1
|
Keikhosravi A, Guin K, Pegoraro G, Misteli T. Simulation and Quantitative Analysis of Spatial Centromere Distribution Patterns. Cells 2025; 14:491. [PMID: 40214445 PMCID: PMC11987964 DOI: 10.3390/cells14070491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/18/2025] [Accepted: 03/22/2025] [Indexed: 04/14/2025] Open
Abstract
A prominent feature of eukaryotic chromosomes are centromeres, which are specialized regions of repetitive DNA required for faithful chromosome segregation during cell division. In interphase cells, centromeres are non-randomly positioned in the three-dimensional space of the nucleus in a cell type-specific manner. The functional relevance and the cellular mechanisms underlying this localization are unknown, and quantitative methods to measure distribution patterns of centromeres in 3D space are needed. Here, we developed an analytical framework that combines sensitive clustering metrics and advanced modeling techniques for the quantitative analysis of centromere distributions at the single-cell level. To identify a robust quantitative measure for centromere clustering, we benchmarked six metrics for their ability to sensitively detect changes in centromere distribution patterns from high-throughput imaging data of human cells, both under normal conditions and upon experimental perturbation of centromere distribution. We found that Ripley's K function has the highest accuracy with minimal sensitivity to variations in the number of centromeres, making it the most suitable metric for measuring centromere distributions. As a complementary approach, we also developed and validated spatial models to replicate centromere distribution patterns, and we show that a radially shifted Gaussian distribution best represents the centromere patterns seen in human cells. Our approach creates tools for the quantitative characterization of spatial centromere distributions with applications in both targeted studies of centromere organization and unbiased screening approaches.
Collapse
Affiliation(s)
- Adib Keikhosravi
- High Throughput Imaging Facility (HiTIF), National Cancer Institute, NIH, Bethesda, MD 20892, USA;
| | - Krishnendu Guin
- Cell Biology of Genomes Group, National Cancer Institute, NIH, Bethesda, MD 20892, USA;
| | - Gianluca Pegoraro
- High Throughput Imaging Facility (HiTIF), National Cancer Institute, NIH, Bethesda, MD 20892, USA;
| | - Tom Misteli
- Cell Biology of Genomes Group, National Cancer Institute, NIH, Bethesda, MD 20892, USA;
| |
Collapse
|
2
|
Keikhosravi A, Guin K, Pegoraro G, Misteli T. Simulation and quantitative analysis of spatial centromere distribution patterns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634320. [PMID: 39896519 PMCID: PMC11785228 DOI: 10.1101/2025.01.22.634320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
A prominent feature of eukaryotic chromosomes are centromeres, which are specialized regions of repetitive DNA required for faithful chromosome segregation during cell division. In interphase cells centromeres are non-randomly positioned in the three-dimensional space of the nucleus in a cell-type specific manner. The functional relevance and the cellular mechanisms underlying this observation are unknown, and quantitative methods to measure distribution patterns of centromeres in 3D space are needed. Here we have developed an analytical framework that combines robust clustering metrics and advanced modeling techniques for the quantitative analysis of centromere distributions at the single cell level. To identify a robust quantitative measure for centromere clustering, we benchmarked six metrics for their ability to sensitively detect changes in centromere distribution patterns from high-throughput imaging data of human cells, both under normal conditions and upon experimental perturbation of centromere distribution. We find that Ripley's K Score has the highest accuracy with minimal sensitivity to variations in centromeres number, making it the most suitable metric for measuring centromere distributions. As a complementary approach, we also developed and validated spatial models to replicate centromere distribution patterns, and we show that a radially shifted Gaussian distribution best represents the centromere patterns seen in human cells. Our approach creates tools for the quantitative characterization of spatial centromere distributions with applications in both targeted studies of centromere organization as well as in unbiased screening approaches.
Collapse
Affiliation(s)
- Adib Keikhosravi
- High Throughput Imaging Facility (HiTIF), National Cancer Institute, NIH, Bethesda, MD 20892
| | - Krishnendu Guin
- Cell Biology of Genomes Group, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Gianluca Pegoraro
- High Throughput Imaging Facility (HiTIF), National Cancer Institute, NIH, Bethesda, MD 20892
| | - Tom Misteli
- Cell Biology of Genomes Group, National Cancer Institute, NIH, Bethesda, MD 20892
| |
Collapse
|
3
|
Bloom K. Chromosome segregation: Brushing up on centromeres. Curr Biol 2024; 34:R565-R567. [PMID: 38889676 PMCID: PMC11531310 DOI: 10.1016/j.cub.2024.04.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Turning centromere DNA into a mechanical spring is central to the fidelity of chromosome segregation. A recent study shows how centromere DNA loops and partitioning cohesin and condensin convert centromeres and pericentromeres into bipartite bottlebrushes.
Collapse
Affiliation(s)
- Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Sacristan C, Samejima K, Ruiz LA, Deb M, Lambers MLA, Buckle A, Brackley CA, Robertson D, Hori T, Webb S, Kiewisz R, Bepler T, van Kwawegen E, Risteski P, Vukušić K, Tolić IM, Müller-Reichert T, Fukagawa T, Gilbert N, Marenduzzo D, Earnshaw WC, Kops GJPL. Vertebrate centromeres in mitosis are functionally bipartite structures stabilized by cohesin. Cell 2024; 187:3006-3023.e26. [PMID: 38744280 PMCID: PMC11164432 DOI: 10.1016/j.cell.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 01/30/2024] [Accepted: 04/14/2024] [Indexed: 05/16/2024]
Abstract
Centromeres are scaffolds for the assembly of kinetochores that ensure chromosome segregation during cell division. How vertebrate centromeres obtain a three-dimensional structure to accomplish their primary function is unclear. Using super-resolution imaging, capture-C, and polymer modeling, we show that vertebrate centromeres are partitioned by condensins into two subdomains during mitosis. The bipartite structure is found in human, mouse, and chicken cells and is therefore a fundamental feature of vertebrate centromeres. Super-resolution imaging and electron tomography reveal that bipartite centromeres assemble bipartite kinetochores, with each subdomain binding a distinct microtubule bundle. Cohesin links the centromere subdomains, limiting their separation in response to spindle forces and avoiding merotelic kinetochore-spindle attachments. Lagging chromosomes during cancer cell divisions frequently have merotelic attachments in which the centromere subdomains are separated and bioriented. Our work reveals a fundamental aspect of vertebrate centromere biology with implications for understanding the mechanisms that guarantee faithful chromosome segregation.
