1
|
Buckley Y, Stoll MSK, Hoppel CL, Mears JA. Fis1 regulates mitochondrial morphology, bioenergetics and removal of mitochondrial DNA damage in irradiated glioblastoma cells. J Cell Sci 2025; 138:jcs263459. [PMID: 39704270 PMCID: PMC11828467 DOI: 10.1242/jcs.263459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024] Open
Abstract
In response to external stress, mitochondrial dynamics is often disrupted, but the associated physiologic changes are often uncharacterized. In many cancers, including glioblastoma (GBM), mitochondrial dysfunction has been observed. Understanding how mitochondrial dynamics and physiology contribute to treatment resistance will lead to more targeted and effective therapeutics. This study aims to uncover how mitochondria in GBM cells adapt to and resist ionizing radiation (IR), a component of the standard of care for GBM. Using several approaches, we investigated how mitochondrial dynamics and physiology adapt to radiation stress, and we uncover a novel role for Fis1, a pro-fission protein, in regulating the stress response through mitochondrial DNA (mtDNA) maintenance and altered mitochondrial bioenergetics. Importantly, our data demonstrate that increased fission in response to IR leads to removal of mtDNA damage and more efficient oxygen consumption through altered electron transport chain (ETC) activities in intact mitochondria. These findings demonstrate a key role for Fis1 in targeting damaged mtDNA for degradation and regulating mitochondrial bioenergetics through altered dynamics.
Collapse
Affiliation(s)
- Yuli Buckley
- Department of Pharmacology and Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44016, USA
| | - Maria S. K. Stoll
- Department of Pharmacology and Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44016, USA
| | - Charles L. Hoppel
- Department of Pharmacology and Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44016, USA
| | - Jason A. Mears
- Department of Pharmacology and Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44016, USA
| |
Collapse
|
2
|
Li J, Lin Q, Ren C, Li X, Li X, Li H, Li S. The perspective of modern transplant science - transplant arteriosclerosis: inspiration derived from mitochondria associated endoplasmic reticulum membrane dysfunction in arterial diseases. Int J Surg 2025; 111:3430-3440. [PMID: 40146783 DOI: 10.1097/js9.0000000000002362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 03/16/2025] [Indexed: 03/29/2025]
Abstract
The mitochondria-associated endoplasmic reticulum membrane (MAM) is a crucial structure connecting mitochondria and the endoplasmic reticulum (ER), regulating intracellular calcium homeostasis, lipid metabolism, and various signaling pathways essential for arterial health. Recent studies highlight MAM's significant role in modulating vascular endothelial cells (EC) and vascular smooth muscle cells (VSMC), establishing it as a key regulator of arterial health and a contributor to vascular disease pathogenesis. Organ transplantation is the preferred treatment for end-stage organ failure, but transplant arteriosclerosis (TA) can lead to chronic transplant dysfunction, significantly impacting patient survival. TA, like other vascular diseases, features endothelial dysfunction and abnormal proliferation and migration of VSMC. Previous research on TA has focused on immune factors; the pathological and physiological changes in grafts following immune system attacks have garnered insufficient attention. For example, the potential roles of MAM in TA have not been thoroughly investigated. Investigating the relationship between MAM and TA, as well as the mechanisms behind TA progression, is essential. This review aims to outline the fundamental structure and the primary functions of MAM, summarize its key molecular regulators of vascular health, and explore future prospects for MAM in the context of TA research, providing insights for both basic research and clinical management of TA.
Collapse
Affiliation(s)
- Jingyi Li
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Qian Lin
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Chao Ren
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Xiaodong Li
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Xiaowei Li
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Haofeng Li
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Shadan Li
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Wang N, Wang X, Lan B, Gao Y, Cai Y. DRP1, fission and apoptosis. Cell Death Discov 2025; 11:150. [PMID: 40195359 PMCID: PMC11977278 DOI: 10.1038/s41420-025-02458-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 03/15/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
Mitochondrial fission is a critical physiological process in eukaryotic cells, participating in various vital activities such as mitosis, mitochondria quality control, and mitophagy. Recent studies have revealed a tight connection between mitochondrial fission and the mitochondrial metabolism, as well as apoptosis, which involves multiple cellular events and interactions between organelles. As a pivotal molecule in the process of mitochondrial fission, the function of DRP1 is regulated at multiple levels, including transcription, post-translational modifications. This review follows the guidelines for Human Gene Nomenclature and will focus on DRP1, discussing its activity regulation, its role in mitochondrial fission, and the relationship between mitochondrial fission and apoptosis.
Collapse
Affiliation(s)
- Nan Wang
- The Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xinwai Wang
- The Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Beiwu Lan
- The Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yufei Gao
- The Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Yuanyuan Cai
- The First Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
4
|
Zhang J, Yan H, Wang Y, Yue X, Wang M, Liu L, Qiao P, Zhu Y, Li Z. Emerging insights into pulmonary hypertension: the potential role of mitochondrial dysfunction and redox homeostasis. Mol Cell Biochem 2025; 480:1407-1429. [PMID: 39254871 DOI: 10.1007/s11010-024-05096-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024]
Abstract
Pulmonary hypertension (PH) is heterogeneous diseases that can lead to death due to progressive right heart failure. Emerging evidence suggests that, in addition to its role in ATP production, changes in mitochondrial play a central role in their pathogenesis, regulating integrated metabolic and signal transduction pathways. This review focuses on the basic principles of mitochondrial redox status in pulmonary vascular and right ventricular disorders, a series of dysfunctional processes including mitochondrial quality control (mitochondrial biogenesis, mitophagy, mitochondrial dynamics, mitochondrial unfolded protein response) and mitochondrial redox homeostasis. In addition, we will summarize how mitochondrial renewal and dynamic changes provide innovative insights for studying and evaluating PH. This will provide us with a clearer understanding of the initial signal transmission of mitochondria in PH, which would further improve our understanding of the pathogenesis of PH.
Collapse
Affiliation(s)
- Junming Zhang
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Huimin Yan
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Yan Wang
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Xian Yue
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Meng Wang
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Limin Liu
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Pengfei Qiao
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Yixuan Zhu
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Zhichao Li
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China.
| |
Collapse
|
5
|
Tábara LC, Segawa M, Prudent J. Molecular mechanisms of mitochondrial dynamics. Nat Rev Mol Cell Biol 2025; 26:123-146. [PMID: 39420231 DOI: 10.1038/s41580-024-00785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
Mitochondria not only synthesize energy required for cellular functions but are also involved in numerous cellular pathways including apoptosis, calcium homoeostasis, inflammation and immunity. Mitochondria are dynamic organelles that undergo cycles of fission and fusion, and these transitions between fragmented and hyperfused networks ensure mitochondrial function, enabling adaptations to metabolic changes or cellular stress. Defects in mitochondrial morphology have been associated with numerous diseases, highlighting the importance of elucidating the molecular mechanisms regulating mitochondrial morphology. Here, we discuss recent structural insights into the assembly and mechanism of action of the core mitochondrial dynamics proteins, such as the dynamin-related protein 1 (DRP1) that controls division, and the mitofusins (MFN1 and MFN2) and optic atrophy 1 (OPA1) driving membrane fusion. Furthermore, we provide an updated view of the complex interplay between different proteins, lipids and organelles during the processes of mitochondrial membrane fusion and fission. Overall, we aim to present a valuable framework reflecting current perspectives on how mitochondrial membrane remodelling is regulated.
Collapse
Affiliation(s)
- Luis-Carlos Tábara
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Mayuko Segawa
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
Marzetti E, Di Lorenzo R, Calvani R, Pesce V, Landi F, Coelho-Júnior HJ, Picca A. From Cell Architecture to Mitochondrial Signaling: Role of Intermediate Filaments in Health, Aging, and Disease. Int J Mol Sci 2025; 26:1100. [PMID: 39940869 PMCID: PMC11817570 DOI: 10.3390/ijms26031100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
The coordination of cytoskeletal proteins shapes cell architectures and functions. Age-related changes in cellular mechanical properties have been linked to decreased cellular and tissue dysfunction. Studies have also found a relationship between mitochondrial function and the cytoskeleton. Cytoskeleton inhibitors impact mitochondrial quality and function, including motility and morphology, membrane potential, and respiration. The regulatory properties of the cytoskeleton on mitochondrial functions are involved in the pathogenesis of several diseases. Disassembly of the axon's cytoskeleton and the release of neurofilament fragments have been documented during neurodegeneration. However, these changes can also be related to mitochondrial impairments, spanning from reduced mitochondrial quality to altered bioenergetics. Herein, we discuss recent research highlighting some of the pathophysiological roles of cytoskeleton disassembly in aging, neurodegeneration, and neuromuscular diseases, with a focus on studies that explored the relationship between intermediate filaments and mitochondrial signaling as relevant contributors to cellular health and disease.
Collapse
Affiliation(s)
- Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (E.M.); (R.C.); (F.L.); (H.J.C.-J.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - Rosa Di Lorenzo
- Department of Biosciences, Biotechnologies and Environment, Università degli Studi di Bari Aldo Moro, Via Edoardo Orabona 4, 70125 Bari, Italy; (R.D.L.); (V.P.)
