1
|
Yasuda Y, Yoshida T, Oue M, Sengiku M, Ishikawa T, Saito S, Jin B, Mori K. Tango1L but not Tango1S, Tali and cTAGE5 is required for export of type II collagen in medaka fish. Cell Struct Funct 2025; 50:65-76. [PMID: 39842788 DOI: 10.1247/csf.25001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
Newly synthesized proteins destined for the secretory pathway are folded and assembled in the endoplasmic reticulum (ER) and then transported to the Golgi apparatus via COPII vesicles, which are normally 60-90 nm. COPII vesicles must accordingly be enlarged to accommodate proteins larger than 90 nm, such as long-chain collagen. Key molecules involved in this enlargement are Tango1 and Tango1-like (Tali), which are transmembrane proteins in the ER encoded by the MIA3 and MIA2 genes, respectively. Interestingly, two splicing variants are expressed from each of these two genes: Tango1L and Tango1S from the MIA3 gene, and Tali and cTAGE5 from the MIA2 gene. Here, we constructed Tango1L-knockout (KO), Tango1S-KO, Tali-KO, and cTAGE5-KO separately in medaka fish, a vertebrate model organism, and characterized them. Results showed that only Tango1L-KO conferred a lethal phenotype to medaka fish. Only Tango1L-KO medaka fish exhibited a shorter tail than wild-type (WT) fish and showed the defects in the export of type II collagen from the ER, contrary to the previous reports analyzing Tango1-KO or Tali-KO mice and the results of knockdown experiments in human cultured cells. Medaka fish may employ a simpler system than mammals for the export of large molecules from the ER.Key words: intracellular transport, COPII vesicles, enlargement, endoplasmic reticulum, Golgi apparatus.
Collapse
Affiliation(s)
- Yusuke Yasuda
- Kyoto University Institute for Advanced Study
- Department of Biophysics, Graduate School of Science, Kyoto University
| | - Tomoka Yoshida
- Department of Biophysics, Graduate School of Science, Kyoto University
| | - Mahiro Oue
- Department of Biophysics, Graduate School of Science, Kyoto University
| | - Masaya Sengiku
- Department of Biophysics, Graduate School of Science, Kyoto University
| | - Tokiro Ishikawa
- Department of Biophysics, Graduate School of Science, Kyoto University
| | | | | | | |
Collapse
|
2
|
Wang Y, Liu J, Du LY, Wyss JL, Farrell JA, Schier AF. Gene module reconstruction identifies cellular differentiation processes and the regulatory logic of specialized secretion in zebrafish. Dev Cell 2025; 60:581-598.e9. [PMID: 39591963 PMCID: PMC12097649 DOI: 10.1016/j.devcel.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/30/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
During differentiation, cells become structurally and functionally specialized, but comprehensive views of the underlying remodeling processes are elusive. Here, we leverage single-cell RNA sequencing (scRNA-seq) developmental trajectories to reconstruct differentiation using two secretory tissues as models-the zebrafish notochord and hatching gland. First, we integrated expression and functional similarities to identify gene modules, revealing dozens of modules representing known and newly associated differentiation processes and their dynamics. Second, we focused on the unfolded protein response (UPR) transducer module to study how general versus cell-type-specific secretory functions are regulated. Profiling loss- and gain-of-function embryos identified that the UPR transcription factors creb3l1, creb3l2, and xbp1 are master regulators of a general secretion program. creb3l1/creb3l2 additionally activate an extracellular matrix secretion program, while xbp1 partners with bhlha15 to activate a gland-like secretion program. Our study presents module identification via multi-source integration for reconstructing differentiation (MIMIR) and illustrates how transcription factors confer general and specialized cellular functions.
Collapse
Affiliation(s)
- Yiqun Wang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Biozentrum, University of Basel, Basel 4056, Switzerland
| | - Jialin Liu
- Biozentrum, University of Basel, Basel 4056, Switzerland; Allen Discovery Center for Cell Lineage Tracing, University of Washington, Seattle, WA 98195, USA
| | - Lucia Y Du
- Biozentrum, University of Basel, Basel 4056, Switzerland; Allen Discovery Center for Cell Lineage Tracing, University of Washington, Seattle, WA 98195, USA
| | - Jannik L Wyss
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey A Farrell
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Biozentrum, University of Basel, Basel 4056, Switzerland; Allen Discovery Center for Cell Lineage Tracing, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
3
|
Takai T, Asahara SI, Ikushiro H, Kobayashi K, Yano T, Kido Y, Ogawa W. Protective effect of CK2 against endoplasmic reticulum stress in pancreatic β cells. Diabetol Int 2025; 16:131-144. [PMID: 39877448 PMCID: PMC11769914 DOI: 10.1007/s13340-024-00775-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/21/2024] [Indexed: 01/31/2025]
Abstract
Endoplasmic reticulum (ER) stress due to obesity or systemic insulin resistance is an important pathogenic factor that could lead to pancreatic β-cell failure. We have previously reported that CCAAT/enhancer-binding protein β (C/EBPβ) is highly induced by ER stress in pancreatic β cells. Moreover, its accumulation hampers the response of these cells to ER stress by inhibiting the induction of the molecular chaperone 78 kDa glucose-regulated protein (GRP78). We also demonstrated that C/EBPβ is phosphorylated by CK2, which is reportedly associated with the ER stress signal. In the present study, we aimed to clarify the mechanisms underlying the effect of CK2 on pancreatic β cells using a CK2-specific inhibitor, CX4945, and shRNA-mediated knockdown and overexpression of CK2β, the regulatory subunit of CK2. The results indicate that CK2 was activated in MIN6 cells under ER stress and in pancreatic β cells of a diabetic mouse model. Under normal conditions, CK2 interacted with FL-ATF6α in MIN6 cells and regulated the expression of GRP78 and ERAD-associated proteins. Mechanistically, CK2 activation in MIN6 cells upon the overexpression of the CK2β subunit reduced ER stress signals and the accumulation of unfolded proteins via an increase in GRP78 and ERAD-associated protein levels. These results highlight the important role of CK2 in protecting against ER stress-induced apoptosis by regulating GRP78 and ERAD proteins. CK2 contributed to the clearance of unfolded or misfolded proteins in MIN6 cells under both normal and ER stress conditions. Therefore, CK2 activation could be a promising novel approach for preventing type 2 diabetes. Supplementary Information The online version contains supplementary material available at 10.1007/s13340-024-00775-w.
Collapse
Affiliation(s)
- Tomoko Takai
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
| | - Shun-ichiro Asahara
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
| | - Hiroko Ikushiro
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, Japan
| | - Takato Yano
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Yoshiaki Kido
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
| |
Collapse
|
4
|
Rives D, Peak C, Blenner MA. RNASeq highlights ATF6 pathway regulators for CHO cell engineering with different impacts of ATF6β and WFS1 knockdown on fed-batch production of IgG 1. Sci Rep 2024; 14:14141. [PMID: 38898154 PMCID: PMC11187196 DOI: 10.1038/s41598-024-64767-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
Secretion levels required of industrial Chinese hamster ovary (CHO) cell lines can challenge endoplasmic reticulum (ER) homeostasis, and ER stress caused by accumulation of misfolded proteins can be a bottleneck in biomanufacturing. The unfolded protein response (UPR) is initiated to restore homeostasis in response to ER stress, and optimization of the UPR can improve CHO cell production of therapeutic proteins. We compared the fed-batch growth, production characteristics, and transcriptomic response of an immunoglobulin G1 (IgG1) producer to its parental, non-producing host cell line. We conducted differential gene expression analysis using high throughput RNA sequencing (RNASeq) and quantitative polymerase chain reaction (qPCR) to study the ER stress response of each cell line during fed-batch culture. The UPR was activated in the IgG1 producer compared to the host cell line and our analysis of differential expression profiles indicated transient upregulation of ATF6α target mRNAs in the IgG1 producer, suggesting two upstream regulators of the ATF6 arm of the UPR, ATF6β and WFS1, are rational engineering targets. Although both ATF6β and WFS1 have been reported to negatively regulate ATF6α, this study shows knockdown of either target elicits different effects in an IgG1-producing CHO cell line. Stable knockdown of ATF6β decreased cell growth without decreasing titer; however, knockdown of WFS1 decreased titer without affecting growth. Relative expression measured by qPCR indicated no direct relationship between ATF6β and WFS1 expression, but upregulation of WFS1 in one pool was correlated with decreased growth and upregulation of ER chaperone mRNAs. While knockdown of WFS1 had negative impacts on UPR activation and product mRNA expression, knockdown of ATF6β improved the UPR specifically later in fed-batch leading to increased overall productivity.
Collapse
Affiliation(s)
- Dyllan Rives
- Department of Chemical & Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd., Clemson, SC, 29634-0909, USA
| | - Caroline Peak
- Department of Chemical & Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd., Clemson, SC, 29634-0909, USA
| | - Mark A Blenner
- Department of Chemical & Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd., Clemson, SC, 29634-0909, USA.
- Department of Chemical & Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA.
| |
Collapse
|
5
|
Dorrity MW, Saunders LM, Duran M, Srivatsan SR, Barkan E, Jackson DL, Sattler SM, Ewing B, Queitsch C, Shendure J, Raible DW, Kimelman D, Trapnell C. Proteostasis governs differential temperature sensitivity across embryonic cell types. Cell 2023; 186:5015-5027.e12. [PMID: 37949057 PMCID: PMC11178971 DOI: 10.1016/j.cell.2023.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/29/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
Embryonic development is remarkably robust, but temperature stress can degrade its ability to generate animals with invariant anatomy. Phenotypes associated with environmental stress suggest that some cell types are more sensitive to stress than others, but the basis of this sensitivity is unknown. Here, we characterize hundreds of individual zebrafish embryos under temperature stress using whole-animal single-cell RNA sequencing (RNA-seq) to identify cell types and molecular programs driving phenotypic variability. We find that temperature perturbs the normal proportions and gene expression programs of numerous cell types and also introduces asynchrony in developmental timing. The notochord is particularly sensitive to temperature, which we map to a specialized cell type: sheath cells. These cells accumulate misfolded protein at elevated temperature, leading to a cascading structural failure of the notochord and anatomic defects. Our study demonstrates that whole-animal single-cell RNA-seq can identify mechanisms for developmental robustness and pinpoint cell types that constitute key failure points.
