1
|
Goode BL, Eskin J, Shekhar S. Mechanisms of actin disassembly and turnover. J Cell Biol 2023; 222:e202309021. [PMID: 37948068 PMCID: PMC10638096 DOI: 10.1083/jcb.202309021] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Cellular actin networks exhibit a wide range of sizes, shapes, and architectures tailored to their biological roles. Once assembled, these filamentous networks are either maintained in a state of polarized turnover or induced to undergo net disassembly. Further, the rates at which the networks are turned over and/or dismantled can vary greatly, from seconds to minutes to hours or even days. Here, we review the molecular machinery and mechanisms employed in cells to drive the disassembly and turnover of actin networks. In particular, we highlight recent discoveries showing that specific combinations of conserved actin disassembly-promoting proteins (cofilin, GMF, twinfilin, Srv2/CAP, coronin, AIP1, capping protein, and profilin) work in concert to debranch, sever, cap, and depolymerize actin filaments, and to recharge actin monomers for new rounds of assembly.
Collapse
Affiliation(s)
- Bruce L. Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Julian Eskin
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Shashank Shekhar
- Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA, USA
| |
Collapse
|
2
|
Sirotkin V. Cappin' or formin': Formin and capping protein competition for filament ends shapes actin networks. J Cell Biol 2023; 222:e202302009. [PMID: 36928466 PMCID: PMC10039713 DOI: 10.1083/jcb.202302009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
How cells assemble distinct actin networks from shared cytoplasmic components remains an important unresolved question. In this issue, Wirshing et al. (2023. J. Cell Biol.https://doi.org/10.1083/jcb.202209105) demonstrate how capping protein and formin competition for actin filament barbed ends controls the assembly of branched and linear actin networks.
Collapse
Affiliation(s)
- Vladimir Sirotkin
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
3
|
Wirshing AC, Rodriguez SG, Goode BL. Evolutionary tuning of barbed end competition allows simultaneous construction of architecturally distinct actin structures. J Cell Biol 2023; 222:213854. [PMID: 36729023 PMCID: PMC9929936 DOI: 10.1083/jcb.202209105] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/01/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023] Open
Abstract
How cells simultaneously assemble actin structures of distinct sizes, shapes, and filamentous architectures is still not well understood. Here, we used budding yeast as a model to investigate how competition for the barbed ends of actin filaments might influence this process. We found that while vertebrate capping protein (CapZ) and formins can simultaneously associate with barbed ends and catalyze each other's displacement, yeast capping protein (Cap1/2) poorly displaces both yeast and vertebrate formins. Consistent with these biochemical differences, in vivo formin-mediated actin cable assembly was strongly attenuated by the overexpression of CapZ but not Cap1/2. Multiwavelength live cell imaging further revealed that actin patches in cap2∆ cells acquire cable-like features over time, including recruitment of formins and tropomyosin. Together, our results suggest that the activities of S. cerevisiae Cap1/2 have been tuned across evolution to allow robust cable assembly by formins in the presence of high cytosolic levels of Cap1/2, which conversely limit patch growth and shield patches from formins.
Collapse
Affiliation(s)
- Alison C.E. Wirshing
- https://ror.org/05abbep66Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Sofia Gonzalez Rodriguez
- https://ror.org/05abbep66Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Bruce L. Goode
- https://ror.org/05abbep66Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA,Correspondence to Bruce L. Goode:
| |
Collapse
|
4
|
Lemière J, Ren Y, Berro J. Rapid adaptation of endocytosis, exocytosis and eisosomes after an acute increase in membrane tension in yeast cells. eLife 2021; 10:62084. [PMID: 33983119 PMCID: PMC9045820 DOI: 10.7554/elife.62084] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
During clathrin-mediated endocytosis (CME) in eukaryotes, actin assembly is required to overcome large membrane tension and turgor pressure. However, the molecular mechanisms by which the actin machinery adapts to varying membrane tension remain unknown. In addition, how cells reduce their membrane tension when they are challenged by hypotonic shocks remains unclear. We used quantitative microscopy to demonstrate that cells rapidly reduce their membrane tension using three parallel mechanisms. In addition to using their cell wall for mechanical protection, yeast cells disassemble eisosomes to buffer moderate changes in membrane tension on a minute time scale. Meanwhile, a temporary reduction in the rate of endocytosis for 2–6 min and an increase in the rate of exocytosis for at least 5 min allow cells to add large pools of membrane to the plasma membrane. We built on these results to submit the cells to abrupt increases in membrane tension and determine that the endocytic actin machinery of fission yeast cells rapidly adapts to perform CME. Our study sheds light on the tight connection between membrane tension regulation, endocytosis, and exocytosis.
Collapse
Affiliation(s)
- Joël Lemière
- Department of Molecular Biophysics and Biochemistry, Department of Cell Biology, Yale University, New Haven, United States
| | - Yuan Ren
- Department of Molecular Biophysics and Biochemistry, Department of Cell Biology, Yale University, New Haven, United States
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Department of Cell Biology, Yale University, New Haven, United States
| |
Collapse
|
5
|
Williams ND, Landajuela A, Kasula RK, Zhou W, Powell JT, Xi Z, Isaacs FJ, Berro J, Toomre D, Karatekin E, Lin C. DNA-Origami-Based Fluorescence Brightness Standards for Convenient and Fast Protein Counting in Live Cells. NANO LETTERS 2020; 20:8890-8896. [PMID: 33164530 PMCID: PMC7726105 DOI: 10.1021/acs.nanolett.0c03925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Fluorescence microscopy has been one of the most discovery-rich methods in biology. In the digital age, the discipline is becoming increasingly quantitative. Virtually all biological laboratories have access to fluorescence microscopes, but abilities to quantify biomolecule copy numbers are limited by the complexity and sophistication associated with current quantification methods. Here, we present DNA-origami-based fluorescence brightness standards for counting 5-300 copies of proteins in bacterial and mammalian cells, tagged with fluorescent proteins or membrane-permeable organic dyes. Compared to conventional quantification techniques, our brightness standards are robust, straightforward to use, and compatible with nearly all fluorescence imaging applications, thereby providing a practical and versatile tool to quantify biomolecules via fluorescence microscopy.
