNARE complexes are templated. We suggest that state 1 and state 2 may represent two successive states in the synaptic vesicle supply chain leading to “primed” ready-release vesicles in which SNAREpins are clamped and ready to release (state 3).
Collapse
|
13
|
Lipstein N, Chang S, Lin KH, López-Murcia FJ, Neher E, Taschenberger H, Brose N. Munc13-1 is a Ca 2+-phospholipid-dependent vesicle priming hub that shapes synaptic short-term plasticity and enables sustained neurotransmission. Neuron 2021; 109:3980-4000.e7. [PMID: 34706220 PMCID: PMC8691950 DOI: 10.1016/j.neuron.2021.09.054] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/10/2021] [Accepted: 09/23/2021] [Indexed: 11/28/2022]
Abstract
During ongoing presynaptic action potential (AP) firing, transmitter release is limited by the availability of release-ready synaptic vesicles (SVs). The rate of SV recruitment (SVR) to release sites is strongly upregulated at high AP frequencies to balance SV consumption. We show that Munc13-1-an essential SV priming protein-regulates SVR via a Ca2+-phospholipid-dependent mechanism. Using knockin mouse lines with point mutations in the Ca2+-phospholipid-binding C2B domain of Munc13-1, we demonstrate that abolishing Ca2+-phospholipid binding increases synaptic depression, slows recovery of synaptic strength after SV pool depletion, and reduces temporal fidelity of synaptic transmission, while increased Ca2+-phospholipid binding has the opposite effects. Thus, Ca2+-phospholipid binding to the Munc13-1-C2B domain accelerates SVR, reduces short-term synaptic depression, and increases the endurance and temporal fidelity of neurotransmission, demonstrating that Munc13-1 is a core vesicle priming hub that adjusts SV re-supply to demand.
Collapse
Affiliation(s)
- Noa Lipstein
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Shuwen Chang
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Kun-Han Lin
- Emeritus Laboratory of Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - Erwin Neher
- Emeritus Laboratory of Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging," Georg August University, Göttingen, Germany
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging," Georg August University, Göttingen, Germany.
| |
Collapse
|
14
|
Nestvogel DB, Merino RM, Leon-Pinzon C, Schottdorf M, Lee C, Imig C, Brose N, Rhee JS. The Synaptic Vesicle Priming Protein CAPS-1 Shapes the Adaptation of Sensory Evoked Responses in Mouse Visual Cortex. Cell Rep 2021; 30:3261-3269.e4. [PMID: 32160535 DOI: 10.1016/j.celrep.2020.02.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 10/22/2019] [Accepted: 02/10/2020] [Indexed: 10/24/2022] Open
Abstract
Short-term plasticity gates information transfer across neuronal synapses and is thought to be involved in fundamental brain processes, such as cortical gain control and sensory adaptation. Neurons employ synaptic vesicle priming proteins of the CAPS and Munc13 families to shape short-term plasticity in vitro, but the relevance of this phenomenon for information processing in the intact brain is unknown. By combining sensory stimulation with in vivo patch-clamp recordings in anesthetized mice, we show that genetic deletion of CAPS-1 in thalamic neurons results in more rapid adaptation of sensory-evoked subthreshold responses in layer 4 neurons of the primary visual cortex. Optogenetic experiments in acute brain slices further reveal that the enhanced adaptation is caused by more pronounced short-term synaptic depression. Our data indicate that neurons engage CAPS-family priming proteins to shape short-term plasticity for optimal sensory information transfer between thalamic and cortical neurons in the intact brain in vivo.
Collapse
Affiliation(s)
- Dennis B Nestvogel
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; International Max Planck Research School for Neuroscience at the University of Göttingen, 37075 Göttingen, Germany.
| | - Ricardo Martins Merino
- International Max Planck Research School for Neuroscience at the University of Göttingen, 37075 Göttingen, Germany; Theoretical Neurophysics Group, Max Planck Institute for Dynamics and Self Organization, 37077 Göttingen, Germany; Department of Molecular Biology of Neuronal Signals, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Carolina Leon-Pinzon
- Theoretical Neurophysics Group, Max Planck Institute for Dynamics and Self Organization, 37077 Göttingen, Germany; Department of Molecular Biology of Neuronal Signals, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Campus Institute for Dynamics of Biological Networks, 37075 Göttingen, Germany
| | - Manuel Schottdorf
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - ChoongKu Lee
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Cordelia Imig
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Jeong-Seop Rhee
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany.
| |
Collapse
|
15
|
Sundaram RVK, Jin H, Li F, Shu T, Coleman J, Yang J, Pincet F, Zhang Y, Rothman JE, Krishnakumar SS. Munc13 binds and recruits SNAP25 to chaperone SNARE complex assembly. FEBS Lett 2021; 595:297-309. [PMID: 33222163 PMCID: PMC8068094 DOI: 10.1002/1873-3468.14006] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 11/10/2022]
Abstract
Synaptic vesicle fusion is mediated by SNARE proteins-VAMP2 on the vesicle and Syntaxin-1/SNAP25 on the presynaptic membrane. Chaperones Munc18-1 and Munc13-1 cooperatively catalyze SNARE assembly via an intermediate 'template' complex containing Syntaxin-1 and VAMP2. How SNAP25 enters this reaction remains a mystery. Here, we report that Munc13-1 recruits SNAP25 to initiate the ternary SNARE complex assembly by direct binding, as judged by bulk FRET spectroscopy and single-molecule optical tweezer studies. Detailed structure-function analyses show that the binding is mediated by the Munc13-1 MUN domain and is specific for the SNAP25 'linker' region that connects the two SNARE motifs. Consequently, freely diffusing SNAP25 molecules on phospholipid bilayers are concentrated and bound in ~ 1 : 1 stoichiometry by the self-assembled Munc13-1 nanoclusters.
Collapse
Affiliation(s)
- R Venkat Kalyana Sundaram
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Huaizhou Jin
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Feng Li
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Tong Shu
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Jeff Coleman
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Jie Yang
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Frederic Pincet
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
- Laboratoire de Physique de Ecole Normale Supérieure, Université PSL, CNRS, Sorbonne Université, Université de Paris 06, F-75005 Paris, France
| | - Yongli Zhang
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - James E. Rothman
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Shyam S. Krishnakumar
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, Queens Square House, London WC1 3BG, UK
| |
Collapse
|
16
|
Katan M, Cockcroft S. Phospholipase C families: Common themes and versatility in physiology and pathology. Prog Lipid Res 2020; 80:101065. [PMID: 32966869 DOI: 10.1016/j.plipres.2020.101065] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/14/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022]
Abstract
Phosphoinositide-specific phospholipase Cs (PLCs) are expressed in all mammalian cells and play critical roles in signal transduction. To obtain a comprehensive understanding of these enzymes in physiology and pathology, a detailed structural, biochemical, cell biological and genetic information is required. In this review, we cover all these aspects to summarize current knowledge of the entire superfamily. The families of PLCs have expanded from 13 enzymes to 16 with the identification of the atypical PLCs in the human genome. Recent structural insights highlight the common themes that cover not only the substrate catalysis but also the mechanisms of activation. This involves the release of autoinhibitory interactions that, in the absence of stimulation, maintain classical PLC enzymes in their inactive forms. Studies of individual PLCs provide a rich repertoire of PLC function in different physiologies. Furthermore, the genetic studies discovered numerous mutated and rare variants of PLC enzymes and their link to human disease development, greatly expanding our understanding of their roles in diverse pathologies. Notably, substantial evidence now supports involvement of different PLC isoforms in the development of specific cancer types, immune disorders and neurodegeneration. These advances will stimulate the generation of new drugs that target PLC enzymes, and will therefore open new possibilities for treatment of a number of diseases where current therapies remain ineffective.
Collapse
Affiliation(s)
- Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Shamshad Cockcroft
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, 21 University Street, London WC1E 6JJ, UK.
| |
Collapse
|
17
|
Li S, Ghosh C, Xing Y, Sun Y. Phosphatidylinositol 4,5-bisphosphate in the Control of Membrane Trafficking. Int J Biol Sci 2020; 16:2761-2774. [PMID: 33061794 PMCID: PMC7545710 DOI: 10.7150/ijbs.49665] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022] Open
Abstract
Phosphoinositides are membrane lipids generated by phosphorylation on the inositol head group of phosphatidylinositol. By specifically distributed to distinct subcellular membrane locations, different phosphoinositide species play diverse roles in modulating membrane trafficking. Among the seven known phosphoinositide species, phosphatidylinositol 4,5-bisphosphate (PI4,5P2) is the one species most abundant at the plasma membrane. Thus, the PI4,5P2 function in membrane trafficking is first identified in controlling plasma membrane dynamic-related events including endocytosis and exocytosis. However, recent studies indicate that PI4,5P2 is also critical in many other membrane trafficking events such as endosomal trafficking, hydrolases sorting to lysosomes, autophagy initiation, and autophagic lysosome reformation. These findings suggest that the role of PI4,5P2 in membrane trafficking is far beyond just plasma membrane. This review will provide a concise synopsis of how PI4,5P2 functions in multiple membrane trafficking events. PI4,5P2, the enzymes responsible for PI4,5P2 production at specific subcellular locations, and distinct PI4,5P2 effector proteins compose a regulation network to control the specific membrane trafficking events.