Collapse
Affiliation(s)
- Michael W Dorrity
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Structural and Computational Biology, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | - Lauren M Saunders
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Madeleine Duran
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Sanjay R Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Eliza Barkan
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Dana L Jackson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Sydney M Sattler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Brent Ewing
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - David W Raible
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - David Kimelman
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
6
|
Melnikova A, Ishii H, Tamatani T, Hattori T, Takarada-Iemata M, Hori O. Neuroprotective role of calreticulin after spinal cord injury in mice. Neurosci Res 2023; 195:29-36. [PMID: 37295503 DOI: 10.1016/j.neures.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/09/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Accumulating evidence suggests that endoplasmic reticulum (ER) stress and unfolded protein response (UPR) are involved in the pathology of spinal cord injury (SCI). To determine the role of the UPR-target molecule in the pathophysiology of SCI, we analyzed the expression and the possible function of calreticulin (CRT), a molecular chaperone in the ER with high Ca2+ binding capacity, in a mouse SCI model. Spinal cord contusion was induced in T9 by using the Infinite Horizon impactor. Quantitative real-time polymerase chain reaction confirmed increase of Calr mRNA after SCI. Immunohistochemistry revealed that CRT expression was observed mainly in neurons in the control (sham operated) condition, while it was strongly observed in microglia/macrophages after SCI. Comparative analysis between wild-type (WT) and Calr+/- mice revealed that the recovery of hindlimb locomotion was reduced in Calr+/- mice, based on the evaluation using the Basso Mouse Scale and inclined-plane test. Immunohistochemistry also revealed more accumulation of immune cells in Calr+/- mice than in WT mice, at the epicenter 3 days and at the caudal region 7 days after SCI. Consistently, the number of damaged neuron was higher in Calr+/- mice at the caudal region 7 days after SCI. These results suggest a regulatory role of CRT in the neuroinflammation and neurodegeneration after SCI.
Collapse
Affiliation(s)
- Anastasiia Melnikova
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Hiroshi Ishii
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takashi Tamatani
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Tsuyoshi Hattori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Mika Takarada-Iemata
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Osamu Hori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
7
|
Jin B, Ishikawa T, Kashima M, Komura R, Hirata H, Okada T, Mori K. Activation of XBP1 but not ATF6α rescues heart failure induced by persistent ER stress in medaka fish. Life Sci Alliance 2023; 6:e202201771. [PMID: 37160311 PMCID: PMC10172766 DOI: 10.26508/lsa.202201771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/11/2023] Open
Abstract
The unfolded protein response is triggered in vertebrates by ubiquitously expressed IRE1α/β (although IRE1β is gut-specific in mice), PERK, and ATF6α/β, transmembrane-type sensor proteins in the ER, to cope with ER stress, the accumulation of unfolded and misfolded proteins in the ER. Here, we burdened medaka fish, a vertebrate model organism, with ER stress persistently from fertilization by knocking out the AXER gene encoding an ATP/ADP exchanger in the ER membrane, leading to decreased ATP concentration-mediated impairment of the activity of Hsp70- and Hsp90-type molecular chaperones in the ER lumen. ER stress and apoptosis were evoked from 4 and 6 dpf, respectively, leading to the death of all AXER-KO medaka by 12 dpf because of heart failure (medaka hatch at 7 dpf). Importantly, constitutive activation of IRE1α signaling-but not ATF6α signaling-rescued this heart failure and allowed AXER-KO medaka to survive 3 d longer, likely because of XBP1-mediated transcriptional induction of ER-associated degradation components. Thus, activation of a specific pathway of the unfolded protein response can cure defects in a particular organ.
Collapse
Affiliation(s)
- Byungseok Jin
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Tokiro Ishikawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Makoto Kashima
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| | - Rei Komura
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| | - Hiromi Hirata
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| | - Tetsuya Okada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Jin S, Jin B, Ishikawa T, Ninagawa S, Okada T, Koyasu S, Harada H, Mori K. Loss of ATF6α in a human carcinoma cell line is compensated not by its paralogue ATF6β but by sustained activation of the IRE1 and PERK arms for tumor growth in nude mice. Mol Biol Cell 2023; 34:ar20. [PMID: 36696173 PMCID: PMC10011727 DOI: 10.1091/mbc.e22-07-0292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To survive poor nutritional conditions, tumor cells activate the unfolded protein response, which is composed of the IRE1, PERK, and ATF6 arms, to maintain the homeostasis of the endoplasmic reticulum, where secretory and transmembrane proteins destined for the secretory pathway gain their correct three-dimensional structure. The requirement of the IRE1 and PERK arms for tumor growth in nude mice is established. Here we investigated the requirement for the ATF6 arm, which consists of ubiquitously expressed ATF6α and ATF6β, by constructing ATF6α-knockout (KO), ATF6β-KO, and ATF6α/β-double KO (DKO) in HCT116 cells derived from human colorectal carcinoma. Results showed that these KO cells grew similarly to wild-type (WT) cells in nude mice, contrary to expectations from our analysis of ATF6α-KO, ATF6β-KO, and ATF6α/β-DKO mice. We then found that the loss of ATF6α in HCT116 cells resulted in sustained activation of the IRE1 and PERK arms in marked contrast to mouse embryonic fibroblasts, in which the loss of ATF6α is compensated for by ATF6β. Although IRE1-KO in HCT116 cells unexpectedly did not affect tumor growth in nude mice, IRE1-KO HCT116 cells with ATF6α knockdown grew significantly more slowly than WT or IRE1-KO HCT116 cells. These results have unraveled the situation-dependent differential compensation strategies of ATF6α.
Collapse
Affiliation(s)
- Shengyu Jin
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Byungseok Jin
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Tokiro Ishikawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Tetsuya Okada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Sho Koyasu
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
9
|
Sel1l May Contributes to the Determinants of Neuronal Lineage and Neuronal Maturation Regardless of Hrd1 via Atf6-Sel1l Signaling. Neurochem Res 2023; 48:263-272. [PMID: 36074198 DOI: 10.1007/s11064-022-03750-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/08/2022] [Accepted: 08/30/2022] [Indexed: 01/11/2023]
Abstract
The endoplasmic reticulum (ER) is the primary site of intracellular quality control involved in the recognition and degradation of unfolded proteins. A variety of stresses, including hypoxia and glucose starvation, can lead to accumulation of unfolded proteins triggering the ER-associated degradation (ERAD) pathway. Suppressor Enhancer Lin12/Notch1 Like (Sel1l) acts as a "gate keeper" in the quality control of de novo synthesized proteins and complexes with the ubiquitin ligase Hrd1 in the ER membrane. We previously demonstrated that ER stress-induced aberrant neural stem cell (NSC) differentiation and inhibited neurite outgrowth. Inhibition of neurite outgrowth was associated with increased Hrd1 expression; however, the contribution of Sel1l remained unclear. To investigate whether ER stress is induced during normal neuronal differentiation, we semi-quantitatively evaluated mRNA expression levels of unfolded protein response (UPR)-related genes in P19 embryonic carcinoma cells undergoing neuronal differentiation in vitro. Stimulation with all-trans retinoic acid (ATRA) for 4 days induced the upregulation of Nestin and several UPR-related genes (Atf6, Xbp1, Chop, Hrd1, and Sel1l), whereas Atf4 and Grp78/Bip were unchanged. Small-interfering RNA (siRNA)-mediated knockdown of Sel1l uncovered that mRNA levels of the neural progenitor marker Math1 (also known as Atoh1) and the neuronal marker Math3 (also known as Atoh3 and NeuroD4) were significantly suppressed at 4 days after ATRA stimulation. Consistent with this result, Sel1l silencing significantly reduced protein levels of immature neuronal marker βIII-tubulin (also known as Tuj-1) at 8 days after induction of neuronal differentiation, whereas synaptogenic factors, such as cell adhesion molecule 1 (CADM1) and SH3 and multiple ankyrin repeat domain protein 3 (Shank3) were accumulated in Sel1l silenced cells. These results indicate that neuronal differentiation triggers ER stress and suggest that Sel1l may facilitate neuronal lineage through the regulation of Math1 and Math3 expression.
Collapse
|
10
|
Abstract
The unfolded protein response (UPR) is activated when unfolded proteins accumulate in the endoplasmic reticulum (ER). The basic mechanism of the UPR in maintaining ER homeostasis has been clarified from yeast to humans. The UPR is triggered by one or more transmembrane proteins in the ER. The number of canonical UPR sensors/transducers has increased during evolution, from one (IRE1) in yeast to three (IRE1, PERK, and ATF6) in invertebrates and five (IRE1α, IRE1β, PERK, ATF6α, and ATF6β) in vertebrates. Here, I initially describe the four major changes that have occurred during evolution: (1) advent of PERK in metazoans; (2) switch in transcription factor downstream of IRE1 in metazoans; (3) switch in regulator of ER chaperone induction in vertebrates; and (4) increase in the number of ATF6-like local factors in vertebrates. I then discuss the causes of the phenotypes of vertebrate knockout animals and refer to regulated IRE1-dependent decay of mRNAs.
Collapse
Affiliation(s)
- Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
11
|
Ikeda SI, Kurihara T, Jiang X, Miwa Y, Lee D, Serizawa N, Jeong H, Mori K, Katada Y, Kunimi H, Ozawa N, Shoda C, Ibuki M, Negishi K, Torii H, Tsubota K. Scleral PERK and ATF6 as targets of myopic axial elongation of mouse eyes. Nat Commun 2022; 13:5859. [PMID: 36216837 PMCID: PMC9550863 DOI: 10.1038/s41467-022-33605-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/23/2022] [Indexed: 11/09/2022] Open
Abstract
Axial length is the primary determinant of eye size, and it is elongated in myopia. However, the underlying mechanism of the onset and progression of axial elongation remain unclear. Here, we show that endoplasmic reticulum (ER) stress in sclera is an essential regulator of axial elongation in myopia development through activation of both PERK and ATF6 axis followed by scleral collagen remodeling. Mice with lens-induced myopia (LIM) showed ER stress in sclera. Pharmacological interventions for ER stress could induce or inhibit myopia progression. LIM activated all IRE1, PERK and ATF6 axis, and pharmacological inhibition of both PERK and ATF6 suppressed myopia progression, which was confirmed by knocking down above two genes via CRISPR/Cas9 system. LIM dramatically changed the expression of scleral collagen genes responsible for ER stress. Furthermore, collagen fiber thinning and expression of dysregulated collagens in LIM were ameliorated by 4-PBA administration. We demonstrate that scleral ER stress and PERK/ATF6 pathway controls axial elongation during the myopia development in vivo model and 4-PBA eye drop is promising drug for myopia suppression/treatment.