Collapse
Affiliation(s)
- Carlos Sacristan
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Kumiko Samejima
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK.
| | - Lorena Andrade Ruiz
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Moonmoon Deb
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Maaike L A Lambers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Adam Buckle
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Chris A Brackley
- SUPA School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Daniel Robertson
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Tetsuya Hori
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Shaun Webb
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Robert Kiewisz
- Simons Machine Learning Center, New York Structural Biology Center, New York, NY 10027, USA; Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, Cantoblanco, Madrid 28049, Spain
| | - Tristan Bepler
- Simons Machine Learning Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Eloïse van Kwawegen
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Tatsuo Fukagawa
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Nick Gilbert
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Davide Marenduzzo
- SUPA School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK.
| | - Geert J P L Kops
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
5
|
Sen Gupta A, Seidel C, Tsuchiya D, McKinney S, Yu Z, Smith SE, Unruh JR, Gerton JL. Defining a core configuration for human centromeres during mitosis. Nat Commun 2023; 14:7947. [PMID: 38040722 PMCID: PMC10692335 DOI: 10.1038/s41467-023-42980-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/25/2023] [Indexed: 12/03/2023] Open
Abstract
The centromere components cohesin, CENP-A, and centromeric DNA are essential for biorientation of sister chromatids on the mitotic spindle and accurate sister chromatid segregation. Insight into the 3D organization of centromere components would help resolve how centromeres function on the mitotic spindle. We use ChIP-seq and super-resolution microscopy with single particle averaging to examine the geometry of essential centromeric components on human chromosomes. Both modalities suggest cohesin is enriched at pericentromeric DNA. CENP-A localizes to a subset of the α-satellite DNA, with clusters separated by ~562 nm and a perpendicular intervening ~190 nM wide axis of cohesin in metaphase chromosomes. Differently sized α-satellite arrays achieve a similar core structure. Here we present a working model for a common core configuration of essential centromeric components that includes CENP-A nucleosomes, α-satellite DNA and pericentromeric cohesion. This configuration helps reconcile how centromeres function and serves as a foundation to add components of the chromosome segregation machinery.
Collapse
Affiliation(s)
| | - Chris Seidel
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Dai Tsuchiya
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sarah E Smith
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO, USA.
- Department of Biochemistry and Molecular Biology, University of Kansas, Kansas City, KS, USA.
| |
Collapse
|
6
|
Matityahu A, Onn I. It's all in the numbers: Cohesin stoichiometry. Front Mol Biosci 2022; 9:1010894. [PMID: 36330215 PMCID: PMC9623059 DOI: 10.3389/fmolb.2022.1010894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/05/2022] [Indexed: 01/09/2024] Open
Abstract
Cohesin, a structural maintenance of chromosome (SMC) complex, organizes chromatin into three-dimensional structures by threading chromatin into loops and stabilizing long-range chromatin interactions. Four subunits in a 1:1:1:1 ratio compose the cohesin core, which is regulated by auxiliary factors that interact with or modify the core subunits. An ongoing debate about cohesin's mechanism of action regards its stoichiometry. Namely, is cohesin activity mediated by a single complex or cooperation between several complexes that organize into dimers or oligomers? Several investigations that used various experimental approaches have tried to resolve this dispute. Some have convincingly demonstrated that the cohesin monomer is the active unit. However, others have revealed the formation of cohesin dimers and higher-order clusters on and off chromosomes. Elucidating the biological function of cohesin clusters and determining what regulates their formation are just two of the many new questions raised by these findings. We briefly review the history of the argument about cohesin stoichiometry and the central evidence for cohesin activity as a monomer vs. an oligomer. Finally, we discuss the possible biological significance of cohesin oligomerization and present open questions that remain to be answered.
Collapse
Affiliation(s)
| | - Itay Onn
- The Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Safed, Israel
| |
Collapse
|
7
|
Lawrimore J, de Larminat SC, Cook D, Friedman B, Doshi A, Yeh E, Bloom K. Polymer models reveal how chromatin modification can modulate force at the kinetochore. Mol Biol Cell 2022; 33:ar97. [PMID: 35704466 DOI: 10.1091/mbc.e22-02-0041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A key feature of chromosome segregation is the ability to sense tension between sister kinetochores. DNA between sister kinetochores must be packaged in a way that sustains tension propagation from one kinetochore to its sister, approximately 1 micron away. A molecular bottlebrush consisting of a primary axis populated with a crowded array of side chains provides a means to build tension over length scales considerably larger than the stiffness of the individual elements, that is, DNA polymer. Evidence for the bottlebrush organization of chromatin between sister kinetochores comes from genetic, cell biological, and polymer modeling of the budding yeast centromere. In this study, we have used polymer dynamic simulations of the bottlebrush to recapitulate experimental observations of kinetochore structure. Several aspects of the spatial distribution of kinetochore proteins and their response to perturbation lack a mechanistic understanding. Changes in physical parameters of bottlebrush, DNA stiffness, and DNA loops directly impact the architecture of the inner kinetochore. This study reveals that the bottlebrush is an active participant in building tension between sister kinetochores and proposes a mechanism for chromatin feedback to the kinetochore.
Collapse
Affiliation(s)
- Josh Lawrimore
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Solenn C de Larminat
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Diana Cook
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Brandon Friedman
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Ayush Doshi
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Elaine Yeh
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kerry Bloom
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
8
|
Abstract
The centromere serves as the binding site for the kinetochore and is essential for the faithful segregation of chromosomes throughout cell division. The point centromere in yeast is encoded by a ∼115 bp specific DNA sequence, whereas regional centromeres range from 6-10 kbp in fission yeast to 5-10 Mbp in humans. Understanding the physical structure of centromere chromatin (pericentromere in yeast), defined as the chromatin between sister kinetochores, will provide fundamental insights into how centromere DNA is woven into a stiff spring that is able to resist microtubule pulling forces during mitosis. One hallmark of the pericentromere is the enrichment of the structural maintenance of chromosome (SMC) proteins cohesin and condensin. Based on studies from population approaches (ChIP-seq and Hi-C) and experimentally obtained images of fluorescent probes of pericentromeric structure, as well as quantitative comparisons between simulations and experimental results, we suggest a mechanism for building tension between sister kinetochores. We propose that the centromere is a chromatin bottlebrush that is organized by the loop-extruding proteins condensin and cohesin. The bottlebrush arrangement provides a biophysical means to transform pericentromeric chromatin into a spring due to the steric repulsion between radial loops. We argue that the bottlebrush is an organizing principle for chromosome organization that has emerged from multiple approaches in the field.