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (E.M.); (R.C.); (F.L.); (H.J.C.-J.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - Vito Pesce
- Department of Biosciences, Biotechnologies and Environment, Università degli Studi di Bari Aldo Moro, Via Edoardo Orabona 4, 70125 Bari, Italy; (R.D.L.); (V.P.)
| | - Francesco Landi
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (E.M.); (R.C.); (F.L.); (H.J.C.-J.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - Hélio José Coelho-Júnior
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (E.M.); (R.C.); (F.L.); (H.J.C.-J.)
| | - Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (E.M.); (R.C.); (F.L.); (H.J.C.-J.)
- Department of Medicine and Surgery, LUM University, Str. Statale 100, 70010 Casamassima, Italy
| |
Collapse
|
7
|
Strucinska K, Kneis P, Pennington T, Cizio K, Szybowska P, Morgan A, Weertman J, Lewis TL. Fis1 is required for the development of the dendritic mitochondrial network in pyramidal cortical neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631801. [PMID: 39829888 PMCID: PMC11741399 DOI: 10.1101/2025.01.07.631801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Mitochondrial ATP production and calcium buffering are critical for metabolic regulation and neurotransmission making the formation and maintenance of the mitochondrial network a critical component of neuronal health. Cortical pyramidal neurons contain compartment-specific mitochondrial morphologies that result from distinct axonal and dendritic mitochondrial fission and fusion profiles. We previously showed that axonal mitochondria are maintained at a small size as a result of high axonal mitochondrial fission factor (Mff) activity. However, loss of Mff activity had little effect on cortical dendritic mitochondria, raising the question of how fission/fusion balance is controlled in the dendrites. Thus, we sought to investigate the role of another fission factor, fission 1 (Fis1), on mitochondrial morphology, dynamics and function in cortical neurons. We knocked down Fis1 in cortical neurons both in primary culture and in vivo, and unexpectedly found that Fis1 depletion decreased mitochondrial length in the dendrites, without affecting mitochondrial size in the axon. Further, loss of Fis1 activity resulted in both increased mitochondrial motility and dynamics in the dendrites. These results argue Fis1 exhibits dendrite selectivity and plays a more complex role in neuronal mitochondrial dynamics than previously reported. Functionally, Fis1 loss resulted in reduced mitochondrial membrane potential, increased sensitivity to complex III blockade, and decreased mitochondrial calcium uptake during neuronal activity. The altered mitochondrial network culminated in elevated resting calcium levels that increased dendritic branching but reduced spine density. We conclude that Fis1 regulates morphological and functional mitochondrial characteristics that influence dendritic tree arborization and connectivity.
Collapse
Affiliation(s)
- Klaudia Strucinska
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Parker Kneis
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
- Molecular Biology & Biochemistry Department, Oklahoma University Health Sciences Campus, Oklahoma City, OK 73104
| | - Travis Pennington
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
- Neuroscience Program, Oklahoma University Health Sciences Campus, Oklahoma City, OK 73104
| | - Katarzyna Cizio
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
- Neuroscience Program, Oklahoma University Health Sciences Campus, Oklahoma City, OK 73104
| | - Patrycja Szybowska
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Abigail Morgan
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
- Neuroscience Program, Oklahoma University Health Sciences Campus, Oklahoma City, OK 73104
| | - Joshua Weertman
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Tommy L Lewis
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
- Molecular Biology & Biochemistry Department, Oklahoma University Health Sciences Campus, Oklahoma City, OK 73104
- Neuroscience Program, Oklahoma University Health Sciences Campus, Oklahoma City, OK 73104
- Physiology Department, Oklahoma University Health Sciences Campus, Oklahoma City, OK 73104
| |
Collapse
|
8
|
Zhang T, Fan J, Wen X, Duan X. ECSIT: Biological function and involvement in diseases. Int Immunopharmacol 2024; 143:113524. [PMID: 39488037 DOI: 10.1016/j.intimp.2024.113524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/28/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Evolutionary conserved signaling intermediate in Toll pathways (ECSIT), a multi-functional protein, was first identified as a cytosolic adaptor protein in Toll-like receptors (TLRs) signaling-mediated innate immune responses. In the past two decades, studies have expanded the understanding of ECSIT. Nevertheless, there are still large knowledge gaps due to the inadequate number of studies regarding ECSIT, especially an overall review of ECSIT is lacking. Here, we first comprehensively summarize the biological functions of ECSIT with particular focus on innate immune responses and mitochondrial homeostasis. Cumulative studies have reinforced that ECSIT is involved in the regulation of innate immune responses through activating NF-κB signaling and potentiating the Retinoic acid-induced gene Ⅰ (RIG-Ⅰ)/ mitochondrial antiviral- signaling protein (MAVS) pathway-mediated innate antiviral immunity. In addition, ECSIT determines the mitochondrial morphology and function including mitochondrial complex Ⅰ (CⅠ) assembly, mitochondrial reactive oxygen species (mROS) production, mitochondrial membrane potential (MMP) maintenance and mitochondrial quality control. Owing to these distinct functions, ECSIT is involved in the etiology and pathology of human diseases including Alzheimer's disease (AD), cardiac hypertrophy, musculoskeletal disintegration, cancer, extranodal natural killer/T cell lymphoma (ENKTL) and ischemic stroke. Collectively, the roles and mechanisms of ECSIT under physiological and pathological conditions are critically discussed to provide a clearer view of the therapeutic potential of ECSIT.
Collapse
Affiliation(s)
- Tan Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai 200438, PR China.
| | - Jingcheng Fan
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai 200438, PR China
| | - Xin Wen
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai 200438, PR China
| | - Xuemei Duan
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai 200438, PR China
| |
Collapse
|
9
|
Zhao A, Maple L, Jiang J, Myers KN, Jones CG, Gagg H, McGarrity-Cottrell C, Rominiyi O, Collis SJ, Wells G, Rahman M, Danson SJ, Robinson D, Smythe C, Guo C. SENP3-FIS1 axis promotes mitophagy and cell survival under hypoxia. Cell Death Dis 2024; 15:881. [PMID: 39638786 PMCID: PMC11621581 DOI: 10.1038/s41419-024-07271-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 11/23/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
SUMOylation, the covalent attachment of the small ubiquitin-like modifier (SUMO) to target proteins, and its reversal, deSUMOylation by SUMO proteases like Sentrin-specific proteases (SENPs), are crucial for initiating cellular responses to hypoxia. However, their roles in subsequent adaptation processes to hypoxia such as mitochondrial autophagy (mitophagy) remain unexplored. Here, we show that general SUMOylation, particularly SUMO2/3 modification, suppresses mitophagy under both normoxia and hypoxia. Furthermore, we identify deSUMO2/3-ylation enzyme SENP3 and mitochondrial Fission protein 1 (FIS1) as key players in hypoxia-induced mitophagy (HIM), with SUMOylatable FIS1 acting as a crucial regulator for SENP3-mediated HIM regulation. Interestingly, we find that hypoxia promotes FIS1 SUMO2/3-ylation and triggers an interaction between SUMOylatable FIS1 and Rab GTPase-activating protein Tre-2/Bub2/Cdc16 domain 1 family member 17 (TBC1D17), which in turn suppresses HIM. Therefore, we propose a novel SUMOylation-dependent pathway where the SENP3-FIS1 axis promotes HIM, with TBC1D17 acting as a fine-tuning regulator. Importantly, the SENP3-FIS1 axis plays a protective role against hypoxia-induced cell death, highlighting its physiological significance, and hypoxia-inducible FIS1-TBC1D17 interaction is detectable in primary glioma stem cell-like (GSC) cultures derived from glioblastoma patients, suggesting its disease relevance. Our findings not only provide new insights into SUMOylation/deSUMOylation regulation of HIM but also suggest the potential of targeting this pathway to enhance cellular resilience under hypoxic stress.
Collapse
Affiliation(s)
- Alice Zhao
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Laura Maple
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Juwei Jiang
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Katie N Myers
- Division of Clinical Medicine, University of Sheffield Medical School, Sheffield, S10 2RX, UK
| | - Callum G Jones
- Division of Clinical Medicine, University of Sheffield Medical School, Sheffield, S10 2RX, UK
| | - Hannah Gagg
- Division of Clinical Medicine, University of Sheffield Medical School, Sheffield, S10 2RX, UK
| | | | - Ola Rominiyi
- Division of Clinical Medicine, University of Sheffield Medical School, Sheffield, S10 2RX, UK
- Division of Neuroscience, University of Sheffield Medical School, Sheffield, S10 2HQ, UK
- Department of Neurosurgery, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, S10 2JF, UK
| | - Spencer J Collis
- Division of Clinical Medicine, University of Sheffield Medical School, Sheffield, S10 2RX, UK
| | - Greg Wells
- Ex vivo Project Team, Division of Clinical Medicine, University of Sheffield Medical School, Sheffield, S10 2RX, UK
| | - Marufur Rahman
- Ex vivo Project Team, Division of Clinical Medicine, University of Sheffield Medical School, Sheffield, S10 2RX, UK
| | - Sarah J Danson
- Ex vivo Project Team, Division of Clinical Medicine, University of Sheffield Medical School, Sheffield, S10 2RX, UK
| | - Darren Robinson
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Carl Smythe
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.
