1
|
Fujiwara N, Ueno T, Yamazaki T, Hirose T. Unraveling architectural RNAs: Structural and functional blueprints of membraneless organelles and strategies for genome-scale identification. Biochim Biophys Acta Gen Subj 2025; 1869:130815. [PMID: 40348038 DOI: 10.1016/j.bbagen.2025.130815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/25/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Architectural RNAs (arcRNAs) are long noncoding RNAs that serve as structural scaffolds for membraneless organelles (MLOs), facilitating cellular organization and dynamic responses to stimuli. Acting as blueprints for MLO assembly, arcRNAs recruit specific proteins and nucleic acids to establish and maintain the internal structure of MLOs while coordinating their spatial relationships with other organelles. This organized framework enables precise spatiotemporal regulation, allowing for targeted control of transcription, RNA processing, and cellular responses to stress. Notably, arcRNAs exhibit the "semi-extractable" feature, a property derived from their stable binding to cellular structures, making them partially resistant to conventional RNA extraction methods. This unique feature serves as a useful criterion for identifying novel arcRNAs, providing an opportunity to accelerate research in long noncoding RNAs and deepen our understanding of their functional roles in cellular processes.
Collapse
Affiliation(s)
- Naoko Fujiwara
- Graduate School of Frontier Biosciences, The University of Osaka, Suita 565-0871, Japan
| | - Tsuyoshi Ueno
- Graduate School of Frontier Biosciences, The University of Osaka, Suita 565-0871, Japan
| | - Tomohiro Yamazaki
- Graduate School of Frontier Biosciences, The University of Osaka, Suita 565-0871, Japan
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, The University of Osaka, Suita 565-0871, Japan.
| |
Collapse
|
2
|
Lacroix E, Momchilova EA, Chandhok S, Padavu M, Zapf R, Audas TE. PI3K/AKT signaling mediates stress-inducible amyloid formation through c-Myc. Cell Rep 2025; 44:115617. [PMID: 40272983 DOI: 10.1016/j.celrep.2025.115617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/17/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
In response to environmental stress, eukaryotic cells reversibly form functional amyloid aggregates called amyloid bodies (A-bodies). While these solid-like biomolecular condensates share many biophysical characteristics with pathological amyloids, A-bodies are non-toxic, and they induce a protective state of cellular dormancy. As a recently identified structure, the modulators of A-body biogenesis remain uncharacterized, with the seeding noncoding RNA being the only known regulatory factor. Here, we use an image-based high-throughput screening approach to identify candidate pathways regulating A-body biogenesis. Our data demonstrate that the phosphatidylinositol 3-kinase (PI3K)/AKT signaling axis meditates A-body formation during stress exposure, with AKT activation repressing glycogen synthase kinase-3 (GSK3)-mediated degradation of c-Myc. This enhances c-Myc binding to regulatory elements of the seeding noncoding RNA, upregulating the transcripts that nucleate A-body formation. Identifying a link between PI3K/AKT signaling, c-Myc, and physiological amyloid aggregates extends the range of activity for these well-established regulators while providing insight into cellular components whose dysregulation could underly amyloidogenic disorders.
Collapse
Affiliation(s)
- Emma Lacroix
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Evgenia A Momchilova
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Sahil Chandhok
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Mythili Padavu
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Richard Zapf
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Timothy E Audas
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
3
|
Brunello L, Polanowska J, Le Tareau L, Maghames C, Georget V, Guette C, Chaoui K, Balor S, O'Donohue MF, Bousquet MP, Gleizes PE, Xirodimas DP. A nuclear protein quality control system for elimination of nucleolus-related inclusions. EMBO J 2025; 44:801-823. [PMID: 39690241 PMCID: PMC11791210 DOI: 10.1038/s44318-024-00333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
The identification of pathways that control elimination of protein inclusions is essential to understand the cellular response to proteotoxicity, particularly in the nuclear compartment, for which our knowledge is limited. We report that stress-induced nuclear inclusions related to the nucleolus are eliminated upon stress alleviation during the recovery period. This process is independent of autophagy/lysosome and CRM1-mediated nuclear export pathways, but strictly depends on the ubiquitin-activating E1 enzyme, UBA1, and on nuclear proteasomes that are recruited into the formed inclusions. UBA1 activity is essential only for the recovery process but dispensable for nuclear inclusion formation. Furthermore, the E3 ligase HUWE1 and HSP70 are components of the ubiquitin/chaperone systems that promote inclusion elimination. The recovery process also requires RNA Pol I-dependent production of the lncRNA IGS42 during stress. IGS42 localises within the formed inclusions and promotes their elimination by preserving the mobility of resident proteins. These findings reveal a protein quality control system that operates within the nucleus for the elimination of stress-induced nucleolus-related inclusions.
Collapse
Affiliation(s)
| | | | | | | | - Virginie Georget
- CRBM, Univ. Montpellier, CNRS, Montpellier, France
- MRI, BioCampus, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Charlotte Guette
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UT3, Toulouse, France
| | - Karima Chaoui
- Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Paul Sabatier (UPS), Université de Toulouse, Toulouse, 31000, France
| | - Stéphanie Balor
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UT3, Toulouse, France
| | - Marie-Françoise O'Donohue
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UT3, Toulouse, France
| | - Marie-Pierre Bousquet
- Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Paul Sabatier (UPS), Université de Toulouse, Toulouse, 31000, France
| | - Pierre-Emmanuel Gleizes
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UT3, Toulouse, France
| | | |
Collapse
|
4
|
Gavrilova AA, Neklesova MV, Zagryadskaya YA, Kuznetsova IM, Turoverov KK, Fonin AV. Stress-Induced Evolution of the Nucleolus: The Role of Ribosomal Intergenic Spacer (rIGS) Transcripts. Biomolecules 2024; 14:1333. [PMID: 39456266 PMCID: PMC11505599 DOI: 10.3390/biom14101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
It became clear more than 20 years ago that the nucleolus not only performs the most important biological function of assembling ribonucleic particles but is also a key controller of many cellular processes, participating in cellular adaptation to stress. The nucleolus's multifunctionality is due to the peculiarities of its biogenesis. The nucleolus is a multilayered biomolecular condensate formed by liquid-liquid phase separation (LLPS). In this review, we focus on changes occurring in the nucleolus during cellular stress, molecular features of the nucleolar response to abnormal and stressful conditions, and the role of long non-coding RNAs transcribed from the intergenic spacer region of ribosomal DNA (IGS rDNA).
Collapse
Affiliation(s)
- Anastasia A. Gavrilova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (A.A.G.); (M.V.N.); (I.M.K.); (K.K.T.)
| | - Margarita V. Neklesova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (A.A.G.); (M.V.N.); (I.M.K.); (K.K.T.)
| | | | - Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (A.A.G.); (M.V.N.); (I.M.K.); (K.K.T.)
| | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (A.A.G.); (M.V.N.); (I.M.K.); (K.K.T.)
| | - Alexander V. Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (A.A.G.); (M.V.N.); (I.M.K.); (K.K.T.)
| |
Collapse
|
5
|
Mathias C, Rodrigues AC, Baal SCS, de Azevedo ALK, Kozak VN, Alves LF, de Oliveira JC, Guil S, Gradia DF. The landscape of lncRNAs in cell granules: Insights into their significance in cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1870. [PMID: 39268566 DOI: 10.1002/wrna.1870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
Cellular compartmentalization, achieved through membrane-based compartments, is a fundamental aspect of cell biology that contributes to the evolutionary success of cells. While organelles have traditionally been the focus of research, membrane-less organelles (MLOs) are emerging as critical players, exhibiting distinct morphological features and unique molecular compositions. Recent research highlights the pivotal role of long noncoding RNAs (lncRNAs) in MLOs and their involvement in various cellular processes across different organisms. In the context of cancer, dysregulation of MLO formation, influenced by altered lncRNA expression, impacts chromatin organization, oncogenic transcription, signaling pathways, and telomere lengthening. This review synthesizes the current understanding of lncRNA composition within MLOs, delineating their functions and exploring how their dysregulation contributes to human cancers. Environmental challenges in tumorigenesis, such as nutrient deprivation and hypoxia, induce stress granules, promoting cancer cell survival and progression. Advancements in biochemical techniques, particularly single RNA imaging methods, offer valuable tools for studying RNA functions within live cells. However, detecting low-abundance lncRNAs remains challenging due to their limited expression levels. The correlation between lncRNA expression and pathological conditions, particularly cancer, should be explored, emphasizing the importance of single-cell studies for precise biomarker identification and the development of personalized therapeutic strategies. This article is categorized under: RNA Export and Localization > RNA Localization RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Carolina Mathias
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | - Ana Carolina Rodrigues
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | - Suelen Cristina Soares Baal
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | | | - Vanessa Nascimento Kozak
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | | | | | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
| | - Daniela Fiori Gradia
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| |
Collapse
|
6
|
Jo M, Kim S, Park J, Chang YT, Gwon Y. Reduced dynamicity and increased high-order protein assemblies in dense fibrillar component of the nucleolus under cellular senescence. Redox Biol 2024; 75:103279. [PMID: 39111063 PMCID: PMC11347067 DOI: 10.1016/j.redox.2024.103279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/27/2024] [Accepted: 07/20/2024] [Indexed: 08/23/2024] Open
Abstract
Cellular senescence, which is triggered by various stressors, manifests as irreversible cell cycle arrest, resulting in the disruption of multiple nuclear condensates. One of the affected structures is the nucleolus, whose tripartite layout, separated into distinct liquid phases, allows for the stepwise progression of ribosome biogenesis. The dynamic properties of dense fibrillar components, a sub-nucleolar phase, are crucial for mediating pre-rRNA processing. However, the mechanistic link between the material properties of dense fibrillar components and cellular senescence remains unclear. We established a significant association between cellular senescence and alterations in nucleolar materiality and characteristics, including the number, size, and sphericity of individual subphases of the nucleolus. Senescent cells exhibit reduced fibrillarin dynamics, aberrant accumulation of high-order protein assemblies, such as oligomers and fibrils, and increased dense fibrillar component density. Intriguingly, the addition of RNA-interacting entities mirrored the diminished diffusion of fibrillarin in the nucleolus during cellular senescence. Thus, our findings contribute to a broader understanding of the intricate changes in the materiality of the nucleolus associated with cellular senescence and shed light on nucleolar dynamics in the context of aging and cellular stress.