Collapse
|
9
|
Shake It Off: The Elimination of Erroneous Kinetochore-Microtubule Attachments and Chromosome Oscillation. Int J Mol Sci 2021; 22:ijms22063174. [PMID: 33804687 PMCID: PMC8003821 DOI: 10.3390/ijms22063174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/18/2021] [Indexed: 01/17/2023] Open
Abstract
Cell proliferation and sexual reproduction require the faithful segregation of chromosomes. Chromosome segregation is driven by the interaction of chromosomes with the spindle, and the attachment of chromosomes to the proper spindle poles is essential. Initial attachments are frequently erroneous due to the random nature of the attachment process; however, erroneous attachments are selectively eliminated. Proper attachment generates greater tension at the kinetochore than erroneous attachments, and it is thought that attachment selection is dependent on this tension. However, studies of meiotic chromosome segregation suggest that attachment elimination cannot be solely attributed to tension, and the precise mechanism of selective elimination of erroneous attachments remains unclear. During attachment elimination, chromosomes oscillate between the spindle poles. A recent study on meiotic chromosome segregation in fission yeast has suggested that attachment elimination is coupled to chromosome oscillation. In this review, the possible contribution of chromosome oscillation in the elimination of erroneous attachment is discussed in light of the recent finding.
Collapse
|
10
|
Cook D, Long S, Stanton J, Cusick P, Lawrimore C, Yeh E, Grant S, Bloom K. Behavior of dicentric chromosomes in budding yeast. PLoS Genet 2021; 17:e1009442. [PMID: 33735169 PMCID: PMC8009378 DOI: 10.1371/journal.pgen.1009442] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 03/30/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
DNA double-strand breaks arise in vivo when a dicentric chromosome (two centromeres on one chromosome) goes through mitosis with the two centromeres attached to opposite spindle pole bodies. Repair of the DSBs generates phenotypic diversity due to the range of monocentric derivative chromosomes that arise. To explore whether DSBs may be differentially repaired as a function of their spatial position in the chromosome, we have examined the structure of monocentric derivative chromosomes from cells containing a suite of dicentric chromosomes in which the distance between the two centromeres ranges from 6.5 kb to 57.7 kb. Two major classes of repair products, homology-based (homologous recombination (HR) and single-strand annealing (SSA)) and end-joining (non-homologous (NHEJ) and micro-homology mediated (MMEJ)) were identified. The distribution of repair products varies as a function of distance between the two centromeres. Genetic dependencies on double strand break repair (Rad52), DNA ligase (Lif1), and S phase checkpoint (Mrc1) are indicative of distinct repair pathway choices for DNA breaks in the pericentromeric chromatin versus the arms. A challenge in chromosome biology is to integrate the linear code with spatial organization and chromosome dynamics within the nucleus. The major sub-division of function in the nucleus is the nucleolus, the site of ribosomal RNA synthesis. We report that the pericentromere DNA surrounding the centromere is another region of confined biochemistry. We have found that chromosome breaks between two centromeres that both lie within the pericentromeric region of the chromosomes are repaired via pathways that do not rely on sequence homology (MMEJ or NHEJ). Chromosome breaks in dicentric chromosomes whose centromeres are separated by > 20 kb are repaired via pathways that rely mainly on sequence homology (HR, SSA). The repair of breaks in the pericentromere versus breaks in the arms are differentially dependent on Rad52, Lif1, and Mrc1, further indicative of spatial control over DNA repair pathways.
Collapse
Affiliation(s)
- Diana Cook
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sarah Long
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - John Stanton
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Patrick Cusick
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Colleen Lawrimore
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Elaine Yeh
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sarah Grant
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kerry Bloom
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
11
|
Lawrimore CJ, Bloom K. Common Features of the Pericentromere and Nucleolus. Genes (Basel) 2019; 10:E1029. [PMID: 31835574 PMCID: PMC6947172 DOI: 10.3390/genes10121029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 12/20/2022] Open
Abstract
Both the pericentromere and the nucleolus have unique characteristics that distinguish them amongst the rest of genome. Looping of pericentromeric DNA, due to structural maintenance of chromosome (SMC) proteins condensin and cohesin, drives its ability to maintain tension during metaphase. Similar loops are formed via condensin and cohesin in nucleolar ribosomal DNA (rDNA). Condensin and cohesin are also concentrated in transfer RNA (tRNA) genes, genes which may be located within the pericentromere as well as tethered to the nucleolus. Replication fork stalling, as well as downstream consequences such as genomic recombination, are characteristic of both the pericentromere and rDNA. Furthermore, emerging evidence suggests that the pericentromere may function as a liquid-liquid phase separated domain, similar to the nucleolus. We therefore propose that the pericentromere and nucleolus, in part due to their enrichment of SMC proteins and others, contain similar domains that drive important cellular activities such as segregation, stability, and repair.
Collapse
Affiliation(s)
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA;
| |
Collapse
|
12
|
Lawrimore J, Doshi A, Walker B, Bloom K. AI-Assisted Forward Modeling of Biological Structures. Front Cell Dev Biol 2019; 7:279. [PMID: 31799251 PMCID: PMC6868055 DOI: 10.3389/fcell.2019.00279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/30/2019] [Indexed: 01/01/2023] Open
Abstract
The rise of machine learning and deep learning technologies have allowed researchers to automate image classification. We describe a method that incorporates automated image classification and principal component analysis to evaluate computational models of biological structures. We use a computational model of the kinetochore to demonstrate our artificial-intelligence (AI)-assisted modeling method. The kinetochore is a large protein complex that connects chromosomes to the mitotic spindle to facilitate proper cell division. The kinetochore can be divided into two regions: the inner kinetochore, including proteins that interact with DNA; and the outer kinetochore, comprised of microtubule-binding proteins. These two kinetochore regions have been shown to have different distributions during metaphase in live budding yeast and therefore act as a test case for our forward modeling technique. We find that a simple convolutional neural net (CNN) can correctly classify fluorescent images of inner and outer kinetochore proteins and show a CNN trained on simulated, fluorescent images can detect difference in experimental images. A polymer model of the ribosomal DNA locus serves as a second test for the method. The nucleolus surrounds the ribosomal DNA locus and appears amorphous in live-cell, fluorescent microscopy experiments in budding yeast, making detection of morphological changes challenging. We show a simple CNN can detect subtle differences in simulated images of the ribosomal DNA locus, demonstrating our CNN-based classification technique can be used on a variety of biological structures.