Collapse
Affiliation(s)
- Shin-Ichi Ikeda
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan. .,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Xiaoyan Jiang
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yukihiro Miwa
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Deokho Lee
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Naho Serizawa
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Heonuk Jeong
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kiwako Mori
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yusaku Katada
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiromitsu Kunimi
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Nobuhiro Ozawa
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Chiho Shoda
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Mari Ibuki
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hidemasa Torii
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan. .,Tsubota Laboratory, Inc., 34 Shinanomachi, Shinjuku-ku, Tokyo, 160-0016, Japan.
| |
Collapse
|
12
|
Collagen's enigmatic, highly conserved N-glycan has an essential proteostatic function. Proc Natl Acad Sci U S A 2021; 118:2026608118. [PMID: 33674390 DOI: 10.1073/pnas.2026608118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intracellular procollagen folding begins at the protein's C-terminal propeptide (C-Pro) domain, which initiates triple-helix assembly and defines the composition and chain register of fibrillar collagen trimers. The C-Pro domain is later proteolytically cleaved and excreted from the body, while the mature triple helix is incorporated into the extracellular matrix. The procollagen C-Pro domain possesses a single N-glycosylation site that is widely conserved in all the fibrillar procollagens across humans and diverse other species. Given that the C-Pro domain is removed once procollagen folding is complete, the N-glycan might be presumed to be important for folding. Surprisingly, however, there is no difference in the folding and secretion of N-glycosylated versus non-N-glycosylated collagen type-I, leaving the function of the N-glycan unclear. We hypothesized that the collagen N-glycan might have a context-dependent function, specifically, that it could be required to promote procollagen folding only when proteostasis is challenged. We show that removal of the N-glycan from misfolding-prone C-Pro domain variants does indeed cause serious procollagen and ER proteostasis defects. The N-glycan promotes folding and secretion of destabilized C-Pro variants by providing access to the ER's lectin-based chaperone machinery. Finally, we show that the C-Pro N-glycan is actually critical for the folding and secretion of even wild-type procollagen under ER stress conditions. Such stress is commonly incurred during development, wound healing, and other processes in which collagen production plays a key role. Collectively, these results establish an essential, context-dependent function for procollagen's previously enigmatic N-glycan, wherein the carbohydrate moiety buffers procollagen folding against proteostatic challenge.
Collapse
|
13
|
Nguyen DT, Le TM, Hattori T, Takarada-Iemata M, Ishii H, Roboon J, Tamatani T, Kannon T, Hosomichi K, Tajima A, Taniuchi S, Miyake M, Oyadomari S, Tanaka T, Kato N, Saito S, Mori K, Hori O. The ATF6β-calreticulin axis promotes neuronal survival under endoplasmic reticulum stress and excitotoxicity. Sci Rep 2021; 11:13086. [PMID: 34158584 PMCID: PMC8219835 DOI: 10.1038/s41598-021-92529-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023] Open
Abstract
While ATF6α plays a central role in the endoplasmic reticulum (ER) stress response, the function of its paralogue ATF6β remains elusive, especially in the central nervous system (CNS). Here, we demonstrate that ATF6β is highly expressed in the hippocampus of the brain, and specifically regulates the expression of calreticulin (CRT), a molecular chaperone in the ER with a high Ca2+-binding capacity. CRT expression was reduced to ~ 50% in the CNS of Atf6b−/− mice under both normal and ER stress conditions. Analysis using cultured hippocampal neurons revealed that ATF6β deficiency reduced Ca2+ stores in the ER and enhanced ER stress-induced death. The higher levels of death in Atf6b−/− neurons were recovered by ATF6β and CRT overexpressions, or by treatment with Ca2+-modulating reagents such as BAPTA-AM and 2-APB, and with an ER stress inhibitor salubrinal. In vivo, kainate-induced neuronal death was enhanced in the hippocampi of Atf6b−/− and Calr+/− mice, and restored by administration of 2-APB and salubrinal. These results suggest that the ATF6β-CRT axis promotes neuronal survival under ER stress and excitotoxity by improving intracellular Ca2+ homeostasis.
Collapse
Affiliation(s)
- Dinh Thi Nguyen
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan
| | - Thuong Manh Le
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan.,Department of Human Anatomy, Hanoi Medical University, Hanoi, Vietnam
| | - Tsuyoshi Hattori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan
| | - Mika Takarada-Iemata
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan
| | - Hiroshi Ishii
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan
| | - Jureepon Roboon
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan
| | - Takashi Tamatani
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan
| | - Takayuki Kannon
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shusuke Taniuchi
- Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Masato Miyake
- Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Seiichi Oyadomari
- Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Takashi Tanaka
- Department of Anatomy II, Kanazawa Medical University, Kahoku, Japan
| | - Nobuo Kato
- Department of Physiology I, Kanazawa Medical University, Kahoku, Japan
| | - Shunsuke Saito
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Osamu Hori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan.
| |
Collapse
|
14
|
Fenech EJ, Ben-Dor S, Schuldiner M. Double the Fun, Double the Trouble: Paralogs and Homologs Functioning in the Endoplasmic Reticulum. Annu Rev Biochem 2021; 89:637-666. [PMID: 32569522 DOI: 10.1146/annurev-biochem-011520-104831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The evolution of eukaryotic genomes has been propelled by a series of gene duplication events, leading to an expansion in new functions and pathways. While duplicate genes may retain some functional redundancy, it is clear that to survive selection they cannot simply serve as a backup but rather must acquire distinct functions required for cellular processes to work accurately and efficiently. Understanding these differences and characterizing gene-specific functions is complex. Here we explore different gene pairs and families within the context of the endoplasmic reticulum (ER), the main cellular hub of lipid biosynthesis and the entry site for the secretory pathway. Focusing on each of the ER functions, we highlight specificities of related proteins and the capabilities conferred to cells through their conservation. More generally, these examples suggest why related genes have been maintained by evolutionary forces and provide a conceptual framework to experimentally determine why they have survived selection.
Collapse
Affiliation(s)
- Emma J Fenech
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Shifra Ben-Dor
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel;
| |
Collapse
|
15
|
Hien LT, Back SH. Establishment of a reporter system for monitoring activation of the ER stress transducer ATF6β. Biochem Biophys Res Commun 2021; 558:1-7. [PMID: 33894672 DOI: 10.1016/j.bbrc.2021.04.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 11/19/2022]
Abstract
ATF6 has two isoforms, ATF6α and ATF6β, which are ubiquitously expressed type II transmembrane glycoproteins in the endoplasmic reticulum (ER). While the regulatory mechanisms and transcriptional roles of ATF6α in response to ER stress have been well-studied, those of its paralogue ATF6β are less understood. Moreover, there is no specific cell-based reporter assay to monitor ATF6β activation. Here, we developed a new cell-based reporter system that can monitor activation of endogenous ATF6β. This system expresses a chimeric protein containing a synthetic transcription factor followed by the transmembrane domain and C-terminal luminal domain of ATF6β. Under ER stress conditions, the chimeric protein was cleaved by regulated intramembrane proteolysis (RIP) to liberate the N-terminal synthetic transcription factor, which induced luciferase expression in the HeLa Luciferase Reporter cell line. This new stable reporter cell line will be an innovative tool to investigate RIP of ATF6β.
Collapse
Affiliation(s)
- Le Thi Hien
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, South Korea
| | - Sung Hoon Back
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, South Korea.
| |
Collapse
|
16
|
Ninagawa S, George G, Mori K. Mechanisms of productive folding and endoplasmic reticulum-associated degradation of glycoproteins and non-glycoproteins. Biochim Biophys Acta Gen Subj 2020; 1865:129812. [PMID: 33316349 DOI: 10.1016/j.bbagen.2020.129812] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The quality of proteins destined for the secretory pathway is ensured by two distinct mechanisms in the endoplasmic reticulum (ER): productive folding of newly synthesized proteins, which is assisted by ER-localized molecular chaperones and in most cases also by disulfide bond formation and transfer of an oligosaccharide unit; and ER-associated degradation (ERAD), in which proteins unfolded or misfolded in the ER are recognized and processed for delivery to the ER membrane complex, retrotranslocated through the complex with simultaneous ubiquitination, extracted by AAA-ATPase to the cytosol, and finally degraded by the proteasome. SCOPE OF REVIEW We describe the mechanisms of productive folding and ERAD, with particular attention to glycoproteins versus non-glycoproteins, and to yeast versus mammalian systems. MAJOR CONCLUSION Molecular mechanisms of the productive folding of glycoproteins and non-glycoproteins mediated by molecular chaperones and protein disulfide isomerases are well conserved from yeast to mammals. Additionally, mammals have gained an oligosaccharide structure-dependent folding cycle for glycoproteins. The molecular mechanisms of ERAD are also well conserved from yeast to mammals, but redundant expression of yeast orthologues in mammals has been encountered, particularly for components involved in recognition and processing of glycoproteins and components of the ER membrane complex involved in retrotranslocation and simultaneous ubiquitination of glycoproteins and non-glycoproteins. This may reflect an evolutionary consequence of increasing quantity or quality needs toward mammals. GENERAL SIGNIFICANCE The introduction of innovative genome editing technology into analysis of the mechanisms of mammalian ERAD, as exemplified here, will provide new insights into the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Ginto George
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
17
|
Koba H, Jin S, Imada N, Ishikawa T, Ninagawa S, Okada T, Sakuma T, Yamamoto T, Mori K. Reinvestigation of Disulfide-bonded Oligomeric Forms of the Unfolded Protein Response Transducer ATF6. Cell Struct Funct 2020; 45:9-21. [PMID: 31852864 PMCID: PMC10739154 DOI: 10.1247/csf.19030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/12/2019] [Indexed: 12/24/2023] Open
Abstract
ATF6α is an endoplasmic reticulum (ER)-embedded transcription factor which is rapidly activated by ER stress, and a major regulator of ER chaperone levels in vertebrates. We previously suggested that ATF6α occurs as a monomer, dimer and oligomer in the unstressed ER of Chinese hamster ovary cells due to the presence of two evolutionarily conserved cysteine residues in its luminal region (C467 and C618), and showed that ATF6α is reduced upon ER stress, such that only reduced monomer ATF6α is translocated to the Golgi apparatus for activation by proteolysis. However, mutagenesis analysis (C467A and C618A) revealed that the C618A mutant behaves in an unexpected manner (monomer and oligomer) during non-reducing SDS-PAGE, for reasons which remained unclear. Here, we used human colorectal carcinoma-derived HCT116 cells deficient in ATF6α and its relevant ATF6β, and found that ATF6α dimer and oligomer are both dimers, which we designated C618-dimer and C467-dimer, respectively. We demonstrated that C467-dimer (previously considered an oligomer) behaved bigger than C618-dimer (previously considered a dimer) during non-reducing SDS-PAGE, based on their disulfide-bonded structures. Furthermore, ATF6α monomer physically associates with another ATF6α monomer in the absence of disulfide bonding, which renders two C467 residues in close proximity so that formation of C467-dimer is much easier than that of C618-dimer. In contrast, C618-dimer is more easily reduced upon ER stress. Thus, our analysis revealed that all forms of ATF6α, namely monomer, C618-dimer and C467-dimer, are activated by single reduction of a disulfide bond in response to ER stress, ensuring the rapidity of ATF6α activation.Key words: disulfide-bonded structure, endoplasmic reticulum, membrane-bound transcription factor, non-reducing SDS-PAGE, unfolded protein response.