Collapse
Affiliation(s)
- Minjeong Jo
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Soomin Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Jeongeun Park
- Department of MetaBioHealth, Sungkyunkwan University Institute for Convergence, Suwon, 16419, Republic of Korea
| | - Young-Tae Chang
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Youngdae Gwon
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea; Department of MetaBioHealth, Sungkyunkwan University Institute for Convergence, Suwon, 16419, Republic of Korea; KIST-SKKU Brain Research Center, Sungkyunkwan University Institute for Convergence, Suwon, 16419, Republic of Korea.
| |
Collapse
|
7
|
Khandjian EW, Moss T, Rose TM, Robert C, Davidovic L. The fragile X proteins' enigma: to be or not to be nucleolar. Front Cell Dev Biol 2024; 12:1448209. [PMID: 39156973 PMCID: PMC11327008 DOI: 10.3389/fcell.2024.1448209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024] Open
Affiliation(s)
- Edouard W. Khandjian
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, et Centre de Recherche Cervo, Québec, QC, Canada
| | - Tom Moss
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, et Centre de Recherche sur le Cancer, Axe Oncologie, Centre de Recherche du CHUQ, Université Laval, Québec, QC, Canada
| | - Timothy M. Rose
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Claude Robert
- Département des Sciences Animales, Université Laval, Québec, QC, Canada
| | - Laetitia Davidovic
- Centre National de la Recherche Scientifique UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Inserm U1318, Université Côte d’Azur, Valbonne, France
| |
Collapse
|
8
|
Wen X, Xu H, Woolley PR, Conway OM, Yao J, Matouschek A, Lambowitz AM, Paull TT. Senataxin deficiency disrupts proteostasis through nucleolar ncRNA-driven protein aggregation. J Cell Biol 2024; 223:e202309036. [PMID: 38717338 PMCID: PMC11080644 DOI: 10.1083/jcb.202309036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/19/2024] [Accepted: 03/13/2024] [Indexed: 05/12/2024] Open
Abstract
Senataxin is an evolutionarily conserved RNA-DNA helicase involved in DNA repair and transcription termination that is associated with human neurodegenerative disorders. Here, we investigated whether Senataxin loss affects protein homeostasis based on previous work showing R-loop-driven accumulation of DNA damage and protein aggregates in human cells. We find that Senataxin loss results in the accumulation of insoluble proteins, including many factors known to be prone to aggregation in neurodegenerative disorders. These aggregates are located primarily in the nucleolus and are promoted by upregulation of non-coding RNAs expressed from the intergenic spacer region of ribosomal DNA. We also map sites of R-loop accumulation in human cells lacking Senataxin and find higher RNA-DNA hybrids within the ribosomal DNA, peri-centromeric regions, and other intergenic sites but not at annotated protein-coding genes. These findings indicate that Senataxin loss affects the solubility of the proteome through the regulation of transcription-dependent lesions in the nucleus and the nucleolus.
Collapse
Affiliation(s)
- Xuemei Wen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Hengyi Xu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Phillip R. Woolley
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Olivia M. Conway
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jun Yao
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Andreas Matouschek
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Alan M. Lambowitz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Tanya T. Paull
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
9
|
Phan LMU, Yeo WH, Zhang HF, Huang S. Dynamic chromosome association with nuclear organelles in living cells. Histochem Cell Biol 2024; 162:149-159. [PMID: 38811432 DOI: 10.1007/s00418-024-02288-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 05/31/2024]
Abstract
The development of progressively sophisticated tools complemented by the integration of live cell imaging enhances our understanding of the four-dimensional (4D) nucleome, revealing elaborate molecular interactions and chromatin states. Yet, the dynamics of chromosomes in relation to nuclear organelles or to each other across cell cycle in living cells are underexplored. We have developed photoconvertible GFP H3-Dendra2 stably expressing in PC3M cells. The nuclear lamina and perinucleolar associated heterochromatin or diffuse chromosome regions were photoconverted through a single-point activation using a confocal microscope. The results demonstrated a dynamic nature for both types of chromosomes in the same cell cycle and across mitosis. While some chromosome domains were heritably associated with either nuclear lamina or nucleoli, others changed alliance to different nuclear organelles postmitotically. In addition, co-photoconverted chromosome domains often do not stay together within the same cell cycle and across mitosis, suggesting a transient nature of chromosome neighborhoods. Long-range spreading and movement of chromosomes were also observed. Interestingly, when cells were treated with a low concentration of actinomycin D that inhibits Pol I transcription through intercalating GC-rich DNA, chromosome movement was significantly blocked. Treatment with another Pol I inhibitor, metarrestin, which does not impact DNA, had little effect on the movement, suggesting that the DNA structure itself plays a role in chromosome dynamics. Furthermore, inhibition of Pol II transcription with α-amanitin also reduced the chromosome movement, demonstrating that Pol II, but not Pol I transcription, is important for chromosome dynamics in the nucleus.
Collapse
Affiliation(s)
- Lam Minh Uyen Phan
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, USA
| | - Wei-Hong Yeo
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Hao F Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Sui Huang
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
10
|
Bokros M, Balukoff NC, Grunfeld A, Sebastiao M, Beurel E, Bourgault S, Lee S. RNA tailing machinery drives amyloidogenic phase transition. Proc Natl Acad Sci U S A 2024; 121:e2316734121. [PMID: 38805292 PMCID: PMC11161805 DOI: 10.1073/pnas.2316734121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/18/2024] [Indexed: 05/30/2024] Open
Abstract
The RNA tailing machinery adds nucleotides to the 3'-end of RNA molecules that are implicated in various biochemical functions, including protein synthesis and RNA stability. Here, we report a role for the RNA tailing machinery as enzymatic modifiers of intracellular amyloidogenesis. A targeted RNA interference screen identified Terminal Nucleotidyl-transferase 4b (TENT4b/Papd5) as an essential participant in the amyloidogenic phase transition of nucleoli into solid-like Amyloid bodies. Full-length-and-mRNA sequencing uncovered starRNA, a class of unusually long untemplated RNA molecules synthesized by TENT4b. StarRNA consists of short rRNA fragments linked to long, linear mixed tails that operate as polyanionic stimulators of amyloidogenesis in cells and in vitro. Ribosomal intergenic spacer noncoding RNA (rIGSRNA) recruit TENT4b in intranucleolar foci to coordinate starRNA synthesis driving their amyloidogenic phase transition. The exoribonuclease RNA Exosome degrades starRNA and functions as a general suppressor of cellular amyloidogenesis. We propose that amyloidogenic phase transition is under tight enzymatic control by the RNA tailing and exosome axis.
Collapse
Affiliation(s)
- Michael Bokros
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, Cancer Epigenetics Program, University of Miami, Miami, FL33136
| | - Nathan C. Balukoff
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, Cancer Epigenetics Program, University of Miami, Miami, FL33136
| | - Alex Grunfeld
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, Cancer Epigenetics Program, University of Miami, Miami, FL33136
| | - Mathew Sebastiao
- Department of Chemistry, Université du Québec à Montréal, MontrealQCH3C 3P8, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications, PROTEO, Montreal, QCH3C 3P8, Canada
| | - Eléonore Beurel
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL33136
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL33136
| | - Steve Bourgault
- Department of Chemistry, Université du Québec à Montréal, MontrealQCH3C 3P8, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications, PROTEO, Montreal, QCH3C 3P8, Canada
| | - Stephen Lee
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, Cancer Epigenetics Program, University of Miami, Miami, FL33136
| |
Collapse
|
11
|
González-Arzola K. The nucleolus: Coordinating stress response and genomic stability. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195029. [PMID: 38642633 DOI: 10.1016/j.bbagrm.2024.195029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
The perception that the nucleoli are merely the organelles where ribosome biogenesis occurs is challenged. Only around 30 % of nucleolar proteins are solely involved in producing ribosomes. Instead, the nucleolus plays a critical role in controlling protein trafficking during stress and, according to its dynamic nature, undergoes continuous protein exchange with nucleoplasm under various cellular stressors. Hence, the concept of nucleolar stress has evolved as cellular insults that disrupt the structure and function of the nucleolus. Considering the emerging role of this organelle in DNA repair and the fact that rDNAs are the most fragile genomic loci, therapies targeting the nucleoli are increasingly being developed. Besides, drugs that target ribosome synthesis and induce nucleolar stress can be used in cancer therapy. In contrast, agents that regulate nucleolar activity may be a potential treatment for neurodegeneration caused by abnormal protein accumulation in the nucleolus. Here, I explore the roles of nucleoli beyond their ribosomal functions, highlighting the factors triggering nucleolar stress and their impact on genomic stability.
Collapse
Affiliation(s)
- Katiuska González-Arzola
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Universidad Pablo de Olavide, 41092 Seville, Spain; Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain.
| |
Collapse
|
12
|
Leone S, Srivastava A, Herrero-Ruiz A, Hummel B, Tittel L, Campalastri R, Aprile-Garcia F, Tan JH, Rawat P, Andersson P, Willis AE, Sawarkar R. HSP70 binds to specific non-coding RNA and regulates human RNA polymerase III. Mol Cell 2024; 84:687-701.e7. [PMID: 38266641 DOI: 10.1016/j.molcel.2024.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 10/20/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024]
Abstract
Molecular chaperones are critical for protein homeostasis and are implicated in several human pathologies such as neurodegeneration and cancer. While the binding of chaperones to nascent and misfolded proteins has been studied in great detail, the direct interaction between chaperones and RNA has not been systematically investigated. Here, we provide the evidence for widespread interaction between chaperones and RNA in human cells. We show that the major chaperone heat shock protein 70 (HSP70) binds to non-coding RNA transcribed by RNA polymerase III (RNA Pol III) such as tRNA and 5S rRNA. Global chromatin profiling revealed that HSP70 binds genomic sites of transcription by RNA Pol III. Detailed biochemical analyses showed that HSP70 alleviates the inhibitory effect of cognate tRNA transcript on tRNA gene transcription. Thus, our study uncovers an unexpected role of HSP70-RNA interaction in the biogenesis of a specific class of non-coding RNA with wider implications in cancer therapeutics.