Collapse
Affiliation(s)
- Suhua Li
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Chinmoy Ghosh
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yanli Xing
- Department of Otolaryngology, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Yue Sun
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
18
|
Nguyen TTN, Koerdt SN, Gerke V. Plasma membrane phosphatidylinositol (4,5)-bisphosphate promotes Weibel-Palade body exocytosis. Life Sci Alliance 2020; 3:3/11/e202000788. [PMID: 32826291 PMCID: PMC7442956 DOI: 10.26508/lsa.202000788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 01/26/2023] Open
Abstract
Phosphatidylinositol (4,5)-bisphosphate transiently accumulates at sites of Weibel–Palade body–plasma membrane fusion and promotes agonist-evoked exocytosis of endothelial von-Willebrand factor. Weibel–Palade bodies (WPB) are specialized secretory organelles of endothelial cells that control vascular hemostasis by regulated, Ca2+-dependent exocytosis of the coagulation-promoting von-Willebrand factor. Some proteins of the WPB docking and fusion machinery have been identified but a role of membrane lipids in regulated WPB exocytosis has so far remained elusive. We show here that the plasma membrane phospholipid composition affects Ca2+-dependent WPB exocytosis and von-Willebrand factor release. Phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] becomes enriched at WPB–plasma membrane contact sites at the time of fusion, most likely downstream of phospholipase D1-mediated production of phosphatidic acid (PA) that activates phosphatidylinositol 4-phosphate (PI4P) 5-kinase γ. Depletion of plasma membrane PI(4,5)P2 or down-regulation of PI4P 5-kinase γ interferes with histamine-evoked and Ca2+-dependent WPB exocytosis and a mutant PI4P 5-kinase γ incapable of binding PA affects WPB exocytosis in a dominant-negative manner. This indicates that a unique PI(4,5)P2-rich environment in the plasma membrane governs WPB fusion possibly by providing interaction sites for WPB-associated docking factors.
Collapse
Affiliation(s)
- Tu Thi Ngoc Nguyen
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Sophia N Koerdt
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| |
Collapse
|
19
|
Stephens DC, Powell TW, Taraska JW, Harris DA. Imaging the rapid yet transient accumulation of regulatory lipids, lipid kinases, and protein kinases during membrane fusion, at sites of exocytosis of MMP-9 in MCF-7 cells. Lipids Health Dis 2020; 19:195. [PMID: 32829709 PMCID: PMC7444259 DOI: 10.1186/s12944-020-01374-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/17/2020] [Indexed: 11/10/2022] Open
Abstract
Background The regulation of exocytosis is physiologically vital in cells and requires a variety of distinct proteins and lipids that facilitate efficient, fast, and timely release of secretory vesicle cargo. Growing evidence suggests that regulatory lipids act as important lipid signals and regulate various biological processes including exocytosis. Though functional roles of many of these regulatory lipids has been linked to exocytosis, the dynamic behavior of these lipids during membrane fusion at sites of exocytosis in cell culture remains unknown. Methods Total internal reflection fluorescence microscopy (TIRF) was used to observe the spatial organization and temporal dynamics (i.e. spatial positioning and timing patterns) of several lipids, and accessory proteins, like lipid kinases and protein kinases, in the form of protein kinase C (PRKC) associated with sites of exocytosis of matrix metalloproteinase-9 (MMP-9) in living MCF-7 cancer cells. Results Following stimulation with phorbol myristate acetate (PMA) to promote exocytosis, a transient accumulation of several distinct regulatory lipids, lipid kinases, and protein kinases at exocytic sites was observed. This transient accumulation centered at the time of membrane fusion is followed by a rapid diffusion away from the fusion sites. Additionally, the synthesis of these regulatory lipids, degradation of these lipids, and the downstream effectors activated by these lipids, are also achieved by the recruitment and accumulation of key enzymes at exocytic sites (during the moment of cargo release). This includes key enzymes like lipid kinases, protein kinases, and phospholipases that facilitate membrane fusion and exocytosis of MMP-9. Conclusions This work suggests that these regulatory lipids and associated effector proteins are locally synthesized and/or recruited to sites of exocytosis, during membrane fusion and cargo release. More importantly, their enrichment at fusion sites serves as an important spatial and temporal organizing “element” defining individual exocytic sites.
Collapse
Affiliation(s)
- Dominique C Stephens
- Department of Chemistry, Howard University, 525 College Street NW, Washington, D.C, 20059, USA
| | - Tyrel W Powell
- Department of Chemistry, Howard University, 525 College Street NW, Washington, D.C, 20059, USA
| | - Justin W Taraska
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dinari A Harris
- Department of Chemistry, Howard University, 525 College Street NW, Washington, D.C, 20059, USA.
| |
Collapse
|
20
|
Structural and Functional Analysis of the CAPS SNARE-Binding Domain Required for SNARE Complex Formation and Exocytosis. Cell Rep 2020; 26:3347-3359.e6. [PMID: 30893606 DOI: 10.1016/j.celrep.2019.02.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/18/2019] [Accepted: 02/15/2019] [Indexed: 12/29/2022] Open
Abstract
Exocytosis of synaptic vesicles and dense-core vesicles requires both the Munc13 and CAPS (Ca2+-dependent activator proteins for secretion) proteins. CAPS contains a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-binding region (called the DAMH domain), which has been found to be essential for SNARE-mediated exocytosis. Here we report a crystal structure of the CAPS-1 DAMH domain at 2.9-Å resolution and reveal a dual role of CAPS-1 in SNARE complex formation. CAPS-1 plays an inhibitory role dependent on binding of the DAMH domain to the MUN domain of Munc13-1, which hinders the ability of Munc13 to catalyze opening of syntaxin-1, inhibiting SNARE complex formation, and a chaperone role dependent on interaction of the DAMH domain with the syntaxin-1/SNAP-25 complex, which stabilizes the open conformation of Syx1, facilitating SNARE complex formation. Our results suggest that CAPS-1 facilitates SNARE complex formation via the DAMH domain in a manner dependent on sequential and cooperative interaction with Munc13-1 and SNARE proteins.
Collapse
|
21
|
Crummy E, Mani M, Thellman JC, Martin TFJ. The priming factor CAPS1 regulates dense-core vesicle acidification by interacting with rabconnectin3β/WDR7 in neuroendocrine cells. J Biol Chem 2019; 294:9402-9415. [PMID: 31004036 PMCID: PMC6579465 DOI: 10.1074/jbc.ra119.007504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/21/2019] [Indexed: 12/20/2022] Open
Abstract
Vacuolar-type H+-ATPases (V-ATPases) contribute to pH regulation and play key roles in secretory and endocytic pathways. Dense-core vesicles (DCVs) in neuroendocrine cells are maintained at an acidic pH, which is part of the electrochemical driving force for neurotransmitter loading and is required for hormonal propeptide processing. Genetic loss of CAPS1 (aka calcium-dependent activator protein for secretion, CADPS), a vesicle-bound priming factor required for DCV exocytosis, dissipates the pH gradient across DCV membranes and reduces neurotransmitter loading. However, the basis for CAPS1 binding to DCVs and for its regulation of vesicle pH has not been determined. Here, MS analysis of CAPS1 immunoprecipitates from brain membrane fractions revealed that CAPS1 associates with a rabconnectin3 (Rbcn3) complex comprising Dmx-like 2 (DMXL2) and WD repeat domain 7 (WDR7) proteins. Using immunofluorescence microscopy, we found that Rbcn3α/DMXL2 and Rbcn3β/WDR7 colocalize with CAPS1 on DCVs in human neuroendocrine (BON) cells. The shRNA-mediated knockdown of Rbcn3β/WDR7 redistributed CAPS1 from DCVs to the cytosol, indicating that Rbcn3β/WDR7 is essential for optimal DCV localization of CAPS1. Moreover, cell-free experiments revealed direct binding of CAPS1 to Rbcn3β/WDR7, and cell assays indicated that Rbcn3β/WDR7 recruits soluble CAPS1 to membranes. As anticipated by the reported association of Rbcn3 with V-ATPase, we found that knocking down CAPS1, Rbcn3α, or Rbcn3β in neuroendocrine cells impaired rates of DCV reacidification. These findings reveal a basis for CAPS1 binding to DCVs and for CAPS1 regulation of V-ATPase activity via Rbcn3β/WDR7 interactions.