| | - Chun Guo
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
10
|
Ganguly U, Carroll T, Nehrke K, Johnson GVW. Mitochondrial Quality Control in Alzheimer's Disease: Insights from Caenorhabditis elegans Models. Antioxidants (Basel) 2024; 13:1343. [PMID: 39594485 PMCID: PMC11590956 DOI: 10.3390/antiox13111343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder that is classically defined by the extracellular deposition of senile plaques rich in amyloid-beta (Aβ) protein and the intracellular accumulation of neurofibrillary tangles (NFTs) that are rich in aberrantly modified tau protein. In addition to aggregative and proteostatic abnormalities, neurons affected by AD also frequently possess dysfunctional mitochondria and disrupted mitochondrial maintenance, such as the inability to eliminate damaged mitochondria via mitophagy. Decades have been spent interrogating the etiopathogenesis of AD, and contributions from model organism research have aided in developing a more fundamental understanding of molecular dysfunction caused by Aβ and toxic tau aggregates. The soil nematode C. elegans is a genetic model organism that has been widely used for interrogating neurodegenerative mechanisms including AD. In this review, we discuss the advantages and limitations of the many C. elegans AD models, with a special focus and discussion on how mitochondrial quality control pathways (namely mitophagy) may contribute to AD development. We also summarize evidence on how targeting mitophagy has been therapeutically beneficial in AD. Lastly, we delineate possible mechanisms that can work alone or in concert to ultimately lead to mitophagy impairment in neurons and may contribute to AD etiopathology.
Collapse
Affiliation(s)
- Upasana Ganguly
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Trae Carroll
- Department of Pathology, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Keith Nehrke
- Department of Medicine, Nephrology Division, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Gail V. W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| |
Collapse
|
11
|
Seager R, Ramesh NS, Cross S, Guo C, Wilkinson KA, Henley JM. SUMOylation of MFF coordinates fission complexes to promote stress-induced mitochondrial fragmentation. SCIENCE ADVANCES 2024; 10:eadq6223. [PMID: 39365854 PMCID: PMC11451547 DOI: 10.1126/sciadv.adq6223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/29/2024] [Indexed: 10/06/2024]
Abstract
Mitochondria undergo fragmentation in response to bioenergetic stress, mediated by dynamin-related protein 1 (DRP1) recruitment to the mitochondria. The major pro-fission DRP1 receptor is mitochondrial fission factor (MFF), and mitochondrial dynamics proteins of 49 and 51 kilodaltons (MiD49/51), which can sequester inactive DRP1. Together, they form a trimeric DRP1-MiD-MFF complex. Adenosine monophosphate-activated protein kinase (AMPK)-mediated phosphorylation of MFF is necessary for mitochondrial fragmentation, but the molecular mechanisms are unclear. Here, we identify MFF as a target of small ubiquitin-like modifier (SUMO) at Lys151, MFF SUMOylation is enhanced following AMPK-mediated phosphorylation and that MFF SUMOylation regulates the level of MiD binding to MFF. The mitochondrial stressor carbonyl cyanide 3-chlorophenylhydrazone (CCCP) promotes MFF SUMOylation and mitochondrial fragmentation. However, CCCP-induced fragmentation is impaired in MFF-knockout mouse embryonic fibroblasts expressing non-SUMOylatable MFF K151R. These data suggest that the AMPK-MFF SUMOylation axis dynamically controls stress-induced mitochondrial fragmentation by regulating the levels of MiD in trimeric fission complexes.
Collapse
Affiliation(s)
- Richard Seager
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, UK
| | - Nitheyaa Shree Ramesh
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, UK
| | - Stephen Cross
- Wolfson Bioimaging Facility, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Chun Guo
- School of Biosciences, University of Sheffield, Alfred Denny Building, Sheffield, S10 2TN, UK
| | - Kevin A. Wilkinson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, UK
| | - Jeremy M. Henley
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, UK
| |
Collapse
|
12
|
Brogyanyi T, Kejík Z, Veselá K, Dytrych P, Hoskovec D, Masařik M, Babula P, Kaplánek R, Přibyl T, Zelenka J, Ruml T, Vokurka M, Martásek P, Jakubek M. Iron chelators as mitophagy agents: Potential and limitations. Biomed Pharmacother 2024; 179:117407. [PMID: 39265234 DOI: 10.1016/j.biopha.2024.117407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024] Open
Abstract
Mitochondrial autophagy (mitophagy) is very important process for the maintenance of cellular homeostasis, functionality and survival. Its dysregulation is associated with high risk and progression numerous serious diseases (e.g., oncological, neurodegenerative and cardiovascular ones). Therefore, targeting mitophagy mechanisms is very hot topic in the biological and medicinal research. The interrelationships between the regulation of mitophagy and iron homeostasis are now becoming apparent. In short, mitochondria are central point for the regulation of iron homeostasis, but change in intracellular cheatable iron level can induce/repress mitophagy. In this review, relationships between iron homeostasis and mitophagy are thoroughly discussed and described. Also, therapeutic applicability of mitophagy chelators in the context of individual diseases is comprehensively and critically evaluated.
Collapse
Affiliation(s)
- Tereza Brogyanyi
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic; Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 1, Prague 28 53, Czech Republic
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, Prague 121 08, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, Prague 121 08, Czech Republic
| | - Michal Masařik
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno CZ-625 00, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Petr Babula
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno CZ-625 00, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Tomáš Přibyl
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Prague 166 28, Czech Republic
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Prague 166 28, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Prague 166 28, Czech Republic
| | - Martin Vokurka
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 1, Prague 28 53, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic.
| |
Collapse
|
13
|
Li Z, Liang S, Ke L, Wang M, Gao K, Li D, Xu Z, Li N, Zhang P, Cheng W. Cell life-or-death events in osteoporosis: All roads lead to mitochondrial dynamics. Pharmacol Res 2024; 208:107383. [PMID: 39214266 DOI: 10.1016/j.phrs.2024.107383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Mitochondria exhibit heterogeneous shapes and networks within and among cell types and tissues, also in normal or osteoporotic bone tissues with complex cell types. This dynamic characteristic is determined by the high plasticity provided by mitochondrial dynamics and is stemmed from responding to the survival and functional requirements of various bone cells in a specific microenvironments. In contrast, mitochondrial dysfunction, induced by dysregulation of mitochondrial dynamics, may act as a trigger of cell death signals, including common apoptosis and other forms of programmed cell death (PCD). These PCD processes consisting of tightly structured cascade gene expression events, can further influence the bone remodeling by facilitating the death of various bone cells. Mitochondrial dynamics, therefore, drive the bone cells to stand at the crossroads of life and death by integrating external signals and altering metabolism, shape, and signal-response properties of mitochondria. This implies that targeting mitochondrial dynamics displays significant potential in treatment of osteoporosis. Considerable effort has been made in osteoporosis to emphasize the parallel roles of mitochondria in regulating energy metabolism, calcium signal transduction, oxidative stress, inflammation, and cell death. However, the emerging field of mitochondrial dynamics-related PCD is not well understood. Herein, to bridge the gap, we outline the latest knowledge on mitochondrial dynamics regulating bone cell life or death during normal bone remodeling and osteoporosis.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Songlin Liang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Mengjie Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Kuanhui Gao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050011, China
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Nianhu Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518000, China; Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518000, China; Shandong Zhongke Advanced Technology Co., Ltd., Jinan, 250300, China.
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
14
|
Hadi F, Mortaja M, Hadi Z. Calcium (Ca 2+) hemostasis, mitochondria, autophagy, and mitophagy contribute to Alzheimer's disease as early moderators. Cell Biochem Funct 2024; 42:e4085. [PMID: 38951992 DOI: 10.1002/cbf.4085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
This review rigorously investigates the early cerebral changes associated with Alzheimer's disease, which manifest long before clinical symptoms arise. It presents evidence that the dysregulation of calcium (Ca2+) homeostasis, along with mitochondrial dysfunction and aberrant autophagic processes, may drive the disease's progression during its asymptomatic, preclinical stage. Understanding the intricate molecular interplay that unfolds during this critical period offers a window into identifying novel therapeutic targets, thereby advancing the treatment of neurodegenerative disorders. The review delves into both established and emerging insights into the molecular alterations precipitated by the disruption of Ca2+ balance, setting the stage for cognitive decline and neurodegeneration.