Collapse
Affiliation(s)
- Sergio Leone
- MRC Toxicology Unit, University of Cambridge, Cambridge CB21QR, UK.
| | | | | | - Barbara Hummel
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Lena Tittel
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | | | | | - Jun Hao Tan
- MRC Toxicology Unit, University of Cambridge, Cambridge CB21QR, UK
| | - Prashant Rawat
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Patrik Andersson
- Safety Innovation, Clinical Pharmacology and Safety Sciences, AstraZeneca R&D, Gothenburg 43183, Sweden
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Cambridge CB21QR, UK
| | - Ritwick Sawarkar
- MRC Toxicology Unit, University of Cambridge, Cambridge CB21QR, UK; Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany.
| |
Collapse
|
13
|
Godet AC, Roussel E, Laugero N, Morfoisse F, Lacazette E, Garmy-Susini B, Prats AC. Translational control by long non-coding RNAs. Biochimie 2024; 217:42-53. [PMID: 37640229 DOI: 10.1016/j.biochi.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Long non-coding (lnc) RNAs, once considered as junk and useless, are now broadly recognized to have major functions in the cell. LncRNAs are defined as non-coding RNAs of more than 200 nucleotides, regulate all steps of gene expression. Their origin is diverse, they can arise from intronic, intergenic or overlapping region, in sense or antisense direction. LncRNAs are mainly described for their action on transcription, while their action at the translational level is more rarely cited. However, the bibliography in the field is more and more abundant. The present synopsis of lncRNAs involved in the control of translation reveals a wide field of regulation of gene expression, with at least nine distinct molecular mechanisms. Furthermore, it appears that all these lncRNAs are involved in various pathologies including cancer, cardiovascular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Anne-Claire Godet
- UMR 1297-I2MC, Inserm, Université de Toulouse, UT3, Toulouse, France; Threonin Design, 220 Chemin de Montabon, Le Touvet, France
| | - Emilie Roussel
- UMR 1297-I2MC, Inserm, Université de Toulouse, UT3, Toulouse, France
| | - Nathalie Laugero
- UMR 1297-I2MC, Inserm, Université de Toulouse, UT3, Toulouse, France
| | - Florent Morfoisse
- UMR 1297-I2MC, Inserm, Université de Toulouse, UT3, Toulouse, France
| | - Eric Lacazette
- UMR 1297-I2MC, Inserm, Université de Toulouse, UT3, Toulouse, France
| | | | | |
Collapse
|
14
|
Frion J, Meller A, Marbach G, Lévesque D, Roucou X, Boisvert FM. CRISPR/Cas9-mediated knockout of the ubiquitin variant UbKEKS reveals a role in regulating nucleolar structures and composition. Biol Open 2023; 12:bio059984. [PMID: 37670689 PMCID: PMC10537958 DOI: 10.1242/bio.059984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023] Open
Abstract
Ubiquitination is a post-translational modification responsible for one of the most complex multilayered communication and regulation systems in the cell. Over the past decades, new ubiquitin variants and ubiquitin-like proteins arose to further enrich this mechanism. Recently discovered ubiquitin variant UbKEKS can specifically target several proteins and yet, functional consequences of this new modification remain unknown. Depletion of UbKEKS induces accumulation of lamin A in the nucleoli, highlighting the need for deeper investigations about protein composition and functions regulation of this highly dynamic and membrane-less compartment. Using data-independent acquisition mass spectrometry and microscopy, we show that despite not impacting protein stability, UbKEKS is required to maintain a normal nucleolar organization. The absence of UbKEKS increases nucleoli's size and accentuate their circularity while disrupting dense fibrillar component and fibrillar centre structures. Moreover, depletion of UbKEKS leads to distinct changes in nucleolar composition. Lack of UbKEKS favours nucleolar sequestration of known apoptotic regulators such as IFI16 or p14ARF, resulting in an increase of apoptosis observed by flow cytometry and real-time monitoring. Overall, these results identify the first cellular functions of the UbKEKS variant and lay the foundation stone to establish UbKEKS as a new universal layer of regulation in the ubiquitination system.
Collapse
Affiliation(s)
- Julie Frion
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Anna Meller
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Gwendoline Marbach
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Dominique Lévesque
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Xavier Roucou
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - François-Michel Boisvert
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| |
Collapse
|
15
|
Chandhok S, Pereira L, Momchilova EA, Marijan D, Zapf R, Lacroix E, Kaur A, Keymanesh S, Krieger C, Audas TE. Stress-mediated aggregation of disease-associated proteins in amyloid bodies. Sci Rep 2023; 13:14471. [PMID: 37660155 PMCID: PMC10475078 DOI: 10.1038/s41598-023-41712-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023] Open
Abstract
The formation of protein aggregates is a hallmark of many neurodegenerative diseases and systemic amyloidoses. These disorders are associated with the fibrillation of a variety of proteins/peptides, which ultimately leads to cell toxicity and tissue damage. Understanding how amyloid aggregation occurs and developing compounds that impair this process is a major challenge in the health science community. Here, we demonstrate that pathogenic proteins associated with Alzheimer's disease, diabetes, AL/AA amyloidosis, and amyotrophic lateral sclerosis can aggregate within stress-inducible physiological amyloid-based structures, termed amyloid bodies (A-bodies). Using a limited collection of small molecule inhibitors, we found that diclofenac could repress amyloid aggregation of the β-amyloid (1-42) in a cellular setting, despite having no effect in the classic Thioflavin T (ThT) in vitro fibrillation assay. Mapping the mechanism of the diclofenac-mediated repression indicated that dysregulation of cyclooxygenases and the prostaglandin synthesis pathway was potentially responsible for this effect. Together, this work suggests that the A-body machinery may be linked to a subset of pathological amyloidosis, and highlights the utility of this model system in the identification of new small molecules that could treat these debilitating diseases.
Collapse
Affiliation(s)
- Sahil Chandhok
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, €, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Lionel Pereira
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, €, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Evgenia A Momchilova
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, €, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Dane Marijan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, €, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Richard Zapf
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, €, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Emma Lacroix
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, €, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Avneet Kaur
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, €, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Shayan Keymanesh
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Charles Krieger
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Timothy E Audas
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, €, BC, V5A 1S6, Canada.
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
16
|
Zhang L, Yang Y, Zhang L, Ma J, Sun R, Tian Y, Yuan X, Liu B, Yu T, Jiang Z. Identification of long non-coding RNA in formaldehyde-induced cardiac dysplasia in rats. Food Chem Toxicol 2023; 174:113653. [PMID: 36758786 DOI: 10.1016/j.fct.2023.113653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/09/2023]
Abstract
Formaldehyde exposure during pregnancy can cause fetal congenital heart disease (CHD). However, the regulatory mechanism remains unclear. Studies on the biology of long non-coding RNAs (lncRNAs) show that lncRNAs can influence cardiac development and disease. However, expression patterns and regulatory mechanisms of action of lncRNAs in formaldehyde-induced CHD remain unclear. We used high-throughput sequencing strategies as a means of identifying lncRNA expression profiles in heart tissues of normal and formaldehyde-exposed newborn rats. Overall, 763 differentially expressed lncRNAs were identified, including 325 and 438 that were respectively up-regulated and down-regulated. GO and KEGG analyses indicated that the Ras and hedgehog signaling pathways may be important regulatory pathways in CHD caused by exposure to formaldehyde. A lncRNA-miRNA-mRNA co-expression network was constructed and a key miRNA, rno-miR-665, was identified. Furthermore, qRT-PCR analysis verified that the novel lncRNAs: MSTRG.27313.2, MSTRG.30629.2, MSTRG.36520.33, MSTRG.91234.1, and MSTRG.91233.9, were upregulated in the formaldehyde-exposed group. These differentially expressed lncRNAs identified during formaldehyde-induced CHD in newborn rats help explain CHD pathogenesis and provide an effective reference for diagnosing and treating CHD.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, PR China
| | - Lin Zhang
- Department of Microbiology, Linyi Center for Disease Control and Prevention, Linyi, 276000, PR China
| | - Jianmin Ma
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Ruicong Sun
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Yu Tian
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Xiaoli Yuan
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Bingyu Liu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Road No. 38 Dengzhou, Qingdao, 266021, PR China.
| | - Zhirong Jiang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China.
| |
Collapse
|
17
|
Muciño-Hernández G, Acevo-Rodríguez PS, Cabrera-Benitez S, Guerrero AO, Merchant-Larios H, Castro-Obregón S. Nucleophagy contributes to genome stability through degradation of type II topoisomerases A and B and nucleolar components. J Cell Sci 2023; 136:286548. [PMID: 36633090 PMCID: PMC10112964 DOI: 10.1242/jcs.260563] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/24/2022] [Indexed: 01/13/2023] Open
Abstract
The nuclear architecture of mammalian cells can be altered as a consequence of anomalous accumulation of nuclear proteins or genomic alterations. Most of the knowledge about nuclear dynamics comes from studies on cancerous cells. How normal healthy cells maintain genome stability, avoiding accumulation of nuclear damaged material, is less understood. Here, we describe that primary mouse embryonic fibroblasts develop a basal level of nuclear buds and micronuclei, which increase after etoposide-induced DNA double-stranded breaks. Both basal and induced nuclear buds and micronuclei colocalize with the autophagic proteins BECN1 and LC3B (also known as MAP1LC3B) and with acidic vesicles, suggesting their clearance by nucleophagy. Some of the nuclear alterations also contain autophagic proteins and type II DNA topoisomerases (TOP2A and TOP2B), or the nucleolar protein fibrillarin, implying they are also targets of nucleophagy. We propose that basal nucleophagy contributes to genome and nuclear stability, as well as in response to DNA damage.