Collapse
Affiliation(s)
- Ellen Crummy
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Muralidharan Mani
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - John C Thellman
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Thomas F J Martin
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
22
|
Abstract
Lipids convey both structural and functional properties to eukaryotic membranes. Understanding the basic lipid composition and the dynamics of these important molecules, in the context of cellular membranes, can shed light on signaling, metabolism, trafficking, and even membrane identity. The development of genetically encoded lipid biosensors has allowed for the visualization of specific lipids inside individual, living cells. However, a number of caveats and considerations have emerged with the overexpression of these biosensors. In this Technical Perspective, we provide a current list of available genetically encoded lipid biosensors, together with criteria that determine their veracity. We also provide some suggestions for the optimal utilization of these biosensors when both designing experiments and interpreting results.
Collapse
Affiliation(s)
- Rachel C Wills
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 16261
| | - Brady D Goulden
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 16261
| | - Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 16261
| |
Collapse
|
23
|
Phosphoinositides: multipurpose cellular lipids with emerging roles in cell death. Cell Death Differ 2019; 26:781-793. [PMID: 30742090 DOI: 10.1038/s41418-018-0269-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 02/07/2023] Open
Abstract
Phosphorylated phosphatidylinositol lipids, or phosphoinositides, critically regulate diverse cellular processes, including signalling transduction, cytoskeletal reorganisation, membrane dynamics and cellular trafficking. However, phosphoinositides have been inadequately investigated in the context of cell death, where they are mainly regarded as signalling secondary messengers. However, recent studies have begun to highlight the importance of phosphoinositides in facilitating cell death execution. Here, we cover the latest phosphoinositide research with a particular focus on phosphoinositides in the mechanisms of cell death. This progress article also raises key questions regarding the poorly defined role of phosphoinositides, particularly during membrane-associated events in cell death such as apoptosis and secondary necrosis. The review then further discusses important future directions for the phosphoinositide field, including therapeutically targeting phosphoinositides to modulate cell death.
Collapse
|
24
|
An Alternative Exon of CAPS2 Influences Catecholamine Loading into LDCVs of Chromaffin Cells. J Neurosci 2019; 39:18-27. [PMID: 30389842 DOI: 10.1523/jneurosci.2040-18.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/01/2018] [Accepted: 10/27/2018] [Indexed: 11/21/2022] Open
Abstract
The calcium-dependent activator proteins for secretion (CAPS) are priming factors for synaptic and large dense-core vesicles (LDCVs), promoting their entry into and stabilizing the release-ready state. A modulatory role of CAPS in catecholamine loading of vesicles has been suggested. Although an influence of CAPS on monoamine transporter function and on vesicle acidification has been reported, a role of CAPS in vesicle loading is disputed. Using expression of naturally occurring splice variants of CAPS2 into chromaffin cells from CAPS1/CAPS2 double-deficient mice of both sexes, we show that an alternative exon of 40 aa is responsible for enhanced catecholamine loading of LDCVs in mouse chromaffin cells. The presence of this exon leads to increased activity of both vesicular monoamine transporters. Deletion of CAPS does not alter acidification of vesicles. Our results establish a splice-variant-dependent modulatory effect of CAPS on catecholamine content in LDCVs.SIGNIFICANCE STATEMENT The calcium activator protein for secretion (CAPS) promotes and stabilizes the entry of catecholamine-containing vesicles of the adrenal gland into a release-ready state. Expression of an alternatively spliced exon in CAPS leads to enhanced catecholamine content in chromaffin granules. This exon codes for 40 aa with a high proline content, consistent with an unstructured loop present in the portion of the molecule generally thought to be involved in vesicle priming. CAPS variants containing this exon promote serotonin uptake into Chinese hamster ovary cells expressing either vesicular monoamine transporter. Epigenetic tuning of CAPS variants may allow modulation of endocrine adrenaline and noradrenaline release. This mechanism may extend to monoamine release in central neurons or in the enteric nervous system.
Collapse
|
25
|
Abbineni PS, Axelrod D, Holz RW. Visualization of expanding fusion pores in secretory cells. J Gen Physiol 2018; 150:1640-1646. [PMID: 30470717 PMCID: PMC6279363 DOI: 10.1085/jgp.201812186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/06/2018] [Indexed: 11/20/2022] Open
Abstract
Abbineni et al. examine recent imaging work on fusion pores and discuss the dynamics of PI-4,5-P2 accumulation on granule membranes.
Collapse
Affiliation(s)
- Prabhodh S Abbineni
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| | - Daniel Axelrod
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI .,Department of Physics and LSA Biophysics, University of Michigan Medical School, Ann Arbor, MI
| | - Ronald W Holz
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
26
|
Sharma S, Lindau M. The fusion pore, 60 years after the first cartoon. FEBS Lett 2018; 592:3542-3562. [PMID: 29904915 DOI: 10.1002/1873-3468.13160] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 11/10/2022]
Abstract
Neurotransmitter release occurs in the form of quantal events by fusion of secretory vesicles with the plasma membrane, and begins with the formation of a fusion pore that has a conductance similar to that of a large ion channel or gap junction. In this review, we propose mechanisms of fusion pore formation and discuss their implications for fusion pore structure and function. Accumulating evidence indicates a direct role of soluble N-ethylmaleimide-sensitive-factor attachment receptor proteins in the opening of fusion pores. Fusion pores are likely neither protein channels nor purely lipid, but are of proteolipidic composition. Future perspectives to gain better insight into the molecular structure of fusion pores are discussed.
Collapse
Affiliation(s)
- Satyan Sharma
- Laboratory for Nanoscale Cell Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Manfred Lindau
- Laboratory for Nanoscale Cell Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.,School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
27
|
Xu R, Zhou J, Zhou XD, Li Q, Perelman JM, Kolosov VP. Munc13‑4 mediates human neutrophil elastase‑induced airway mucin5AC hypersecretion by interacting with syntaxin2. Mol Med Rep 2018; 18:1015-1024. [PMID: 29767240 DOI: 10.3892/mmr.2018.9015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 03/27/2018] [Indexed: 11/06/2022] Open
Abstract
The overexpression and hypersecretion of mucus is a hallmark of chronic pulmonary inflammatory disease. Mucin5AC (MUC5AC) is a major component of airway gel‑forming mucin. Members of the Unc13 (Munc13) protein family act as important activators of granule exocytosis from various types of mammalian cells. The present study aimed to determine the role of Munc13 family proteins in MUC5AC secretion via an in vitro study with BEAS‑2B and Calu‑3 cell lines. Reverse transcription‑quantitative polymerase chain reaction and western blotting indicated that stimulation of the cells with 100 nM human neutrophil elastase (hNE) for 1 h did not affect the expression of either unc13 homolog B (Munc13‑2) or unc13 homolog D (Munc13‑4), but immunofluorescence analysis demonstrated that hNE treatment was associated with the recruitment of Munc13‑4 to the plasma membrane. Co‑immunoprecipitation analysis indicated increased binding between Munc13‑4 and syntaxin2 followingh NE stimulation; however, Munc13‑2 formed a stable interaction with syntaxin2 with or without hNE stimulation. Subsequently, Munc13‑2 and Munc13‑4 expression levels were downregulated in BEAS‑2B and Calu‑3 cells using small interfering RNA (siRNA). ELISAs and immunofluorescence analysis were performed to assess MUC5AC secretion and intracellular retention, respectively. Munc13‑2 siRNA transfection did not alter the expression levels of intracellular or secreted MUC5AC following hNE stimulation in either cell line; however, it increased the baseline intracellular levels of MUC5AC and decreased the amount of secreted MUC5AC. Conversely, Munc13‑4 siRNA transfection increased the intracellular levels of MUC5AC and decreased the amount of secreted MUC5AC following hNE stimulation, but did not affect their baseline quantities. The results of the present study indicate that Munc13‑2 may be an essential regulator of basal MUC5AC exocytosis, while Munc13‑4 appears to be a Munc13 protein subtype that may to be sensitive to hNE stimulation during airway MUC5AC hypersecretion.