Collapse
Affiliation(s)
- Nathan D. Williams
- Department of Cell Biology, Yale University School of
Medicine, New Haven, CT 06520, USA
- Nanobiology Institute, Yale University, West Haven CT
06516, USA
| | - Ane Landajuela
- Nanobiology Institute, Yale University, West Haven CT
06516, USA
- Department of Cellular and Molecular Physiology, Yale
University School of Medicine, New Haven, CT 06520, USA
| | - Ravi Kiran Kasula
- Department of Cell Biology, Yale University School of
Medicine, New Haven, CT 06520, USA
| | - Wenjiao Zhou
- Department of Cell Biology, Yale University School of
Medicine, New Haven, CT 06520, USA
- Nanobiology Institute, Yale University, West Haven CT
06516, USA
| | - John T. Powell
- Department of Cell Biology, Yale University School of
Medicine, New Haven, CT 06520, USA
- Nanobiology Institute, Yale University, West Haven CT
06516, USA
| | - Zhiqun Xi
- Department of Cell Biology, Yale University School of
Medicine, New Haven, CT 06520, USA
| | - Farren J. Isaacs
- Department of Molecular, Cellular and Developmental
Biology, Yale University, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale University, New
Haven, CT 06520, USA
- Systems Biology Institute, Yale University, West Haven, CT
06516, USA
| | - Julien Berro
- Department of Cell Biology, Yale University School of
Medicine, New Haven, CT 06520, USA
- Nanobiology Institute, Yale University, West Haven CT
06516, USA
- Department of Molecular Biophysics and Biochemistry, New
Haven, CT 06520, USA
| | - Derek Toomre
- Department of Cell Biology, Yale University School of
Medicine, New Haven, CT 06520, USA
| | - Erdem Karatekin
- Nanobiology Institute, Yale University, West Haven CT
06516, USA
- Department of Cellular and Molecular Physiology, Yale
University School of Medicine, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, New
Haven, CT 06520, USA
- Université de Paris, SPPIN –
Saints-Pères Paris Institute for the Neurosciences, Centre National de la
Recherche Scientifique (CNRS), F-75006 Paris, France
| | - Chenxiang Lin
- Department of Cell Biology, Yale University School of
Medicine, New Haven, CT 06520, USA
- Nanobiology Institute, Yale University, West Haven CT
06516, USA
| |
Collapse
|
6
|
Akamatsu M, Vasan R, Serwas D, Ferrin MA, Rangamani P, Drubin DG. Principles of self-organization and load adaptation by the actin cytoskeleton during clathrin-mediated endocytosis. eLife 2020; 9:49840. [PMID: 31951196 PMCID: PMC7041948 DOI: 10.7554/elife.49840] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/16/2020] [Indexed: 12/20/2022] Open
Abstract
Force generation by actin assembly shapes cellular membranes. An experimentally constrained multiscale model shows that a minimal branched actin network is sufficient to internalize endocytic pits against membrane tension. Around 200 activated Arp2/3 complexes are required for robust internalization. A newly developed molecule-counting method determined that ~200 Arp2/3 complexes assemble at sites of clathrin-mediated endocytosis in human cells. Simulations predict that actin self-organizes into a radial branched array with growing ends oriented toward the base of the pit. Long actin filaments bend between attachment sites in the coat and the base of the pit. Elastic energy stored in bent filaments, whose presence was confirmed by cryo-electron tomography, contributes to endocytic internalization. Elevated membrane tension directs more growing filaments toward the base of the pit, increasing actin nucleation and bending for increased force production. Thus, spatially constrained actin filament assembly utilizes an adaptive mechanism enabling endocytosis under varying physical constraints. The outer membrane of a cell is a tight but elastic barrier that controls what enters or leaves the cell. Large molecules typically cannot cross this membrane unaided. Instead, to enter the cell, they must be packaged into a pocket of the membrane that is then pulled inside. This process, called endocytosis, shuttles material into a cell hundreds of times a minute. Endocytosis relies on molecular machines that assemble and disassemble at the membrane as required. One component, a protein called actin, self-assembles near the membrane into long filaments with many repeated subunits. These filaments grow against the membrane, pulling it inwards. But it was not clear how actin filaments organize in such a way that allows them to pull on the membrane with enough force – and without a template to follow. Akamatsu et al. set about identifying how actin operates during endocytosis by using computer simulations that were informed by measurements made in living cells. The simulations included information about the location of actin and other essential molecules, along with the details of how these molecules work individually and together. Akamatsu et al. also developed a method to count the numbers of molecules of a key protein at individual sites of endocytosis. High-resolution imaging was then used to create 3D pictures of actin and endocytosis in action in human cells grown in the laboratory. The analysis showed the way actin filaments arrange themselves depends on the starting positions of a few key molecules that connect to actin. Imaging confirmed that, like a pole-vaulting pole, the flexible actin filaments bend to store energy and then release it to pull the membrane inwards during endocytosis. Finally, the simulations predicted that the collection of filaments adapts its shape and size in response to the resistance of the elastic membrane. This makes the system opportunistic and adaptable to the unpredictable environment within cells.
Collapse
Affiliation(s)
- Matthew Akamatsu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Ritvik Vasan
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, United States
| | - Daniel Serwas
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Michael A Ferrin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, United States
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
7
|
Antoine M, Patrick KL, Soret J, Duc P, Rage F, Cacciottolo R, Nissen KE, Cauchi RJ, Krogan NJ, Guthrie C, Gachet Y, Bordonné R. Splicing Defects of the Profilin Gene Alter Actin Dynamics in an S. pombe SMN Mutant. iScience 2019; 23:100809. [PMID: 31927482 PMCID: PMC6957872 DOI: 10.1016/j.isci.2019.100809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/13/2019] [Accepted: 12/23/2019] [Indexed: 12/18/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating motor neuron disorder caused by mutations in the survival motor neuron (SMN) gene. It remains unclear how SMN deficiency leads to the loss of motor neurons. By screening Schizosaccharomyces pombe, we found that the growth defect of an SMN mutant can be alleviated by deletion of the actin-capping protein subunit gene acp1+. We show that SMN mutated cells have splicing defects in the profilin gene, which thus directly hinder actin cytoskeleton homeostasis including endocytosis and cytokinesis. We conclude that deletion of acp1+ in an SMN mutant background compensates for actin cytoskeleton alterations by restoring redistribution of actin monomers between different types of cellular actin networks. Our data reveal a direct correlation between an impaired function of SMN in snRNP assembly and defects in actin dynamics. They also point to important common features in the pathogenic mechanism of SMA and ALS. Splicing defects in the profilin gene in an S. pombe SMN mutant SMN mutant contains excessively polymerized actin Altered actin dynamics in the SMN mutant hinders endocytosis and cytokinesis Deletion of the acp1 subunit restores actin dynamics in the SMN mutant
Collapse
Affiliation(s)
- Marie Antoine
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | | | - Johann Soret
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Pauline Duc
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Florence Rage
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Rebecca Cacciottolo
- Department of Physiology and Biochemistry, University of Malta, Msida, Malta
| | | | - Ruben J Cauchi
- Department of Physiology and Biochemistry, University of Malta, Msida, Malta
| | | | | | - Yannick Gachet
- Centre de Biologie Integrative, University of Toulouse, CNRS, Toulouse, France
| | - Rémy Bordonné
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
8
|
Lacy MM, Baddeley D, Berro J. Single-molecule turnover dynamics of actin and membrane coat proteins in clathrin-mediated endocytosis. eLife 2019; 8:52355. [PMID: 31855180 PMCID: PMC6977972 DOI: 10.7554/elife.52355] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/18/2019] [Indexed: 12/22/2022] Open
Abstract
Actin dynamics generate forces to deform the membrane and overcome the cell’s high turgor pressure during clathrin-mediated endocytosis (CME) in yeast, but precise molecular details are still unresolved. Our previous models predicted that actin filaments of the endocytic meshwork continually polymerize and disassemble, turning over multiple times during an endocytic event, similar to other actin systems. We applied single-molecule speckle tracking in live fission yeast to directly measure molecular turnover within CME sites for the first time. In contrast with the overall ~20 s lifetimes of actin and actin-associated proteins in endocytic patches, we detected single-molecule residence times around 1 to 2 s, and similarly high turnover rates of membrane-associated proteins in CME. Furthermore, we find heterogeneous behaviors in many proteins’ motions. These results indicate that endocytic proteins turn over up to five times during the formation of an endocytic vesicle, and suggest revising quantitative models of force production.