Collapse
Affiliation(s)
- Gabriel Muciño-Hernández
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| | - Pilar Sarah Acevo-Rodríguez
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| | - Sandra Cabrera-Benitez
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| | - Adán Oswaldo Guerrero
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Morelos, Mexico
| | - Horacio Merchant-Larios
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Susana Castro-Obregón
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| |
Collapse
|
18
|
Bari MW, Morishita Y, Kishigami S. Heterogeneity of nucleolar morphology in four-cell mouse embryos after IVF: association with developmental potential. Anim Sci J 2023; 94:e13907. [PMID: 38102887 DOI: 10.1111/asj.13907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
In mammals, around fertilization, the nucleolus of embryos transforms into the nucleolus precursor bodies (NPBs), which continue to mature until the blastocyst stage, leading to distinct morphological changes. In our study, we observed two types of nucleolar morphology in mouse in vitro fertilized embryos at the four-cell stage, which we refer to single nucleolus (SN) and multiple nucleoli (MN). To visualize nucleolar morphology, four-cell embryos were immunostained with anti-NOPP140 antibody. These embryos were categorized into five types based on the number of blastomeres carrying SN: SN4/MN0, SN3/MN1, SN2/MN2, SN1/MN3, and SN0/MN4, with percentages of 13, 27, 21, 23 and 9, respectively. Next, using a light microscope, we divided the four-cell in vitro fertilized embryos without fixation into two groups: those with at least two blastomeres displaying SN (SN embryos) and those without (MN embryos). Notably, significantly more SN embryos developed into blastocysts and offspring at 18.5 dpc compared with MN embryos. Furthermore, SN embryos displayed a higher NANOG-positive cell number at the blastocyst stage, significantly lower body and placental weights, resulting in a higher fetal/placental ratio. These findings suggest a close association between nucleolar state at the four-cell stage and subsequent developmental potential.
Collapse
Affiliation(s)
- Md Wasim Bari
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Kofu, Japan
| | - Yoshiya Morishita
- Graduate School of Life and Environmental Sciences, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi Kofu, Japan
| | - Satoshi Kishigami
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Kofu, Japan
- Graduate School of Life and Environmental Sciences, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi Kofu, Japan
- Center for advanced Assisted Reproductive Technologies, University of Yamanashi, Kofu, Japan
| |
Collapse
|
19
|
Feng S, Manley JL. Beyond rRNA: nucleolar transcription generates a complex network of RNAs with multiple roles in maintaining cellular homeostasis. Genes Dev 2022; 36:876-886. [PMID: 36207140 PMCID: PMC9575697 DOI: 10.1101/gad.349969.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Nucleoli are the major cellular compartments for the synthesis of rRNA and assembly of ribosomes, the macromolecular complexes responsible for protein synthesis. Given the abundance of ribosomes, there is a huge demand for rRNA, which indeed constitutes ∼80% of the mass of RNA in the cell. Thus, nucleoli are characterized by extensive transcription of multiple rDNA loci by the dedicated polymerase, RNA polymerase (Pol) I. However, in addition to producing rRNAs, there is considerable additional transcription in nucleoli by RNA Pol II as well as Pol I, producing multiple noncoding (nc) and, in one instance, coding RNAs. In this review, we discuss important features of these transcripts, which often appear species-specific and reflect transcription antisense to pre-rRNA by Pol II and within the intergenic spacer regions on both strands by both Pol I and Pol II. We discuss how expression of these RNAs is regulated, their propensity to form cotranscriptional R loops, and how they modulate rRNA transcription, nucleolar structure, and cellular homeostasis more generally.
Collapse
|
20
|
Batnasan E, Koivukoski S, Kärkkäinen M, Latonen L. Nuclear Organization in Response to Stress: A Special Focus on Nucleoli. Results Probl Cell Differ 2022; 70:469-494. [PMID: 36348119 DOI: 10.1007/978-3-031-06573-6_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this chapter, we discuss the nuclear organization and how it responds to different types of stress. A key component in these responses is molecular traffic between the different sub-nucleolar compartments, such as nucleoplasm, chromatin, nucleoli, and various speckle and body compartments. This allows specific repair and response activities in locations where they normally are not active and serve to halt sensitive functions until the stress insult passes and inflicted damage has been repaired. We focus on mammalian cells and their nuclear organization, especially describing the central role of the nucleolus in nuclear stress responses. We describe events after multiple stress types, including DNA damage, various drugs, and toxic compounds, and discuss the involvement of macromolecular traffic between dynamic, phase-separated nuclear organelles and foci. We delineate the key proteins and non-coding RNA in the formation of stress-responsive, non-membranous nuclear organelles, many of which are relevant to the formation of and utilization in cancer treatment.
Collapse
Affiliation(s)
- Enkhzaya Batnasan
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Sonja Koivukoski
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Minttu Kärkkäinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Leena Latonen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
- Foundation for the Finnish Cancer Institute, Helsinki, Finland.
| |
Collapse
|
21
|
Lacroix E, Pereira L, Yoo B, Coyle KM, Chandhok S, Zapf R, Marijan D, Morin RD, Vlachos S, Harden N, Audas TE. Evolutionary conservation of systemic and reversible amyloid aggregation. J Cell Sci 2021; 134:273507. [PMID: 34704593 DOI: 10.1242/jcs.258907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022] Open
Abstract
In response to environmental stress, human cells have been shown to form reversible amyloid aggregates within the nucleus, termed amyloid bodies (A-bodies). These protective physiological structures share many of the biophysical characteristics associated with the pathological amyloids found in Alzheimer's and Parkinson's disease. Here, we show that A-bodies are evolutionarily conserved across the eukaryotic domain, with their detection in Drosophila melanogaster and Saccharomyces cerevisiae marking the first examples of these functional amyloids being induced outside of a cultured cell setting. The conditions triggering amyloidogenesis varied significantly among the species tested, with results indicating that A-body formation is a severe, but sublethal, stress response pathway that is tailored to the environmental norms of an organism. RNA-sequencing analyses demonstrate that the regulatory low-complexity long non-coding RNAs that drive A-body aggregation are both conserved and essential in human, mouse and chicken cells. Thus, the identification of these natural and reversible functional amyloids in a variety of evolutionarily diverse species highlights the physiological significance of this protein conformation, and will be informative in advancing our understanding of both functional and pathological amyloid aggregation events. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Emma Lacroix
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.,Center for Cell Biology, Development, and Disease, Burnaby, BC V5A 1S6, Canada
| | - Lionel Pereira
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.,Center for Cell Biology, Development, and Disease, Burnaby, BC V5A 1S6, Canada
| | - Byoungjoo Yoo
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Krysta M Coyle
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Sahil Chandhok
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.,Center for Cell Biology, Development, and Disease, Burnaby, BC V5A 1S6, Canada
| | - Richard Zapf
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.,Center for Cell Biology, Development, and Disease, Burnaby, BC V5A 1S6, Canada
| | - Dane Marijan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.,Center for Cell Biology, Development, and Disease, Burnaby, BC V5A 1S6, Canada
| | - Ryan D Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Stephanie Vlachos
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Nicholas Harden
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.,Center for Cell Biology, Development, and Disease, Burnaby, BC V5A 1S6, Canada
| | - Timothy E Audas
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.,Center for Cell Biology, Development, and Disease, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
22
|
Mannen T, Goto M, Yoshizawa T, Yamashita A, Hirose T, Hayano T. Distinct RNA polymerase transcripts direct the assembly of phase-separated DBC1 nuclear bodies in different cell lines. Mol Biol Cell 2021; 32:ar33. [PMID: 34495685 PMCID: PMC8693952 DOI: 10.1091/mbc.e21-02-0081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The mammalian cell nucleus is a highly organized organelle that contains membrane-less structures referred to as nuclear bodies (NBs). Some NBs carry specific RNA types that play architectural roles in their formation. Here, we show two types of RNase-sensitive DBC1-containing NBs, DBC1 nuclear body (DNB) in HCT116 cells and Sam68 nuclear body (SNB) in HeLa cells, that exhibit phase-separated features and are constructed using RNA polymerase I or II transcripts in a cell type–specific manner. We identified additional protein components present in DNB by immunoprecipitation–mass spectrometry, some of which (DBC1 and heterogeneous nuclear ribonucleoprotein L [HNRNPL]) are required for DNB formation. The rescue experiment using the truncated HNRNPL mutants revealed that two RNA-binding domains and intrinsically disordered regions of HNRNPL play significant roles in DNB formation. All these domains of HNRNPL promote in vitro droplet formation, suggesting the need for multivalent interactions between HNRNPL and RNA as well as proteins in DNB formation.
Collapse
Affiliation(s)
- Taro Mannen
- College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Masato Goto
- College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Takuya Yoshizawa
- College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Akio Yamashita
- Graduate School of Medicine, University of the Ryukyus, Nishihara-cho 903-0215, Japan
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Toshiya Hayano
- College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| |
Collapse
|
23
|
Miyagi T, Yamanaka Y, Harada Y, Narumi S, Hayamizu Y, Kuroda M, Kanekura K. An improved macromolecular crowding sensor CRONOS for detection of crowding changes in membrane-less organelles under stressed conditions. Biochem Biophys Res Commun 2021; 583:29-34. [PMID: 34717122 DOI: 10.1016/j.bbrc.2021.10.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 10/20/2022]
Abstract
Membrane-less organelles (MLOs) formed by liquid-liquid phase separation (LLPS) play pivotal roles in biological processes. During LLPS, proteins and nucleotides are extremely condensed, resulting in changes in their conformation and biological functions. Disturbed LLPS homeostasis in MLOs is thought to associate with fatal diseases such as amyotrophic lateral sclerosis. Therefore, it is important to detect changes in the degree of crowding in MLOs. However, it has not been investigated well due to the lack of an appropriate method. To address this, we developed a genetically encoded macromolecular crowding sensor CRONOS (crowding sensor with mNeonGreen and mScarlet-I) that senses the degree of macromolecular crowding in MLOs using a fluorescence resonance energy transfer (FRET) system. CRONOS is a bright biosensor with a wide dynamic range and successfully detects changes in the macromolecular volume fraction in solution. By fusing to the scaffold protein of each MLO, we delivered CRONOS to MLO of interest and detected previously undescribed differences in the degree of crowding in each MLO. CRONOS also detected changes in the degree of macromolecular crowding in nucleolus induced by environmental stress or inhibition of transcription. These findings suggest that CRONOS can be a useful tool for the determination of molecular crowding and detection of pathological changes in MLOs in live cells.