Collapse
Affiliation(s)
- Rui Xu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jia Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiang-Dong Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Qi Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Juliy M Perelman
- Far Eastern Scientific Center of Physiology and Pathology of Respiration, Russian Academy of Medical Sciences, Blagoveshchensk 675000, Russia
| | - Victor P Kolosov
- Far Eastern Scientific Center of Physiology and Pathology of Respiration, Russian Academy of Medical Sciences, Blagoveshchensk 675000, Russia
| |
Collapse
|
28
|
Abstract
Phosphoinositides (PtdIns) play important roles in exocytosis and are thought to regulate secretory granule docking by co-clustering with the SNARE protein syntaxin to form a docking receptor in the plasma membrane. Here we tested this idea by high-resolution total internal reflection imaging of EGFP-labeled PtdIns markers or syntaxin-1 at secretory granule release sites in live insulin-secreting cells. In intact cells, PtdIns markers distributed evenly across the plasma membrane with no preference for granule docking sites. In contrast, syntaxin-1 was found clustered in the plasma membrane, mostly beneath docked granules. We also observed rapid accumulation of syntaxin-1 at sites where granules arrived to dock. Acute depletion of plasma membrane phosphatidylinositol (4,5) bisphosphate (PtdIns(4,5)P2 ) by recruitment of a 5'-phosphatase strongly inhibited Ca2+ -dependent exocytosis, but had no effect on docked granules or the distribution and clustering of syntaxin-1. Cell permeabilization by α-toxin or formaldehyde-fixation caused PtdIns marker to slowly cluster, in part near docked granules. In summary, our data indicate that PtdIns(4,5)P2 accelerates granule priming, but challenge a role of PtdIns in secretory granule docking or clustering of syntaxin-1 at the release site.
Collapse
Affiliation(s)
| | - Nikhil R Gandasi
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Sebastian Barg
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
29
|
Vesicle Docking Is a Key Target of Local PI(4,5)P 2 Metabolism in the Secretory Pathway of INS-1 Cells. Cell Rep 2018; 20:1409-1421. [PMID: 28793264 PMCID: PMC5613661 DOI: 10.1016/j.celrep.2017.07.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/31/2017] [Accepted: 07/14/2017] [Indexed: 12/29/2022] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) signaling is transient and spatially confined in live cells. How this pattern of signaling regulates transmitter release and hormone secretion has not been addressed. We devised an optogenetic approach to control PI(4,5)P2 levels in time and space in insulin-secreting cells. Combining this approach with total internal reflection fluorescence microscopy, we examined individual vesicle-trafficking steps. Unlike long-term PI(4,5)P2 perturbations, rapid and cell-wide PI(4,5)P2 reduction in the plasma membrane (PM) strongly inhibits secretion and intracellular Ca2+ concentration ([Ca2+]i) responses, but not sytaxin1a clustering. Interestingly, local PI(4,5)P2 reduction selectively at vesicle docking sites causes remarkable vesicle undocking from the PM without affecting [Ca2+]i. These results highlight a key role of local PI(4,5)P2 in vesicle tethering and docking, coordinated with its role in priming and fusion. Thus, different spatiotemporal PI(4,5)P2 signaling regulates distinct steps of vesicle trafficking, and vesicle docking may be a key target of local PI(4,5)P2 signaling in vivo.
Collapse
|
30
|
Cai T, Yang F. Phospholipid and Phospholipidomics in Health and Diseases. LIPIDOMICS IN HEALTH & DISEASE 2018. [DOI: 10.1007/978-981-13-0620-4_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
31
|
Houy S, Groffen AJ, Ziomkiewicz I, Verhage M, Pinheiro PS, Sørensen JB. Doc2B acts as a calcium sensor for vesicle priming requiring synaptotagmin-1, Munc13-2 and SNAREs. eLife 2017; 6:27000. [PMID: 29274147 PMCID: PMC5758110 DOI: 10.7554/elife.27000] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 12/21/2017] [Indexed: 01/08/2023] Open
Abstract
Doc2B is a cytosolic protein with binding sites for Munc13 and Tctex-1 (dynein light chain), and two C2-domains that bind to phospholipids, Ca2+ and SNAREs. Whether Doc2B functions as a calcium sensor akin to synaptotagmins, or in other calcium-independent or calcium-dependent capacities is debated. We here show by mutation and overexpression that Doc2B plays distinct roles in two sequential priming steps in mouse adrenal chromaffin cells. Mutating Ca2+-coordinating aspartates in the C2A-domain localizes Doc2B permanently at the plasma membrane, and renders an upstream priming step Ca2+-independent, whereas a separate function in downstream priming depends on SNARE-binding, Ca2+-binding to the C2B-domain of Doc2B, interaction with ubMunc13-2 and the presence of synaptotagmin-1. Another function of Doc2B – inhibition of release during sustained calcium elevations – depends on an overlapping protein domain (the MID-domain), but is separate from its Ca2+-dependent priming function. We conclude that Doc2B acts as a vesicle priming protein.
Collapse
Affiliation(s)
- Sébastien Houy
- Neuronal Secretion Group, Department of Neuroscience, University of Copenhagen, København, Denmark
| | - Alexander J Groffen
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, VU Medical Center, Amsterdam, Netherlands
| | - Iwona Ziomkiewicz
- Neuronal Secretion Group, Department of Neuroscience, University of Copenhagen, København, Denmark.,Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca R&D, Cambridge, United Kingdom
| | - Matthijs Verhage
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, VU Medical Center, Amsterdam, Netherlands.,Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research, VrijeUniversiteit, Amsterdam, Netherlands
| | - Paulo S Pinheiro
- Neuronal Secretion Group, Department of Neuroscience, University of Copenhagen, København, Denmark
| | - Jakob Balslev Sørensen
- Neuronal Secretion Group, Department of Neuroscience, University of Copenhagen, København, Denmark
| |
Collapse
|
32
|
Rothman JE, Krishnakumar SS, Grushin K, Pincet F. Hypothesis - buttressed rings assemble, clamp, and release SNAREpins for synaptic transmission. FEBS Lett 2017; 591:3459-3480. [PMID: 28983915 PMCID: PMC5698743 DOI: 10.1002/1873-3468.12874] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/02/2017] [Accepted: 10/02/2017] [Indexed: 11/21/2022]
Abstract
Neural networks are optimized to detect temporal coincidence on the millisecond timescale. Here, we offer a synthetic hypothesis based on recent structural insights into SNAREs and the C2 domain proteins to explain how synaptic transmission can keep this pace. We suggest that an outer ring of up to six curved Munc13 ‘MUN’ domains transiently anchored to the plasma membrane via its flanking domains surrounds a stable inner ring comprised of synaptotagmin C2 domains to serve as a work‐bench on which SNAREpins are templated. This ‘buttressed‐ring hypothesis’ affords straightforward answers to many principal and long‐standing questions concerning how SNAREpins can be assembled, clamped, and then released synchronously with an action potential.