Collapse
Affiliation(s)
- Fatemeh Hadi
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Mahsa Mortaja
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, USA
| | - Zahra Hadi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
| |
Collapse
|
15
|
López-Ayllón BD, Marin S, Fernández MF, García-García T, Fernández-Rodríguez R, de Lucas-Rius A, Redondo N, Mendoza-García L, Foguet C, Grigas J, Calvet A, Villalba JM, Gómez MJR, Megías D, Mandracchia B, Luque D, Lozano JJ, Calvo C, Herrán UM, Thomson TM, Garrido JJ, Cascante M, Montoya M. Metabolic and mitochondria alterations induced by SARS-CoV-2 accessory proteins ORF3a, ORF9b, ORF9c and ORF10. J Med Virol 2024; 96:e29752. [PMID: 38949191 DOI: 10.1002/jmv.29752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 07/02/2024]
Abstract
Antiviral signaling, immune response and cell metabolism are dysregulated by SARS-CoV-2, the causative agent of COVID-19. Here, we show that SARS-CoV-2 accessory proteins ORF3a, ORF9b, ORF9c and ORF10 induce a significant mitochondrial and metabolic reprogramming in A549 lung epithelial cells. While ORF9b, ORF9c and ORF10 induced largely overlapping transcriptomes, ORF3a induced a distinct transcriptome, including the downregulation of numerous genes with critical roles in mitochondrial function and morphology. On the other hand, all four ORFs altered mitochondrial dynamics and function, but only ORF3a and ORF9c induced a marked alteration in mitochondrial cristae structure. Genome-Scale Metabolic Models identified both metabolic flux reprogramming features both shared across all accessory proteins and specific for each accessory protein. Notably, a downregulated amino acid metabolism was observed in ORF9b, ORF9c and ORF10, while an upregulated lipid metabolism was distinctly induced by ORF3a. These findings reveal metabolic dependencies and vulnerabilities prompted by SARS-CoV-2 accessory proteins that may be exploited to identify new targets for intervention.
Collapse
Affiliation(s)
- Blanca D López-Ayllón
- Viral Immunology Lab, Molecular Biomedicine Department, BICS Unit. Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Silvia Marin
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Institute of Biomedicine of University of Barcelona (IBUB), University of Barcelona (UB), Barcelona, Spain
| | - Marco Fariñas Fernández
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Tránsito García-García
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research, Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - Raúl Fernández-Rodríguez
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research, Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - Ana de Lucas-Rius
- Viral Immunology Lab, Molecular Biomedicine Department, BICS Unit. Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Natalia Redondo
- Unit of Infectious Diseases, University Hospital '12 de Octubre', Institute for Health Research Hospital '12 de Octubre' (imas12), Madrid, Spain
- Centre for Biomedical Research Network on Infectious Diseases (CIBERINFEC), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Laura Mendoza-García
- Viral Immunology Lab, Molecular Biomedicine Department, BICS Unit. Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Carles Foguet
- British Heart Foundation Cardiovascular Epidemiology Unit and Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Juozas Grigas
- Laboratory of Immunology, Department of Anatomy and Physiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Alba Calvet
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain
- Institute of Biomedicine of University of Barcelona (IBUB), University of Barcelona (UB), Barcelona, Spain
| | - José Manuel Villalba
- Department of Cell Biology, Physiology and Immunology, Agrifood Campus of International Excellence, University of Córdoba, Córdoba, Spain
| | - María Josefa Rodríguez Gómez
- Scientific-Technical Central Units, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Diego Megías
- Scientific-Technical Central Units, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
| | - Biagio Mandracchia
- Scientific-Technical Central Units, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
- ETSI Telecommunication, University of Valladolid, Valladolid, Spain
| | - Daniel Luque
- Scientific-Technical Central Units, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Juan José Lozano
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Cristina Calvo
- Barcelona Institute for Molecular Biology (IBMB-CSIC), Barcelona, Spain
| | - Unai Merino Herrán
- Viral Immunology Lab, Molecular Biomedicine Department, BICS Unit. Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Timothy M Thomson
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Barcelona Institute for Molecular Biology (IBMB-CSIC), Barcelona, Spain
- Translational Research and Computational Biology Laboratory, Faculty of Science and Engineering, Peruvian University Cayetano Heredia, Lima, Perú
| | - Juan J Garrido
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research, Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Institute of Biomedicine of University of Barcelona (IBUB), University of Barcelona (UB), Barcelona, Spain
| | - María Montoya
- Viral Immunology Lab, Molecular Biomedicine Department, BICS Unit. Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| |
Collapse
|
16
|
Sun F, Fang M, Zhang H, Song Q, Li S, Li Y, Jiang S, Yang L. Drp1: Focus on Diseases Triggered by the Mitochondrial Pathway. Cell Biochem Biophys 2024; 82:435-455. [PMID: 38438751 DOI: 10.1007/s12013-024-01245-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/06/2024]
Abstract
Drp1 (Dynamin-Related Protein 1) is a cytoplasmic GTPase protein encoded by the DNM1L gene that influences mitochondrial dynamics by mediating mitochondrial fission processes. Drp1 has been demonstrated to play an important role in a variety of life activities such as cell survival, proliferation, migration, and death. Drp1 has been shown to play different physiological roles under different physiological conditions, such as normal and inflammation. Recently studies have revealed that Drp1 plays a critical role in the occurrence, development, and aggravation of a series of diseases, thereby it serves as a potential therapeutic target for them. In this paper, we review the structure and biological properties of Drp1, summarize the biological processes that occur in the inflammatory response to Drp1, discuss its role in various cancers triggered by the mitochondrial pathway and investigate effective methods for targeting Drp1 in cancer treatment. We also synthesized the phenomena of Drp1 involving in the triggering of other diseases. The results discussed herein contribute to our deeper understanding of mitochondrial kinetic pathway-induced diseases and their therapeutic applications. It is critical for advancing the understanding of the mechanisms of Drp1-induced mitochondrial diseases and preventive therapies.
Collapse
Affiliation(s)
- Fulin Sun
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- Health Science Center, Qingdao University, Qingdao, China
| | - Min Fang
- Department of Gynaecology, Qingdao Women and Children's Hospital, Qingdao, 266021, Shandong, China
| | - Huhu Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Qinghang Song
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- Health Science Center, Qingdao University, Qingdao, China
| | - Shuang Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Ya Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Shuyao Jiang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- Health Science Center, Qingdao University, Qingdao, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China.
| |
Collapse
|
17
|
Liu A, Kage F, Abdulkareem AF, Aguirre-Huamani MP, Sapp G, Aydin H, Higgs HN. Fatty acyl-coenzyme A activates mitochondrial division through oligomerization of MiD49 and MiD51. Nat Cell Biol 2024; 26:731-744. [PMID: 38594588 PMCID: PMC11404400 DOI: 10.1038/s41556-024-01400-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/05/2024] [Indexed: 04/11/2024]
Abstract
Mitochondrial fission occurs in many cellular processes, but the regulation of fission is poorly understood. We show that long-chain acyl-coenzyme A (LCACA) activates two related mitochondrial fission proteins, MiD49 and MiD51, by inducing their oligomerization, which activates their ability to stimulate the DRP1 GTPase. The 1:1 stoichiometry of LCACA:MiD in the oligomer suggests interaction in the previously identified nucleotide-binding pocket, and a point mutation in this pocket reduces LCACA binding and LCACA-induced oligomerization for MiD51. In cells, this LCACA binding mutant does not assemble into puncta on mitochondria or rescue MiD49/51 knockdown effects on mitochondrial length and DRP1 recruitment. Furthermore, cellular treatment with BSA-bound oleic acid, which causes increased LCACA, promotes mitochondrial fission in an MiD49/51-dependent manner. These results suggest that LCACA is an endogenous ligand for MiDs, inducing mitochondrial fission and providing a potential mechanism for fatty-acid-induced mitochondrial division. Finally, MiD49 or MiD51 oligomers synergize with Mff, but not with actin filaments, in DRP1 activation, suggesting distinct pathways for DRP1 activation.
Collapse
Affiliation(s)
- Ao Liu
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Frieda Kage
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Asan F Abdulkareem
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Mac Pholo Aguirre-Huamani
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Gracie Sapp
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Halil Aydin
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
18
|
Campbell D, Zuryn S. The mechanisms and roles of mitochondrial dynamics in C. elegans. Semin Cell Dev Biol 2024; 156:266-275. [PMID: 37919144 DOI: 10.1016/j.semcdb.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
If mitochondria are the powerhouses of the cell, then mitochondrial dynamics are the power grid that regulates how that energy output is directed and maintained in response to unique physiological demands. Fission and fusion dynamics are highly regulated processes that fine-tune the mitochondrial networks of cells to enable appropriate responses to intrinsic and extrinsic stimuli, thereby maintaining cellular and organismal homeostasis. These dynamics shape many aspects of an organism's healthspan including development, longevity, stress resistance, immunity, and response to disease. In this review, we discuss the latest findings regarding the mechanisms and roles of mitochondrial dynamics by focussing on the nematode Caenorhabditis elegans. Whole live-animal studies in C. elegans have enabled a true organismal-level understanding of the impact that mitochondrial dynamics play in homeostasis over a lifetime.