Collapse
Affiliation(s)
- Tamami Miyagi
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Yoshiaki Yamanaka
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Yuichiro Harada
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Satoshi Narumi
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Yuhei Hayamizu
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| | - Kohsuke Kanekura
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| |
Collapse
|
24
|
Trigiante G, Blanes Ruiz N, Cerase A. Emerging Roles of Repetitive and Repeat-Containing RNA in Nuclear and Chromatin Organization and Gene Expression. Front Cell Dev Biol 2021; 9:735527. [PMID: 34722514 PMCID: PMC8552494 DOI: 10.3389/fcell.2021.735527] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022] Open
Abstract
Genomic repeats have been intensely studied as regulatory elements controlling gene transcription, splicing and genome architecture. Our understanding of the role of the repetitive RNA such as the RNA coming from genomic repeats, or repetitive sequences embedded in mRNA/lncRNAs, in nuclear and cellular functions is instead still limited. In this review we discuss evidence supporting the multifaceted roles of repetitive RNA and RNA binding proteins in nuclear organization, gene regulation, and in the formation of dynamic membrane-less aggregates. We hope that our review will further stimulate research in the consolidating field of repetitive RNA biology.
Collapse
Affiliation(s)
| | | | - Andrea Cerase
- Centre for Genomics and Child Health, Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
25
|
Abstract
Biomolecular condensates concentrate molecules to facilitate basic biochemical processes, including transcription and DNA replication. While liquid-like condensates have been ascribed various functions, solid-like condensates are generally thought of as amorphous sites of protein storage. Here, we show that solid-like amyloid bodies coordinate local nuclear protein synthesis (LNPS) during stress. On stimulus, translationally active ribosomes accumulate along fiber-like assemblies that characterize amyloid bodies. Mass spectrometry analysis identified regulatory ribosomal proteins and translation factors that relocalize from the cytoplasm to amyloid bodies to sustain LNPS. These amyloidogenic compartments are enriched in newly transcribed messenger RNA by Heat Shock Factor 1 (HSF1). Depletion of stress-induced ribosomal intergenic spacer noncoding RNA (rIGSRNA) that constructs amyloid bodies prevents recruitment of the nuclear protein synthesis machinery, abolishes LNPS, and impairs the nuclear HSF1 response. We propose that amyloid bodies support local nuclear translation during stress and that solid-like condensates can facilitate complex biochemical reactions as their liquid counterparts can.
Collapse
|
26
|
Antagonising Chromatin Remodelling Activities in the Regulation of Mammalian Ribosomal Transcription. Genes (Basel) 2021; 12:genes12070961. [PMID: 34202617 PMCID: PMC8303148 DOI: 10.3390/genes12070961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 12/29/2022] Open
Abstract
Ribosomal transcription constitutes the major energy consuming process in cells and is regulated in response to proliferation, differentiation and metabolic conditions by several signalling pathways. These act on the transcription machinery but also on chromatin factors and ncRNA. The many ribosomal gene repeats are organised in a number of different chromatin states; active, poised, pseudosilent and repressed gene repeats. Some of these chromatin states are unique to the 47rRNA gene repeat and do not occur at other locations in the genome, such as the active state organised with the HMG protein UBF whereas other chromatin state are nucleosomal, harbouring both active and inactive histone marks. The number of repeats in a certain state varies on developmental stage and cell type; embryonic cells have more rRNA gene repeats organised in an open chromatin state, which is replaced by heterochromatin during differentiation, establishing different states depending on cell type. The 47S rRNA gene transcription is regulated in different ways depending on stimulus and chromatin state of individual gene repeats. This review will discuss the present knowledge about factors involved, such as chromatin remodelling factors NuRD, NoRC, CSB, B-WICH, histone modifying enzymes and histone chaperones, in altering gene expression and switching chromatin states in proliferation, differentiation, metabolic changes and stress responses.
Collapse
|
27
|
Natua S, Dhamdhere SG, Mutnuru SA, Shukla S. Interplay within tumor microenvironment orchestrates neoplastic RNA metabolism and transcriptome diversity. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1676. [PMID: 34109748 DOI: 10.1002/wrna.1676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/03/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022]
Abstract
The heterogeneous population of cancer cells within a tumor mass interacts intricately with the multifaceted aspects of the surrounding microenvironment. The reciprocal crosstalk between cancer cells and the tumor microenvironment (TME) shapes the cancer pathophysiome in a way that renders it uniquely suited for immune tolerance, angiogenesis, metastasis, and therapy resistance. This dynamic interaction involves a dramatic reconstruction of the transcriptomic landscape of tumors by altering the synthesis, modifications, stability, and processing of gene readouts. In this review, we categorically evaluate the influence of TME components, encompassing a myriad of resident and infiltrating cells, signaling molecules, extracellular vesicles, extracellular matrix, and blood vessels, in orchestrating the cancer-specific metabolism and diversity of both mRNA and noncoding RNA, including micro RNA, long noncoding RNA, circular RNA among others. We also highlight the transcriptomic adaptations in response to the physicochemical idiosyncrasies of TME, which include tumor hypoxia, extracellular acidosis, and osmotic stress. Finally, we provide a nuanced analysis of existing and prospective therapeutics targeting TME to ameliorate cancer-associated RNA metabolism, consequently thwarting the cancer progression. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Turnover and Surveillance > Regulation of RNA Stability RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Subhashis Natua
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Shruti Ganesh Dhamdhere
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Srinivas Abhishek Mutnuru
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
28
|
MicroRNAs and long non-coding RNAs as novel regulators of ribosome biogenesis. Biochem Soc Trans 2021; 48:595-612. [PMID: 32267487 PMCID: PMC7200637 DOI: 10.1042/bst20190854] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/14/2022]
Abstract
Ribosome biogenesis is the fine-tuned, essential process that generates mature ribosomal subunits and ultimately enables all protein synthesis within a cell. Novel regulators of ribosome biogenesis continue to be discovered in higher eukaryotes. While many known regulatory factors are proteins or small nucleolar ribonucleoproteins, microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) are emerging as a novel modulatory layer controlling ribosome production. Here, we summarize work uncovering non-coding RNAs (ncRNAs) as novel regulators of ribosome biogenesis and highlight their links to diseases of defective ribosome biogenesis. It is still unclear how many miRNAs or lncRNAs are involved in phenotypic or pathological disease outcomes caused by impaired ribosome production, as in the ribosomopathies, or by increased ribosome production, as in cancer. In time, we hypothesize that many more ncRNA regulators of ribosome biogenesis will be discovered, which will be followed by an effort to establish connections between disease pathologies and the molecular mechanisms of this additional layer of ribosome biogenesis control.
Collapse
|
29
|
Enukashvily NI, Dobrynin MA, Chubar AV. RNA-seeded membraneless bodies: Role of tandemly repeated RNA. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 126:151-193. [PMID: 34090614 DOI: 10.1016/bs.apcsb.2020.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
Membraneless organelles (bodies, granules, etc.) are spatially distinct sub-nuclear and cytoplasmic foci involved in all the processes in a living cell, such as development, cell death, carcinogenesis, proliferation, and differentiation. Today the list of the membraneless organelles includes a wide spectrum of intranuclear and cytoplasmic bodies. Proteins with intrinsically disordered regions are the key players in the membraneless body assembly. However, recent data assume an important role of RNA molecules in the process of the liquid-liquid phase separation. High-level expression of RNA above a critical concentration threshold is mandatory to nucleate interactions with specific proteins and for seeding membraneless organelles. RNA components are considered by many authors as the principal determinants of organelle identity. Tandemly repeated (TR) DNA of big satellites (a TR family that includes centromeric and pericentromeric DNA sequences) was believed to be transcriptionally silent for a long period. Now we know about the TR transcription upregulation during gameto- and embryogenesis, carcinogenesis, stress response. In the review, we summarize the recent data about the involvement of TR RNA in the formation of nuclear membraneless granules, bodies, etc., with different functions being in some cases an initiator of the structures assembly. These RNP structures sequestrate and inactivate different proteins and transcripts. The TR induced sequestration is one of the key principles of nuclear architecture and genome functioning. Studying the role of the TR-based membraneless organelles in stress and disease will bring some new ideas for translational medicine.
Collapse
Affiliation(s)
- Natella I Enukashvily
- Institute of Cytology RAS, St. Petersburg, Russia; North-Western Medical State University named after I.I. Mechnikov, St. Petersburg, Russia.
| | | | | |
Collapse
|
30
|
Ardehali MB, Damle M, Perea-Resa C, Blower MD, Kingston RE. Elongin A associates with actively transcribed genes and modulates enhancer RNA levels with limited impact on transcription elongation rate in vivo. J Biol Chem 2020; 296:100202. [PMID: 33334895 PMCID: PMC7948453 DOI: 10.1074/jbc.ra120.015877] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/06/2020] [Accepted: 12/16/2020] [Indexed: 01/08/2023] Open
Abstract
Elongin A (EloA) is an essential transcription factor that stimulates the rate of RNA polymerase II (Pol II) transcription elongation in vitro. However, its role as a transcription factor in vivo has remained underexplored. Here we show that in mouse embryonic stem cells, EloA localizes to both thousands of Pol II transcribed genes with preference for transcription start site and promoter regions and a large number of active enhancers across the genome. EloA deletion results in accumulation of transcripts from a subset of enhancers and their adjacent genes. Notably, EloA does not substantially enhance the elongation rate of Pol II in vivo. We also show that EloA localizes to the nucleoli and associates with RNA polymerase I transcribed ribosomal RNA gene, Rn45s. EloA is a highly disordered protein, which we demonstrate forms phase-separated condensates in vitro, and truncation mutations in the intrinsically disordered regions (IDR) of EloA interfere with its targeting and localization to the nucleoli. We conclude that EloA broadly associates with transcribed regions, tunes RNA Pol II transcription levels via impacts on enhancer RNA synthesis, and interacts with the rRNA producing/processing machinery in the nucleolus. Our work opens new avenues for further investigation of the role of this functionally multifaceted transcription factor in enhancer and ribosomal RNA biology.