Collapse
Affiliation(s)
- Michael M Lacy
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States.,Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, United States
| | - David Baddeley
- Nanobiology Institute, Yale University, West Haven, United States.,Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States.,Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
9
|
Lacy MM, Baddeley D, Berro J. Single-molecule turnover dynamics of actin and membrane coat proteins in clathrin-mediated endocytosis. eLife 2019; 8. [PMID: 31855180 DOI: 10.1101/617746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/18/2019] [Indexed: 05/20/2023] Open
Abstract
Actin dynamics generate forces to deform the membrane and overcome the cell's high turgor pressure during clathrin-mediated endocytosis (CME) in yeast, but precise molecular details are still unresolved. Our previous models predicted that actin filaments of the endocytic meshwork continually polymerize and disassemble, turning over multiple times during an endocytic event, similar to other actin systems. We applied single-molecule speckle tracking in live fission yeast to directly measure molecular turnover within CME sites for the first time. In contrast with the overall ~20 s lifetimes of actin and actin-associated proteins in endocytic patches, we detected single-molecule residence times around 1 to 2 s, and similarly high turnover rates of membrane-associated proteins in CME. Furthermore, we find heterogeneous behaviors in many proteins' motions. These results indicate that endocytic proteins turn over up to five times during the formation of an endocytic vesicle, and suggest revising quantitative models of force production.
Collapse
Affiliation(s)
- Michael M Lacy
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
- Nanobiology Institute, Yale University, West Haven, United States
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, United States
| | - David Baddeley
- Nanobiology Institute, Yale University, West Haven, United States
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
- Nanobiology Institute, Yale University, West Haven, United States
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
10
|
Prabhakar A, Vadaie N, Krzystek T, Cullen PJ. Proteins That Interact with the Mucin-Type Glycoprotein Msb2p Include a Regulator of the Actin Cytoskeleton. Biochemistry 2019; 58:4842-4856. [PMID: 31710471 DOI: 10.1021/acs.biochem.9b00725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transmembrane mucin-type glycoproteins can regulate signal transduction pathways. In yeast, signaling mucins regulate mitogen-activated protein kinase (MAPK) pathways that induce cell differentiation to filamentous growth (fMAPK pathway) and the response to osmotic stress (HOG pathway). To explore regulatory aspects of signaling mucin function, protein microarrays were used to identify proteins that interact with the cytoplasmic domain of the mucin-like glycoprotein Msb2p. Eighteen proteins were identified that comprised functional categories of metabolism, actin filament capping and depolymerization, aerobic and anaerobic growth, chromatin organization and bud growth, sporulation, ribosome biogenesis, protein modification by iron-sulfur clusters, RNA catabolism, and DNA replication and DNA repair. A subunit of actin capping protein, Cap2p, interacted with the cytoplasmic domain of Msb2p. Cells lacking Cap2p showed altered localization of Msb2p and increased levels of shedding of Msb2p's N-terminal glycosylated domain. Consistent with its role in regulating the actin cytoskeleton, Cap2p was required for enhanced cell polarization during filamentous growth. Our study identifies proteins that connect a signaling mucin to diverse cellular processes and may provide insight into new aspects of mucin function.
Collapse
Affiliation(s)
- Aditi Prabhakar
- Department of Biological Sciences , State University of New York at Buffalo , Buffalo , New York 14260-1300 , United States
| | - Nadia Vadaie
- Department of Biological Sciences , State University of New York at Buffalo , Buffalo , New York 14260-1300 , United States
| | - Thomas Krzystek
- Department of Biological Sciences , State University of New York at Buffalo , Buffalo , New York 14260-1300 , United States
| | - Paul J Cullen
- Department of Biological Sciences , State University of New York at Buffalo , Buffalo , New York 14260-1300 , United States
| |
Collapse
|
11
|
Billault-Chaumartin I, Martin SG. Capping Protein Insulates Arp2/3-Assembled Actin Patches from Formins. Curr Biol 2019; 29:3165-3176.e6. [PMID: 31495586 PMCID: PMC6864609 DOI: 10.1016/j.cub.2019.07.088] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/04/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022]
Abstract
How actin structures of distinct identities and functions coexist within the same environment is a critical self-organization question. Fission yeast cells have a simple actin cytoskeleton made of four structures: Arp2/3 assembles actin patches around endocytic pits, and the formins For3, Cdc12, and Fus1 assemble actin cables, the cytokinetic ring during division, and the fusion focus during sexual reproduction, respectively. The focus concentrates the delivery of hydrolases by myosin V to digest the cell wall for cell fusion. We discovered that cells lacking capping protein (CP), a heterodimer that blocks barbed-end dynamics and associates with actin patches, exhibit a delay in fusion. Consistent with CP-formin competition for barbed-end binding, Fus1, F-actin, and the linear filament marker tropomyosin hyper-accumulate at the fusion focus in cells lacking CP. CP deletion also rescues the fusion defect of a mutation in the Fus1 knob region. However, myosin V and exocytic cargoes are reduced at the fusion focus and diverted to ectopic foci, which underlies the fusion defect. Remarkably, the ectopic foci coincide with Arp2/3-assembled actin patches, which now contain low levels of Fus1. We further show that CP localization to actin patches is required to prevent the formation of ectopic foci and promote efficient cell fusion. During mitotic growth, actin patches lacking CP similarly display a dual identity, as they accumulate the formins For3 and Cdc12, normally absent from patches, and are co-decorated by the linear filament-binding protein tropomyosin and the patch marker fimbrin. Thus, CP serves to protect Arp2/3-nucleated structures from formin activity.
Collapse
Affiliation(s)
- Ingrid Billault-Chaumartin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Sophie G Martin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
12
|
Nickaeen M, Berro J, Pollard TD, Slepchenko BM. Actin assembly produces sufficient forces for endocytosis in yeast. Mol Biol Cell 2019; 30:2014-2024. [PMID: 31242058 PMCID: PMC6727779 DOI: 10.1091/mbc.e19-01-0059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We formulated a spatially resolved model to estimate forces exerted by a polymerizing actin meshwork on an invagination of the plasma membrane during endocytosis in yeast cells. The model, which approximates the actin meshwork as a visco-active gel exerting forces on a rigid spherocylinder representing the endocytic invagination, is tightly constrained by experimental data. Simulations of the model produce forces that can overcome resistance of turgor pressure in yeast cells. Strong forces emerge due to the high density of polymerized actin in the vicinity of the invagination and because of entanglement of the meshwork due to its dendritic structure and cross-linking. The model predicts forces orthogonal to the invagination that are consistent with formation of a flask shape, which would diminish the net force due to turgor pressure. Simulations of the model with either two rings of nucleation-promoting factors (NPFs) as in fission yeast or a single ring of NPFs as in budding yeast produce enough force to elongate the invagination against the turgor pressure.