Collapse
Affiliation(s)
- Hibiki Koba
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shengyu Jin
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Nanami Imada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Tokiro Ishikawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Tetsuya Okada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8526, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8526, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
18
|
D'Agati G, Cabello EM, Frontzek K, Rushing EJ, Klemm R, Robinson MD, White RM, Mosimann C, Burger A. Active receptor tyrosine kinases, but not Brachyury, are sufficient to trigger chordoma in zebrafish. Dis Model Mech 2019; 12:dmm.039545. [PMID: 31221659 PMCID: PMC6679381 DOI: 10.1242/dmm.039545] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 06/13/2019] [Indexed: 01/09/2023] Open
Abstract
The aberrant activation of developmental processes triggers diverse cancer types. Chordoma is a rare, aggressive tumor arising from transformed notochord remnants. Several potentially oncogenic factors have been found to be deregulated in chordoma, yet causation remains uncertain. In particular, sustained expression of TBXT – encoding the notochord regulator protein brachyury – is hypothesized as a key driver of chordoma, yet experimental evidence is absent. Here, we employ a zebrafish chordoma model to identify the notochord-transforming potential of implicated genes in vivo. We find that Brachyury, including a form with augmented transcriptional activity, is insufficient to initiate notochord hyperplasia. In contrast, the chordoma-implicated receptor tyrosine kinases (RTKs) EGFR and Kdr/VEGFR2 are sufficient to transform notochord cells. Aberrant activation of RTK/Ras signaling attenuates processes required for notochord differentiation, including the unfolded protein response and endoplasmic reticulum stress pathways. Our results provide the first in vivo evidence against a tumor-initiating potential of Brachyury in the notochord, and imply activated RTK signaling as a possible initiating event in chordoma. Furthermore, our work points at modulating endoplasmic reticulum and protein stress pathways as possible therapeutic avenues against chordoma. Summary: An injection-based chordoma model in zebrafish shows that the hypothesized chordoma oncogene brachyury is insufficient, whereas EGFR and VEGFR2 are sufficient, to trigger notochord hyperplasia in our model.
Collapse
Affiliation(s)
- Gianluca D'Agati
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - Elena María Cabello
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - Karl Frontzek
- Institute of Neuropathology, University Hospital Zürich, 8091 Zürich, Switzerland
| | - Elisabeth J Rushing
- Institute of Neuropathology, University Hospital Zürich, 8091 Zürich, Switzerland
| | - Robin Klemm
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - Mark D Robinson
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland.,SIB Swiss Institute of Bioinformatics, University of Zürich, 8057 Zürich, Switzerland
| | - Richard M White
- Cancer Biology & Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christian Mosimann
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - Alexa Burger
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
19
|
Abstract
Eukaryotic cells respond to an overload of unfolded proteins in the endoplasmic reticulum (ER) by activating signaling pathways that are referred to as the unfolded protein response (UPR). Much UPR research has been conducted in cultured cells that exhibit no baseline UPR activity until they are challenged by ER stress initiated by chemicals or mutant proteins. At the same time, many genes that mediate UPR signaling are essential for the development of organisms ranging from Drosophila and fish to mice and humans, indicating that there is physiological ER stress that requires UPR in normally developing animal tissues. Recent studies have elucidated the tissue-specific roles of all three branches of UPR in distinct developing tissues of Drosophila, fish and mammals. As discussed in this Review, these studies not only reveal the physiological functions of the UPR pathways but also highlight a surprising degree of specificity associated with each UPR branch in development.
Collapse
Affiliation(s)
- Sahana Mitra
- Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Hyung Don Ryoo
- Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| |
Collapse
|
20
|
Muneer A, Shamsher Khan RM. Endoplasmic Reticulum Stress: Implications for Neuropsychiatric Disorders. Chonnam Med J 2019; 55:8-19. [PMID: 30740335 PMCID: PMC6351318 DOI: 10.4068/cmj.2019.55.1.8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/11/2018] [Accepted: 11/09/2018] [Indexed: 11/06/2022] Open
Abstract
The Endoplasmic reticulum (ER), an indispensable sub-cellular component of the eukaryotic cell carries out essential functions, is critical to the survival of the organism. The chaperone proteins and the folding enzymes which are multi-domain ER effectors carry out 3-dimensional conformation of nascent polypeptides and check misfolded protein aggregation, easing the exit of functional proteins from the ER. Diverse conditions, for instance redox imbalance, alterations in ionic calcium levels, and inflammatory signaling can perturb the functioning of the ER, leading to a build-up of unfolded or misfolded proteins in the lumen. This results in ER stress, and aiming to reinstate protein homeostasis, a well conserved reaction called the unfolded protein response (UPR) is elicited. Equally, in protracted cellular stress or inadequate compensatory reaction, UPR pathway leads to cell loss. Dysfunctional ER mechanisms are responsible for neuronal degeneration in numerous human diseases, for instance Alzheimer's, Parkinson's and Huntington's diseases. In addition, mounting proof indicates that ER stress is incriminated in psychiatric diseases like major depressive disorder, bipolar disorder, and schizophrenia. Accumulating evidence suggests that pharmacological agents regulating the working of ER may have a role in diminishing advancing neuronal dysfunction in neuropsychiatric disorders. Here, new findings are examined which link the foremost mechanisms connecting ER stress and cell homeostasis. Furthermore, a supposed new pathogenic model of major neuropsychiatry disorders is provided, with ER stress proposed as the pivotal step in disease development.
Collapse
Affiliation(s)
- Ather Muneer
- Islamic International Medical College, Riphah International University, Rawalpindi, Pakistan
| | | |
Collapse
|
21
|
Ito S, Nagata K. Roles of the endoplasmic reticulum-resident, collagen-specific molecular chaperone Hsp47 in vertebrate cells and human disease. J Biol Chem 2018; 294:2133-2141. [PMID: 30541925 DOI: 10.1074/jbc.tm118.002812] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Heat shock protein 47 (Hsp47) is an endoplasmic reticulum (ER)-resident molecular chaperone essential for correct folding of procollagen in mammalian cells. In this Review, we discuss the role and function of Hsp47 in vertebrate cells and its role in connective tissue disorders. Hsp47 binds to collagenous (Gly-Xaa-Arg) repeats within triple-helical procollagen in the ER and can prevent its local unfolding or aggregate formation, resulting in accelerating triple-helix formation of procollagen. Hsp47 pH-dependently dissociates from procollagen in the cis-Golgi or ER-Golgi intermediate compartment and is then transported back to the ER. Although Hsp47 belongs to the serine protease inhibitor (serpin) superfamily, it does not possess serine protease inhibitory activity. Whereas general molecular chaperones such as Hsp70 and Hsp90 exhibit broad substrate specificity, Hsp47 has narrower specificity mainly for procollagens. However, other Hsp47-interacting proteins have been recently reported, suggesting a much broader role for Hsp47 in the cell that warrants further investigation. Other ER-resident stress proteins, such as binding immunoglobulin protein (BiP), are induced by ER stress, whereas Hsp47 is induced only by heat shock. Constitutive expression of Hsp47 is always correlated with expression of various collagen types, and disruption of the Hsp47 gene in mice causes embryonic lethality due to impaired basement membrane and collagen fibril formation. Increased Hsp47 expression is associated with collagen-related disorders such as fibrosis, characterized by abnormal collagen accumulation, highlighting Hsp47's potential as a clinically relevant therapeutic target.
Collapse
Affiliation(s)
| | - Kazuhiro Nagata
- From the Institute for Protein Dynamics, .,Department of Molecular Biosciences, Faculty of Life Sciences, and.,CREST, Japan Science and Technology Agency, Kyoto Sangyo University, Kyoto 603-8555, Japan
| |
Collapse
|
22
|
Forouhan M, Mori K, Boot-Handford RP. Paradoxical roles of ATF6α and ATF6β in modulating disease severity caused by mutations in collagen X. Matrix Biol 2018; 70:50-71. [PMID: 29522813 PMCID: PMC6090092 DOI: 10.1016/j.matbio.2018.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/02/2018] [Accepted: 03/03/2018] [Indexed: 01/05/2023]
Abstract
Whilst the role of ATF6α in modulating the unfolded protein response (UPR) has been well documented, the function of its paralogue ATF6β is less well understood. Using knockdown in cell culture and gene ablation in mice we have directly compared the roles of ATF6α & β in responding to the increased ER stress induced by mutant forms of type X collagen that cause the ER stress-associated metaphyseal chondrodysplasia type Schmid (MCDS). ATF6α more efficiently deals with the disease-associated ER stress in the absence of ATF6β and conversely, ATF6β is less effective in the absence of ATF6α. Furthermore, disease severity in vivo is increased by ATF6α ablation and decreased by ATF6β ablation. In addition, novel functions for each paralogue are described including an ATF6β-specific role in controlling growth plate chondrocyte proliferation. The clear demonstration of the intimate relationship of the two ATF6 isoforms and how ATF6β can moderate the activity of ATF6α and vice versa is of great significance for understanding the UPR mechanism. The activities of both ATF6 isoforms and their separate roles need consideration when deciding how to target increased ER stress as a means of treating MCDS and other ER stress-associated diseases.
Collapse
Affiliation(s)
- M Forouhan
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester, UK
| | - K Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - R P Boot-Handford
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
23
|
A Collection of Transgenic Medaka Strains for Efficient Site-Directed Transgenesis Mediated by phiC31 Integrase. G3-GENES GENOMES GENETICS 2018; 8:2585-2593. [PMID: 29848622 PMCID: PMC6071608 DOI: 10.1534/g3.118.200130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genetic analysis is facilitated by the efficient production of transgenic strains expressing a DNA of interest as a single copy at a designated chromosomal location. However, technical progress toward this goal in medaka fish (Oryzias latipes), a vertebrate model organism, has been slow. It is well known that phiC31 integrase enables efficient site-directed transgenesis by catalyzing the recombination of an attP DNA motif in a host genome with an attB motif in a targeting vector. This system was pioneered in medaka using the Sleeping Beauty transposon system, and the attP site was established at three chromosomal locations. However, this number appeared insufficient with regard to genetic linkage between the attP-landing site and a genetically modified locus of interest. Here, to establish a collection of transgenic strains of medaka, we introduced an attP motif into the medaka genome using the Ac/Ds maize transposon system and established 12 independent transgenic strains harboring a single copy of the attP motif in at least 11 of the 24 medaka chromosomes. We designed an attB-targeting vector that was integrated efficiently and precisely into the attP-landing site, and with which the DNA of interest was efficiently transmitted to germline cells. Extraneous sequences in the integrants derived from the bacterial backbone of the attB-targeting vector as well as a transgenic fluorescence marker present in the attP-landing site were removable through flippase-mediated recombination. Further, an advanced targeting vector with a heart-specific recombination marker served as a useful tool for easily screening phiC31 integrase-mediated recombinant G0 embryos, leading to the efficient establishment of transgenic strains. Thus, our resources advance genetic research in medaka.