Collapse
Affiliation(s)
- M Behfar Ardehali
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Manashree Damle
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Carlos Perea-Resa
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael D Blower
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert E Kingston
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
31
|
Kaliatsi EG, Giarimoglou N, Stathopoulos C, Stamatopoulou V. Non-Coding RNA-Driven Regulation of rRNA Biogenesis. Int J Mol Sci 2020; 21:E9738. [PMID: 33419375 PMCID: PMC7766524 DOI: 10.3390/ijms21249738] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/30/2022] Open
Abstract
Ribosomal RNA (rRNA) biogenesis takes place in the nucleolus, the most prominent condensate of the eukaryotic nucleus. The proper assembly and integrity of the nucleolus reflects the accurate synthesis and processing of rRNAs which in turn, as major components of ribosomes, ensure the uninterrupted flow of the genetic information during translation. Therefore, the abundant production of rRNAs in a precisely functional nucleolus is of outmost importance for the cell viability and requires the concerted action of essential enzymes, associated factors and epigenetic marks. The coordination and regulation of such an elaborate process depends on not only protein factors, but also on numerous regulatory non-coding RNAs (ncRNAs). Herein, we focus on RNA-mediated mechanisms that control the synthesis, processing and modification of rRNAs in mammals. We highlight the significance of regulatory ncRNAs in rRNA biogenesis and the maintenance of the nucleolar morphology, as well as their role in human diseases and as novel druggable molecular targets.
Collapse
Affiliation(s)
| | | | - Constantinos Stathopoulos
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (E.G.K.); (N.G.)
| | - Vassiliki Stamatopoulou
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (E.G.K.); (N.G.)
| |
Collapse
|
32
|
Ramírez-Colmenero A, Oktaba K, Fernandez-Valverde SL. Evolution of Genome-Organizing Long Non-coding RNAs in Metazoans. Front Genet 2020; 11:589697. [PMID: 33329735 PMCID: PMC7734150 DOI: 10.3389/fgene.2020.589697] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/09/2020] [Indexed: 12/28/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have important regulatory functions across eukarya. It is now clear that many of these functions are related to gene expression regulation through their capacity to recruit epigenetic modifiers and establish chromatin interactions. Several lncRNAs have been recently shown to participate in modulating chromatin within the spatial organization of the genome in the three-dimensional space of the nucleus. The identification of lncRNA candidates is challenging, as it is their functional characterization. Conservation signatures of lncRNAs are different from those of protein-coding genes, making identifying lncRNAs under selection a difficult task, and the homology between lncRNAs may not be readily apparent. Here, we review the evidence for these higher-order genome organization functions of lncRNAs in animals and the evolutionary signatures they display.
Collapse
Affiliation(s)
- América Ramírez-Colmenero
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, México
| | - Katarzyna Oktaba
- Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, México
| | - Selene L Fernandez-Valverde
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, México
| |
Collapse
|
33
|
Gallardo P, Real-Calderón P, Flor-Parra I, Salas-Pino S, Daga RR. Acute Heat Stress Leads to Reversible Aggregation of Nuclear Proteins into Nucleolar Rings in Fission Yeast. Cell Rep 2020; 33:108377. [DOI: 10.1016/j.celrep.2020.108377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 08/24/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
|
34
|
Santos AP, Gaudin V, Mozgová I, Pontvianne F, Schubert D, Tek AL, Dvořáčková M, Liu C, Fransz P, Rosa S, Farrona S. Tidying-up the plant nuclear space: domains, functions, and dynamics. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5160-5178. [PMID: 32556244 PMCID: PMC8604271 DOI: 10.1093/jxb/eraa282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/12/2020] [Indexed: 05/07/2023]
Abstract
Understanding how the packaging of chromatin in the nucleus is regulated and organized to guide complex cellular and developmental programmes, as well as responses to environmental cues is a major question in biology. Technological advances have allowed remarkable progress within this field over the last years. However, we still know very little about how the 3D genome organization within the cell nucleus contributes to the regulation of gene expression. The nuclear space is compartmentalized in several domains such as the nucleolus, chromocentres, telomeres, protein bodies, and the nuclear periphery without the presence of a membrane around these domains. The role of these domains and their possible impact on nuclear activities is currently under intense investigation. In this review, we discuss new data from research in plants that clarify functional links between the organization of different nuclear domains and plant genome function with an emphasis on the potential of this organization for gene regulation.
Collapse
Affiliation(s)
- Ana Paula Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova
de Lisboa, Oeiras, Portugal
| | - Valérie Gaudin
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université
Paris-Saclay, Versailles, France
| | - Iva Mozgová
- Biology Centre of the Czech Academy of Sciences, České
Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České
Budějovice, Czech Republic
| | - Frédéric Pontvianne
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), Université de
Perpignan Via Domitia, Perpignan, France
| | - Daniel Schubert
- Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Ahmet L Tek
- Agricultural Genetic Engineering Department, Niğde Ömer Halisdemir
University, Niğde, Turkey
| | | | - Chang Liu
- Center for Plant Molecular Biology (ZMBP), University of
Tübingen, Tübingen, Germany
- Institute of Biology, University of Hohenheim, Stuttgart,
Germany
| | - Paul Fransz
- University of Amsterdam, Amsterdam, The
Netherlands
| | - Stefanie Rosa
- Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sara Farrona
- Plant and AgriBiosciences Centre, Ryan Institute, NUI Galway,
Galway, Ireland
| |
Collapse
|
35
|
Hu Y, Wang F, Xu F, Fang K, Fang Z, Shuai X, Cai K, Chen J, Hu P, Chen D, Xu P, Hu C, Zeng Z, Zhong J, Li W, Tang J, Huang M, Zhao Y, Wang C, Zhao G. A reciprocal feedback of Myc and lncRNA MTSS1-AS contributes to extracellular acidity-promoted metastasis of pancreatic cancer. Theranostics 2020; 10:10120-10140. [PMID: 32929338 PMCID: PMC7481418 DOI: 10.7150/thno.49147] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022] Open
Abstract
Rationale: Previous studies have reported on the role of extracellular acidity in the metastasis of numerous cancers. However, the involvement of long noncoding RNA (lncRNA) in the extracellular acidity-induced cancer metastasis of pancreatic cancer (PC) remains unclear. Methods: Different expression levels of lncRNAs in PC cells under normal and acidic conditions were compared by RNA sequencing (RNA-seq). The effects of antisense lncRNA of metastasis suppressor 1 (MTSS1-AS) on acidic PC cells were assessed by gain- and loss-of-function experiments. Fluorescence in situ hybridization, RNA immunoprecipitation, RNA pull-down, Western blot, luciferase reporter, and Chromatin immunoprecipitation assays were employed to determine the regulatory mechanisms of MTSS1-AS in the acidity-induced metastasis of PC cells. The expression of MTSS1-AS and associated pathways were compared in PC samples and peritumoral normal tissues. Results: RNA-seq demonstrated that MTSS1-AS was significantly downregulated in pancreatic cells cultured with the acidic medium. The overexpression of MTSS1-AS remarkably inhibited the acidity-promoted metastasis of PC cells by upregulating the expression of its sense gene metastasis suppressor 1 (MTSS1). Mechanistically, MTSS1-AS scaffolded the interaction between E3 ubiquitin-protein ligase STIP1 homology and U-box containing protein 1 (STUB1) and transcription regulator myeloid zinc finger 1 (MZF1), leading to ubiquitination-mediated degradation of MZF1. Further, MZF1 inhibited the expression of MTSS1 by binding to the MTSS1 promoter. Thus, the acidity-reduced MTSS1-AS facilitated the stability of MZF1 and its inhibitory effect on MTSS1 transcription, thereby promoting the metastasis of PC cells under acidic conditions. Moreover, MTSS1-AS was transcriptionally repressed by the binding of MYC proto-oncogene (Myc) with initiator (Inr) elements of the MTSS1-AS promoter. Meanwhile, MTSS1-AS mutually repressed the expression of Myc by impairing the MZF1-mediated transcription activation of Myc, thereby forming a negative feedback loop between MTSS1-AS and Myc in acidic PC cells. In accordance with the experimental results, MTSS1-AS and MTSS1 were downregulated in PC and correlated with poor overall survival. Conclusions: The results implicated that a reciprocal feedback loop between Myc and MTSS1-AS contributed to the extracellular acidity-promoted metastasis of PC, and indicated that MTSS1-AS was a valuable biomarker and therapeutic target for PC.
Collapse
Affiliation(s)
- Yuhang Hu
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fan Wang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fengyu Xu
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaifeng Fang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhi Fang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoming Shuai
- Department of Gastroenterology Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kailin Cai
- Department of Gastroenterology Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jinhuang Chen
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ping Hu
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ding Chen
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peng Xu
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chaojie Hu
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhu Zeng
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jianxin Zhong
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Li
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiang Tang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mengqi Huang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yong Zhao
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chunyou Wang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gang Zhao
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
36
|
Abstract
A new study reports an unexpected function of the nucleolus as a protein quality control compartment for misfolded and aggregation-prone proteins. These findings have important implications for protein misfolding diseases.
Collapse
|
37
|
Vydzhak O, Luke B, Schindler N. Non-coding RNAs at the Eukaryotic rDNA Locus: RNA-DNA Hybrids and Beyond. J Mol Biol 2020; 432:4287-4304. [PMID: 32446803 DOI: 10.1016/j.jmb.2020.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022]
Abstract
The human ribosomal DNA (rDNA) locus encodes a variety of long non-coding RNAs (lncRNAs). Among them, the canonical ribosomal RNAs that are the catalytic components of the ribosomes, as well as regulatory lncRNAs including promoter-associated RNAs (pRNA), stress-induced promoter and pre-rRNA antisense RNAs (PAPAS), and different intergenic spacer derived lncRNA species (IGSRNA). In addition, externally encoded lncRNAs are imported into the nucleolus, which orchestrate the complex regulation of the nucleolar state in normal and stress conditions via a plethora of molecular mechanisms. This review focuses on the triplex and R-loop formation aspects of lncRNAs at the rDNA locus in yeast and human cells. We discuss the protein players that regulate R-loops at rDNA and how their misregulation contributes to DNA damage and disease. Furthermore, we speculate how DNA lesions such as rNMPs or 8-oxo-dG might affect RNA-DNA hybrid formation. The transcription of lncRNA from rDNA has been observed in yeast, plants, flies, worms, mouse and human cells. This evolutionary conservation highlights the importance of lncRNAs in rDNA function and maintenance.