Collapse
Affiliation(s)
- Masoud Nickaeen
- Richard D. Berlin Center for Cell Analysis and Modeling, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - Julien Berro
- Departments of Molecular Biophysics and Biochemistry and of Cell Biology.,Nanobiology Institute, Yale University, New Haven, CT 06520
| | - Thomas D Pollard
- Departments of Molecular Biophysics and Biochemistry and of Cell Biology.,Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Boris M Slepchenko
- Richard D. Berlin Center for Cell Analysis and Modeling, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030
| |
Collapse
|
13
|
Epstein AE, Espinoza-Sanchez S, Pollard TD. Phosphorylation of Arp2 is not essential for Arp2/3 complex activity in fission yeast. Life Sci Alliance 2018; 1:e201800202. [PMID: 30456391 PMCID: PMC6238581 DOI: 10.26508/lsa.201800202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 12/23/2022] Open
Abstract
LeClaire et al presented evidence that phosphorylation of three sites on the Arp2 subunit activates the Arp2/3 complex to nucleate actin filaments. We mutated the homologous residues of Arp2 (Y198, T233, and T234) in the fission yeast genome to amino acids that preclude or mimic phosphorylation. Arp2/3 complex is essential for the viability of fission yeast, yet strains unable to phosphorylate these sites grew normally. Y198F/T233A/T234A Arp2 was only nonfunctional if GFP-tagged, as observed by LeClaire et al in Drosophila cells. Replacing both T233 and T234 with aspartic acid was lethal, suggesting that phosphorylation might be inhibitory. Nevertheless, blocking phosphorylation at these sites had the same effect as mimicking it: slowing assembly of endocytic actin patches. Mass spectrometry revealed phosphorylation at a fourth conserved Arp2 residue, Y218, but both blocking and mimicking phosphorylation of Y218 only slowed actin patch assembly slightly. Therefore, phosphorylation of Y198, T233, T234, and Y218 is not required for the activity of fission yeast Arp2/3 complex.
Collapse
Affiliation(s)
- Alexander E Epstein
- Departments of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Sofia Espinoza-Sanchez
- Departments of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Thomas D Pollard
- Departments of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Departments of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Cell Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
14
|
Bassereau P, Jin R, Baumgart T, Deserno M, Dimova R, Frolov VA, Bashkirov PV, Grubmüller H, Jahn R, Risselada HJ, Johannes L, Kozlov MM, Lipowsky R, Pucadyil TJ, Zeno WF, Stachowiak JC, Stamou D, Breuer A, Lauritsen L, Simon C, Sykes C, Voth GA, Weikl TR. The 2018 biomembrane curvature and remodeling roadmap. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2018; 51:343001. [PMID: 30655651 PMCID: PMC6333427 DOI: 10.1088/1361-6463/aacb98] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The importance of curvature as a structural feature of biological membranes has been recognized for many years and has fascinated scientists from a wide range of different backgrounds. On the one hand, changes in membrane morphology are involved in a plethora of phenomena involving the plasma membrane of eukaryotic cells, including endo- and exocytosis, phagocytosis and filopodia formation. On the other hand, a multitude of intracellular processes at the level of organelles rely on generation, modulation, and maintenance of membrane curvature to maintain the organelle shape and functionality. The contribution of biophysicists and biologists is essential for shedding light on the mechanistic understanding and quantification of these processes. Given the vast complexity of phenomena and mechanisms involved in the coupling between membrane shape and function, it is not always clear in what direction to advance to eventually arrive at an exhaustive understanding of this important research area. The 2018 Biomembrane Curvature and Remodeling Roadmap of Journal of Physics D: Applied Physics addresses this need for clarity and is intended to provide guidance both for students who have just entered the field as well as established scientists who would like to improve their orientation within this fascinating area.
Collapse
Affiliation(s)
- Patricia Bassereau
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
| | - Rui Jin
- Chemistry Department, University of Pennsylvania, Philadelphia, PA 19104-6323, United States of America
| | - Tobias Baumgart
- Chemistry Department, University of Pennsylvania, Philadelphia, PA 19104-6323, United States of America
| | - Markus Deserno
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Rumiana Dimova
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Vadim A Frolov
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa 48940, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
| | - Pavel V Bashkirov
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow 119435, Russia
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia
| | - Helmut Grubmüller
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - H Jelger Risselada
- Department of Theoretical Physics, Georg-August University, Göttingen, Germany
| | - Ludger Johannes
- Cellular and Chemical Biology Unit, Institut Curie, PSL Research University, U1143 INSERM, UMR3666 CNRS, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Michael M Kozlov
- Sackler Faculty of Medicine, Department of Physiology and Pharmacology, Tel Aviv University
| | - Reinhard Lipowsky
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | | | - Wade F Zeno
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States of America
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States of America
- University of Texas at Austin, Institute for Cellular and Molecular Biology, Austin, TX, United States of America
| | - Dimitrios Stamou
- Bionanotechnology and Nanomedicine Laboratory, Department of Chemistry, Nano-Science Center, University of Copenhagen, Denmark
| | - Artú Breuer
- Bionanotechnology and Nanomedicine Laboratory, Department of Chemistry, Nano-Science Center, University of Copenhagen, Denmark
| | - Line Lauritsen
- Bionanotechnology and Nanomedicine Laboratory, Department of Chemistry, Nano-Science Center, University of Copenhagen, Denmark
| | - Camille Simon
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
| | - Cécile Sykes
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
| | - Gregory A Voth
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, United States of America
| | - Thomas R Weikl
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| |
Collapse
|
15
|
Mund M, van der Beek JA, Deschamps J, Dmitrieff S, Hoess P, Monster JL, Picco A, Nédélec F, Kaksonen M, Ries J. Systematic Nanoscale Analysis of Endocytosis Links Efficient Vesicle Formation to Patterned Actin Nucleation. Cell 2018; 174:884-896.e17. [PMID: 30057119 PMCID: PMC6086932 DOI: 10.1016/j.cell.2018.06.032] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/27/2018] [Accepted: 06/13/2018] [Indexed: 11/18/2022]
Abstract
Clathrin-mediated endocytosis is an essential cellular function in all eukaryotes that is driven by a self-assembled macromolecular machine of over 50 different proteins in tens to hundreds of copies. How these proteins are organized to produce endocytic vesicles with high precision and efficiency is not understood. Here, we developed high-throughput superresolution microscopy to reconstruct the nanoscale structural organization of 23 endocytic proteins from over 100,000 endocytic sites in yeast. We found that proteins assemble by radially ordered recruitment according to function. WASP family proteins form a circular nanoscale template on the membrane to spatially control actin nucleation during vesicle formation. Mathematical modeling of actin polymerization showed that this WASP nano-template optimizes force generation for membrane invagination and substantially increases the efficiency of endocytosis. Such nanoscale pre-patterning of actin nucleation may represent a general design principle for directional force generation in membrane remodeling processes such as during cell migration and division.