Collapse
|
24
|
Nrf2 activation attenuates genetic endoplasmic reticulum stress induced by a mutation in the phosphomannomutase 2 gene in zebrafish. Proc Natl Acad Sci U S A 2018; 115:2758-2763. [PMID: 29472449 DOI: 10.1073/pnas.1714056115] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nrf2 plays critical roles in animals' defense against electrophiles and oxidative stress by orchestrating the induction of cytoprotective genes. We previously isolated the zebrafish mutant it768, which displays up-regulated expression of Nrf2 target genes in an uninduced state. In this paper, we determine that the gene responsible for it768 was the zebrafish homolog of phosphomannomutase 2 (Pmm2), which is a key enzyme in the initial steps of N-glycosylation, and its mutation in humans leads to PMM2-CDG (congenital disorders of glycosylation), the most frequent type of CDG. The pmm2it768 larvae exhibited mild defects in N-glycosylation, indicating that the pmm2it768 mutation is a hypomorph, as in human PMM2-CDG patients. A gene expression analysis showed that pmm2it768 larvae display up-regulation of endoplasmic reticulum (ER) stress, suggesting that the activation of Nrf2 was induced by the ER stress. Indeed, the treatment with the ER stress-inducing compounds up-regulated the gstp1 expression in an Nrf2-dependent manner. Furthermore, the up-regulation of gstp1 by the pmm2 inactivation was diminished by knocking down or out double-stranded RNA-activated protein kinase (PKR)-like ER kinase (PERK), one of the main ER stress sensors, suggesting that Nrf2 was activated in response to the ER stress via the PERK pathway. ER stress-induced activation of Nrf2 was reported previously, but the results have been controversial. Our present study clearly demonstrated that ER stress can indeed activate Nrf2 and this regulation is evolutionarily conserved among vertebrates. Moreover, ER stress induced in pmm2it768 mutants was ameliorated by the treatment of the Nrf2-activator sulforaphane, indicating that Nrf2 plays significant roles in the reduction of ER stress.
Collapse
|
25
|
Kroeger H, Grimsey N, Paxman R, Chiang WC, Plate L, Jones Y, Shaw PX, Trejo J, Tsang SH, Powers E, Kelly JW, Wiseman RL, Lin JH. The unfolded protein response regulator ATF6 promotes mesodermal differentiation. Sci Signal 2018; 11:eaan5785. [PMID: 29440509 PMCID: PMC5957084 DOI: 10.1126/scisignal.aan5785] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
ATF6 encodes a transcription factor that is anchored in the endoplasmic reticulum (ER) and activated during the unfolded protein response (UPR) to protect cells from ER stress. Deletion of the isoform activating transcription factor 6α (ATF6α) and its paralog ATF6β results in embryonic lethality and notochord dysgenesis in nonhuman vertebrates, and loss-of-function mutations in ATF6α are associated with malformed neuroretina and congenital vision loss in humans. These phenotypes implicate an essential role for ATF6 during vertebrate development. We investigated this hypothesis using human stem cells undergoing differentiation into multipotent germ layers, nascent tissues, and organs. We artificially activated ATF6 in stem cells with a small-molecule ATF6 agonist and, conversely, inhibited ATF6 using induced pluripotent stem cells from patients with ATF6 mutations. We found that ATF6 suppressed pluripotency, enhanced differentiation, and unexpectedly directed mesodermal cell fate. Our findings reveal a role for ATF6 during differentiation and identify a new strategy to generate mesodermal tissues through the modulation of the ATF6 arm of the UPR.
Collapse
Affiliation(s)
- Heike Kroeger
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Neil Grimsey
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ryan Paxman
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wei-Chieh Chiang
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lars Plate
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
- Departments of Chemistry and Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Ying Jones
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Peter X Shaw
- Department of Ophthalmology, University of California, San Diego, La Jolla, CA 92093, USA
| | - JoAnn Trejo
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stephen H Tsang
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology and Cell Biology, Edward S. Harkness Eye Institute, New York Presbyterian Hospital, Columbia University, New York, NY 10032, USA
| | - Evan Powers
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeffery W Kelly
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - R Luke Wiseman
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jonathan H Lin
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA.
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| |
Collapse
|
26
|
Takai T, Matsuda T, Matsuura Y, Inoue K, Suzuki E, Kanno A, Kimura-Koyanagi M, Asahara SI, Hatano N, Ogawa W, Kido Y. Casein kinase 2 phosphorylates and stabilizes C/EBPβ in pancreatic β cells. Biochem Biophys Res Commun 2018; 497:451-456. [PMID: 29448105 DOI: 10.1016/j.bbrc.2018.02.108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 02/11/2018] [Indexed: 12/27/2022]
Abstract
During the development of type 2 diabetes, endoplasmic reticulum (ER) stress leads to pancreatic β cell failure. CCAAT/enhancer-binding protein (C/EBP) β is highly induced by ER stress and AMP-activated protein kinase (AMPK) suppression in pancreatic β cells, and its accumulation reduces pancreatic β cell mass. We investigated the phosphorylation state of C/EBPβ under these conditions. Casein kinase 2 (CK2) was found to co-localize with C/EBPβ in MIN6 cells. It phosphorylated S222 of C/EBPβ, a previously unidentified phosphorylation site. We found that C/EBPβ is phosphorylated by CK2 under AMPK suppression and ER stress, which are important from the viewpoint of the worsening pathological condition of type 2 diabetes, such as decreased insulin secretion and apoptosis of pancreatic β cells.
Collapse
Affiliation(s)
- Tomoko Takai
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomokazu Matsuda
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuki Matsuura
- Division of Metabolism and Disease, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Kaho Inoue
- Division of Metabolism and Disease, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Emi Suzuki
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ayumi Kanno
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Maki Kimura-Koyanagi
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shun-Ichiro Asahara
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naoya Hatano
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshiaki Kido
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Metabolism and Disease, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan.
| |
Collapse
|
27
|
Sepulveda D, Rojas-Rivera D, Rodríguez DA, Groenendyk J, Köhler A, Lebeaupin C, Ito S, Urra H, Carreras-Sureda A, Hazari Y, Vasseur-Cognet M, Ali MMU, Chevet E, Campos G, Godoy P, Vaisar T, Bailly-Maitre B, Nagata K, Michalak M, Sierralta J, Hetz C. Interactome Screening Identifies the ER Luminal Chaperone Hsp47 as a Regulator of the Unfolded Protein Response Transducer IRE1α. Mol Cell 2018; 69:238-252.e7. [PMID: 29351844 DOI: 10.1016/j.molcel.2017.12.028] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 10/05/2017] [Accepted: 12/27/2017] [Indexed: 01/17/2023]
Abstract
Maintenance of endoplasmic reticulum (ER) proteostasis is controlled by a dynamic signaling network known as the unfolded protein response (UPR). IRE1α is a major UPR transducer, determining cell fate under ER stress. We used an interactome screening to unveil several regulators of the UPR, highlighting the ER chaperone Hsp47 as the major hit. Cellular and biochemical analysis indicated that Hsp47 instigates IRE1α signaling through a physical interaction. Hsp47 directly binds to the ER luminal domain of IRE1α with high affinity, displacing the negative regulator BiP from the complex to facilitate IRE1α oligomerization. The regulation of IRE1α signaling by Hsp47 is evolutionarily conserved as validated using fly and mouse models of ER stress. Hsp47 deficiency sensitized cells and animals to experimental ER stress, revealing the significance of Hsp47 to global proteostasis maintenance. We conclude that Hsp47 adjusts IRE1α signaling by fine-tuning the threshold to engage an adaptive UPR.
Collapse
Affiliation(s)
- Denisse Sepulveda
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile; Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago 8380453, Chile
| | - Diego Rojas-Rivera
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile; Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago 8380453, Chile
| | - Diego A Rodríguez
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago 8380453, Chile; Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jody Groenendyk
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S7, Canada
| | - Andres Köhler
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile; Program of Physiology and Biophysics, Institute of Biomedical Sciences, University of Chile, Santiago 8380453, Chile
| | | | - Shinya Ito
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto and Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | - Hery Urra
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile; Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago 8380453, Chile
| | - Amado Carreras-Sureda
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile; Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago 8380453, Chile
| | - Younis Hazari
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile; Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago 8380453, Chile
| | - Mireille Vasseur-Cognet
- Institut d'Ecologie et des Sciences de l'Environnement de Paris, Bondy; Sorbonne Universités, and Institut National de la Santé et de la Recherche Médicale, Paris 7 113, France
| | - Maruf M U Ali
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Eric Chevet
- Inserm U1242, Chemistry, Oncogenesis, Stress, & Signaling, University of Rennes 1, F-35000 Rennes, France; Centre de Lutte le Cancer Eugène Marquis, F-35000 Rennes, France
| | - Gisela Campos
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund 44139, Germany
| | - Patricio Godoy
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund 44139, Germany
| | - Tomas Vaisar
- Division of Metabolism, Endocrinology and Nutrition, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | - Kazuhiro Nagata
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto and Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S7, Canada
| | - Jimena Sierralta
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile; Program of Physiology and Biophysics, Institute of Biomedical Sciences, University of Chile, Santiago 8380453, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile; Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago 8380453, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston MA 02115, USA.
| |
Collapse
|
28
|
Hetz C, Papa FR. The Unfolded Protein Response and Cell Fate Control. Mol Cell 2018; 69:169-181. [DOI: 10.1016/j.molcel.2017.06.017] [Citation(s) in RCA: 744] [Impact Index Per Article: 106.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/08/2017] [Accepted: 06/15/2017] [Indexed: 12/12/2022]
|
29
|
Ishikawa T, Kashima M, Nagano AJ, Ishikawa-Fujiwara T, Kamei Y, Todo T, Mori K. Unfolded protein response transducer IRE1-mediated signaling independent of XBP1 mRNA splicing is not required for growth and development of medaka fish. eLife 2017; 6:26845. [PMID: 28952924 PMCID: PMC5636610 DOI: 10.7554/elife.26845] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022] Open
Abstract
When activated by the accumulation of unfolded proteins in the endoplasmic reticulum, metazoan IRE1, the most evolutionarily conserved unfolded protein response (UPR) transducer, initiates unconventional splicing of XBP1 mRNA. Unspliced and spliced mRNA are translated to produce pXBP1(U) and pXBP1(S), respectively. pXBP1(S) functions as a potent transcription factor, whereas pXBP1(U) targets pXBP1(S) to degradation. In addition, activated IRE1 transmits two signaling outputs independent of XBP1, namely activation of the JNK pathway, which is initiated by binding of the adaptor TRAF2 to phosphorylated IRE1, and regulated IRE1-dependent decay (RIDD) of various mRNAs in a relatively nonspecific manner. Here, we conducted comprehensive and systematic genetic analyses of the IRE1-XBP1 branch of the UPR using medaka fish and found that the defects observed in XBP1-knockout or IRE1-knockout medaka were fully rescued by constitutive expression of pXBP1(S). Thus, the JNK and RIDD pathways are not required for the normal growth and development of medaka. The unfolded protein response sensor/transducer IRE1-mediated splicing of XBP1 mRNA encoding its active downstream transcription factor to maintain the homeostasis of the endoplasmic reticulum is sufficient for growth and development of medaka fish.