Collapse
Affiliation(s)
- Daniel Campbell
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Steven Zuryn
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
19
|
Virga DM, Hamilton S, Osei B, Morgan A, Kneis P, Zamponi E, Park NJ, Hewitt VL, Zhang D, Gonzalez KC, Russell FM, Grahame Hardie D, Prudent J, Bloss E, Losonczy A, Polleux F, Lewis TL. Activity-dependent compartmentalization of dendritic mitochondria morphology through local regulation of fusion-fission balance in neurons in vivo. Nat Commun 2024; 15:2142. [PMID: 38459070 PMCID: PMC10923867 DOI: 10.1038/s41467-024-46463-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 02/27/2024] [Indexed: 03/10/2024] Open
Abstract
Neuronal mitochondria play important roles beyond ATP generation, including Ca2+ uptake, and therefore have instructive roles in synaptic function and neuronal response properties. Mitochondrial morphology differs significantly between the axon and dendrites of a given neuronal subtype, but in CA1 pyramidal neurons (PNs) of the hippocampus, mitochondria within the dendritic arbor also display a remarkable degree of subcellular, layer-specific compartmentalization. In the dendrites of these neurons, mitochondria morphology ranges from highly fused and elongated in the apical tuft, to more fragmented in the apical oblique and basal dendritic compartments, and thus occupy a smaller fraction of dendritic volume than in the apical tuft. However, the molecular mechanisms underlying this striking degree of subcellular compartmentalization of mitochondria morphology are unknown, precluding the assessment of its impact on neuronal function. Here, we demonstrate that this compartment-specific morphology of dendritic mitochondria requires activity-dependent, Ca2+ and Camkk2-dependent activation of AMPK and its ability to phosphorylate two direct effectors: the pro-fission Drp1 receptor Mff and the recently identified anti-fusion, Opa1-inhibiting protein, Mtfr1l. Our study uncovers a signaling pathway underlying the subcellular compartmentalization of mitochondrial morphology in dendrites of neurons in vivo through spatially precise and activity-dependent regulation of mitochondria fission/fusion balance.
Collapse
Affiliation(s)
- Daniel M Virga
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Stevie Hamilton
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Bertha Osei
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Abigail Morgan
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Neuroscience, Biochemistry & Molecular Biology, Oklahoma University Health Science Campus, Oklahoma City, OK, USA
| | - Parker Kneis
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Neuroscience, Biochemistry & Molecular Biology, Oklahoma University Health Science Campus, Oklahoma City, OK, USA
| | - Emiliano Zamponi
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Natalie J Park
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Victoria L Hewitt
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - David Zhang
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Kevin C Gonzalez
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Fiona M Russell
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - D Grahame Hardie
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, CB2 0XY, Cambridge, UK
| | - Erik Bloss
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Franck Polleux
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| | - Tommy L Lewis
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
- Neuroscience, Biochemistry & Molecular Biology, Oklahoma University Health Science Campus, Oklahoma City, OK, USA.
| |
Collapse
|
20
|
Nolden KA, Harwig MC, Hill RB. Human Fis1 directly interacts with Drp1 in an evolutionarily conserved manner to promote mitochondrial fission. J Biol Chem 2023; 299:105380. [PMID: 37866629 PMCID: PMC10694664 DOI: 10.1016/j.jbc.2023.105380] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023] Open
Abstract
Mitochondrial fission protein 1 (Fis1) and dynamin-related protein 1 (Drp1) are the only two proteins evolutionarily conserved for mitochondrial fission, and directly interact in Saccharomyces cerevisiae to facilitate membrane scission. However, it remains unclear if a direct interaction is conserved in higher eukaryotes as other Drp1 recruiters, not present in yeast, are known. Using NMR, differential scanning fluorimetry, and microscale thermophoresis, we determined that human Fis1 directly interacts with human Drp1 (KD = 12-68 μM), and appears to prevent Drp1 assembly, but not GTP hydrolysis. Similar to yeast, the Fis1-Drp1 interaction appears governed by two structural features of Fis1: its N-terminal arm and a conserved surface. Alanine scanning mutagenesis of the arm identified both loss-of-function and gain-of-function alleles with mitochondrial morphologies ranging from highly elongated (N6A) to highly fragmented (E7A), demonstrating a profound ability of Fis1 to govern morphology in human cells. An integrated analysis identified a conserved Fis1 residue, Y76, that upon substitution to alanine, but not phenylalanine, also caused highly fragmented mitochondria. The similar phenotypic effects of the E7A and Y76A substitutions, along with NMR data, support that intramolecular interactions occur between the arm and a conserved surface on Fis1 to promote Drp1-mediated fission as in S. cerevisiae. These findings indicate that some aspects of Drp1-mediated fission in humans derive from direct Fis1-Drp1 interactions that are conserved across eukaryotes.
Collapse
Affiliation(s)
- Kelsey A Nolden
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Megan C Harwig
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - R Blake Hill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
21
|
Ihenacho UK, Toro R, Mansour RH, Hill RB. A conserved, noncanonical insert in FIS1 mediates TBC1D15 and DRP1 recruitment for mitochondrial fission. J Biol Chem 2023; 299:105303. [PMID: 37777154 PMCID: PMC10641528 DOI: 10.1016/j.jbc.2023.105303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 10/02/2023] Open
Abstract
Mitochondrial fission protein 1 (FIS1) is conserved in all eukaryotes, yet its function in metazoans is thought divergent. Structure-based sequence alignments of FIS1 revealed a conserved, but noncanonical, three-residue insert in its first tetratricopeptide repeat (TPR) suggesting a conserved function. In vertebrates, this insert is serine (S45), lysine (K46), and tyrosine (Y47). To determine the biological role of the "SKY insert," three variants were tested in HCT116 cells for altered mitochondrial morphology and recruitment of fission mechanoenzyme DRP1 and mitophagic adaptor TBC1D15. Similar to ectopically expressed wildtype FIS1, substitution of the SKY insert with alanine (AAA) fragmented mitochondria into perinuclear clumps associated with increased mitochondrial DRP1. In contrast, deletion variants (either ∆SKY or ∆SKYD49G) elongated mitochondrial networks with reduced mitochondrial recruitment of DRP1, despite DRP1 coimmunoprecipitates being highly enriched with ΔSKY variants. Ectopic wildtype FIS1 drove co-expressed YFP-TBC1D15 entirely from the cytoplasm to mitochondria as punctate structures concomitant with enhanced mitochondrial DRP1 recruitment. YFP-TBC1D15 co-expressed with the AAA variant further enhanced mitochondrial DRP1 recruitment, indicating a gain of function. In contrast, YFP-TBC1D15 co-expressed with deletion variants impaired mitochondrial DRP1 and YFP-TBC1D15 recruitment; however, mitochondrial fragmentation was restored. These phenotypes were not due to misfolding or poor expression of FIS1 variants, although ∆SKYD49G induced conformational heterogeneity that is lost upon deletion of the regulatory Fis1 arm, indicating SKY-arm interactions. Collectively, these results support a unifying model whereby FIS1 activity is effectively governed by intramolecular interactions between its regulatory arm and a noncanonical TPR insert that is conserved across eukaryotes.
Collapse
Affiliation(s)
- Ugochukwu K Ihenacho
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Rafael Toro
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Rana H Mansour
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - R Blake Hill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
22
|
Tokuyama T, Yanagi S. Role of Mitochondrial Dynamics in Heart Diseases. Genes (Basel) 2023; 14:1876. [PMID: 37895224 PMCID: PMC10606177 DOI: 10.3390/genes14101876] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Mitochondrial dynamics, including fission and fusion processes, are essential for heart health. Mitochondria, the powerhouses of cells, maintain their integrity through continuous cycles of biogenesis, fission, fusion, and degradation. Mitochondria are relatively immobile in the adult heart, but their morphological changes due to mitochondrial morphology factors are critical for cellular functions such as energy production, organelle integrity, and stress response. Mitochondrial fusion proteins, particularly Mfn1/2 and Opa1, play multiple roles beyond their pro-fusion effects, such as endoplasmic reticulum tethering, mitophagy, cristae remodeling, and apoptosis regulation. On the other hand, the fission process, regulated by proteins such as Drp1, Fis1, Mff and MiD49/51, is essential to eliminate damaged mitochondria via mitophagy and to ensure proper cell division. In the cardiac system, dysregulation of mitochondrial dynamics has been shown to cause cardiac hypertrophy, heart failure, ischemia/reperfusion injury, and various cardiac diseases, including metabolic and inherited cardiomyopathies. In addition, mitochondrial dysfunction associated with oxidative stress has been implicated in atherosclerosis, hypertension and pulmonary hypertension. Therefore, understanding and regulating mitochondrial dynamics is a promising therapeutic tool in cardiac diseases. This review summarizes the role of mitochondrial morphology in heart diseases for each mitochondrial morphology regulatory gene, and their potential as therapeutic targets to heart diseases.
Collapse
Affiliation(s)
- Takeshi Tokuyama
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan
| | - Shigeru Yanagi
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Mejiro, Tokyo 171-0031, Japan;
| |
Collapse
|
23
|
Kalyn M, Lee H, Curry J, Tu W, Ekker M, Mennigen JA. Effects of PFOS, F-53B and OBS on locomotor behaviour, the dopaminergic system and mitochondrial function in developing zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121479. [PMID: 36958660 DOI: 10.1016/j.envpol.2023.121479] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/28/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Perfluorooctanesulfonic acid (PFOS) has widely been reported to persist in the environment and to elicit neurotoxicological effects in wildlife and humans. Following the restriction of PFOS use, 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) and sodium p-perfluorous nonenoxybenzene sulfonate (OBS) have emerged as novel PFOS alternatives and have been detected in the environment. However, knowledge on the toxicological effects of these alternatives remains scarce. Using developing transgenic Tg(dat:eGFP) zebrafish, we evaluated the consequences of exposure to 0, 0.1 and 1 mg/l PFOS, F-53B and OBS on the dopaminergic system, locomotor behaviour and mitochondrial function. All compounds generally reduced locomotor activity under light conditions irrespective of exposure concentration. Exposure to OBS (at all concentrations), as well as PFOS and F-53B (at 1 mg/l), significantly reduced subpallial dopaminergic neuron abundance. PFOS also significantly reduced dat and pink1 expression irrespective of exposure concentration, while F-53B and OBS tended to reduce mitochondrial pink1 and fis1 expression across concentrations without reaching statistical significance. Mitochondrial function, in the form of reduced oxygen consumption rate and marginally inhibited ATP-linked oxygen consumption rate, was affected only in response to 1 mg/l PFOS. Together, PFOS and the emerging contaminants F-53B and OBS inhibit locomotion at similar concentrations, a finding correlated with decreased dopaminergic neuron numbers in the subpallium and decreased expression of pink1. These findings are relevant to wildlife and human health, as they suggest that PFOS as well as replacement compounds affect locomotion likely in part by negatively impacting the dopamine system.