Collapse
Affiliation(s)
- Markus Mund
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Johannes Albertus van der Beek
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Joran Deschamps
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Serge Dmitrieff
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Philipp Hoess
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany; Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Jooske Louise Monster
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Andrea Picco
- Department of Biochemistry and NCCR Chemical Biology, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
| | - François Nédélec
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Marko Kaksonen
- Department of Biochemistry and NCCR Chemical Biology, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
| | - Jonas Ries
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
16
|
Capping protein-controlled actin polymerization shapes lipid membranes. Nat Commun 2018; 9:1630. [PMID: 29691404 PMCID: PMC5915599 DOI: 10.1038/s41467-018-03918-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 03/20/2018] [Indexed: 11/08/2022] Open
Abstract
Arp2/3 complex-mediated actin assembly at cell membranes drives the formation of protrusions or endocytic vesicles. To identify the mechanism by which different membrane deformations can be achieved, we reconstitute the basic membrane deformation modes of inward and outward bending in a confined geometry by encapsulating a minimal set of cytoskeletal proteins into giant unilamellar vesicles. Formation of membrane protrusions is favoured at low capping protein (CP) concentrations, whereas the formation of negatively bent domains is promoted at high CP concentrations. Addition of non-muscle myosin II results in full fission events in the vesicle system. The different deformation modes are rationalized by simulations of the underlying transient nature of the reaction kinetics. The relevance of the regulatory mechanism is supported by CP overexpression in mouse melanoma B16-F1 cells and therefore demonstrates the importance of the quantitative understanding of microscopic kinetic balances to address the diverse functionality of the cytoskeleton. Cell membrane protrusions and invaginations are both driven by actin assembly but the mechanism leading to different membrane shapes is unknown. Using a minimal system and modelling the authors reconstitute the deformation modes and identify capping protein as a regulator of both deformation types.
Collapse
|
17
|
Picco A, Kukulski W, Manenschijn HE, Specht T, Briggs JAG, Kaksonen M. The contributions of the actin machinery to endocytic membrane bending and vesicle formation. Mol Biol Cell 2018; 29:1346-1358. [PMID: 29851558 PMCID: PMC5994895 DOI: 10.1091/mbc.e17-11-0688] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Branched and cross-linked actin networks mediate cellular processes that move and shape membranes. To understand how actin contributes during the different stages of endocytic membrane reshaping, we analyzed deletion mutants of yeast actin network components using a hybrid imaging approach that combines live imaging with correlative microscopy. We could thus temporally dissect the effects of different actin network perturbations, revealing distinct stages of actin-based membrane reshaping. Our data show that initiation of membrane bending requires the actin network to be physically linked to the plasma membrane and to be optimally cross-linked. Once initiated, the membrane invagination process is driven by nucleation and polymerization of new actin filaments, independent of the degree of cross-linking and unaffected by a surplus of actin network components. A key transition occurs 2 s before scission, when the filament nucleation rate drops. From that time point on, invagination growth and vesicle scission are driven by an expansion of the actin network without a proportional increase of net actin amounts. The expansion is sensitive to the amount of filamentous actin and its cross-linking. Our results suggest that the mechanism by which actin reshapes the membrane changes during the progress of endocytosis, possibly adapting to varying force requirements.
Collapse
Affiliation(s)
- Andrea Picco
- Department of Biochemistry and NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Wanda Kukulski
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Hetty E Manenschijn
- Department of Biochemistry and NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Tanja Specht
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - John A G Briggs
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Marko Kaksonen
- Department of Biochemistry and NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
18
|
Arasada R, Sayyad WA, Berro J, Pollard TD. High-speed superresolution imaging of the proteins in fission yeast clathrin-mediated endocytic actin patches. Mol Biol Cell 2017; 29:295-303. [PMID: 29212877 PMCID: PMC5996959 DOI: 10.1091/mbc.e17-06-0415] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 12/31/2022] Open
Abstract
High-speed superresolution localization microscopy shows that actin filaments assemble in two zones in Schizosaccharomyces pombe actin patches, one around the base of the membrane invagination and another ~200 nm deeper into the cytoplasm. Both zones of actin filaments are important for elongation of the endocytic tubule and membrane scission To internalize nutrients and cell surface receptors via clathrin-mediated endocytosis, cells assemble at least 50 proteins, including clathrin, clathrin-interacting proteins, actin filaments, and actin binding proteins, in a highly ordered and regulated manner. The molecular mechanism by which actin filament polymerization deforms the cell membrane is unknown, largely due to lack of knowledge about the organization of the regulatory proteins and actin filaments. We used high-speed superresolution localization microscopy of live fission yeast cells to improve the spatial resolution to ∼35 nm with 1-s temporal resolution. The nucleation promoting factors Wsp1p (WASp) and Myo1p (myosin-I) define two independent pathways that recruit Arp2/3 complex, which assembles two zones of actin filaments. Myo1p concentrates at the site of endocytosis and initiates a zone of actin filaments assembled by Arp2/3 complex. Wsp1p appears simultaneously at this site but subsequently moves away from the cell surface as it stimulates Arp2/3 complex to assemble a second zone of actin filaments. Cells lacking either nucleation-promoting factor assemble only one, stationary, zone of actin filaments. These observations support our two-zone hypothesis to explain endocytic tubule elongation and vesicle scission in fission yeast.
Collapse
Affiliation(s)
- Rajesh Arasada
- Departments of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103
| | - Wasim A Sayyad
- Departments of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103
| | - Julien Berro
- Departments of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8103.,Department of Cell Biology, Yale University, New Haven, CT 06520-8103.,Nanobiology Institute, Yale University, New Haven, CT 06520-8103
| | - Thomas D Pollard
- Departments of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103 .,Departments of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8103.,Department of Cell Biology, Yale University, New Haven, CT 06520-8103
| |
Collapse
|
19
|
Functions of actin-interacting protein 1 (AIP1)/WD repeat protein 1 (WDR1) in actin filament dynamics and cytoskeletal regulation. Biochem Biophys Res Commun 2017; 506:315-322. [PMID: 29056508 DOI: 10.1016/j.bbrc.2017.10.096] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 10/18/2017] [Indexed: 02/04/2023]
Abstract
Actin-depolymerizing factor (ADF)/cofilin and actin-interacting protein 1 (AIP1), also known as WD-repeat protein 1 (WDR1), are conserved among eukaryotes and play critical roles in dynamic reorganization of the actin cytoskeleton. AIP1 preferentially promotes disassembly of ADF/cofilin-decorated actin filaments but exhibits minimal effects on bare actin filaments. Therefore, AIP1 has been often considered to be an ancillary co-factor of ADF/cofilin that merely boosts ADF/cofilin activity level. However, genetic and cell biological studies show that AIP1 deficiency often causes lethality or severe abnormalities in multiple tissues and organs including muscle, epithelia, and blood, suggesting that AIP1 is a major regulator of many biological processes that depend on actin dynamics. This review summarizes recent progress in studies on the biochemical mechanism of actin filament severing by AIP1 and in vivo functions of AIP1 in model organisms and human diseases.
Collapse
|
20
|
Fujiwara I, Narita A. Keeping the focus on biophysics and actin filaments in Nagoya: A report of the 2016 "now in actin" symposium. Cytoskeleton (Hoboken) 2017; 74:450-464. [PMID: 28681410 DOI: 10.1002/cm.21384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 01/01/2023]
Abstract
Regulatory systems in living cells are highly organized, enabling cells to response to various changes in their environments. Actin polymerization and depolymerization are crucial to establish cytoskeletal networks to maintain muscle contraction, cell motility, cell division, adhesion, organism development and more. To share and promote the biophysical understanding of such mechanisms in living creatures, the "Now in Actin Study: -Motor protein research reaching a new stage-" symposium was organized at Nagoya University, Japan on 12 and 13, December 2016. The organizers invited emeritus professor of Nagoya and Osaka Universities Fumio Oosawa and leading scientists worldwide as keynote speakers, in addition to poster presentations on cell motility studies by many researchers. Studies employing various biophysical, biochemical, cell and molecular biological and mathematical approaches provided the latest understanding of mechanisms of cell motility functions driven by actin, microtubules, actin-binding proteins, and other motor proteins.