Collapse
Affiliation(s)
- Tokiro Ishikawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Makoto Kashima
- Research Institute for Food and Agriculture, Ryukoku University, Otsu, Japan
| | | | | | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Okazaki, Japan
| | - Takeshi Todo
- Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
30
|
Short B. Choosing the right response to ER stress. J Biophys Biochem Cytol 2017. [PMCID: PMC5461039 DOI: 10.1083/jcb.201705064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Cells use distinct unfolded protein response transducers to export different collagens during development. Cells use distinct unfolded protein response transducers to export different collagens during development.
Collapse
|
31
|
Ishikawa T, Toyama T, Nakamura Y, Tamada K, Shimizu H, Ninagawa S, Okada T, Kamei Y, Ishikawa-Fujiwara T, Todo T, Aoyama E, Takigawa M, Harada A, Mori K. UPR transducer BBF2H7 allows export of type II collagen in a cargo- and developmental stage-specific manner. J Cell Biol 2017; 216:1761-1774. [PMID: 28500182 PMCID: PMC5461018 DOI: 10.1083/jcb.201609100] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 03/05/2017] [Accepted: 04/12/2017] [Indexed: 12/22/2022] Open
Abstract
The unfolded protein response (UPR) handles unfolded/misfolded proteins accumulated in the endoplasmic reticulum (ER). However, it is unclear how vertebrates correctly use the total of ten UPR transducers. We have found that ER stress occurs physiologically during early embryonic development in medaka fish and that the smooth alignment of notochord cells requires ATF6 as a UPR transducer, which induces ER chaperones for folding of type VIII (short-chain) collagen. After secretion of hedgehog for tissue patterning, notochord cells differentiate into sheath cells, which synthesize type II collagen. In this study, we show that this vacuolization step requires both ATF6 and BBF2H7 as UPR transducers and that BBF2H7 regulates a complete set of genes (Sec23/24/13/31, Tango1, Sedlin, and KLHL12) essential for the enlargement of COPII vesicles to accommodate long-chain collagen for export, leading to the formation of the perinotochordal basement membrane. Thus, the most appropriate UPR transducer is activated to cope with the differing physiological ER stresses of different content types depending on developmental stage.
Collapse
Affiliation(s)
- Tokiro Ishikawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Takuya Toyama
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yuki Nakamura
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kentaro Tamada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Hitomi Shimizu
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Tetsuya Okada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Tomoko Ishikawa-Fujiwara
- Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Takeshi Todo
- Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Eriko Aoyama
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School/Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School/Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan
| | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
32
|
Lindholm D, Korhonen L, Eriksson O, Kõks S. Recent Insights into the Role of Unfolded Protein Response in ER Stress in Health and Disease. Front Cell Dev Biol 2017; 5:48. [PMID: 28540288 PMCID: PMC5423914 DOI: 10.3389/fcell.2017.00048] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/13/2017] [Indexed: 12/20/2022] Open
Abstract
Unfolded stress response (UPR) is a conserved cellular pathway involved in protein quality control to maintain homeostasis under different conditions and disease states characterized by cell stress. Although three general schemes of and genes induced by UPR are rather well-established, open questions remain including the precise role of UPR in human diseases and the interactions between different sensor systems during cell stress signaling. Particularly, the issue how the normally adaptive and pro-survival UPR pathway turns into a deleterious process causing sustained endoplasmic reticulum (ER) stress and cell death requires more studies. UPR is also named a friend with multiple personalities that we need to understand better to fully recognize its role in normal physiology and in disease pathology. UPR interacts with other organelles including mitochondria, and with cell stress signals and degradation pathways such as autophagy and the ubiquitin proteasome system. Here we review current concepts and mechanisms of UPR as studied in different cells and model systems and highlight the relevance of UPR and related stress signals in various human diseases.
Collapse
Affiliation(s)
- Dan Lindholm
- Medicum, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of HelsinkiHelsinki, Finland.,Minerva Foundation Institute for Medical ResearchHelsinki, Finland
| | - Laura Korhonen
- Minerva Foundation Institute for Medical ResearchHelsinki, Finland.,Division of Child Psychiatry, Helsinki University Central HospitalHelsinki, Finland
| | - Ove Eriksson
- Medicum, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of HelsinkiHelsinki, Finland
| | - Sulev Kõks
- Department of Pathophysiology, University of TartuTartu, Estonia.,Department of Reproductive Biology, Estonian University of Life SciencesTartu, Estonia
| |
Collapse
|
33
|
Tsuchiya M, Koizumi Y, Hayashi S, Hanaoka M, Tokutake Y, Yonekura S. The role of unfolded protein response in differentiation of mammary epithelial cells. Biochem Biophys Res Commun 2017; 484:903-908. [DOI: 10.1016/j.bbrc.2017.02.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 02/07/2017] [Indexed: 12/15/2022]
|
34
|
Ariyasu D, Yoshida H, Hasegawa Y. Endoplasmic Reticulum (ER) Stress and Endocrine Disorders. Int J Mol Sci 2017; 18:ijms18020382. [PMID: 28208663 PMCID: PMC5343917 DOI: 10.3390/ijms18020382] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/24/2017] [Accepted: 02/03/2017] [Indexed: 12/15/2022] Open
Abstract
The endoplasmic reticulum (ER) is the organelle where secretory and membrane proteins are synthesized and folded. Unfolded proteins that are retained within the ER can cause ER stress. Eukaryotic cells have a defense system called the “unfolded protein response” (UPR), which protects cells from ER stress. Cells undergo apoptosis when ER stress exceeds the capacity of the UPR, which has been revealed to cause human diseases. Although neurodegenerative diseases are well-known ER stress-related diseases, it has been discovered that endocrine diseases are also related to ER stress. In this review, we focus on ER stress-related human endocrine disorders. In addition to diabetes mellitus, which is well characterized, several relatively rare genetic disorders such as familial neurohypophyseal diabetes insipidus (FNDI), Wolfram syndrome, and isolated growth hormone deficiency type II (IGHD2) are discussed in this article.
Collapse
Affiliation(s)
- Daisuke Ariyasu
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan.
| | - Hiderou Yoshida
- Department of Biochemistry and Molecular Biology, Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan.
| | - Yukihiro Hasegawa
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo 183-8561, Japan.
| |
Collapse
|
35
|
Roles of Grp78 in Female Mammalian Reproduction. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 222:129-155. [PMID: 28389754 DOI: 10.1007/978-3-319-51409-3_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The glucose-regulated protein (GRP78) also referred to as immunoglobulin heavy chain binding protein (Bip) is one of the best characterized endoplasmic reticulum (ER) chaperone proteins, which belongs to the heat-shock protein (HSP) family. GRP78 as a central regulator of ER stress (ERS) plays many important roles in cell survival and apoptosis through controlling the activation of transmembrane ERS sensors: PKR-like ER-associated kinase (PERK), inositol requiring kinase 1 (IRE1), and activating transcription factor 6 (ATF6). Many studies have reported that GRP78 is involved in the physiological and pathological process in female reproduction, including follicular development, corpus luteum (CL), oviduct, uterus, embryo, preimplantation development, implantation/decidualization, and the placenta. The present review summarizes the biological or pathological roles and signaling mechanisms of GRP78 during the reproductive processes. Further study on the functions and mechanisms of GRP78 may provide new insight into mammalian reproduction, which not only enhance the understanding of the physiological roles but also support therapy target against infertility.
Collapse
|
36
|
Kupsco A, Schlenk D. Developmental expression and regulation of flavin-containing monooxygenase by the unfolded protein response in Japanese medaka (Oryzias latipes). Comp Biochem Physiol C Toxicol Pharmacol 2017; 191:7-13. [PMID: 27612667 DOI: 10.1016/j.cbpc.2016.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 12/19/2022]
Abstract
Flavin-containing monooxygenases (FMOs) play a key role in xenobiotic metabolism, are regulated by environmental conditions, and are differentially regulated during mammalian development. Japanese medaka (Oryzias latipes) are a common model organism for toxicological studies. The goal of the current research was to characterize developmental expression and regulation of FMOs in Japanese medaka embryos to better understand the role of FMOs in this model species. Five putative medaka fmos were characterized from the medaka genome through the National Center for Biotechnology Information (NCBI) database by protein motifs and alignments, then identified as fmo4, fmo5A, fmo5B, fmo5C and fmo5D for the current study. Fmo gene expression was analyzed at 1dpf, 3dpf, 6dpf and 9dpf and distinct developmental patterns of expression were observed. Fmo4 and fmo5D increased 3-fold during mid organogenesis (6dpf), while fmo5B and fmo5C decreased significantly in early organogenesis (3dpf) and fmo5A was unaltered. Promoter analysis was performed for transcription factor binding sites and indicated regulation by developmental factors and a role for the unfolded protein response in fmo modulation. Fmo regulation by the UPR was assessed with treatments of 1μg/ml, 2μg/ml, and 4μg/ml Tunicamycin (Tm), and 2mM and 4mM dithiothreitol (DTT), well-known inducers of endoplasmic reticulum stress, for 24h from 5-6dpf. High concentrations to Tm induced fmo4 and fmo5A up to two-fold, while DTT significantly decreased expression of fmo5A, fmo5B, and fmo5C. Results suggest that medaka fmos are variably regulated by the UPR during organogenesis with variable developmental expression, and suggesting potential stage-dependent activation or detoxification of xenobiotics.