Collapse
Affiliation(s)
- Josh Lawrimore
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ayush Doshi
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Benjamin Walker
- Department of Mathematics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kerry Bloom
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
13
|
Lawrimore J, Bloom K. The regulation of chromosome segregation via centromere loops. Crit Rev Biochem Mol Biol 2019; 54:352-370. [PMID: 31573359 PMCID: PMC6856439 DOI: 10.1080/10409238.2019.1670130] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/02/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022]
Abstract
Biophysical studies of the yeast centromere have shown that the organization of the centromeric chromatin plays a crucial role in maintaining proper tension between sister kinetochores during mitosis. While centromeric chromatin has traditionally been considered a simple spring, recent work reveals the centromere as a multifaceted, tunable shock absorber. Centromeres can differ from other regions of the genome in their heterochromatin state, supercoiling state, and enrichment of structural maintenance of chromosomes (SMC) protein complexes. Each of these differences can be utilized to alter the effective stiffness of centromeric chromatin. In budding yeast, the SMC protein complexes condensin and cohesin stiffen chromatin by forming and cross-linking chromatin loops, respectively, into a fibrous structure resembling a bottlebrush. The high density of the loops compacts chromatin while spatially isolating the tension from spindle pulling forces to a subset of the chromatin. Paradoxically, the molecular crowding of chromatin via cohesin and condensin also causes an outward/poleward force. The structure allows the centromere to act as a shock absorber that buffers the variable forces generated by dynamic spindle microtubules. Based on the distribution of SMCs from bacteria to human and the conserved distance between sister kinetochores in a wide variety of organisms (0.4 to 1 micron), we propose that the bottlebrush mechanism is the foundational principle for centromere function in eukaryotes.
Collapse
Affiliation(s)
- Josh Lawrimore
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
14
|
Marko JF, De Los Rios P, Barducci A, Gruber S. DNA-segment-capture model for loop extrusion by structural maintenance of chromosome (SMC) protein complexes. Nucleic Acids Res 2019; 47:6956-6972. [PMID: 31175837 PMCID: PMC6649773 DOI: 10.1093/nar/gkz497] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 05/20/2019] [Accepted: 06/06/2019] [Indexed: 01/08/2023] Open
Abstract
Cells possess remarkable control of the folding and entanglement topology of long and flexible chromosomal DNA molecules. It is thought that structural maintenance of chromosome (SMC) protein complexes play a crucial role in this, by organizing long DNAs into series of loops. Experimental data suggest that SMC complexes are able to translocate on DNA, as well as pull out lengths of DNA via a 'loop extrusion' process. We describe a Brownian loop-capture-ratchet model for translocation and loop extrusion based on known structural, catalytic, and DNA-binding properties of the Bacillus subtilis SMC complex. Our model provides an example of a new class of molecular motor where large conformational fluctuations of the motor 'track'-in this case DNA-are involved in the basic translocation process. Quantitative analysis of our model leads to a series of predictions for the motor properties of SMC complexes, most strikingly a strong dependence of SMC translocation velocity and step size on tension in the DNA track that it is moving along, with 'stalling' occuring at subpiconewton tensions. We discuss how the same mechanism might be used by structurally related SMC complexes (Escherichia coli MukBEF and eukaryote condensin, cohesin and SMC5/6) to organize genomic DNA.
Collapse
Affiliation(s)
- John F Marko
- Department of Molecular Biosciences and Department of Physics & Astronomy, Northwestern University, Evanston, IL 60208, USA
| | - Paolo De Los Rios
- Laboratory of Statistical Biophysics, Institute of Physics, School of Basic Sciences and Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne - EPFL, 1015 Lausanne, Switzerland
| | - Alessandro Barducci
- Centre de Biochimie Structurale, INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France
| | - Stephan Gruber
- Départment de Microbiologie Fondamentale, Université de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
15
|
Mirkovic M, Oliveira RA. Centromeric Cohesin: Molecular Glue and Much More. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 56:485-513. [PMID: 28840250 DOI: 10.1007/978-3-319-58592-5_20] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sister chromatid cohesion, mediated by the cohesin complex, is a prerequisite for faithful chromosome segregation during mitosis. Premature release of sister chromatid cohesion leads to random segregation of the genetic material and consequent aneuploidy. Multiple regulatory mechanisms ensure proper timing for cohesion establishment, concomitant with DNA replication, and cohesion release during the subsequent mitosis. Here we summarize the most important phases of the cohesin cycle and the coordination of cohesion release with the progression through mitosis. We further discuss recent evidence that has revealed additional functions for centromeric localization of cohesin in the fidelity of mitosis in metazoans. Beyond its well-established role as "molecular glue", centromeric cohesin complexes are now emerging as a scaffold for multiple fundamental processes during mitosis, including the formation of correct chromosome and kinetochore architecture, force balance with the mitotic spindle, and the association with key molecules that regulate mitotic fidelity, particularly at the chromosomal inner centromere. Centromeric chromatin may be thus seen as a dynamic place where cohesin ensures mitotic fidelity by multiple means.