Collapse
Affiliation(s)
- James E Rothman
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Shyam S Krishnakumar
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Kirill Grushin
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Frederic Pincet
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Laboratoire de Physique Statistique, Ecole Normale Supérieure, PSL Research University, Université Paris Diderot Sorbonne Paris Cité, Sorbonne Universités UPMC Univ, CNRS, Paris, France
| |
Collapse
|
33
|
Walter AM, Müller R, Tawfik B, Wierda KD, Pinheiro PS, Nadler A, McCarthy AW, Ziomkiewicz I, Kruse M, Reither G, Rettig J, Lehmann M, Haucke V, Hille B, Schultz C, Sørensen JB. Phosphatidylinositol 4,5-bisphosphate optical uncaging potentiates exocytosis. eLife 2017; 6:30203. [PMID: 29068313 PMCID: PMC5711374 DOI: 10.7554/elife.30203] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022] Open
Abstract
Phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] is essential for exocytosis. Classical ways of manipulating PI(4,5)P2 levels are slower than its metabolism, making it difficult to distinguish effects of PI(4,5)P2 from those of its metabolites. We developed a membrane-permeant, photoactivatable PI(4,5)P2, which is loaded into cells in an inactive form and activated by light, allowing sub-second increases in PI(4,5)P2 levels. By combining this compound with electrophysiological measurements in mouse adrenal chromaffin cells, we show that PI(4,5)P2 uncaging potentiates exocytosis and identify synaptotagmin-1 (the Ca2+ sensor for exocytosis) and Munc13-2 (a vesicle priming protein) as the relevant effector proteins. PI(4,5)P2 activation of exocytosis did not depend on the PI(4,5)P2-binding CAPS-proteins, suggesting that PI(4,5)P2 uncaging may bypass CAPS-function. Finally, PI(4,5)P2 uncaging triggered the rapid fusion of a subset of readily-releasable vesicles, revealing a rapid role of PI(4,5)P2 in fusion triggering. Thus, optical uncaging of signaling lipids can uncover their rapid effects on cellular processes and identify lipid effectors. Cells in our body communicate by releasing compounds called transmitters that carry signals from one cell to the next. Packages called vesicles store transmitters within the signaling cell. When the cell needs to send a signal, the vesicles fuse with the cell's membrane and release their cargo. For many signaling processes, such as those used by neurons, this fusion is regulated, fast, and coupled to the signal that the cell receives to activate release. Specialized molecular machines made up of proteins and fatty acid molecules called signaling lipids enable this to happen. One signaling lipid called PI(4,5)P2 (short for phosphatidylinositol 4,5-bisphosphate) is essential for vesicle fusion as well as for other processes in cells. It interacts with several proteins that help it control fusion and the release of transmitter. While it is possible to study the role of these proteins using genetic tools to inactivate them, the signaling lipids are more difficult to manipulate. Existing methods result in slow changes in PI(4,5)P2 levels, making it hard to directly attribute later changes to PI(4,5)P2. Walter, Müller, Tawfik et al. developed a new method to measure how PI(4,5)P2 affects transmitter release in living mammalian cells, which causes a rapid increase in PI(4,5)P2 levels. The method uses a chemical compound called “caged PI(4,5)P2” that can be loaded into cells but remains undetected until ultraviolet light is shone on it. The ultraviolet light uncages the compound, generating active PI(4,5)P2 in less than one second. Walter et al. found that when they uncaged PI(4,5)P2 in this way, the amount of transmitter released by cells increased. Combining this with genetic tools, it was possible to investigate which proteins of the release machinery were required for this effect. The results suggest that two different types of proteins that interact with PI(4,5)P2 are needed: one must bind PI(4,5)P2 to carry out its role and the other helps PI(4,5)P2 accumulate at the site of vesicle fusion. The new method also allowed Walter et al. to show that a fast increase in PI(4,5)P2 triggers a subset of vesicles to fuse very rapidly. This shows that PI(4,5)P2 rapidly regulates the release of transmitter. Caged PI(4,5)P2 will be useful to study other processes in cells that need PI(4,5)P2, helping scientists understand more about how signaling lipids control many different events at cellular membranes.
Collapse
Affiliation(s)
- Alexander M Walter
- Neurosecretion group, Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Rainer Müller
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Bassam Tawfik
- Neurosecretion group, Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Keimpe Db Wierda
- Neurosecretion group, Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Paulo S Pinheiro
- Neurosecretion group, Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - André Nadler
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Anthony W McCarthy
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Iwona Ziomkiewicz
- Neurosecretion group, Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Discovery Sciences, AstraZeneca, Cambridge, United Kingdom
| | - Martin Kruse
- Department of Physiology and Biophysics, School of Medicine, University of Washington, Seattle, United States
| | - Gregor Reither
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jens Rettig
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Bertil Hille
- Department of Physiology and Biophysics, School of Medicine, University of Washington, Seattle, United States
| | - Carsten Schultz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jakob Balslev Sørensen
- Neurosecretion group, Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
van Keimpema L, Kooistra R, Toonen RF, Verhage M. CAPS-1 requires its C2, PH, MHD1 and DCV domains for dense core vesicle exocytosis in mammalian CNS neurons. Sci Rep 2017; 7:10817. [PMID: 28883501 PMCID: PMC5589909 DOI: 10.1038/s41598-017-10936-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/16/2017] [Indexed: 01/11/2023] Open
Abstract
CAPS (calcium-dependent activator protein for secretion) are multi-domain proteins involved in regulated exocytosis of synaptic vesicles (SVs) and dense core vesicles (DCVs). Here, we assessed the contribution of different CAPS-1 domains to its subcellular localization and DCV exocytosis by expressing CAPS-1 mutations in four functional domains in CAPS-1/-2 null mutant (CAPS DKO) mouse hippocampal neurons, which are severely impaired in DCV exocytosis. CAPS DKO neurons showed normal development and no defects in DCV biogenesis and their subcellular distribution. Truncation of the CAPS-1 C-terminus (CAPS Δ654-1355) impaired CAPS-1 synaptic enrichment. Mutations in the C2 (K428E or G476E) or pleckstrin homology (PH; R558D/K560E/K561E) domain did not. However, all mutants rescued DCV exocytosis in CAPS DKO neurons to only 20% of wild type CAPS-1 exocytosis capacity. To assess the relative importance of CAPS for both secretory pathways, we compared effect sizes of CAPS-1/-2 deficiency on SV and DCV exocytosis. Using the same (intense) stimulation, DCV exocytosis was impaired relatively strong (96% inhibition) compared to SV exocytosis (39%). Together, these data show that the CAPS-1 C-terminus regulates synaptic enrichment of CAPS-1. All CAPS-1 functional domains are required, and the C2 and PH domain together are not sufficient, for DCV exocytosis in mammalian CNS neurons.
Collapse
Affiliation(s)
- Linda van Keimpema
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, 1081 HV, Amsterdam, The Netherlands
- Sylics (Synaptologics BV), PO box 71033, 1008 BA, Amsterdam, The Netherlands
| | - Robbelien Kooistra
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, 1081 HV, Amsterdam, The Netherlands
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, 1081 HV, Amsterdam, The Netherlands.
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
35
|
How does the stimulus define exocytosis in adrenal chromaffin cells? Pflugers Arch 2017; 470:155-167. [DOI: 10.1007/s00424-017-2052-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 12/28/2022]
|
36
|
Gioia DA, Alexander N, McCool BA. Ethanol Mediated Inhibition of Synaptic Vesicle Recycling at Amygdala Glutamate Synapses Is Dependent upon Munc13-2. Front Neurosci 2017; 11:424. [PMID: 28785200 PMCID: PMC5519577 DOI: 10.3389/fnins.2017.00424] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/07/2017] [Indexed: 01/04/2023] Open
Abstract
Chronic exposure to alcohol produces adaptations within the basolateral amygdala (BLA) that are associated with the development of anxiety-like behaviors during withdrawal. In part, these adaptations are mediated by plasticity in glutamatergic synapses occurring through an AMPA receptor mediated form of post-synaptic facilitation in addition to a unique form of presynaptic facilitation. In comparison to the post-synaptic compartment, relatively less is understood about the mechanisms involved in the acute and chronic effects of ethanol in the presynaptic terminal. Previous research has demonstrated that glutamatergic terminals in the mouse BLA are sensitive to ethanol mediated inhibition of synaptic vesicle recycling in a strain-dependent fashion. Importantly, the strain-dependent differences in presynaptic ethanol sensitivity are in accordance with known strain-dependent differences in ethanol/anxiety interactions. In the present study, we have used a short-hairpin RNA to knockdown the expression of the presynaptic Munc13-2 protein in C57BL/6J mice, whose BLA glutamate terminals are normally ethanol-insensitive. We injected this shRNA, or a scrambled control virus, into the medial prefrontal cortex (mPFC) which sends dense projections to the BLA. Accordingly, this knockdown strategy reduces the expression of the Munc13-2 isoform in mPFC terminals within the BLA and alters presynaptic terminal function in C57BL/6J mice in a manner that phenocopies DBA/2J glutamate terminals which are normally ethanol-sensitive. Here, we provide evidence that manipulation of this single protein, Munc13-2, renders C57BL/6J terminals sensitive to ethanol mediated inhibition of synaptic vesicle recycling and post-tetanic potentiation. Furthermore, we found that this ethanol inhibition was dose dependent. Considering the important role of Munc13 proteins in synaptic plasticity, this study potentially identifies a molecular mechanism regulating the acute presynaptic effects of ethanol to the long lasting adaptations in the BLA that occur during chronic ethanol exposure.
Collapse
Affiliation(s)
- Dominic A Gioia
- Department of Physiology and Pharmacology, Wake Forest School of MedicineWinston Salem, NC, United States
| | - Nancy Alexander
- Department of Physiology and Pharmacology, Wake Forest School of MedicineWinston Salem, NC, United States
| | - Brian A McCool
- Department of Physiology and Pharmacology, Wake Forest School of MedicineWinston Salem, NC, United States
| |
Collapse
|
37
|
Li SYT, Cheng STW, Zhang D, Leung PS. Identification and Functional Implications of Sodium/ Myo-Inositol Cotransporter 1 in Pancreatic β-Cells and Type 2 Diabetes. Diabetes 2017; 66:1258-1271. [PMID: 28202581 DOI: 10.2337/db16-0880] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 02/07/2017] [Indexed: 11/13/2022]
Abstract
Myo-inositol (MI), the precursor of the second messenger phosphoinositide (PI), mediates multiple cellular events. Rat islets exhibit active transport of MI, although the mechanism involved remains elusive. Here, we report, for the first time, the expression of sodium/myo-inositol cotransporter 1 (SMIT1) in rat islets and, specifically, β-cells. Genetic or pharmacological inhibition of SMIT1 impaired glucose-stimulated insulin secretion by INS-1E cells, probably via downregulation of PI signaling. In addition, SMIT1 expression in INS-1E cells and isolated islets was augmented by acute high-glucose exposure and reduced in chronic hyperglycemia conditions. In corroboration, chronic MI treatment improved the disease phenotypes of diabetic rats and islets. On the basis of our results, we postulate that the MI transporter SMIT1 is required to maintain a stable PI pool in β-cells in order that PI remains available despite its rapid turnover.