Collapse
Affiliation(s)
- Ikuko Fujiwara
- Frontier Research Institute for Materials Science, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| | - Akihiro Narita
- Structural Biology Research Center and Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Nagoya 464-8601, Japan
| |
Collapse
|
21
|
Lacy MM, Baddeley D, Berro J. Single-molecule imaging of the BAR-domain protein Pil1p reveals filament-end dynamics. Mol Biol Cell 2017; 28:2251-2259. [PMID: 28659415 PMCID: PMC5555653 DOI: 10.1091/mbc.e17-04-0238] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 06/22/2017] [Indexed: 12/21/2022] Open
Abstract
Molecular assemblies can have highly heterogeneous dynamics within the cell, but the limitations of conventional fluorescence microscopy can mask nanometer-scale features. Here we adapt a single-molecule strategy to perform single-molecule recovery after photobleaching (SRAP) within dense macromolecular assemblies to reveal and characterize binding and unbinding dynamics within such assemblies. We applied this method to study the eisosome, a stable assembly of BAR-domain proteins on the cytoplasmic face of the plasma membrane in fungi. By fluorescently labeling only a small fraction of cellular Pil1p, the main eisosome BAR-domain protein in fission yeast, we visualized whole eisosomes and, after photobleaching, localized recruitment of new Pil1p molecules with ∼30-nm precision. Comparing our data to computer simulations, we show that Pil1p exchange occurs specifically at eisosome ends and not along their core, supporting a new model of the eisosome as a dynamic filament. This result is the first direct observation of any BAR-domain protein dynamics in vivo under physiological conditions consistent with the oligomeric filaments reported from in vitro experiments.
Collapse
Affiliation(s)
- Michael M Lacy
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520.,Nanobiology Institute, Yale University, West Haven, CT 06516.,Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520
| | - David Baddeley
- Nanobiology Institute, Yale University, West Haven, CT 06516.,Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520.,Department of Cell Biology, Yale University, New Haven, CT 06520
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520 .,Nanobiology Institute, Yale University, West Haven, CT 06516.,Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520.,Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520
| |
Collapse
|
22
|
Internetwork competition for monomers governs actin cytoskeleton organization. Nat Rev Mol Cell Biol 2016; 17:799-810. [PMID: 27625321 DOI: 10.1038/nrm.2016.106] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cells precisely control the formation of dynamic actin cytoskeleton networks to coordinate fundamental processes, including motility, division, endocytosis and polarization. To support these functions, actin filament networks must be assembled, maintained and disassembled at the correct time and place, and with proper filament organization and dynamics. Regulation of the extent of filament network assembly and of filament network organization has been largely attributed to the coordinated activation of actin assembly factors through signalling cascades. Here, we discuss an intriguing model in which actin monomer availability is limiting and competition between homeostatic actin cytoskeletal networks for actin monomers is an additional crucial regulatory mechanism that influences the density and size of different actin networks, thereby contributing to the organization of the cellular actin cytoskeleton.
Collapse
|
23
|
González-Rodríguez VE, Garrido C, Cantoral JM, Schumacher J. The F-actin capping protein is required for hyphal growth and full virulence but is dispensable for septum formation in Botrytis cinerea. Fungal Biol 2016; 120:1225-35. [PMID: 27647239 DOI: 10.1016/j.funbio.2016.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 01/20/2023]
Abstract
Filamentous (F-) actin is an integral part of the cytoskeleton allowing for cell growth, intracellular motility, and cytokinesis of eukaryotic cells. Its assembly from G-actin monomers and its disassembly are tightly regulated processes involving a number of actin-binding proteins (ABPs) such as F-actin nucleators and cross-linking proteins. F-actin capping protein (CP) is an alpha/beta heterodimer known from yeast and higher eukaryotes to bind to the fast growing ends of the actin filaments stabilizing them. In this study, we identified the orthologs of the two CP subunits, named BcCPA1 and BcCPB1, in the plant pathogenic fungus Botrytis cinerea and showed that the two proteins physically interact in a yeast two-hybrid approach. GFP-BcCPA1 fusion proteins were functional and localized to the assumed sites of F-actin accumulation, i.e. to the hyphal tips and the sites of actin ring formation. Deletion of bccpa1 had a profound effect on hyphal growth, morphogenesis, and virulence indicating the importance of F-actin capping for an intact actin cytoskeleton. As polarized growth - unlike septum formation - is impaired in the mutants, it can be concluded that the organization and/or localization of actin patches and cables are disturbed rather than the functionality of the actin rings.
Collapse
Affiliation(s)
- Victoria E González-Rodríguez
- Departamento de Biomedicina, Biotecnología y Salud Pública, Laboratorio de Microbiología, Facultad de Ciencias de Mar y Ambientales, Instituto Universitario de Investigación Vitivinícola y Agroalimentaria (IVAGRO), Universidad de Cádiz, Polígono Río San Pedro, 11510 Puerto Real, Spain.
| | - Carlos Garrido
- Departamento de Biomedicina, Biotecnología y Salud Pública, Laboratorio de Microbiología, Facultad de Ciencias de Mar y Ambientales, Instituto Universitario de Investigación Vitivinícola y Agroalimentaria (IVAGRO), Universidad de Cádiz, Polígono Río San Pedro, 11510 Puerto Real, Spain.
| | - Jesús M Cantoral
- Departamento de Biomedicina, Biotecnología y Salud Pública, Laboratorio de Microbiología, Facultad de Ciencias de Mar y Ambientales, Instituto Universitario de Investigación Vitivinícola y Agroalimentaria (IVAGRO), Universidad de Cádiz, Polígono Río San Pedro, 11510 Puerto Real, Spain.
| | - Julia Schumacher
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143 Münster, Germany.
| |
Collapse
|
24
|
Wang N, Lee IJ, Rask G, Wu JQ. Roles of the TRAPP-II Complex and the Exocyst in Membrane Deposition during Fission Yeast Cytokinesis. PLoS Biol 2016; 14:e1002437. [PMID: 27082518 PMCID: PMC4833314 DOI: 10.1371/journal.pbio.1002437] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/15/2016] [Indexed: 12/27/2022] Open
Abstract
The cleavage-furrow tip adjacent to the actomyosin contractile ring is believed to be the predominant site for plasma-membrane insertion through exocyst-tethered vesicles during cytokinesis. Here we found that most secretory vesicles are delivered by myosin-V on linear actin cables in fission yeast cytokinesis. Surprisingly, by tracking individual exocytic and endocytic events, we found that vesicles with new membrane are deposited to the cleavage furrow relatively evenly during contractile-ring constriction, but the rim of the cleavage furrow is the main site for endocytosis. Fusion of vesicles with the plasma membrane requires vesicle tethers. Our data suggest that the transport particle protein II (TRAPP-II) complex and Rab11 GTPase Ypt3 help to tether secretory vesicles or tubulovesicular structures along the cleavage furrow while the exocyst tethers vesicles at the rim of the division plane. We conclude that the exocyst and TRAPP-II complex have distinct localizations at the division site, but both are important for membrane expansion and exocytosis during cytokinesis. Two putative vesicle tethers—the exocyst and TRAPP-II complexes—localize differently at the division plane to ensure efficient plasma-membrane deposition along the whole cleavage furrow during cytokinesis in the fission yeast Schizosaccharomyces pombe. Cytokinesis partitions a mother cell into two daughter cells at the end of each cell-division cycle. A significant amount of new plasma membrane is needed at the cleavage furrow during cytokinesis in many cell types. Membrane expansion is achieved through the balance of exocytosis and endocytosis. It is poorly understood where and when the membrane is deposited and retrieved during cytokinesis. By tracking individual vesicles with high spatiotemporal resolution and using electron microscopy, we found that new membrane is deposited relatively evenly along the cleavage furrow in fission yeast, while the rim of the division plane is the predominant site for endocytosis. The secretory vesicles/compartments carrying new membrane are mainly delivered along formin-nucleated actin cables by myosin-V motors. Surprisingly, we find that both exocytosis and endocytosis at the division site are ramped up before contractile-ring constriction and last until daughter-cell separation. We discovered that two putative vesicle tethers, the exocyst and TRAPP-II complexes, localize to different sites at the cleavage furrow to promote tethering of different, yet overlapping, classes of secretory vesicles/compartments for exocytosis and new membrane deposition.