Collapse
Affiliation(s)
- Mihailo Mirkovic
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 2780-156, Oeiras, Portugal
| | - Raquel A Oliveira
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 2780-156, Oeiras, Portugal.
| |
Collapse
|
16
|
Cook DM, Bennett M, Friedman B, Lawrimore J, Yeh E, Bloom K. Fork pausing allows centromere DNA loop formation and kinetochore assembly. Proc Natl Acad Sci U S A 2018; 115:11784-11789. [PMID: 30373818 PMCID: PMC6243264 DOI: 10.1073/pnas.1806791115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
De novo kinetochore assembly, but not template-directed assembly, is dependent on COMA, the kinetochore complex engaged in cohesin recruitment. The slowing of replication fork progression by treatment with phleomycin (PHL), hydroxyurea, or deletion of the replication fork protection protein Csm3 can activate de novo kinetochore assembly in COMA mutants. Centromere DNA looping at the site of de novo kinetochore assembly can be detected shortly after exposure to PHL. Using simulations to explore the thermodynamics of DNA loops, we propose that loop formation is disfavored during bidirectional replication fork migration. One function of replication fork stalling upon encounters with DNA damage or other blockades may be to allow time for thermal fluctuations of the DNA chain to explore numerous configurations. Biasing thermodynamics provides a mechanism to facilitate macromolecular assembly, DNA repair, and other nucleic acid transactions at the replication fork. These loop configurations are essential for sister centromere separation and kinetochore assembly in the absence of the COMA complex.
Collapse
Affiliation(s)
- Diana M Cook
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Maggie Bennett
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Brandon Friedman
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Josh Lawrimore
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Elaine Yeh
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| |
Collapse
|
17
|
Lawrimore J, Doshi A, Friedman B, Yeh E, Bloom K. Geometric partitioning of cohesin and condensin is a consequence of chromatin loops. Mol Biol Cell 2018; 29:2737-2750. [PMID: 30207827 PMCID: PMC6249845 DOI: 10.1091/mbc.e18-02-0131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/13/2018] [Accepted: 09/04/2018] [Indexed: 12/29/2022] Open
Abstract
SMC (structural maintenance of chromosomes) complexes condensin and cohesin are crucial for proper chromosome organization. Condensin has been reported to be a mechanochemical motor capable of forming chromatin loops, while cohesin passively diffuses along chromatin to tether sister chromatids. In budding yeast, the pericentric region is enriched in both condensin and cohesin. As in higher-eukaryotic chromosomes, condensin is localized to the axial chromatin of the pericentric region, while cohesin is enriched in the radial chromatin. Thus, the pericentric region serves as an ideal model for deducing the role of SMC complexes in chromosome organization. We find condensin-mediated chromatin loops establish a robust chromatin organization, while cohesin limits the area that chromatin loops can explore. Upon biorientation, extensional force from the mitotic spindle aggregates condensin-bound chromatin from its equilibrium position to the axial core of pericentric chromatin, resulting in amplified axial tension. The axial localization of condensin depends on condensin's ability to bind to chromatin to form loops, while the radial localization of cohesin depends on cohesin's ability to diffuse along chromatin. The different chromatin-tethering modalities of condensin and cohesin result in their geometric partitioning in the presence of an extensional force on chromatin.
Collapse
Affiliation(s)
- Josh Lawrimore
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Ayush Doshi
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Brandon Friedman
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Elaine Yeh
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kerry Bloom
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
18
|
Condensin controls mitotic chromosome stiffness and stability without forming a structurally contiguous scaffold. Chromosome Res 2018; 26:277-295. [PMID: 30143891 DOI: 10.1007/s10577-018-9584-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 01/26/2023]
Abstract
During cell division, chromosomes must be folded into their compact mitotic form to ensure their segregation. This process is thought to be largely controlled by the action of condensin SMC protein complexes on chromatin fibers. However, how condensins organize metaphase chromosomes is not understood. We have combined micromanipulation of single human mitotic chromosomes, sub-nanonewton force measurement, siRNA interference of condensin subunit expression, and fluorescence microscopy, to analyze the role of condensin in large-scale chromosome organization. Condensin depletion leads to a dramatic (~ 10-fold) reduction in chromosome elastic stiffness relative to the native, non-depleted case. We also find that prolonged metaphase stalling of cells leads to overloading of chromosomes with condensin, with abnormally high chromosome stiffness. These results demonstrate that condensin is a main element controlling the stiffness of mitotic chromosomes. Isolated, slightly stretched chromosomes display a discontinuous condensing staining pattern, suggesting that condensins organize mitotic chromosomes by forming isolated compaction centers that do not form a continuous scaffold.
Collapse
|
19
|
Abstract
Structural maintenance of chromosome (SMC) protein complexes, including cohesin and condensin, are increasingly being recognized for their important role in cancer and development, making it critical that we understand how these evolutionarily conserved multi-subunit protein complexes associate with and organize the genome. We review adaptor proteins for SMC complexes and how these adaptors may capture SMC complexes following loop extrusion to provide a framework for chromosome organization.
Collapse
Affiliation(s)
- Kobe C. Yuen
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Oncology Biomarker Development, Genentech, Inc., South San Francisco, California, United States of America
| | - Jennifer L. Gerton
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Biochemistry and Molecular Biology, University of Kansas School of Medicine, Kansas City, Kansas, United States of America
- University of Kansas Cancer Center, Kansas City, Kansas, United States of America
| |
Collapse
|
20
|
Lawrimore J, Friedman B, Doshi A, Bloom K. RotoStep: A Chromosome Dynamics Simulator Reveals Mechanisms of Loop Extrusion. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:101-109. [PMID: 29167283 DOI: 10.1101/sqb.2017.82.033696] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ChromoShake is a three-dimensional simulator designed to explore the range of configurational states a chromosome can adopt based on thermodynamic fluctuations of the polymer chain. Here, we refine ChromoShake to generate dynamic simulations of a DNA-based motor protein such as condensin walking along the chromatin substrate. We model walking as a rotation of DNA-binding heat-repeat proteins around one another. The simulation is applied to several configurations of DNA to reveal the consequences of mechanical stepping on taut chromatin under tension versus loop extrusion on single-tethered, floppy chromatin substrates. These simulations provide testable hypotheses for condensin and other DNA-based motors functioning along interphase chromosomes. Our model reveals a novel mechanism for condensin enrichment in the pericentromeric region of mitotic chromosomes. Increased condensin dwell time at centromeres results in a high density of pericentric loops that in turn provide substrate for additional condensin.