Collapse
Affiliation(s)
- Stephen Yu Ting Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Sam Tsz Wai Cheng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Dan Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Po Sing Leung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
38
|
McLeish KR, Merchant ML, Creed TM, Tandon S, Barati MT, Uriarte SM, Ward RA. Frontline Science: Tumor necrosis factor-α stimulation and priming of human neutrophil granule exocytosis. J Leukoc Biol 2017; 102:19-29. [PMID: 28096297 DOI: 10.1189/jlb.3hi0716-293rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 12/24/2022] Open
Abstract
Neutrophil granule exocytosis plays an important role in innate and adaptive immune responses. The present study examined TNF-α stimulation or priming of exocytosis of the 4 neutrophil granule subsets. TNF-α stimulated exocytosis of secretory vesicles and gelatinase granules and primed specific and azurophilic granule exocytosis to fMLF stimulation. Both stimulation and priming of exocytosis by TNF-α were dependent on p38 MAPK activity. Bioinformatic analysis of 1115 neutrophil proteins identified by mass spectrometry as being phosphorylated by TNF-α exposure found that actin cytoskeleton regulation was a major biologic function. A role for p38 MAPK regulation of the actin cytoskeleton was confirmed experimentally. Thirteen phosphoproteins regulated secretory vesicle quantity, formation, or release, 4 of which-Raf1, myristoylated alanine-rich protein kinase C (PKC) substrate (MARCKS), Abelson murine leukemia interactor 1 (ABI1), and myosin VI-were targets of the p38 MAPK pathway. Pharmacologic inhibition of Raf1 reduced stimulated exocytosis of gelatinase granules and priming of specific granule exocytosis. We conclude that differential regulation of exocytosis by TNF-α involves the actin cytoskeleton and is a necessary component for priming of the 2 major neutrophil antimicrobial defense mechanisms: oxygen radical generation and release of toxic granule contents.
Collapse
Affiliation(s)
- Kenneth R McLeish
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA; and .,Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, USA
| | - Michael L Merchant
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA; and
| | - T Michael Creed
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA; and
| | - Shweta Tandon
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA; and
| | - Michelle T Barati
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA; and
| | - Silvia M Uriarte
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA; and
| | - Richard A Ward
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA; and
| |
Collapse
|
39
|
Ji C, Lou X. Single-molecule Super-resolution Imaging of Phosphatidylinositol 4,5-bisphosphate in the Plasma Membrane with Novel Fluorescent Probes. J Vis Exp 2016. [PMID: 27805608 PMCID: PMC5092206 DOI: 10.3791/54466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Phosphoinositides in the cell membrane are signaling lipids with multiple cellular functions. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a determinant phosphoinositide of the plasma membrane (PM), and it is required to modulate ion channels, actin dynamics, exocytosis, endocytosis, intracellular signaling, and many other cellular processes. However, the spatial organization of PI(4,5)P2 in the PM is controversial, and its nanoscale distribution is poorly understood due to the technical limitations of research approaches. Here by utilizing single molecule localization microscopy and the Pleckstrin Homology (PH) domain based dual color fluorescent probes, we describe a novel method to visualize the nanoscale distribution of PI(4,5)P2 in the PM in fixed membrane sheets as well as live cells.
Collapse
Affiliation(s)
- Chen Ji
- Department of Neuroscience, University of Wisconsin-Madison
| | - Xuelin Lou
- Department of Neuroscience, University of Wisconsin-Madison;
| |
Collapse
|
40
|
Petrie M, Esquibel J, Kabachinski G, Maciuba S, Takahashi H, Edwardson JM, Martin TFJ. The Vesicle Priming Factor CAPS Functions as a Homodimer via C2 Domain Interactions to Promote Regulated Vesicle Exocytosis. J Biol Chem 2016; 291:21257-21270. [PMID: 27528604 PMCID: PMC5076532 DOI: 10.1074/jbc.m116.728097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/29/2016] [Indexed: 11/06/2022] Open
Abstract
Neurotransmitters and peptide hormones are secreted by regulated vesicle exocytosis. CAPS (also known as CADPS) is a 145-kDa cytosolic and peripheral membrane protein required for vesicle docking and priming steps that precede Ca2+-triggered vesicle exocytosis. CAPS binds phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and SNARE proteins and is proposed to promote SNARE protein complex assembly for vesicle docking and priming. We characterized purified soluble CAPS as mainly monomer in equilibrium with small amounts of dimer. However, the active form of CAPS bound to PC12 cell membranes or to liposomes containing PI(4,5)P2 and Q-SNARE proteins was mainly dimer. CAPS dimer formation required its C2 domain based on mutation or deletion studies. Moreover, C2 domain mutations or deletions resulted in a loss of CAPS function in regulated vesicle exocytosis, indicating that dimerization is essential for CAPS function. Comparison of the CAPS C2 domain to a structurally defined Munc13-1 C2A domain dimer revealed conserved residues involved in CAPS dimerization. We conclude that CAPS functions as a C2 domain-mediated dimer in regulated vesicle exocytosis. The unique tandem C2-PH domain of CAPS may serve as a PI(4,5)P2-triggered switch for dimerization. CAPS dimerization may be coupled to oligomeric SNARE complex assembly for vesicle docking and priming.
Collapse
Affiliation(s)
- Matt Petrie
- From the Department of Biochemistry, Integrated Program in Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, and
| | - Joseph Esquibel
- From the Department of Biochemistry, Program of Molecular and Cellular Pharmacology, and
| | - Greg Kabachinski
- From the Department of Biochemistry, Integrated Program in Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, and
| | - Stephanie Maciuba
- From the Department of Biochemistry, Integrated Program in Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, and
| | - Hirohide Takahashi
- the Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| | - J Michael Edwardson
- the Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| | - Thomas F J Martin
- From the Department of Biochemistry, Integrated Program in Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, and Program of Molecular and Cellular Pharmacology, and
| |
Collapse
|
41
|
Shinoda Y, Ishii C, Fukazawa Y, Sadakata T, Ishii Y, Sano Y, Iwasato T, Itohara S, Furuichi T. CAPS1 stabilizes the state of readily releasable synaptic vesicles to fusion competence at CA3-CA1 synapses in adult hippocampus. Sci Rep 2016; 6:31540. [PMID: 27545744 PMCID: PMC4992871 DOI: 10.1038/srep31540] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/21/2016] [Indexed: 01/06/2023] Open
Abstract
Calcium-dependent activator protein for secretion 1 (CAPS1) regulates exocytosis of dense-core vesicles in neuroendocrine cells and of synaptic vesicles in neurons. However, the synaptic function of CAPS1 in the mature brain is unclear because Caps1 knockout (KO) results in neonatal death. Here, using forebrain-specific Caps1 conditional KO (cKO) mice, we demonstrate, for the first time, a critical role of CAPS1 in adult synapses. The amplitude of synaptic transmission at CA3–CA1 synapses was strongly reduced, and paired-pulse facilitation was significantly increased, in acute hippocampal slices from cKO mice compared with control mice, suggesting a perturbation in presynaptic function. Morphological analysis revealed an accumulation of synaptic vesicles in the presynapse without any overall morphological change. Interestingly, however, the percentage of docked vesicles was markedly decreased in the Caps1 cKO. Taken together, our findings suggest that CAPS1 stabilizes the state of readily releasable synaptic vesicles, thereby enhancing neurotransmitter release at hippocampal synapses.