Collapse
Affiliation(s)
- Ning Wang
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - I-Ju Lee
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Galen Rask
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
25
|
Ydenberg CA, Johnston A, Weinstein J, Bellavance D, Jansen S, Goode BL. Combinatorial genetic analysis of a network of actin disassembly-promoting factors. Cytoskeleton (Hoboken) 2015; 72:349-61. [PMID: 26147656 PMCID: PMC5014199 DOI: 10.1002/cm.21231] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 12/12/2022]
Abstract
The patterning of actin cytoskeleton structures in vivo is a product of spatially and temporally regulated polymer assembly balanced by polymer disassembly. While in recent years our understanding of actin assembly mechanisms has grown immensely, our knowledge of actin disassembly machinery and mechanisms has remained comparatively sparse. Saccharomyces cerevisiae is an ideal system to tackle this problem, both because of its amenabilities to genetic manipulation and live‐cell imaging and because only a single gene encodes each of the core disassembly factors: cofilin (COF1), Srv2/CAP (SRV2), Aip1 (AIP1), GMF (GMF1/AIM7), coronin (CRN1), and twinfilin (TWF1). Among these six factors, only the functions of cofilin are essential and have been well defined. Here, we investigated the functions of the nonessential actin disassembly factors by performing genetic and live‐cell imaging analyses on a combinatorial set of isogenic single, double, triple, and quadruple mutants in S. cerevisiae. Our results show that each disassembly factor makes an important contribution to cell viability, actin organization, and endocytosis. Further, our data reveal new relationships among these factors, providing insights into how they work together to orchestrate actin turnover. Finally, we observe specific combinations of mutations that are lethal, e.g., srv2Δ aip1Δ and srv2Δ crn1Δ twf1Δ, demonstrating that while cofilin is essential, it is not sufficient in vivo, and that combinations of the other disassembly factors perform vital functions. © 2015 The Authors. Cytoskeleton Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Casey A Ydenberg
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, 02454
| | - Adam Johnston
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, 02454
| | - Jaclyn Weinstein
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, 02454
| | - Danielle Bellavance
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, 02454
| | - Silvia Jansen
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, 02454
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, 02454
| |
Collapse
|
26
|
Jansen S, Collins A, Chin SM, Ydenberg CA, Gelles J, Goode BL. Single-molecule imaging of a three-component ordered actin disassembly mechanism. Nat Commun 2015; 6:7202. [PMID: 25995115 PMCID: PMC4443854 DOI: 10.1038/ncomms8202] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 04/17/2015] [Indexed: 12/25/2022] Open
Abstract
The mechanisms by which cells destabilize and rapidly disassemble filamentous actin networks have remained elusive; however, Coronin, Cofilin and AIP1 have been implicated in this process. Here using multi-wavelength single-molecule fluorescence imaging, we show that mammalian Cor1B, Cof1 and AIP1 work in concert through a temporally ordered pathway to induce highly efficient severing and disassembly of actin filaments. Cor1B binds to filaments first, and dramatically accelerates the subsequent binding of Cof1, leading to heavily decorated, stabilized filaments. Cof1 in turn recruits AIP1, which rapidly triggers severing and remains bound to the newly generated barbed ends. New growth at barbed ends generated by severing was blocked specifically in the presence of all three proteins. This activity enabled us to reconstitute and directly visualize single actin filaments being rapidly polymerized by formins at their barbed ends while simultanteously being stochastically severed and capped along their lengths, and disassembled from their pointed ends. The roles of Coronin, Cofilin and AIP1 in promoting actin disassembly have not been well understood. Here using single-molecule fluorescence imaging, Jansen et al. show that the three proteins act together in a coordinated, temporal pathway to induce rapid severing and disassembly of actin filaments.
Collapse
Affiliation(s)
- Silvia Jansen
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, 415 South street, Waltham, Massachusetts 02454, USA
| | - Agnieszka Collins
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, 415 South street, Waltham, Massachusetts 02454, USA
| | - Samantha M Chin
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, 415 South street, Waltham, Massachusetts 02454, USA
| | - Casey A Ydenberg
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, 415 South street, Waltham, Massachusetts 02454, USA
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, 415 South street, Waltham, Massachusetts 02454, USA
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, 415 South street, Waltham, Massachusetts 02454, USA
| |
Collapse
|
27
|
Lechuga S, Baranwal S, Ivanov AI. Actin-interacting protein 1 controls assembly and permeability of intestinal epithelial apical junctions. Am J Physiol Gastrointest Liver Physiol 2015; 308:G745-56. [PMID: 25792565 PMCID: PMC4421013 DOI: 10.1152/ajpgi.00446.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/11/2015] [Indexed: 01/31/2023]
Abstract
Adherens junctions (AJs) and tight junctions (TJs) are crucial regulators of the integrity and restitution of the intestinal epithelial barrier. The structure and function of epithelial junctions depend on their association with the cortical actin cytoskeleton that, in polarized epithelial cells, is represented by a prominent perijunctional actomyosin belt. The assembly and stability of the perijunctional cytoskeleton is controlled by constant turnover (disassembly and reassembly) of actin filaments. Actin-interacting protein (Aip) 1 is an emerging regulator of the actin cytoskeleton, playing a critical role in filament disassembly. In this study, we examined the roles of Aip1 in regulating the structure and remodeling of AJs and TJs in human intestinal epithelium. Aip1 was enriched at apical junctions in polarized human intestinal epithelial cells and normal mouse colonic mucosa. Knockdown of Aip1 by RNA interference increased the paracellular permeability of epithelial cell monolayers, decreased recruitment of AJ/TJ proteins to steady-state intercellular contacts, and attenuated junctional reassembly in a calcium-switch model. The observed defects of AJ/TJ structure and functions were accompanied by abnormal organization and dynamics of the perijunctional F-actin cytoskeleton. Moreover, loss of Aip1 impaired the apico-basal polarity of intestinal epithelial cell monolayers and inhibited formation of polarized epithelial cysts in 3-D Matrigel. Our findings demonstrate a previously unanticipated role of Aip1 in regulating the structure and remodeling of intestinal epithelial junctions and early steps of epithelial morphogenesis.