Collapse
Affiliation(s)
- Josh Lawrimore
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599-3280
| | - Brandon Friedman
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599-3280
| | - Ayush Doshi
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599-3280
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599-3280
| |
Collapse
|
21
|
Dhatchinamoorthy K, Shivaraju M, Lange JJ, Rubinstein B, Unruh JR, Slaughter BD, Gerton JL. Structural plasticity of the living kinetochore. J Cell Biol 2017; 216:3551-3570. [PMID: 28939613 PMCID: PMC5674893 DOI: 10.1083/jcb.201703152] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/17/2017] [Accepted: 08/21/2017] [Indexed: 11/30/2022] Open
Abstract
The kinetochore is a large, evolutionarily conserved protein structure that connects chromosomes with microtubules. During chromosome segregation, outer kinetochore components track depolymerizing ends of microtubules to facilitate the separation of chromosomes into two cells. In budding yeast, each chromosome has a point centromere upon which a single kinetochore is built, which attaches to a single microtubule. This defined architecture facilitates quantitative examination of kinetochores during the cell cycle. Using three independent measures-calibrated imaging, FRAP, and photoconversion-we find that the Dam1 submodule is unchanged during anaphase, whereas MIND and Ndc80 submodules add copies to form an "anaphase configuration" kinetochore. Microtubule depolymerization and kinesin-related motors contribute to copy addition. Mathematical simulations indicate that the addition of microtubule attachments could facilitate tracking during rapid microtubule depolymerization. We speculate that the minimal kinetochore configuration, which exists from G1 through metaphase, allows for correction of misattachments. Our study provides insight into dynamics and plasticity of the kinetochore structure during chromosome segregation in living cells.
Collapse
Affiliation(s)
- Karthik Dhatchinamoorthy
- Stowers Institute for Medical Research, Kansas City, MO
- The Open University, Milton Keynes, England, UK
| | | | | | | | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO
| | | | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
22
|
Abstract
At metaphase in mitotic cells, pulling forces at the kinetochore-microtubule interface create tension by stretching the centromeric chromatin between oppositely oriented sister kinetochores. This tension is important for stabilizing the end-on kinetochore microtubule attachment required for proper bi-orientation of sister chromosomes as well as for satisfaction of the Spindle Assembly Checkpoint and entry into anaphase. How force is coupled by proteins to kinetochore microtubules and resisted by centromere stretch is becoming better understood as many of the proteins involved have been identified. Recent application of genetically encoded fluorescent tension sensors within the mechanical linkage between the centromere and kinetochore microtubules are beginning to reveal - from live cell assays - protein specific contributions that are functionally important.
Collapse
Affiliation(s)
- Edward D Salmon
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kerry Bloom
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
23
|
Musacchio A, Desai A. A Molecular View of Kinetochore Assembly and Function. BIOLOGY 2017; 6:E5. [PMID: 28125021 PMCID: PMC5371998 DOI: 10.3390/biology6010005] [Citation(s) in RCA: 354] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 12/15/2022]
Abstract
Kinetochores are large protein assemblies that connect chromosomes to microtubules of the mitotic and meiotic spindles in order to distribute the replicated genome from a mother cell to its daughters. Kinetochores also control feedback mechanisms responsible for the correction of incorrect microtubule attachments, and for the coordination of chromosome attachment with cell cycle progression. Finally, kinetochores contribute to their own preservation, across generations, at the specific chromosomal loci devoted to host them, the centromeres. They achieve this in most species by exploiting an epigenetic, DNA-sequence-independent mechanism; notable exceptions are budding yeasts where a specific sequence is associated with centromere function. In the last 15 years, extensive progress in the elucidation of the composition of the kinetochore and the identification of various physical and functional modules within its substructure has led to a much deeper molecular understanding of kinetochore organization and the origins of its functional output. Here, we provide a broad summary of this progress, focusing primarily on kinetochores of humans and budding yeast, while highlighting work from other models, and present important unresolved questions for future studies.
Collapse
Affiliation(s)
- Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Straße 11, Dortmund 44227, Germany.
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen 45117, Germany.
| | - Arshad Desai
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA.
- Department of Cellular & Molecular Medicine, 9500 Gilman Dr., La Jolla, CA 92093, USA.
| |
Collapse
|
24
|
Tsabar M, Haase J, Harrison B, Snider CE, Eldridge B, Kaminsky L, Hine RM, Haber JE, Bloom K. A Cohesin-Based Partitioning Mechanism Revealed upon Transcriptional Inactivation of Centromere. PLoS Genet 2016; 12:e1006021. [PMID: 27128635 PMCID: PMC4851351 DOI: 10.1371/journal.pgen.1006021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 04/08/2016] [Indexed: 12/24/2022] Open
Abstract
Transcriptional inactivation of the budding yeast centromere has been a widely used tool in studies of chromosome segregation and aneuploidy. In haploid cells when an essential chromosome contains a single conditionally inactivated centromere (GAL-CEN), cell growth rate is slowed and segregation fidelity is reduced; but colony formation is nearly 100%. Pedigree analysis revealed that only 30% of the time both mother and daughter cell inherit the GAL-CEN chromosome. The reduced segregation capacity of the GAL-CEN chromosome is further compromised upon reduction of pericentric cohesin (mcm21∆), as reflected in a further diminishment of the Mif2 kinetochore protein at GAL-CEN. By redistributing cohesin from the nucleolus to the pericentromere (by deleting SIR2), there is increased presence of the kinetochore protein Mif2 at GAL-CEN and restoration of cell viability. These studies identify the ability of cohesin to promote chromosome segregation via kinetochore assembly, in a situation where the centromere has been severely compromised.
Collapse
Affiliation(s)
- Michael Tsabar
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Julian Haase
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Benjamin Harrison
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Chloe E. Snider
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Brittany Eldridge
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Lila Kaminsky
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Rebecca M. Hine
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - James E. Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
25
|
Cojoc G, Roscioli E, Zhang L, García-Ulloa A, Shah JV, Berns MW, Pavin N, Cimini D, Tolić IM, Gregan J. Laser microsurgery reveals conserved viscoelastic behavior of the kinetochore. J Cell Biol 2016; 212:767-76. [PMID: 27002163 PMCID: PMC4810299 DOI: 10.1083/jcb.201506011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 02/25/2016] [Indexed: 11/29/2022] Open
Abstract
Accurate chromosome segregation depends on proper kinetochore-microtubule attachment. Upon microtubule interaction, kinetochores are subjected to forces generated by the microtubules. In this work, we used laser ablation to sever microtubules attached to a merotelic kinetochore, which is laterally stretched by opposing pulling forces exerted by microtubules, and inferred the mechanical response of the kinetochore from its length change. In both mammalian PtK1 cells and in the fission yeast Schizosaccharomyces pombe, kinetochores shortened after microtubule severing. Interestingly, the inner kinetochore-centromere relaxed faster than the outer kinetochore. Whereas in fission yeast all kinetochores relaxed to a similar length, in PtK1 cells the more stretched kinetochores remained more stretched. Simple models suggest that these differences arise because the mechanical structure of the mammalian kinetochore is more complex. Our study establishes merotelic kinetochores as an experimental model for studying the mechanical response of the kinetochore in live cells and reveals a viscoelastic behavior of the kinetochore that is conserved in yeast and mammalian cells.