Collapse
Affiliation(s)
- Allison Kupsco
- Environmental Toxicology Program, Department of Environmental Sciences, University of California-Riverside, Riverside, CA, United States.
| | - Daniel Schlenk
- Environmental Toxicology Program, Department of Environmental Sciences, University of California-Riverside, Riverside, CA, United States
| |
Collapse
|
37
|
Izumi K, Brett M, Nishi E, Drunat S, Tan ES, Fujiki K, Lebon S, Cham B, Masuda K, Arakawa M, Jacquinet A, Yamazumi Y, Chen ST, Verloes A, Okada Y, Katou Y, Nakamura T, Akiyama T, Gressens P, Foo R, Passemard S, Tan EC, El Ghouzzi V, Shirahige K. ARCN1 Mutations Cause a Recognizable Craniofacial Syndrome Due to COPI-Mediated Transport Defects. Am J Hum Genet 2016; 99:451-9. [PMID: 27476655 DOI: 10.1016/j.ajhg.2016.06.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/15/2016] [Indexed: 12/26/2022] Open
Abstract
Cellular homeostasis is maintained by the highly organized cooperation of intracellular trafficking systems, including COPI, COPII, and clathrin complexes. COPI is a coatomer protein complex responsible for intracellular protein transport between the endoplasmic reticulum and the Golgi apparatus. The importance of such intracellular transport mechanisms is underscored by the various disorders, including skeletal disorders such as cranio-lenticulo-sutural dysplasia and osteogenesis imperfect, caused by mutations in the COPII coatomer complex. In this article, we report a clinically recognizable craniofacial disorder characterized by facial dysmorphisms, severe micrognathia, rhizomelic shortening, microcephalic dwarfism, and mild developmental delay due to loss-of-function heterozygous mutations in ARCN1, which encodes the coatomer subunit delta of COPI. ARCN1 mutant cell lines were revealed to have endoplasmic reticulum stress, suggesting the involvement of ER stress response in the pathogenesis of this disorder. Given that ARCN1 deficiency causes defective type I collagen transport, reduction of collagen secretion represents the likely mechanism underlying the skeletal phenotype that characterizes this condition. Our findings demonstrate the importance of COPI-mediated transport in human development, including skeletogenesis and brain growth.
Collapse
|
38
|
|
39
|
Matsuda T, Takahashi H, Mieda Y, Shimizu S, Kawamoto T, Matsuura Y, Takai T, Suzuki E, Kanno A, Koyanagi-Kimura M, Asahara SI, Bartolome A, Yokoi N, Inoue H, Ogawa W, Seino S, Kido Y. Regulation of Pancreatic β Cell Mass by Cross-Interaction between CCAAT Enhancer Binding Protein β Induced by Endoplasmic Reticulum Stress and AMP-Activated Protein Kinase Activity. PLoS One 2015; 10:e0130757. [PMID: 26091000 PMCID: PMC4474801 DOI: 10.1371/journal.pone.0130757] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/22/2015] [Indexed: 01/05/2023] Open
Abstract
During the development of type 2 diabetes, endoplasmic reticulum (ER) stress leads to not only insulin resistance but also to pancreatic beta cell failure. Conversely, cell function under various stressed conditions can be restored by reducing ER stress by activating AMP-activated protein kinase (AMPK). However, the details of this mechanism are still obscure. Therefore, the current study aims to elucidate the role of AMPK activity during ER stress-associated pancreatic beta cell failure. MIN6 cells were loaded with 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR) and metformin to assess the relationship between AMPK activity and CCAAT enhancer binding protein β (C/EBPβ) expression levels. The effect of C/EBPβ phosphorylation on expression levels was also investigated. Vildagliptin and metformin were administered to pancreatic beta cell-specific C/EBPβ transgenic mice to investigate the relationship between C/EBPβ expression levels and AMPK activity in the pancreatic islets. When pancreatic beta cells are exposed to ER stress, the accumulation of the transcription factor C/EBPβ lowers the AMP/ATP ratio, thereby decreasing AMPK activity. In an opposite manner, incubation of MIN6 cells with AICAR or metformin activated AMPK, which suppressed C/EBPβ expression. In addition, administration of the dipeptidyl peptidase-4 inhibitor vildagliptin and metformin to pancreatic beta cell-specific C/EBPβ transgenic mice decreased C/EBPβ expression levels and enhanced pancreatic beta cell mass in proportion to the recovery of AMPK activity. Enhanced C/EBPβ expression and decreased AMPK activity act synergistically to induce ER stress-associated pancreatic beta cell failure.
Collapse
Affiliation(s)
- Tomokazu Matsuda
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroaki Takahashi
- Division of Medical Chemistry, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Yusuke Mieda
- Division of Medical Chemistry, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Shinobu Shimizu
- Division of Medical Chemistry, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Takeshi Kawamoto
- Division of Medical Chemistry, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Yuki Matsuura
- Division of Medical Chemistry, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Tomoko Takai
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Emi Suzuki
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ayumi Kanno
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Maki Koyanagi-Kimura
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shun-ichiro Asahara
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Alberto Bartolome
- Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, United States of America
| | - Norihide Yokoi
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Inoue
- Department of Physiology and Metabolism, Brain/Liver Interface Medicine Research Center, Kanazawa University, Kanazawa, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Susumu Seino
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshiaki Kido
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Medical Chemistry, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
- * E-mail:
| |
Collapse
|
40
|
Kupsco A, Schlenk D. Oxidative stress, unfolded protein response, and apoptosis in developmental toxicity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:1-66. [PMID: 26008783 DOI: 10.1016/bs.ircmb.2015.02.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Physiological development requires precise spatiotemporal regulation of cellular and molecular processes. Disruption of these key events can generate developmental toxicity in the form of teratogenesis or mortality. The mechanism behind many developmental toxicants remains unknown. While recent work has focused on the unfolded protein response (UPR), oxidative stress, and apoptosis in the pathogenesis of disease, few studies have addressed their relationship in developmental toxicity. Redox regulation, UPR, and apoptosis are essential for physiological development and can be disturbed by a variety of endogenous and exogenous toxicants to generate lethality and diverse malformations. This review examines the current knowledge of the role of oxidative stress, UPR, and apoptosis in physiological development as well as in developmental toxicity, focusing on studies and advances in vertebrates model systems.
Collapse
Affiliation(s)
- Allison Kupsco
- Environmental Toxicology Program, University of California, Riverside, CA, USA
| | - Daniel Schlenk
- Environmental Toxicology Program, University of California, Riverside, CA, USA; Environmental Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
41
|
Sasaki K, Yoshida H. Organelle autoregulation-stress responses in the ER, Golgi, mitochondria and lysosome. J Biochem 2015; 157:185-95. [PMID: 25657091 DOI: 10.1093/jb/mvv010] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Organelle autoregulation is a homeostatic mechanism to regulate the capacity of each organelle according to cellular demands. The endoplasmic reticulum (ER) stress response increases the expression of ER chaperones and ER-associated degradation factors when the capacity of the ER becomes insufficient, e.g. during cellular differentiation or viral propagation, and which can be restored through increased synthesis of secretory or membrane proteins. In the Golgi stress response, insufficient organelle capacity is responded to by augmentation of glycosylation enzyme expression and vesicular transport components. The mitochondrial stress response upregulates mitochondrial chaperone and protease expression in the mitochondrial matrix and intermembrane space when unfolded proteins accumulate in the mitochondria. The lysosome stress response is activated during autophagy to enhance the function of the lysosome by transcriptional induction of lysosome genes including cathepsins. However, many of the molecular mechanisms of organelle autoregulation remain unclear. Here, we review recent discoveries in organelle autoregulation and their molecular mechanisms.
Collapse
Affiliation(s)
- Kanae Sasaki
- Department of Molecular Biochemistry, Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Hiderou Yoshida
- Department of Molecular Biochemistry, Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
| |
Collapse
|
42
|
MORI K. The unfolded protein response: the dawn of a new field. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2015; 91:469-480. [PMID: 26560836 PMCID: PMC4754504 DOI: 10.2183/pjab.91.469] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/09/2015] [Indexed: 05/31/2023]
Abstract
Originating from cancer research in mammalian cultured cells, the entirely new field of the unfolded protein response (UPR) was born in 1988. The UPR is a transcriptional induction program coupled with intracellular signaling from the endoplasmic reticulum (ER) to the nucleus to maintain the homeostasis of the ER, an organelle which controls the quality of proteins destined for the secretory pathway. Extremely competitive analyses using the budding yeast Saccharomyces cerevisiae revealed that although signaling from both the ER and cell surface is initiated by activation of a transmembrane protein kinase, the mechanism downstream of ER-resident Ire1p, a sensor molecule of the UPR, is unique. Thus, unconventional spliceosome-independent mRNA splicing is utilized to produce the highly active transcription factor Hac1p. This is the autobiographical story of how a young and not yet independent scientist competed with a very famous full professor in the early days of UPR research, which ultimately lead to their sharing Lasker Basic Medical Research Award in 2014.
Collapse
Affiliation(s)
- Kazutoshi MORI
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
43
|
Kupsco A, Schlenk D. Mechanisms of selenomethionine developmental toxicity and the impacts of combined hypersaline conditions on Japanese medaka (Oryzias latipes). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:7062-8. [PMID: 24856650 PMCID: PMC4066905 DOI: 10.1021/es5019948] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 05/25/2023]
Abstract
Selenium (Se) is an essential micronutrient that can cause embryotoxicty at levels 7-30 times above essential concentrations. Exposure to hypersaline conditions and 50 μM selenomethionine (SeMet) decreased embryo hatch and depleted glutathione in Japanese medaka embryos without affecting Se accumulation. To better understand the impacts of nonchemical stressors on developmental toxicity of Se in fish, several adverse outcome pathways were evaluated in the Japanese medaka (Oryzias latipes). We treated medaka embryos at 12 h post fertilization with 50 μM SeMet for 12 hours in freshwater or in 13 ppth hypersalinity and evaluated the contributions of oxidative stress, the unfolded protein response and apoptosis to reduced hatch. Exposure to SeMet and hypersalinity decreased embryo hatch to 3.7% ± 1.95, and induced teratogenesis in 100% ± 0 of hatched embryos. In contrast, treatments of freshwater, saltwater, and SeMet in freshwater resulted in 89.8% ± 3.91-86.7% ± 3.87 hatch, and no significant increase in deformities. We found no significant differences in lipid peroxidation, indicating that oxidative stress may not be responsible for the observed toxicity in embryos at this time point (24 h). Although significant changes in apoptosis were not observed, we witnessed up to 100 fold increases in transcripts of the endoplasmic reticulum (ER) chaperone, immunoglobulin binding protein (BiP) and trends toward increasing downstream signals, activating transcription factor 4 (ATF4) and ATF6 indicating potential contributions of the unfolded protein response to the effects of SeMet and hypersaline conditions. These data indicate that multiple adverse outcome pathways may be responsible for the developmental toxicity of Se and salinity, and these pathways may be time dependent.