Collapse
Affiliation(s)
- Michael Kalyn
- Department of Biology, University of Ottawa, 20 Marie-Curie Private, K1N6N5, Ottawa, ON, Canada
| | - Hyojin Lee
- Department of Biology, University of Ottawa, 20 Marie-Curie Private, K1N6N5, Ottawa, ON, Canada.
| | - Jory Curry
- Department of Biology, University of Ottawa, 20 Marie-Curie Private, K1N6N5, Ottawa, ON, Canada
| | - Wenqing Tu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Marc Ekker
- Department of Biology, University of Ottawa, 20 Marie-Curie Private, K1N6N5, Ottawa, ON, Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, 20 Marie-Curie Private, K1N6N5, Ottawa, ON, Canada
| |
Collapse
|
24
|
Nolden KA, Harwig MC, Hill RB. Human Fis1 directly interacts with Drp1 in an evolutionarily conserved manner to promote mitochondrial fission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539292. [PMID: 37205551 PMCID: PMC10187221 DOI: 10.1101/2023.05.03.539292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Mitochondrial Fission Protein 1 (Fis1) and Dynamin Related Protein 1 (Drp1) are the only two proteins evolutionarily conserved for mitochondrial fission, and directly interact in S. cerevisiae to facilitate membrane scission. However, it remains unclear if a direct interaction is conserved in higher eukaryotes as other Drp1 recruiters, not present in yeast, are known. Using NMR, differential scanning fluorimetry, and microscale thermophoresis, we determined that human Fis1 directly interacts with human Drp1 ( K D = 12-68 µM), and appears to prevent Drp1 assembly, but not GTP hydrolysis. Similar to yeast, the Fis1-Drp1 interaction appears governed by two structural features of Fis1: its N-terminal arm and a conserved surface. Alanine scanning mutagenesis of the arm identified both loss- and gain-of-function alleles with mitochondrial morphologies ranging from highly elongated (N6A) to highly fragmented (E7A) demonstrating a profound ability of Fis1 to govern morphology in human cells. An integrated analysis identified a conserved Fis1 residue, Y76, that upon substitution to alanine, but not phenylalanine, also caused highly fragmented mitochondria. The similar phenotypic effects of the E7A and Y76A substitutions, along with NMR data, support that intramolecular interactions occur between the arm and a conserved surface on Fis1 to promote Drp1-mediated fission as in S. cerevisiae . These findings indicate that some aspects of Drp1-mediated fission in humans derive from direct Fis1-Drp1 interactions that are conserved across eukaryotes.
Collapse
|
25
|
Virga DM, Hamilton S, Osei B, Morgan A, Zamponi E, Park NJ, Hewitt VL, Zhang D, Gonzalez KC, Bloss E, Polleux F, Lewis TL. Activity-dependent subcellular compartmentalization of dendritic mitochondria structure in CA1 pyramidal neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.25.534233. [PMID: 36993655 PMCID: PMC10055421 DOI: 10.1101/2023.03.25.534233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Neuronal mitochondria play important roles beyond ATP generation, including Ca2+ uptake, and therefore have instructive roles in synaptic function and neuronal response properties. Mitochondrial morphology differs significantly in the axon and dendrites of a given neuronal subtype, but in CA1 pyramidal neurons (PNs) of the hippocampus, mitochondria within the dendritic arbor also display a remarkable degree of subcellular, layer-specific compartmentalization. In the dendrites of these neurons, mitochondria morphology ranges from highly fused and elongated in the apical tuft, to more fragmented in the apical oblique and basal dendritic compartments, and thus occupy a smaller fraction of dendritic volume than in the apical tuft. However, the molecular mechanisms underlying this striking degree of subcellular compartmentalization of mitochondria morphology are unknown, precluding the assessment of its impact on neuronal function. Here, we demonstrate that this compartment-specific morphology of dendritic mitochondria requires activity-dependent, Camkk2-dependent activation of AMPK and its ability to phosphorylate two direct effectors: the pro-fission Drp1 receptor Mff and the recently identified anti-fusion, Opa1-inhibiting protein, Mtfr1l. Our study uncovers a new activity-dependent molecular mechanism underlying the extreme subcellular compartmentalization of mitochondrial morphology in dendrites of neurons in vivo through spatially precise regulation of mitochondria fission/fusion balance.
Collapse
Affiliation(s)
- Daniel M. Virga
- Department of Neuroscience, Columbia Medical School, New York, NY- USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY- USA
| | - Stevie Hamilton
- Department of Neuroscience, Columbia Medical School, New York, NY- USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY- USA
| | - Bertha Osei
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Abigail Morgan
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Neuroscience, Oklahoma University Health Science Campus, Oklahoma City, OK, USA
| | - Emiliano Zamponi
- Department of Neuroscience, Columbia Medical School, New York, NY- USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY- USA
| | - Natalie J. Park
- Department of Neuroscience, Columbia Medical School, New York, NY- USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY- USA
| | - Victoria L. Hewitt
- Department of Neuroscience, Columbia Medical School, New York, NY- USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY- USA
| | - David Zhang
- Department of Neuroscience, Columbia Medical School, New York, NY- USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY- USA
| | - Kevin C. Gonzalez
- Department of Neuroscience, Columbia Medical School, New York, NY- USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY- USA
| | - Erik Bloss
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Franck Polleux
- Department of Neuroscience, Columbia Medical School, New York, NY- USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY- USA
| | - Tommy L. Lewis
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Neuroscience, Oklahoma University Health Science Campus, Oklahoma City, OK, USA
| |
Collapse
|
26
|
Quintana-Cabrera R, Scorrano L. Determinants and outcomes of mitochondrial dynamics. Mol Cell 2023; 83:857-876. [PMID: 36889315 DOI: 10.1016/j.molcel.2023.02.012] [Citation(s) in RCA: 133] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/13/2023] [Accepted: 02/13/2023] [Indexed: 03/09/2023]
Abstract
Mitochondria are not only central organelles in metabolism and energy conversion but are also platforms for cellular signaling cascades. Classically, the shape and ultrastructure of mitochondria were depicted as static. The discovery of morphological transitions during cell death and of conserved genes controlling mitochondrial fusion and fission contributed to establishing the concept that mitochondrial morphology and ultrastructure are dynamically regulated by mitochondria-shaping proteins. These finely tuned, dynamic changes in mitochondrial shape can in turn control mitochondrial function, and their alterations in human diseases suggest that this space can be explored for drug discovery. Here, we review the basic tenets and molecular mechanisms of mitochondrial morphology and ultrastructure, describing how they can coordinately define mitochondrial function.
Collapse
Affiliation(s)
| | - Luca Scorrano
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy; Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy.
| |
Collapse
|
27
|
Matsuyama S, Nakamura S, Minabe S, Sakatani M, Takenouchi N, Sasaki T, Inoue Y, Iwata H, Kimura K. Deterioration of mitochondrial biogenesis and degradation in the endometrium is a cause of subfertility in cows. Mol Reprod Dev 2023; 90:141-152. [PMID: 36645869 DOI: 10.1002/mrd.23670] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 12/02/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023]
Abstract
To investigate possible causes of reproductive failure, we conducted global endometrial gene expression analyses in fertile and subfertile cows. Ingenuity pathway analysis showed that RICTOR and SIRT3 are significant upstream regulators for highly expressed genes in fertile cows, and are predicted to be activated upstream regulators of normal mitochondrial respiration. Canonical pathway analysis revealed that these highly expressed genes are involved in the activation of mitochondrial oxidative phosphorylation. Therefore, in subfertile cows, the inactivation of RICTOR and SIRT3 may correlate with decreased capacity of mitochondrial respiration. Furthermore, the expression levels of most mitochondrial DNA genes and nuclear genes encoding mitochondrial proteins were higher in subfertile cows. The mitochondrial DNA copy number was significantly higher in the endometrium of subfertile cows, whereas the ATP content did not differ between fertile and subfertile cows. Quantitative reverse transcription-PCR analysis demonstrated that the expression of PGC1a, TFAM, MFN1, FIS1, and BCL2L13 were significantly lower in subfertile cows. In addition, transmission electron microscopy images showed mitochondrial swelling in the endometrial cells of the subfertile cow. These results suggest that poor-quality mitochondria accumulate in the endometrium owing to a reduced capacity for mitochondrial biogenesis, fusion, fission, and degradation in subfertile cows, and may contribute to infertility.