Collapse
Affiliation(s)
- Susana Lechuga
- 1Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia;
| | - Somesh Baranwal
- 1Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia;
| | - Andrei I. Ivanov
- 1Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia; ,2Virginia Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia; ,3VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
28
|
Narayanan P, Chatterton P, Ikeda A, Ikeda S, Corey DP, Ervasti JM, Perrin BJ. Length regulation of mechanosensitive stereocilia depends on very slow actin dynamics and filament-severing proteins. Nat Commun 2015; 6:6855. [PMID: 25897778 PMCID: PMC4523390 DOI: 10.1038/ncomms7855] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 03/05/2015] [Indexed: 12/15/2022] Open
Abstract
Auditory sensory hair cells depend on stereocilia with precisely regulated lengths to detect sound. Since stereocilia are primarily composed of cross-linked, parallel actin filaments, regulated actin dynamics are essential for controlling stereocilia length. Here, we assessed stereocilia actin turnover by monitoring incorporation of inducibly expressed β-actin-GFP in adult mouse hair cells in vivo and by directly measuring β-actin-GFP turnover in explants. Stereocilia actin incorporation is remarkably slow and restricted to filament barbed ends in a small tip compartment, with minimal accumulation in the rest of the actin core. Shorter rows of stereocilia, which have mechanically-gated ion channels, show more variable actin turnover than the tallest stereocilia, which lack channels. Finally, the proteins ADF and AIP1, which both mediate actin filament severing, contribute to stereocilia length maintenance. Together, the data support a model whereby stereocilia actin cores are largely static, with dynamic regulation at the tips to maintain a critical length.
Collapse
Affiliation(s)
- Praveena Narayanan
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Paul Chatterton
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Sakae Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - David P Corey
- Department of Neurobiology, Harvard Medical School and Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Benjamin J Perrin
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46022, USA
| |
Collapse
|
29
|
Abstract
Endocytosis, the process whereby the plasma membrane invaginates to form vesicles, is essential for bringing many substances into the cell and for membrane turnover. The mechanism driving clathrin-mediated endocytosis (CME) involves > 50 different protein components assembling at a single location on the plasma membrane in a temporally ordered and hierarchal pathway. These proteins perform precisely choreographed steps that promote receptor recognition and clustering, membrane remodeling, and force-generating actin-filament assembly and turnover to drive membrane invagination and vesicle scission. Many critical aspects of the CME mechanism are conserved from yeast to mammals and were first elucidated in yeast, demonstrating that it is a powerful system for studying endocytosis. In this review, we describe our current mechanistic understanding of each step in the process of yeast CME, and the essential roles played by actin polymerization at these sites, while providing a historical perspective of how the landscape has changed since the preceding version of the YeastBook was published 17 years ago (1997). Finally, we discuss the key unresolved issues and where future studies might be headed.
Collapse
Affiliation(s)
- Bruce L Goode
- Brandeis University, Department of Biology, Rosenstiel Center, Waltham, Massachusetts 02454
| | - Julian A Eskin
- Brandeis University, Department of Biology, Rosenstiel Center, Waltham, Massachusetts 02454
| | - Beverly Wendland
- The Johns Hopkins University, Department of Biology, Baltimore, Maryland 21218
| |
Collapse
|
30
|
Chen Q, Courtemanche N, Pollard TD. Aip1 promotes actin filament severing by cofilin and regulates constriction of the cytokinetic contractile ring. J Biol Chem 2014; 290:2289-300. [PMID: 25451933 DOI: 10.1074/jbc.m114.612978] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aip1 (actin interacting protein 1) is ubiquitous in eukaryotic organisms, where it cooperates with cofilin to disassemble actin filaments, but neither its mechanism of action nor its biological functions have been clear. We purified both fission yeast and human Aip1 and investigated their biochemical activities with or without cofilin. Both types of Aip1 bind actin filaments with micromolar affinities and weakly nucleate actin polymerization. Aip1 increases up to 12-fold the rate that high concentrations of yeast or human cofilin sever actin filaments, most likely by competing with cofilin for binding to the side of actin filaments, reducing the occupancy of the filaments by cofilin to a range favorable for severing. Aip1 does not cap the barbed ends of filaments severed by cofilin. Fission yeast lacking Aip1 are viable and assemble cytokinetic contractile rings normally, but rings in these Δaip1 cells accumulate 30% less myosin II. Further, these mutant cells initiate the ingression of cleavage furrows earlier than normal, shortening the stage of cytokinetic ring maturation by 50%. The Δaip1 mutation has negative genetic interactions with deletion mutations of both capping protein subunits and cofilin mutations with severing defects, but no genetic interaction with deletion of coronin.
Collapse
Affiliation(s)
- Qian Chen
- From the Departments of Molecular Cellular and Developmental Biology
| | | | - Thomas D Pollard
- From the Departments of Molecular Cellular and Developmental Biology, Molecular Biophysics and Biochemistry, and Cell Biology Yale University, New Haven, Connecticut 06520-8103
| |
Collapse
|
31
|
Berro J, Pollard TD. Local and global analysis of endocytic patch dynamics in fission yeast using a new "temporal superresolution" realignment method. Mol Biol Cell 2014; 25:3501-14. [PMID: 25143395 PMCID: PMC4230612 DOI: 10.1091/mbc.e13-01-0004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
A temporal superresolution method is proposed to align data sets with a higher temporal resolution than the measurement resolution. Application to endocytic patches shows that the movement of endocytic vesicles is diffusive and impeded by the actin cytoskeleton. New tools are also proposed to count actin patches and study their polarization. Quantitative microscopy is a valuable tool for inferring molecular mechanisms of cellular processes such as clathrin-mediated endocytosis, but, for quantitative microscopy to reach its potential, both data collection and analysis needed improvement. We introduce new tools to track and count endocytic patches in fission yeast to increase the quality of the data extracted from quantitative microscopy movies. We present a universal method to achieve “temporal superresolution” by aligning temporal data sets with higher temporal resolution than the measurement intervals. These methods allowed us to extract new information about endocytic actin patches in wild-type cells from measurements of the fluorescence of fimbrin-mEGFP. We show that the time course of actin assembly and disassembly varies <600 ms between patches. Actin polymerizes during vesicle formation, but we show that polymerization does not participate in vesicle movement other than to limit the complex diffusive motions of newly formed endocytic vesicles, which move faster as the surrounding actin meshwork decreases in size over time. Our methods also show that the number of patches in fission yeast is proportional to cell length and that the variability in the repartition of patches between the tips of interphase cells has been underestimated.
Collapse
Affiliation(s)
- Julien Berro
- Department of Molecular, Cellular and Developmental Biology Department of Molecular Biophysics and Biochemistry Nanobiology Institute, Yale University, New Haven, CT 06520-8103 Institut Camille Jordan, UMR CNRS 5208, Université de Lyon, 69622 Villeurbanne-Cedex, France Centre de Génétique et de Physiologie Moléculaire et Cellulaire, UMR CNRS 5534, Université de Lyon, 69622 Villeurbanne-Cedex, France
| | - Thomas D Pollard
- Department of Molecular, Cellular and Developmental Biology Department of Molecular Biophysics and Biochemistry Department of Cell Biology, Yale University, New Haven, CT 06520-8103
| |
Collapse
|