Collapse
Affiliation(s)
- Gheorghe Cojoc
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Emanuele Roscioli
- Department of Biological Sciences and Biocomplexity Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Lijuan Zhang
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| | - Alfonso García-Ulloa
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Jagesh V Shah
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Michael W Berns
- Beckman Laser Institute and University of California, Irvine, Irvine, CA 92612
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Daniela Cimini
- Department of Biological Sciences and Biocomplexity Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Iva M Tolić
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Juraj Gregan
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
26
|
Eng T, Guacci V, Koshland D. Interallelic complementation provides functional evidence for cohesin-cohesin interactions on DNA. Mol Biol Cell 2015; 26:4224-35. [PMID: 26378250 PMCID: PMC4642856 DOI: 10.1091/mbc.e15-06-0331] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/03/2015] [Accepted: 09/09/2015] [Indexed: 11/11/2022] Open
Abstract
The cohesin complex (Mcd1p, Smc1p, Smc3p, and Scc3p) has multiple roles in chromosome architecture, such as promoting sister chromatid cohesion, chromosome condensation, DNA repair, and transcriptional regulation. The prevailing embrace model for sister chromatid cohesion posits that a single cohesin complex entraps both sister chromatids. We report interallelic complementation between pairs of nonfunctional mcd1 alleles (mcd1-1 and mcd1-Q266) or smc3 alleles (smc3-42 and smc3-K113R). Cells bearing individual mcd1 or smc3 mutant alleles are inviable and defective for both sister chromatid cohesion and condensation. However, cells coexpressing two defective mcd1 or two defective smc3 alleles are viable and have cohesion and condensation. Because cohesin contains only a single copy of Smc3p or Mcd1p, these examples of interallelic complementation must result from interplay or communication between the two defective cohesin complexes, each harboring one of the mutant allele products. Neither mcd1-1p nor smc3-42p is bound to chromosomes when expressed individually at its restrictive temperature. However, their chromosome binding is restored when they are coexpressed with their chromosome-bound interallelic complementing partner. Our results support a mechanism by which multiple cohesin complexes interact on DNA to mediate cohesion and condensation.
Collapse
Affiliation(s)
- Thomas Eng
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Vincent Guacci
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Douglas Koshland
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
27
|
Calderon CP, Bloom K. Inferring Latent States and Refining Force Estimates via Hierarchical Dirichlet Process Modeling in Single Particle Tracking Experiments. PLoS One 2015; 10:e0137633. [PMID: 26384324 PMCID: PMC4575198 DOI: 10.1371/journal.pone.0137633] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 08/20/2015] [Indexed: 12/14/2022] Open
Abstract
Understanding the basis for intracellular motion is critical as the field moves toward a deeper understanding of the relation between Brownian forces, molecular crowding, and anisotropic (or isotropic) energetic forcing. Effective forces and other parameters used to summarize molecular motion change over time in live cells due to latent state changes, e.g., changes induced by dynamic micro-environments, photobleaching, and other heterogeneity inherent in biological processes. This study discusses limitations in currently popular analysis methods (e.g., mean square displacement-based analyses) and how new techniques can be used to systematically analyze Single Particle Tracking (SPT) data experiencing abrupt state changes in time or space. The approach is to track GFP tagged chromatids in metaphase in live yeast cells and quantitatively probe the effective forces resulting from dynamic interactions that reflect the sum of a number of physical phenomena. State changes can be induced by various sources including: microtubule dynamics exerting force through the centromere, thermal polymer fluctuations, and DNA-based molecular machines including polymerases and protein exchange complexes such as chaperones and chromatin remodeling complexes. Simulations aiming to show the relevance of the approach to more general SPT data analyses are also studied. Refined force estimates are obtained by adopting and modifying a nonparametric Bayesian modeling technique, the Hierarchical Dirichlet Process Switching Linear Dynamical System (HDP-SLDS), for SPT applications. The HDP-SLDS method shows promise in systematically identifying dynamical regime changes induced by unobserved state changes when the number of underlying states is unknown in advance (a common problem in SPT applications). We expand on the relevance of the HDP-SLDS approach, review the relevant background of Hierarchical Dirichlet Processes, show how to map discrete time HDP-SLDS models to classic SPT models, and discuss limitations of the approach. In addition, we demonstrate new computational techniques for tuning hyperparameters and for checking the statistical consistency of model assumptions directly against individual experimental trajectories; the techniques circumvent the need for "ground-truth" and/or subjective information.
Collapse
Affiliation(s)
| | - Kerry Bloom
- Department of Biology, University of North Carolina, Chapel Hill, NC, United States of America
| |
Collapse
|
28
|
Abstract
Clear organizational patterns on the genome have emerged from the statistics of population studies of fixed cells. However, how these results translate into the dynamics of individual living cells remains unexplored. We use statistical mechanics models derived from polymer physics to inquire into the effects that chromosome properties and dynamics have in the temporal and spatial behavior of the genome. Overall, changes in the properties of individual chains affect the behavior of all other chains in the domain. We explore two modifications of chain behavior: single chain motion and chain-chain interactions. We show that there is not a direct relation between these effects, as increase in motion, doesn't necessarily translate into an increase on chain interaction.