Collapse
Affiliation(s)
- Shuichi Matsuyama
- Division of Animal Feeding and Management Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Nasushiobara, Japan
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Sho Nakamura
- Division of Animal Feeding and Management Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Nasushiobara, Japan
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Shiori Minabe
- Division of Animal Feeding and Management Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Nasushiobara, Japan
| | - Miki Sakatani
- Division of Animal Feeding and Management Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Nasushiobara, Japan
- Livestock and Grassland Research Division, Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Kumamoto, Japan
| | - Naoki Takenouchi
- Livestock and Grassland Research Division, Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Kumamoto, Japan
| | - Takuya Sasaki
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Okayama A.I. Center, Livestock Improvement Association of Japan Inc., Maebashi, Japan
| | - Yuki Inoue
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Setagaya, Kanagawa, Japan
| | - Hisataka Iwata
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Setagaya, Kanagawa, Japan
| | - Koji Kimura
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| |
Collapse
|
28
|
Nemtsova Y, Steinert BL, Wharton KA. Compartment specific mitochondrial dysfunction in Drosophila knock-in model of ALS reversed by altered gene expression of OXPHOS subunits and pro-fission factor Drp1. Mol Cell Neurosci 2023; 125:103834. [PMID: 36868541 DOI: 10.1016/j.mcn.2023.103834] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal multisystem neurodegenerative disease, characterized by a loss in motor function. ALS is genetically diverse, with mutations in genes ranging from those regulating RNA metabolism, like TAR DNA-binding protein (TDP-43) and Fused in sarcoma (FUS), to those that act to maintain cellular redox homeostasis, like superoxide dismutase 1 (SOD1). Although varied in genetic origin, pathogenic and clinical commonalities are clearly evident between cases of ALS. Defects in mitochondria is one such common pathology, thought to occur prior to, rather than as a consequence of symptom onset, making these organelles a promising therapeutic target for ALS, as well as other neurodegenerative diseases. Depending on the homeostatic needs of neurons throughout life, mitochondria are normally shuttled to different subcellular compartments to regulate metabolite and energy production, lipid metabolism, and buffer calcium. While originally considered a motor neuron disease due to the dramatic loss in motor function accompanied by motor neuron cell death in ALS patients, many studies have now implicated non-motor neurons and glial cells alike. Defects in non-motor neuron cell types often preceed motor neuron death suggesting their dysfunction may initiate and/or facilitate the decline in motor neuron health. Here, we investigate mitochondria in a Drosophila Sod1 knock-in model of ALS. In depth, in vivo, examination reveals mitochondrial dysfunction evident prior to onset of motor neuron degeneration. Genetically encoded redox biosensors identify a general disruption in the electron transport chain (ETC). Compartment specific abnormalities in mitochondrial morphology is observed in diseased sensory neurons, accompanied by no apparent defects in the axonal transport machinery, but instead an increase in mitophagy in synaptic regions. The decrease in networked mitochondria at the synapse is reversed upon downregulation of the pro-fission factor Drp1. Furthermore, altered expression of specific OXPHOS subunits reverses ALS-associated defects in mitochondrial morphology and function.
Collapse
Affiliation(s)
- Y Nemtsova
- Molecular Biology, Cell Biology, and Biochemistry Department, Brown University, Providence, RI 02912, United States.
| | - B L Steinert
- Molecular Biology, Cell Biology, and Biochemistry Department, Brown University, Providence, RI 02912, United States.
| | - K A Wharton
- Molecular Biology, Cell Biology, and Biochemistry Department, Brown University, Providence, RI 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI 02912, United States.
| |
Collapse
|
29
|
Autophagy/Mitophagy Regulated by Ubiquitination: A Promising Pathway in Cancer Therapeutics. Cancers (Basel) 2023; 15:cancers15041112. [PMID: 36831455 PMCID: PMC9954143 DOI: 10.3390/cancers15041112] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Autophagy is essential for organismal development, maintenance of energy homeostasis, and quality control of organelles and proteins. As a selective form of autophagy, mitophagy is necessary for effectively eliminating dysfunctional mitochondria. Both autophagy and mitophagy are linked with tumor progression and inhibition. The regulation of mitophagy and autophagy depend upon tumor type and stage. In tumors, mitophagy has dual roles: it removes damaged mitochondria to maintain healthy mitochondria and energy production, which are necessary for tumor growth. In contrast, mitophagy has been shown to inhibit tumor growth by mitigating excessive ROS production, thus preventing mutation and chromosomal instability. Ubiquitination and deubiquitination are important modifications that regulate autophagy. Multiple E3 ubiquitin ligases and DUBs modulate the activity of the autophagy and mitophagy machinery, thereby influencing cancer progression. In this review, we summarize the mechanistic association between cancer development and autophagy/mitophagy activities regulated by the ubiquitin modification of autophagic proteins. In addition, we discuss the function of multiple proteins involved in autophagy/mitophagy in tumors that may represent potential therapeutic targets.
Collapse
|
30
|
Sehgal SA, Wu H, Sajid M, Sohail S, Ahsan M, Parveen G, Riaz M, Khan MS, Iqbal MN, Malik A. Pharmacological Progress of Mitophagy Regulation. Curr Neuropharmacol 2023; 21:1026-1041. [PMID: 36918785 PMCID: PMC10286582 DOI: 10.2174/1570159x21666230314140528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 03/16/2023] Open
Abstract
With the advancement in novel drug discovery, biologically active compounds are considered pharmacological tools to understand complex biological mechanisms and the identification of potent therapeutic agents. Mitochondria boast a central role in different integral biological processes and mitochondrial dysfunction is associated with multiple pathologies. It is, therefore, prudent to target mitochondrial quality control mechanisms by using pharmacological approaches. However, there is a scarcity of biologically active molecules, which can interact with mitochondria directly. Currently, the chemical compounds used to induce mitophagy include oligomycin and antimycin A for impaired respiration and acute dissipation of mitochondrial membrane potential by using CCCP/FCCP, the mitochondrial uncouplers. These chemical probes alter the homeostasis of the mitochondria and limit our understanding of the energy regulatory mechanisms. Efforts are underway to find molecules that can bring about selective removal of defective mitochondria without compromising normal mitochondrial respiration. In this report, we have tried to summarize and status of the recently reported modulators of mitophagy.
Collapse
Affiliation(s)
- Sheikh Arslan Sehgal
- Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
- Department of Bioinformatics, University of Okara, Okara, Pakistan
| | - Hao Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, China
| | - Muhammad Sajid
- Department of Biotechnology, University of Okara, Okara, Pakistan
| | - Summar Sohail
- Department of Forestry, Kohsar University Murree, Pakistan
| | - Muhammad Ahsan
- Institute of Environmental and Agricultural Sciences, University of Okara, Okara, Punjab, Pakistan
| | | | - Mehreen Riaz
- Department of Zoology, Women University, Swabi, Pakistan
| | | | - Muhammad Nasir Iqbal
- Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Abbeha Malik
- Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| |
Collapse
|
31
|
Egner JM, Nolden KA, Harwig MC, Bonate RP, De Anda J, Tessmer MH, Noey EL, Ihenacho UK, Liu Z, Peterson FC, Wong GCL, Widlansky ME, Hill RB. Structural studies of human fission protein FIS1 reveal a dynamic region important for GTPase DRP1 recruitment and mitochondrial fission. J Biol Chem 2022; 298:102620. [PMID: 36272645 PMCID: PMC9747602 DOI: 10.1016/j.jbc.2022.102620] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
Fission protein 1 (FIS1) and dynamin-related protein 1 (DRP1) were initially described as being evolutionarily conserved for mitochondrial fission, yet in humans the role of FIS1 in this process is unclear and disputed by many. In budding yeast where Fis1p helps to recruit the DRP1 ortholog from the cytoplasm to mitochondria for fission, an N-terminal "arm" of Fis1p is required for function. The yeast Fis1p arm interacts intramolecularly with a conserved tetratricopeptide repeat core and governs in vitro interactions with yeast DRP1. In human FIS1, NMR and X-ray structures show different arm conformations, but its importance for human DRP1 recruitment is unknown. Here, we use molecular dynamics simulations and comparisons to experimental NMR chemical shifts to show the human FIS1 arm can adopt an intramolecular conformation akin to that observed with yeast Fis1p. This finding is further supported through intrinsic tryptophan fluorescence and NMR experiments on human FIS1 with and without the arm. Using NMR, we observed the human FIS1 arm is also sensitive to environmental changes. We reveal the importance of these findings in cellular studies where removal of the FIS1 arm reduces DRP1 recruitment and mitochondrial fission similar to the yeast system. Moreover, we determined that expression of mitophagy adapter TBC1D15 can partially rescue arm-less FIS1 in a manner reminiscent of expression of the adapter Mdv1p in yeast. These findings point to conserved features of FIS1 important for its activity in mitochondrial morphology. More generally, other tetratricopeptide repeat-containing proteins are flanked by disordered arms/tails, suggesting possible common regulatory mechanisms.