Collapse
Affiliation(s)
- Olga Vydzhak
- Institute of Molecular Biology (IMB), Johannes Gutenberg-University Mainz, Ackermannweg 4, 55128 Mainz, Germany
| | - Brian Luke
- Institute of Molecular Biology (IMB), Johannes Gutenberg-University Mainz, Ackermannweg 4, 55128 Mainz, Germany; Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Natalie Schindler
- Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg-University Mainz, 55128 Mainz, Germany.
| |
Collapse
|
38
|
Khosraviani N, Ostrowski LA, Mekhail K. Roles for Non-coding RNAs in Spatial Genome Organization. Front Cell Dev Biol 2019; 7:336. [PMID: 31921848 PMCID: PMC6930868 DOI: 10.3389/fcell.2019.00336] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/29/2019] [Indexed: 12/15/2022] Open
Abstract
Genetic loci are non-randomly arranged in the nucleus of the cell. This order, which is important to overall genome expression and stability, is maintained by a growing number of factors including the nuclear envelope, various genetic elements and dedicated protein complexes. Here, we review evidence supporting roles for non-coding RNAs (ncRNAs) in the regulation of spatial genome organization and its impact on gene expression and cell survival. Specifically, we discuss how ncRNAs from single-copy and repetitive DNA loci contribute to spatial genome organization by impacting perinuclear chromosome tethering, major nuclear compartments, chromatin looping, and various chromosomal structures. Overall, our analysis of the literature highlights central functions for ncRNAs and their transcription in the modulation of spatial genome organization with connections to human health and disease.
Collapse
Affiliation(s)
- Negin Khosraviani
- Department of Laboratory Medicine and Pathobiology, MaRS Centre, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Lauren A. Ostrowski
- Department of Laboratory Medicine and Pathobiology, MaRS Centre, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, MaRS Centre, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Canada Research Chairs Program, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
39
|
Wang M, Tao X, Jacob MD, Bennett CA, Ho JJD, Gonzalgo ML, Audas TE, Lee S. Stress-Induced Low Complexity RNA Activates Physiological Amyloidogenesis. Cell Rep 2019; 24:1713-1721.e4. [PMID: 30110628 PMCID: PMC6249693 DOI: 10.1016/j.celrep.2018.07.040] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/24/2018] [Accepted: 07/11/2018] [Indexed: 12/20/2022] Open
Abstract
Amyloid bodies (A-bodies) are inducible membrane-less nuclear compartments composed of heterogeneous proteins that adopt an amyloid-like state. A-bodies are seeded by noncoding RNA derived from stimuli-specific loci of the rDNA intergenic spacer (rIGSRNA). This raises the question of how rIGSRNA recruits a large population of diverse proteins to confer A-body identity. Here, we show that long low-complexity dinucleotide repeats operate as the architectural determinants of rIGSRNA. On stimulus, clusters of rIGSRNA with simple cytosine/uracil (CU) or adenosine/guanine (AG) repeats spanning hundreds of nucleotides accumulate in the nucleolar area. The low-complexity sequences facilitate charge-based interactions with short cationic peptides to produce multiple nucleolar liquid-like foci. Local concentration of proteins with fibrillation propensity in these nucleolar foci induces the formation of an amyloidogenic liquid phase that seeds A-bodies. These results demonstrate the physiological importance of low-complexity RNA and repetitive regions of the genome often dismissed as "junk" DNA.
Collapse
Affiliation(s)
- Miling Wang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Urology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Xianzun Tao
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Mathieu D Jacob
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Clayton A Bennett
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - J J David Ho
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Mark L Gonzalgo
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Urology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Timothy E Audas
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Stephen Lee
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Urology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
40
|
Marijan D, Tse R, Elliott K, Chandhok S, Luo M, Lacroix E, Audas TE. Stress-specific aggregation of proteins in the amyloid bodies. FEBS Lett 2019; 593:3162-3172. [PMID: 31512750 DOI: 10.1002/1873-3468.13597] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/01/2019] [Accepted: 09/02/2019] [Indexed: 12/26/2022]
Abstract
Physiological amyloid aggregation occurs within the nuclei of stress-treated cells. These structures, termed Amyloid bodies (A-bodies), assemble through the rapid accumulation of proteins into dense membrane-less organelles, which possess the same biophysical properties as plaques observed in many amyloid-based diseases. Here, we demonstrate that A-body proteomic compositions vary significantly between stimuli, as constituent proteins can be sequestered by one or more stressors. Stimulus exposure alone was insufficient to induce aggregation, demonstrating that this pathway is not regulated solely by stress-induced conformational changes of the A-body targets. We propose that different environmental conditions induce the formation of A-body subtypes containing distinct protein residents. This selective immobilization of proteins may have evolved as a finely tuned mechanism for surviving divergent stressors.
Collapse
Affiliation(s)
- Dane Marijan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.,Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Ronnie Tse
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Keenan Elliott
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Sahil Chandhok
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Monica Luo
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Emma Lacroix
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Timothy E Audas
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.,Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
41
|
Mediani L, Guillén-Boixet J, Vinet J, Franzmann TM, Bigi I, Mateju D, Carrà AD, Morelli FF, Tiago T, Poser I, Alberti S, Carra S. Defective ribosomal products challenge nuclear function by impairing nuclear condensate dynamics and immobilizing ubiquitin. EMBO J 2019; 38:e101341. [PMID: 31271238 PMCID: PMC6669919 DOI: 10.15252/embj.2018101341] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 12/25/2022] Open
Abstract
Nuclear protein aggregation has been linked to genome instability and disease. The main source of aggregation‐prone proteins in cells is defective ribosomal products (DRiPs), which are generated by translating ribosomes in the cytoplasm. Here, we report that DRiPs rapidly diffuse into the nucleus and accumulate in nucleoli and PML bodies, two membraneless organelles formed by liquid–liquid phase separation. We show that nucleoli and PML bodies act as dynamic overflow compartments that recruit protein quality control factors and store DRiPs for later clearance. Whereas nucleoli serve as constitutive overflow compartments, PML bodies are stress‐inducible overflow compartments for DRiPs. If DRiPs are not properly cleared by chaperones and proteasomes due to proteostasis impairment, nucleoli undergo amyloidogenesis and PML bodies solidify. Solid PML bodies immobilize 20S proteasomes and limit the recycling of free ubiquitin. Ubiquitin depletion, in turn, compromises the formation of DNA repair compartments at fragile chromosomal sites, ultimately threatening cell survival.
Collapse
Affiliation(s)
- Laura Mediani
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Jonathan Vinet
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Genomic and post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Titus M Franzmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ilaria Bigi
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniel Mateju
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Arianna D Carrà
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federica F Morelli
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tatiana Tiago
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Biotechnology Center (BIOTEC), Dresden, Germany
| | - Serena Carra
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
42
|
Pirogov SA, Gvozdev VA, Klenov MS. Long Noncoding RNAs and Stress Response in the Nucleolus. Cells 2019; 8:cells8070668. [PMID: 31269716 PMCID: PMC6678565 DOI: 10.3390/cells8070668] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 12/15/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) perform diverse functions in the regulation of cellular processes. Here we consider a variety of lncRNAs found in the ribosome production center, the nucleolus, and focus on their role in the response to environmental stressors. Nucleolar lncRNAs ensure stress adaptation by cessation of resource-intensive ribosomal RNA (rRNA) synthesis and by inducing the massive sequestration of proteins within the nucleolus. Different cell states like quiescence and cancer are also controlled by specific lncRNAs in the nucleolus. Taken together, recent findings allow us to consider lncRNAs as multifunctional regulators of nucleolar activities, which are responsive to various physiological conditions.
Collapse
Affiliation(s)
- Sergei A Pirogov
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182 Moscow, Russia
| | - Vladimir A Gvozdev
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182 Moscow, Russia.
| | - Mikhail S Klenov
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182 Moscow, Russia.
| |
Collapse
|
43
|
Iarovaia OV, Minina EP, Sheval EV, Onichtchouk D, Dokudovskaya S, Razin SV, Vassetzky YS. Nucleolus: A Central Hub for Nuclear Functions. Trends Cell Biol 2019; 29:647-659. [PMID: 31176528 DOI: 10.1016/j.tcb.2019.04.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/19/2022]
Abstract
The nucleolus is the largest and most studied nuclear body, but its role in nuclear function is far from being comprehensively understood. Much work on the nucleolus has focused on its role in regulating RNA polymerase I (RNA Pol I) transcription and ribosome biogenesis; however, emerging evidence points to the nucleolus as an organizing hub for many nuclear functions, accomplished via the shuttling of proteins and nucleic acids between the nucleolus and nucleoplasm. Here, we discuss the cellular mechanisms affected by shuttling of nucleolar components, including the 3D organization of the genome, stress response, DNA repair and recombination, transcription regulation, telomere maintenance, and other essential cellular functions.