Collapse
|
44
|
Fan Q, Mao H, Wu C, Liu Y, Hu Y, Zhong B, Mi Y, Hu C. ATF4 (activating transcription factor 4) from grass carp (Ctenopharyngodon idella) modulates the transcription initiation of GRP78 and GRP94 in CIK cells. FISH & SHELLFISH IMMUNOLOGY 2014; 38:140-148. [PMID: 24636856 DOI: 10.1016/j.fsi.2014.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/24/2014] [Accepted: 03/07/2014] [Indexed: 06/03/2023]
Abstract
GRP78 and GRP94, belong to GRP (glucose-regulated protein) family of endoplasmatic reticulum (ER) chaperone superfamily, are essential for cell survival under ER stress. ATF4 is a protective protein which regulates the adaptation of cells to ER stress by modulating the transcription of UPR (Unfolded Protein Response) target genes, including GRP78 and GRP94. To understand the molecular mechanism of ATF4 modulates the transcription initiation of CiGRP78 and CiGRP94, we cloned ATF4 ORF cDNA sequences (CiATF4) by homologous cloning techniques. The expression trend of CiATF4 was similar to CiGRP78 and CiGRP94 did under 37 °C thermal stress, namely, the expression of CiATF4 was up-regulated twice at 2 h post-thermal stress and at 18 h post recovery from thermal stress. In this paper, CiATF4 was expressed in BL21 Escherichia coli, and the expressed protein was purified by affinity chromatography with the Ni-NTA His-Bind Resin. On the basis of the cloned CiGRP78 and CiGRP94 cDNA in our laboratory previously, we cloned their promoter sequences by genomic walking approach. In vitro, gel mobility shift assays revealed that CiATF4 could bind to CiGRP78 and CiGRP94 promoter with high affinity. Subsequently, the recombinant plasmid of pGL3-CiGRPs and pcDNA3.1-CiATF4 were constructed and transiently co-transfected into Ctenopharyngodon idella kidney (CIK) cells. The impact of CiATF4 on CiGRP promoter sequences were measured by luciferase assays. These results demonstrated that CiATF4 could activate the transcription of CiGRP78 and CiGRP94. What's more, for better understanding the molecular mechanism of CiATF4 modulate the transcription initiation of CiGRP, three mutant fragments of CiGRP78 promoter recombinant plasmids (called CARE-mut/LUC, CRE1-mut/LUC and CRE2-mut/LUC) were constructed and transiently co-transfected with CiATF4 into CIK cells. The results indicated that CRE or CARE elements were the regulatory element for transcription initiation of CiGRP78. Between them, CRE element would play more important role in it.
Collapse
Affiliation(s)
- Qidi Fan
- Department of Bioscience, College of Life Science and Food Engineering, Nanchang University, Nanchang 330031, China
| | - Huiling Mao
- Department of Bioscience, College of Life Science and Food Engineering, Nanchang University, Nanchang 330031, China
| | - Chuxin Wu
- Nanchang Teachers College, Nanchang 330103, China
| | - Yong Liu
- Department of Bioscience, College of Life Science and Food Engineering, Nanchang University, Nanchang 330031, China
| | - Yousheng Hu
- Department of Bioscience, College of Life Science and Food Engineering, Nanchang University, Nanchang 330031, China
| | - Bin Zhong
- Department of Bioscience, College of Life Science and Food Engineering, Nanchang University, Nanchang 330031, China
| | - Yichuan Mi
- Department of Bioscience, College of Life Science and Food Engineering, Nanchang University, Nanchang 330031, China
| | - Chengyu Hu
- Department of Bioscience, College of Life Science and Food Engineering, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
45
|
Arensdorf AM, Diedrichs D, Rutkowski DT. Regulation of the transcriptome by ER stress: non-canonical mechanisms and physiological consequences. Front Genet 2013; 4:256. [PMID: 24348511 PMCID: PMC3844873 DOI: 10.3389/fgene.2013.00256] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/08/2013] [Indexed: 12/29/2022] Open
Abstract
The mammalian unfolded protein response (UPR) is propagated by three ER-resident transmembrane proteins, each of which initiates a signaling cascade that ultimately culminates in production of a transcriptional activator. The UPR was originally characterized as a pathway for upregulating ER chaperones, and a comprehensive body of subsequent work has shown that protein synthesis, folding, oxidation, trafficking, and degradation are all transcriptionally enhanced by the UPR. However, the global reach of the UPR extends to genes involved in diverse physiological processes having seemingly little to do with ER protein folding, and this includes a substantial number of mRNAs that are suppressed by stress rather than stimulated. Through multiple non-canonical mechanisms emanating from each of the UPR pathways, the cell dynamically regulates transcription and mRNA degradation. Here we highlight these mechanisms and their increasingly appreciated impact on physiological processes.
Collapse
Affiliation(s)
- Angela M Arensdorf
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Danilo Diedrichs
- Department of Mathematics and Computer Science, Wheaton College Wheaton, IL, USA
| | - D Thomas Rutkowski
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine Iowa City, IA, USA ; Department of Internal Medicine, University of Iowa Carver College of Medicine Iowa City, IA, USA
| |
Collapse
|
46
|
Gomez JA, Tyra HM, DeZwaan-McCabe D, Olivier AK, Rutkowski DT. Synthetic embryonic lethality upon deletion of the ER cochaperone p58(IPK) and the ER stress sensor ATF6α. Biochem Biophys Res Commun 2013; 443:115-9. [PMID: 24275136 DOI: 10.1016/j.bbrc.2013.11.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 11/13/2013] [Indexed: 11/29/2022]
Abstract
The unfolded protein response (UPR) is activated as a consequence of alterations to ER homeostasis. It upregulates a group of ER chaperones and cochaperones, as well as other genes that improve protein processing within the secretory pathway. The UPR effector ATF6α augments-but is not essential for-maximal induction of ER chaperones during stress, yet its role, if any, in protecting cellular function during normal development and physiology is unknown. A systematic analysis of multiple tissues from Atf6α-/- mice revealed that all tissues examined were grossly insensitive to loss of ATF6α. However, combined deletion of ATF6α and the ER cochaperone p58(IPK) resulted in synthetic embryonic lethality. These findings reveal for the first time that an intact UPR can compensate for the genetic impairment of protein folding in the ER in vivo. The also expose a role for p58(IPK) in normal embryonic development.
Collapse
Affiliation(s)
- Javier A Gomez
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States
| | - Heather M Tyra
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States
| | - Diane DeZwaan-McCabe
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States
| | - Alicia K Olivier
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States
| | - D Thomas Rutkowski
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States; Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States.
| |
Collapse
|
47
|
Horimoto S, Ninagawa S, Okada T, Koba H, Sugimoto T, Kamiya Y, Kato K, Takeda S, Mori K. The unfolded protein response transducer ATF6 represents a novel transmembrane-type endoplasmic reticulum-associated degradation substrate requiring both mannose trimming and SEL1L protein. J Biol Chem 2013; 288:31517-27. [PMID: 24043630 DOI: 10.1074/jbc.m113.476010] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Proteins misfolded in the endoplasmic reticulum (ER) are cleared by the ubiquitin-dependent proteasome system in the cytosol, a series of events collectively termed ER-associated degradation (ERAD). It was previously shown that SEL1L, a partner protein of the E3 ubiquitin ligase HRD1, is required for degradation of misfolded luminal proteins (ERAD-Ls substrates) but not misfolded transmembrane proteins (ERAD-Lm substrates) in both mammalian and chicken DT40 cells. Here, we analyzed ATF6, a type II transmembrane glycoprotein that serves as a sensor/transducer of the unfolded protein response, as a potential ERAD-Lm substrate in DT40 cells. Unexpectedly, degradation of endogenous ATF6 and exogenously expressed chicken and human ATF6 by the proteasome required SEL1L. Deletion analysis revealed that the luminal region of ATF6 is a determinant for SEL1L-dependent degradation. Chimeric analysis showed that the luminal region of ATF6 confers SEL1L dependence on type I transmembrane protein as well. In contrast, degradation of other known type I ERAD-Lm substrates (BACE457, T-cell receptor-α, CD3-δ, and CD147) did not require SEL1L. Thus, ATF6 represents a novel type of ERAD-Lm substrate requiring SEL1L for degradation despite its transmembrane nature. In addition, endogenous ATF6 was markedly stabilized in wild-type cells treated with kifunensine, an inhibitor of α1,2-mannosidase in the ER, indicating that degradation of ATF6 requires proper mannose trimming. Our further analyses revealed that the five ERAD-Lm substrates examined are classified into three subgroups based on their dependence on mannose trimming and SEL1L. Thus, ERAD-Lm substrates are degraded through much more diversified mechanisms in higher eukaryotes than previously thought.
Collapse
Affiliation(s)
- Satoshi Horimoto
- From the Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wakabayashi S, Yoshida H. The essential biology of the endoplasmic reticulum stress response for structural and computational biologists. Comput Struct Biotechnol J 2013; 6:e201303010. [PMID: 24688718 PMCID: PMC3962220 DOI: 10.5936/csbj.201303010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/09/2013] [Accepted: 08/10/2013] [Indexed: 11/29/2022] Open
Abstract
The endoplasmic reticulum (ER) stress response is a cytoprotective mechanism that maintains homeostasis of the ER by upregulating the capacity of the ER in accordance with cellular demands. If the ER stress response cannot function correctly, because of reasons such as aging, genetic mutation or environmental stress, unfolded proteins accumulate in the ER and cause ER stress-induced apoptosis, resulting in the onset of folding diseases, including Alzheimer's disease and diabetes mellitus. Although the mechanism of the ER stress response has been analyzed extensively by biochemists, cell biologists and molecular biologists, many aspects remain to be elucidated. For example, it is unclear how sensor molecules detect ER stress, or how cells choose the two opposite cell fates (survival or apoptosis) during the ER stress response. To resolve these critical issues, structural and computational approaches will be indispensable, although the mechanism of the ER stress response is complicated and difficult to understand holistically at a glance. Here, we provide a concise introduction to the mammalian ER stress response for structural and computational biologists.
Collapse
Affiliation(s)
- Sadao Wakabayashi
- Department of Molecular Biochemistry, Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Hiderou Yoshida
- Department of Molecular Biochemistry, Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
| |
Collapse
|