Collapse
Affiliation(s)
- Paula A Vasquez
- a Department of Mathematics; University of South Carolina; Columbia, SC USA
| | | |
Collapse
|
29
|
Stephens AD, Snider CE, Bloom K. The SUMO deconjugating peptidase Smt4 contributes to the mechanism required for transition from sister chromatid arm cohesion to sister chromatid pericentromere separation. Cell Cycle 2015; 14:2206-18. [PMID: 25946564 PMCID: PMC4613993 DOI: 10.1080/15384101.2015.1046656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 04/24/2015] [Indexed: 10/23/2022] Open
Abstract
The pericentromere chromatin protrudes orthogonally from the sister-sister chromosome arm axis. Pericentric protrusions are organized in a series of loops with the centromere at the apex, maximizing its ability to interact with stochastically growing and shortening kinetochore microtubules. Each pericentromere loop is ∼50 kb in size and is organized further into secondary loops that are displaced from the primary spindle axis. Cohesin and condensin are integral to mechanisms of loop formation and generating resistance to outward forces from kinesin motors and anti-parallel spindle microtubules. A major unanswered question is how the boundary between chromosome arms and the pericentromere is established and maintained. We used sister chromatid separation and dynamics of LacO arrays distal to the pericentromere to address this issue. Perturbation of chromatin spring components results in 2 distinct phenotypes. In cohesin and condensin mutants sister pericentric LacO arrays separate a defined distance independent of spindle length. In the absence of Smt4, a peptidase that removes SUMO modifications from proteins, pericentric LacO arrays separate in proportion to spindle length increase. Deletion of Smt4, unlike depletion of cohesin and condensin, causes stretching of both proximal and distal pericentromere LacO arrays. The data suggest that the sumoylation state of chromatin topology adjusters, including cohesin, condensin, and topoisomerase II in the pericentromere, contribute to chromatin spring properties as well as the sister cohesion boundary.
Collapse
Affiliation(s)
- Andrew D Stephens
- Department of Molecular Biosciences; Northwestern University; Evanston, IL USA
| | - Chloe E Snider
- Department of Biology; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| | - Kerry Bloom
- Department of Biology; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| |
Collapse
|
30
|
Sau S, Liu YT, Ma CH, Jayaram M. Stable persistence of the yeast plasmid by hitchhiking on chromosomes during vegetative and germ-line divisions of host cells. Mob Genet Elements 2015; 5:1-8. [PMID: 26442178 DOI: 10.1080/2159256x.2015.1031359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/02/2015] [Accepted: 03/12/2015] [Indexed: 10/23/2022] Open
Abstract
The chromosome-like stability of the Saccharomyces cerevisiae plasmid 2 micron circle likely stems from its ability to tether to chromosomes and segregate by a hitchhiking mechanism. The plasmid partitioning system, responsible for chromosome-coupled segregation, is comprised of 2 plasmid coded proteins Rep1 and Rep2 and a partitioning locus STB. The evidence for the hitchhiking model for mitotic plasmid segregation, although compelling, is almost entirely circumstantial. Direct tests for plasmid-chromosome association are hampered by the limited resolving power of current cell biological tools for analyzing yeast chromosomes. Recent investigations, exploiting the improved resolution of yeast meiotic chromosomes, have revealed the plasmid's propensity to be present at or near chromosome tips. This localization is consistent with the rapid plasmid movements during meiosis I prophase, closely resembling telomere dynamics driven by a meiosis-specific nuclear envelope motor. Current evidence is consistent with the plasmid utilizing the motor as a platform for gaining access to telomeres. Episomes of viruses of the papilloma family and the gammaherpes subfamily persist in latently infected cells by tethering to chromosomes. Selfish genetic elements from fungi to mammals appear to have, by convergent evolution, arrived at the common strategy of chromosome association as a means for stable propagation.
Collapse
Affiliation(s)
- Soumitra Sau
- Department of Molecular Biosciences; University of Texas at Austin ; Austin, TX USA
| | - Yen-Ting Liu
- Department of Molecular Biosciences; University of Texas at Austin ; Austin, TX USA
| | - Chien-Hui Ma
- Department of Molecular Biosciences; University of Texas at Austin ; Austin, TX USA
| | - Makkuni Jayaram
- Department of Molecular Biosciences; University of Texas at Austin ; Austin, TX USA
| |
Collapse
|
31
|
Snider CE, Stephens AD, Kirkland JG, Hamdani O, Kamakaka RT, Bloom K. Dyskerin, tRNA genes, and condensin tether pericentric chromatin to the spindle axis in mitosis. ACTA ACUST UNITED AC 2014; 207:189-99. [PMID: 25332162 PMCID: PMC4210444 DOI: 10.1083/jcb.201405028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pericentric enrichment of condensin on budding yeast chromosomes, which contributes to chromatin compaction and mitotic spindle structure and integrity, is mediated by condensin interaction with tRNA genes and the tRNA-interacting protein dyskerin. Condensin is enriched in the pericentromere of budding yeast chromosomes where it is constrained to the spindle axis in metaphase. Pericentric condensin contributes to chromatin compaction, resistance to microtubule-based spindle forces, and spindle length and variance regulation. Condensin is clustered along the spindle axis in a heterogeneous fashion. We demonstrate that pericentric enrichment of condensin is mediated by interactions with transfer ribonucleic acid (tRNA) genes and their regulatory factors. This recruitment is important for generating axial tension on the pericentromere and coordinating movement between pericentromeres from different chromosomes. The interaction between condensin and tRNA genes in the pericentromere reveals a feature of yeast centromeres that has profound implications for the function and evolution of mitotic segregation mechanisms.
Collapse
Affiliation(s)
- Chloe E Snider
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Andrew D Stephens
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jacob G Kirkland
- Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Omar Hamdani
- Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Rohinton T Kamakaka
- Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
32
|
Abstract
Centromeres are specialized domains of heterochromatin that provide the foundation for the kinetochore. Centromeric heterochromatin is characterized by specific histone modifications, a centromere-specific histone H3 variant (CENP-A), and the enrichment of cohesin, condensin, and topoisomerase II. Centromere DNA varies orders of magnitude in size from 125 bp (budding yeast) to several megabases (human). In metaphase, sister kinetochores on the surface of replicated chromosomes face away from each other, where they establish microtubule attachment and bi-orientation. Despite the disparity in centromere size, the distance between separated sister kinetochores is remarkably conserved (approximately 1 μm) throughout phylogeny. The centromere functions as a molecular spring that resists microtubule-based extensional forces in mitosis. This review explores the physical properties of DNA in order to understand how the molecular spring is built and how it contributes to the fidelity of chromosome segregation.
Collapse
Affiliation(s)
- Kerry S Bloom
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280;
| |
Collapse
|