Collapse
Affiliation(s)
- Olga V Iarovaia
- Institute of Gene Biology of the Russian Academy of Sciences, 119334 Moscow, Russia; LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France
| | - Elizaveta P Minina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Eugene V Sheval
- LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Daria Onichtchouk
- Developmental Biology Unit, Department of Biology I, University of Freiburg, Hauptstrasse 1, D-79104 Freiburg, Germany
| | - Svetlana Dokudovskaya
- LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France; UMR8126, Université Paris-Sud, CNRS, Institut Gustave Roussy, 94805 Villejuif, France
| | - Sergey V Razin
- Institute of Gene Biology of the Russian Academy of Sciences, 119334 Moscow, Russia; LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France; Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Yegor S Vassetzky
- LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France; Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia; UMR8126, Université Paris-Sud, CNRS, Institut Gustave Roussy, 94805 Villejuif, France.
| |
Collapse
|
44
|
Michel J, Nolin F, Wortham L, Lalun N, Tchelidze P, Banchet V, Terryn C, Ploton D. Various Nucleolar Stress Inducers Result in Highly Distinct Changes in Water, Dry Mass and Elemental Content in Cancerous Cell Compartments: Investigation Using a Nano-Analytical Approach. Nanotheranostics 2019; 3:179-195. [PMID: 31183313 PMCID: PMC6536780 DOI: 10.7150/ntno.31878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/20/2019] [Indexed: 01/10/2023] Open
Abstract
Rationale: Numerous chemotherapeutic drugs that affect ribosome biogenesis in the nucleolus induce nucleolar stress. Improving our understanding of the effects of these drugs will require uncovering and comparing their impact on several biophysical parameters of the major cell compartments. Here, we quantified the water content and dry mass of cancerous cells treated with CX-5461, DRB or DAM to calculate macromolecular crowding and the volume occupied by free water, as well as elemental content. Methods: HeLa-H2B-GFP cells were treated with CX-5461, DRB or DAM. Water content and dry mass were measured in numerous regions of interest of ultrathin cryo-sections by quantitative scanning transmission electron microscope dark-field imaging and the elements quantified by energy dispersive X-ray spectrometry. The data were used to calculate macromolecular crowding and the volume occupied by free water in all cell compartments of control and treated cells. Hydrophobic and unfolded proteins were revealed by 8-Anilinonaphtalene-1-sulfonic acid (ANS) staining and imaging by two-photon microscopy. Immunolabeling of UBF, pNBS1 and pNF-κB was carried out and the images acquired with a confocal microscope for 3D imaging to address whether the localization of these proteins changes in treated cells. Results: Treatment with CX-5461, DRB or DAM induced completely different changes in macromolecular crowding and elemental content. Macromolecular crowding and elemental content were much higher in CX-5461-treated, moderately higher in DRB-treated, and much lower in DAM-treated cells than control cells. None of the drugs alone induced nucleolar ANS staining but it was induced by heat-shock of control cells and cells previously treated with DAM. UBF and pNBS1 were systematically co-localized in the nucleolus of CX-5461- and DAM-treated cells. pNF-κB only localized to the nucleolar caps of pre-apoptotic DAM-treated cells. Conclusion: We directly quantified water and ion content in cell compartments using cryo-correlative electron microscopy. We show that different chemotherapeutic nucleolar stress inducers result in distinctive, thus far-unrecognized changes in macromolecular crowding and elemental content which are known to modify cell metabolism. Moreover we were able to correlate these changes to the sensitivity of treated cells to heat-shock and the behavior of nucleolar pNBS1 and pNF-κB.
Collapse
Affiliation(s)
- Jean Michel
- UMR-S 1250 INSERM, Université de Reims Champagne Ardenne
| | | | - Laurence Wortham
- Platform of Cell and Tissue Imaging (PICT), Université de Reims Champagne Ardenne
| | - Nathalie Lalun
- UMR-S 1250 INSERM, Université de Reims Champagne Ardenne
| | - Pavel Tchelidze
- Faculty of Exact and Life Sciences, Department of Morphology, Tbilisi State University, Tbilisi, Georgia
| | | | - Christine Terryn
- Platform of Cell and Tissue Imaging (PICT), Université de Reims Champagne Ardenne
| | | |
Collapse
|
45
|
Latonen L. Phase-to-Phase With Nucleoli - Stress Responses, Protein Aggregation and Novel Roles of RNA. Front Cell Neurosci 2019; 13:151. [PMID: 31080406 PMCID: PMC6497782 DOI: 10.3389/fncel.2019.00151] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022] Open
Abstract
Protein- and RNA-containing foci and aggregates are a hallmark of many age- and mutation-related neurodegenerative diseases. This article focuses on the role the nucleolus has as a hub in macromolecule regulation in the mammalian nucleus. The nucleolus has a well-established role in ribosome biogenesis and functions in several types of cellular stress responses. In addition to known reactions to DNA damaging and transcription inhibiting stresses, there is an emerging role of the nucleolus especially in responses to proteotoxic stress such as heat shock and inhibition of proteasome function. The nucleolus serves as an active regulatory site for detention of extranucleolar proteins. This takes place in nucleolar cavities and manifests in protein and RNA collections referred to as intranucleolar bodies (INBs), nucleolar aggresomes or amyloid bodies (A-bodies), depending on stress type, severity of accumulation, and material propensities of the macromolecular collections. These indicate a relevance of nucleolar function and regulation in neurodegeneration-related cellular events, but also provide surprising connections with cancer-related pathways. Yet, the molecular mechanisms governing these processes remain largely undefined. In this article, the nucleolus as the site of protein and RNA accumulation and as a possible protective organelle for nuclear proteins during stress is viewed. In addition, recent evidence of liquid-liquid phase separation (LLPS) and liquid-solid phase transition in the formation of nucleoli and its stress responses, respectively, are discussed, along with the increasingly indicated role and open questions for noncoding RNA species in these events.
Collapse
Affiliation(s)
- Leena Latonen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
46
|
Wang M, Bokros M, Theodoridis PR, Lee S. Nucleolar Sequestration: Remodeling Nucleoli Into Amyloid Bodies. Front Genet 2019; 10:1179. [PMID: 31824572 PMCID: PMC6881480 DOI: 10.3389/fgene.2019.01179] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/24/2019] [Indexed: 01/14/2023] Open
Abstract
This year marks the 20th anniversary of the discovery that the nucleolus can temporarily immobilize proteins, a process known as nucleolar sequestration. This review reflects on the progress made to understand the physiological roles of nucleolar sequestration and the mechanisms involved in the immobilization of proteins. We discuss how protein immobilization can occur through a highly choreographed amyloidogenic program that converts the nucleolus into a large fibrous organelle with amyloid-like characteristics called the amyloid body (A-body). We propose a working model of A-body biogenesis that includes a role for low-complexity ribosomal intergenic spacer RNA (rIGSRNA) and a discrete peptide sequence, the amyloid-converting motif (ACM), found in many proteins that undergo immobilization. Amyloid bodies provide a unique model to study the multistep assembly of a membraneless compartment and may provide alternative insights into the pathological amyloidogenesis involved in neurological disorders.
Collapse
Affiliation(s)
- Miling Wang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Michael Bokros
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Phaedra Rebecca Theodoridis
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Stephen Lee
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Urology, Miller School of Medicine, University of Miami, FL, United States
- *Correspondence: Stephen Lee,
| |
Collapse
|
47
|
|
48
|
The nucleolar transcriptome regulates Piwi shuttling between the nucleolus and the nucleoplasm. Chromosome Res 2018; 27:141-152. [DOI: 10.1007/s10577-018-9595-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/25/2018] [Accepted: 11/29/2018] [Indexed: 01/25/2023]
|
49
|
Verheyden Y, Goedert L, Leucci E. Control of nucleolar stress and translational reprogramming by lncRNAs. Cell Stress 2018; 3:19-26. [PMID: 31225496 PMCID: PMC6551676 DOI: 10.15698/cst2019.01.172] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Under adverse environmental conditions, cells activate stress re-sponses that favour adaptation or, in case of irreversible damage, induce cell death. Multiple stress response pathways converge to downregulate ribo-some biogenesis and translation since these are the most energy consuming processes in the cell. This adaptive response allows preserving genomic stabil-ity and saving energy for the recovery. It follows that the nucleolus is a major sensor and integrator of stress responses that are then transmitted to the translation machinery through an intricate series of conserved events. Long non-coding RNAs (lncRNAs) are emerging as important regulators of stress-induced cascades, for their ability to mediate post-transcriptional responses. Consistently, many of them are specifically expressed under stress conditions and a few have been already functionally linked to these processes, thus fur-ther supporting a role in stress management. In this review we survey differ-ent archetypes of lncRNAs specifically implicated in the regulation of nucleo-lar functions and translation reprogramming during stress responses.
Collapse
Affiliation(s)
- Yvessa Verheyden
- Laboratory of RNA Cancer Biology, Department of Oncology, LKI, KU Leuven, 3000 Leuven, Belgium
| | - Lucas Goedert
- Laboratory of RNA Cancer Biology, Department of Oncology, LKI, KU Leuven, 3000 Leuven, Belgium.,Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Eleonora Leucci
- Laboratory of RNA Cancer Biology, Department of Oncology, LKI, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
50
|
Crosstalk between NF-κB and Nucleoli in the Regulation of Cellular Homeostasis. Cells 2018; 7:cells7100157. [PMID: 30301139 PMCID: PMC6210184 DOI: 10.3390/cells7100157] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/28/2018] [Accepted: 10/03/2018] [Indexed: 12/30/2022] Open
Abstract
Nucleoli are emerging as key sensors of cellular stress and regulators of the downstream consequences on proliferation, metabolism, senescence, and apoptosis. NF-κB signalling is activated in response to a similar plethora of stresses, which leads to modulation of cell growth and death programs. While nucleolar and NF-κB pathways are distinct, it is increasingly apparent that they converge at multiple levels. Exposure of cells to certain insults causes a specific type of nucleolar stress that is characterised by degradation of the PolI complex component, TIF-IA, and increased nucleolar size. Recent studies have shown that this atypical nucleolar stress lies upstream of cytosolic IκB degradation and NF-κB nuclear translocation. Under these stress conditions, the RelA component of NF-κB accumulates within functionally altered nucleoli to trigger a nucleophosmin dependent, apoptotic pathway. In this review, we will discuss these points of crosstalk and their relevance to anti-tumour mechanism of aspirin and small molecule CDK4 inhibitors. We will also briefly the discuss how crosstalk between nucleoli and NF-κB signalling may be more broadly relevant to the regulation of cellular homeostasis and how it may be exploited for therapeutic purpose.
Collapse
|