Collapse
Affiliation(s)
- Yo Shinoda
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan.,School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Chiaki Ishii
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yugo Fukazawa
- Department of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui 910-1193, Japan
| | - Tetsushi Sadakata
- Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Yuki Ishii
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yoshitake Sano
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Takuji Iwasato
- Division of Neurogenetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Teiichi Furuichi
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| |
Collapse
|
42
|
Trexler AJ, Sochacki KA, Taraska JW. Imaging the recruitment and loss of proteins and lipids at single sites of calcium-triggered exocytosis. Mol Biol Cell 2016; 27:2423-34. [PMID: 27307587 PMCID: PMC4966983 DOI: 10.1091/mbc.e16-01-0057] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/09/2016] [Indexed: 12/13/2022] Open
Abstract
Imaging of exocytic and endocytic proteins shows which are present at exocytic sites before, during, and after exocytosis in living cells. Rab proteins and SNARE modulators are lost, and dynamin, PIP2, and BAR-domain proteins are rapidly and transiently recruited, where they may modulate the nascent fusion pore. How and when the dozens of molecules that control exocytosis assemble in living cells to regulate the fusion of a vesicle with the plasma membrane is unknown. Here we image with two-color total internal reflection fluorescence microscopy the local changes of 27 proteins at single dense-core vesicles undergoing calcium-triggered fusion. We identify two broad dynamic behaviors of exocytic molecules. First, proteins enriched at exocytic sites are associated with DCVs long before exocytosis, and near the time of membrane fusion, they diffuse away. These proteins include Rab3 and Rab27, rabphilin3a, munc18a, tomosyn, and CAPS. Second, we observe a group of classical endocytic proteins and lipids, including dynamins, amphiphysin, syndapin, endophilin, and PIP2, which are rapidly and transiently recruited to the exocytic site near the time of membrane fusion. Dynamin mutants unable to bind amphiphysin were not recruited, indicating that amphiphysin is involved in localizing dynamin to the fusion site. Expression of mutant dynamins and knockdown of endogenous dynamin altered the rate of cargo release from single vesicles. Our data reveal the dynamics of many key proteins involved in exocytosis and identify a rapidly recruited dynamin/PIP2/BAR assembly that regulates the exocytic fusion pore of dense-core vesicles in cultured endocrine beta cells.
Collapse
Affiliation(s)
- Adam J Trexler
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Kem A Sochacki
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Justin W Taraska
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
43
|
Kabachinski G, Kielar-Grevstad DM, Zhang X, James DJ, Martin TFJ. Resident CAPS on dense-core vesicles docks and primes vesicles for fusion. Mol Biol Cell 2016; 27:654-68. [PMID: 26700319 PMCID: PMC4750925 DOI: 10.1091/mbc.e15-07-0509] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 12/12/2015] [Accepted: 12/18/2015] [Indexed: 11/11/2022] Open
Abstract
The Ca(2+)-dependent exocytosis of dense-core vesicles in neuroendocrine cells requires a priming step during which SNARE protein complexes assemble. CAPS (aka CADPS) is one of several factors required for vesicle priming; however, the localization and dynamics of CAPS at sites of exocytosis in live neuroendocrine cells has not been determined. We imaged CAPS before, during, and after single-vesicle fusion events in PC12 cells by TIRF micro-scopy. In addition to being a resident on cytoplasmic dense-core vesicles, CAPS was present in clusters of approximately nine molecules near the plasma membrane that corresponded to docked/tethered vesicles. CAPS accompanied vesicles to the plasma membrane and was present at all vesicle exocytic events. The knockdown of CAPS by shRNA eliminated the VAMP-2-dependent docking and evoked exocytosis of fusion-competent vesicles. A CAPS(ΔC135) protein that does not localize to vesicles failed to rescue vesicle docking and evoked exocytosis in CAPS-depleted cells, showing that CAPS residence on vesicles is essential. Our results indicate that dense-core vesicles carry CAPS to sites of exocytosis, where CAPS promotes vesicle docking and fusion competence, probably by initiating SNARE complex assembly.
Collapse
Affiliation(s)
- Greg Kabachinski
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706
| | | | - Xingmin Zhang
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706
| | - Declan J James
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706
| | - Thomas F J Martin
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706
| |
Collapse
|
44
|
Abstract
Type 2 diabetes is a complex disease. It results from a failure of the body to maintain energy homoeostasis. Multicellular organisms have evolved complex strategies to preserve a relatively stable internal nutrient environment, despite fluctuations in external nutrient availability. This complex strategy involves the co-ordinated responses of multiple organs to promote storage or mobilization of energy sources according to the availability of nutrients and cellular bioenergetics needs. The endocrine pancreas plays a central role in these processes by secreting insulin and glucagon. When this co-ordinated effort fails, hyperglycaemia and hyperlipidaemia develops, characterizing a state of metabolic imbalance and ultimately overt diabetes. Although diabetes is most likely a collection of diseases, scientists are starting to identify genetic components and environmental triggers. Genome-wide association studies revealed that by and large, gene variants associated with type 2 diabetes are implicated in pancreatic β-cell function, suggesting that the β-cell may be the weakest link in the chain of events that results in diabetes. Thus, it is critical to understand how environmental cues affect the β-cell. Phosphoinositides are important 'decoders' of environmental cues. As such, these lipids have been implicated in cellular responses to a wide range of growth factors, hormones, stress agents, nutrients and metabolites. Here we will review some of the well-established and potential new roles for phosphoinositides in β-cell function/dysfunction and discuss how our knowledge of phosphoinositide signalling could aid in the identification of potential strategies for treating or preventing type 2 diabetes.
Collapse
Affiliation(s)
- Lucia E Rameh
- Department of Medicine, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, U.S.A.
| | - Jude T Deeney
- Department of Medicine, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, U.S.A
| |
Collapse
|
45
|
Yamaga M, Kielar-Grevstad DM, Martin TFJ. Phospholipase Cη2 Activation Redirects Vesicle Trafficking by Regulating F-actin. J Biol Chem 2015; 290:29010-21. [PMID: 26432644 PMCID: PMC4661413 DOI: 10.1074/jbc.m115.658328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 09/30/2015] [Indexed: 02/02/2023] Open
Abstract
PI(4,5)P2 localizes to sites of dense core vesicle exocytosis in neuroendocrine cells and is required for Ca(2+)-triggered vesicle exocytosis, but the impact of local PI(4,5)P2 hydrolysis on exocytosis is poorly understood. Previously, we reported that Ca(2+)-dependent activation of phospholipase Cη2 (PLCη2) catalyzes PI(4,5)P2 hydrolysis, which affected vesicle exocytosis by regulating the activities of the lipid-dependent priming factors CAPS (also known as CADPS) and ubiquitous Munc13-2 in PC12 cells. Here we describe an additional role for PLCη2 in vesicle exocytosis as a Ca(2+)-dependent regulator of the actin cytoskeleton. Depolarization of neuroendocrine PC12 cells with 56 or 95 mm KCl buffers increased peak Ca(2+) levels to ~400 or ~800 nm, respectively, but elicited similar numbers of vesicle exocytic events. However, 56 mm K(+) preferentially elicited the exocytosis of plasma membrane-resident vesicles, whereas 95 mm K(+) preferentially elicited the exocytosis of cytoplasmic vesicles arriving during stimulation. Depolarization with 95 mm K(+) but not with 56 mm K(+) activated PLCη2 to catalyze PI(4,5)P2 hydrolysis. The decrease in PI(4,5)P2 promoted F-actin disassembly, which increased exocytosis of newly arriving vesicles. Consistent with its role as a Ca(2+)-dependent regulator of the cortical actin cytoskeleton, PLCη2 localized with F-actin filaments. The results highlight the importance of PI(4,5)P2 for coordinating cytoskeletal dynamics with vesicle exocytosis and reveal a new role for PLCη2 as a Ca(2+)-dependent regulator of F-actin dynamics and vesicle trafficking.
Collapse
Affiliation(s)
- Masaki Yamaga
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | | | - Thomas F J Martin
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
46
|
Man KNM, Imig C, Walter AM, Pinheiro PS, Stevens DR, Rettig J, Sørensen JB, Cooper BH, Brose N, Wojcik SM. Identification of a Munc13-sensitive step in chromaffin cell large dense-core vesicle exocytosis. eLife 2015; 4. [PMID: 26575293 PMCID: PMC4798968 DOI: 10.7554/elife.10635] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/16/2015] [Indexed: 01/16/2023] Open
Abstract
It is currently unknown whether the molecular steps of large dense-core vesicle (LDCV) docking and priming are identical to the corresponding reactions in synaptic vesicle (SV) exocytosis. Munc13s are essential for SV docking and priming, and we systematically analyzed their role in LDCV exocytosis using chromaffin cells lacking individual isoforms. We show that particularly Munc13-2 plays a fundamental role in LDCV exocytosis, but in contrast to synapses lacking Munc13s, the corresponding chromaffin cells do not exhibit a vesicle docking defect. We further demonstrate that ubMunc13-2 and Munc13-1 confer Ca(2+)-dependent LDCV priming with similar affinities, but distinct kinetics. Using a mathematical model, we identify an early LDCV priming step that is strongly dependent upon Munc13s. Our data demonstrate that the molecular steps of SV and LDCV priming are very similar while SV and LDCV docking mechanisms are distinct.
Collapse
Affiliation(s)
- Kwun Nok M Man
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Cordelia Imig
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | - Paulo S Pinheiro
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences and Lundbeck Foundation Center for Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark
| | - David R Stevens
- Department of Physiology, Saarland University, Homburg, Germany
| | - Jens Rettig
- Department of Physiology, Saarland University, Homburg, Germany
| | - Jakob B Sørensen
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences and Lundbeck Foundation Center for Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Sonja M Wojcik
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
47
|
Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily. MEMBRANES 2015; 5:646-63. [PMID: 26512702 PMCID: PMC4704004 DOI: 10.3390/membranes5040646] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 12/23/2022]
Abstract
The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer.
Collapse
|
48
|
Ji C, Zhang Y, Xu P, Xu T, Lou X. Nanoscale Landscape of Phosphoinositides Revealed by Specific Pleckstrin Homology (PH) Domains Using Single-molecule Superresolution Imaging in the Plasma Membrane. J Biol Chem 2015; 290:26978-26993. [PMID: 26396197 DOI: 10.1074/jbc.m115.663013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Indexed: 11/06/2022] Open
Abstract
Both phosphatidylinositol 4-phosphate (PI4P) and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) are independent plasma membrane (PM) determinant lipids that are essential for multiple cellular functions. However, their nanoscale spatial organization in the PM remains elusive. Using single-molecule superresolution microscopy and new photoactivatable fluorescence probes on the basis of pleckstrin homology domains that specifically recognize phosphatidylinositides in insulin-secreting INS-1 cells, we report that the PI(4,5)P2 probes exhibited a remarkably uniform distribution in the major regions of the PM, with some sparse PI(4,5)P2-enriched membrane patches/domains of diverse sizes (383 ± 14 nm on average). Quantitative analysis revealed a modest concentration gradient that was much less steep than previously thought, and no densely packed PI(4,5)P2 nanodomains were observed. Live-cell superresolution imaging further demonstrated the dynamic structural changes of those domains in the flat PM and membrane protrusions. PI4P and phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) showed similar spatial distributions as PI(4,5)P2. These data reveal the nanoscale landscape of key inositol phospholipids in the native PM and imply a framework for local cellular signaling and lipid-protein interactions at a nanometer scale.
Collapse
Affiliation(s)
- Chen Ji
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705 and
| | - Yongdeng Zhang
- the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Pingyong Xu
- the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Xu
- the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuelin Lou
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705 and.
| |
Collapse
|
49
|
Mittelbrunn M, Vicente Manzanares M, Sánchez-Madrid F. Organizing polarized delivery of exosomes at synapses. Traffic 2015; 16:327-337. [PMID: 25614958 DOI: 10.1111/tra.12258] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/01/2015] [Accepted: 01/05/2015] [Indexed: 12/12/2022]
Abstract
Exosomes are extracellular vesicles that transport different molecules between cells. They are formed and stored inside multivesicular bodies (MVB) until they are released to the extracellular environment. MVB fuse along the plasma membrane, driving non-polarized secretion of exosomes. However, polarized signaling potentially directs MVBs to a specific point in the plasma membrane to mediate a focal delivery of exosomes. MVB polarization occurs across a broad set of cellular situations, e.g. in immune and neuronal synapses, cell migration and in epithelial sheets. In this review, we summarize the current state of the art of polarized MVB docking and the specification of secretory sites at the plasma membrane. The current view is that MVB positioning and subsequent exosome delivery requires a polarizing, cytoskeletal dependent-trafficking mechanism. In this context, we propose scenarios in which biochemical and mechanical signals could drive the polarized delivery of exosomes in highly polarized cells, such as lymphocytes, neurons and epithelia.
Collapse
Affiliation(s)
- Maria Mittelbrunn
- Vascular Biology and Inflammation Department, Centro Nacional Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Miguel Vicente Manzanares
- Universidad Autonoma de Madrid, Department of Medicine / IIS-Princesa, Diego de Leon 62, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Vascular Biology and Inflammation Department, Centro Nacional Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain.,Universidad Autonoma de Madrid, Department of Medicine / IIS-Princesa, Diego de Leon 62, Madrid, Spain
| |
Collapse
|
50
|
Farina M, van de Bospoort R, He E, Persoon CM, van Weering JRT, Broeke JH, Verhage M, Toonen RF. CAPS-1 promotes fusion competence of stationary dense-core vesicles in presynaptic terminals of mammalian neurons. eLife 2015; 4. [PMID: 25719439 PMCID: PMC4341531 DOI: 10.7554/elife.05438] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/09/2015] [Indexed: 01/03/2023] Open
Abstract
Neuropeptides released from dense-core vesicles (DCVs) modulate neuronal activity, but the molecules driving DCV secretion in mammalian neurons are largely unknown. We studied the role of calcium-activator protein for secretion (CAPS) proteins in neuronal DCV secretion at single vesicle resolution. Endogenous CAPS-1 co-localized with synaptic markers but was not enriched at every synapse. Deletion of CAPS-1 and CAPS-2 did not affect DCV biogenesis, loading, transport or docking, but DCV secretion was reduced by 70% in CAPS-1/CAPS-2 double null mutant (DKO) neurons and remaining fusion events required prolonged stimulation. CAPS deletion specifically reduced secretion of stationary DCVs. CAPS-1-EYFP expression in DKO neurons restored DCV secretion, but CAPS-1-EYFP and DCVs rarely traveled together. Synaptic localization of CAPS-1-EYFP in DKO neurons was calcium dependent and DCV fusion probability correlated with synaptic CAPS-1-EYFP expression. These data indicate that CAPS-1 promotes fusion competence of immobile (tethered) DCVs in presynaptic terminals and that CAPS-1 localization to DCVs is probably not essential for this role. DOI:http://dx.doi.org/10.7554/eLife.05438.001 Our ability to think and act is due to the remarkable capacity of the brain to process complex information. This involves nerve cells (or neurons) communicating with each other in a rapid and precise manner by releasing synaptic vesicles containing neurotransmitters across the gaps—called synapses—between neurons. In addition to this fast neurotransmitter signalling, neurons can transmit signals by releasing chemical signals called neuropeptides. Neuropeptides are major regulators of human brain function, including mood, anxiety, and social interactions. Neuropeptides and other neuromodulators such as serotonin and dopamine are normally packaged into bubble-like compartments called dense-core vesicles. Compared to synaptic vesicles we know much less about how dense-core vesicles are trafficked and released. Dense-core vesicles are generally mobile and move around the inside of cells to release neuropeptides where and when they are needed. However, some vesicles are stationary and may even be loosely tethered to the cell membrane. Most of the sites where dense-core vesicles can fuse with the cell membrane are at synapses. Previous work has suggested that the protein CAPS-1 is important for moving dense-core vesicles to the correct sites on the cell membrane, and for releasing neuropeptides across the synapses of worms and flies. However, detailed insights into this process in mammalian neurons are lacking. By examining neurons from both normal mice and mice lacking the CAPS-1 protein, Farina et al. have now analyzed the role CAPS-1 plays in releasing neuropeptides. In cells lacking CAPS-1 fewer dense-core vesicles merged with the cell membrane than in cells containing the protein. However, a new technique that tracks the movement of individual vesicles revealed that only stationary dense-core vesicles had difficulties fusing; mobile vesicles continued to fuse with the cell membrane in the normal manner. Introducing CAPS-1 into cells lacking this protein corrected the fusion defect experienced by the stationary vesicles. Farina et al. also showed that CAPS-1 was present at most—but not all—synapses, and synapses that had more CAPS-1 released more neuropeptides. This work shows that CAPS proteins strongly influence the probability of dense-core vesicle release and that neurons can tune this probability at individual synapses by controlling the expression of CAPS. Future work will be aimed at understanding how neurons can achieve this and which protein domains in CAPS are required. DOI:http://dx.doi.org/10.7554/eLife.05438.002
Collapse
Affiliation(s)
- Margherita Farina
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, Netherlands
| | - Rhea van de Bospoort
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, Netherlands
| | - Enqi He
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, Netherlands
| | - Claudia M Persoon
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, Netherlands
| | - Jan R T van Weering
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, Netherlands
| | - Jurjen H Broeke
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, Netherlands
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, Netherlands
| |
Collapse
|