Collapse
Affiliation(s)
- John M Egner
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kelsey A Nolden
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Megan Cleland Harwig
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ryan P Bonate
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jaime De Anda
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Maxx H Tessmer
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Elizabeth L Noey
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ugochukwu K Ihenacho
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ziwen Liu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Michael E Widlansky
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - R Blake Hill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
32
|
Quiles JM, Gustafsson ÅB. The role of mitochondrial fission in cardiovascular health and disease. Nat Rev Cardiol 2022; 19:723-736. [PMID: 35523864 PMCID: PMC10584015 DOI: 10.1038/s41569-022-00703-y] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/02/2022] [Indexed: 02/07/2023]
Abstract
Mitochondria are organelles involved in the regulation of various important cellular processes, ranging from ATP generation to immune activation. A healthy mitochondrial network is essential for cardiovascular function and adaptation to pathological stressors. Mitochondria undergo fission or fusion in response to various environmental cues, and these dynamic changes are vital for mitochondrial function and health. In particular, mitochondrial fission is closely coordinated with the cell cycle and is linked to changes in mitochondrial respiration and membrane permeability. Another key function of fission is the segregation of damaged mitochondrial components for degradation by mitochondrial autophagy (mitophagy). Mitochondrial fission is induced by the large GTPase dynamin-related protein 1 (DRP1) and is subject to sophisticated regulation. Activation requires various post-translational modifications of DRP1, actin polymerization and the involvement of other organelles such as the endoplasmic reticulum, Golgi apparatus and lysosomes. A decrease in mitochondrial fusion can also shift the balance towards mitochondrial fission. Although mitochondrial fission is necessary for cellular homeostasis, this process is often aberrantly activated in cardiovascular disease. Indeed, strong evidence exists that abnormal mitochondrial fission directly contributes to disease development. In this Review, we compare the physiological and pathophysiological roles of mitochondrial fission and discuss the therapeutic potential of preventing excessive mitochondrial fission in the heart and vasculature.
Collapse
Affiliation(s)
- Justin M Quiles
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Åsa B Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
33
|
Means RE, Katz SG. Balancing life and death: BCL-2 family members at diverse ER-mitochondrial contact sites. FEBS J 2022; 289:7075-7112. [PMID: 34668625 DOI: 10.1111/febs.16241] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 01/13/2023]
Abstract
The outer mitochondrial membrane is a busy place. One essential activity for cellular survival is the regulation of membrane integrity by the BCL-2 family of proteins. Another critical facet of the outer mitochondrial membrane is its close approximation with the endoplasmic reticulum. These mitochondrial-associated membranes (MAMs) occupy a significant fraction of the mitochondrial surface and serve as key signaling hubs for multiple cellular processes. Each of these pathways may be considered as forming their own specialized MAM subtype. Interestingly, like membrane permeabilization, most of these pathways play critical roles in regulating cellular survival and death. Recently, the pro-apoptotic BCL-2 family member BOK has been found within MAMs where it plays important roles in their structure and function. This has led to a greater appreciation that multiple BCL-2 family proteins, which are known to participate in numerous functions throughout the cell, also have roles within MAMs. In this review, we evaluate several MAM subsets, their role in cellular homeostasis, and the contribution of BCL-2 family members to their functions.
Collapse
Affiliation(s)
- Robert E Means
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Samuel G Katz
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
34
|
Guha S, Cheng A, Carroll T, King D, Koren SA, Swords S, Nehrke K, Johnson GVW. Selective disruption of Drp1-independent mitophagy and mitolysosome trafficking by an Alzheimer's disease relevant tau modification in a novel Caenorhabditis elegans model. Genetics 2022; 222:iyac104. [PMID: 35916724 PMCID: PMC9434186 DOI: 10.1093/genetics/iyac104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/06/2022] [Indexed: 11/14/2022] Open
Abstract
Accumulation of inappropriately phosphorylated tau into neurofibrillary tangles is a defining feature of Alzheimer's disease, with Tau pT231 being an early harbinger of tau pathology. Previously, we demonstrated that expressing a single genomic copy of human phosphomimetic mutant tau (T231E) in Caenorhabditis elegans drove age-dependent neurodegeneration. A critical finding was that T231E, unlike wild-type tau, completely and selectively suppressed oxidative stress-induced mitophagy. Here, we used dynamic imaging approaches to analyze T231E-associated changes in mitochondria and mitolysosome morphology, abundance, trafficking, and stress-induced mitophagy as a function of mitochondrial fission mediator dynamin-related protein 1, which has been demonstrated to interact with hyper phosphorylated tau and contribute to Alzheimer's disease pathogenesis, as well as Pink1, a well-recognized mediator of mitochondrial quality control that works together with Parkin to support stress-induced mitophagy. T231E impacted both mitophagy and mitolysosome neurite trafficking with exquisite selectivity, sparing macroautophagy as well as lysosome and autolysosome trafficking. Both oxidative-stress-induced mitophagy and the ability of T231E to suppress it were independent of drp-1, but at least partially dependent on pink-1. Organelle trafficking was more complicated, with drp-1 and pink-1 mutants exerting independent effects, but generally supported the idea that the mitophagy phenotype is of greater physiologic impact in T231E. Collectively, our results refine the mechanistic pathway through which T231E causes neurodegeneration, demonstrating pathologic selectivity for mutations that mimic tauopathy-associated post-translational modifications, physiologic selectivity for organelles that contain damaged mitochondria, and molecular selectivity for dynamin-related protein 1-independent, Pink1-dependent, perhaps adaptive, and mitophagy.
Collapse
Affiliation(s)
- Sanjib Guha
- Department of Anesthesiology & Perioperative Medicine, University of Rochester, Rochester, NY 14642, USA
| | - Anson Cheng
- Department of Anesthesiology & Perioperative Medicine, University of Rochester, Rochester, NY 14642, USA
| | - Trae Carroll
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY 14642, USA
| | - Dennisha King
- Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA
| | - Shon A Koren
- Department of Anesthesiology & Perioperative Medicine, University of Rochester, Rochester, NY 14642, USA
| | - Sierra Swords
- Department of Molecular Biology and Biochemistry, Rutgers University, New Brunswick, NJ 08901, USA
| | - Keith Nehrke
- Department of Medicine, Nephrology Division, University of Rochester, Rochester, NY 14642, USA
| | - Gail V W Johnson
- Department of Anesthesiology & Perioperative Medicine, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
35
|
Huang H, Zhang Y, Yao C, He Q, Chen F, Yu H, Lu G, Jiang N, Liu X. The effects of fresh Gastrodia elata Blume on the cognitive deficits induced by chronic restraint stress. Front Pharmacol 2022; 13:890330. [PMID: 36105220 PMCID: PMC9464977 DOI: 10.3389/fphar.2022.890330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
Chronic restraint stress (CRS) is a classic animal model of stress that can lead to various physiological and psychological dysfunctions, including systemic neuroinflammation and memory deficits. Fresh Gastrodia elata Blume (FG), the unprocessed raw tuber of Gastrodia elata Blume, has been reported to alleviate the symptoms of headache, convulsions, and neurodegenerative diseases, while the protective effects of FG on CRS-induced cognitive deficits remain unclear. This work aimed to evaluate the effects of FG on CRS-induced cognitive deficits through multiplex animal behavior tests and to further explore the related mechanism by observing the expression of mitochondrial apoptosis-related proteins in the mouse hippocampus. In in vivo experiments, mice were subjected to the object location recognition test (OLRT), new object recognition test (NORT), Morris water maze test (MWMT), and passive avoidance test (PAT) to evaluate the learning and memory ability. In in vitro experiments, the expression of the AKT/CREB pathway, the fission- and apoptosis-related proteins (Drp1, Cyt C, and BAX), and the proinflammatory cytokines’ (TNF‐α and IL‐1β) level in the hippocampus was examined. Our results demonstrated that in spontaneous behavior experiments, FG significantly improved the cognitive performance of CRS model mice in OLRT (p < 0.05) and NORT (p < 0.05). In punitive behavior experiments, FG shortened the escape latency in long-term spatial memory test (MWMT, p < 0.01) and prolonged the latency into the dark chamber in non-spatial memory test (PAT, p < 0.01). Biochemical analysis showed that FG treatment significantly suppressed CRS‐induced Cyt C, Drp1, and BAX activation (p < 0.001, p < 0.01 and p < 0.05), promoted the CREB, p-CREB, AKT, and p-AKT level (p < 0.05, p < 0.01 and p < 0.001), and inhibited the CRS‐induced proinflammatory cytokines (TNF‐α and IL‐1β, p < 0.05 and p < 0.001) level in the hippocampus. Taken together, these results suggested that FG could attenuate cognitive deficits induced by CRS on multiple learning and memory behavioral tests.
Collapse
Affiliation(s)
- Hong Huang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiwen Zhang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Caihong Yao
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qinghu He
- Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| | - Fang Chen
- Hunan University of Chinese Medicine, College of Traditional Chinese Medicine, Changsha, China
| | - Han Yu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guanghua Lu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ning Jiang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Ning Jiang, ; Xinmin Liu,
| | - Xinmin Liu
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
- *Correspondence: Ning Jiang, ; Xinmin Liu,
| |
Collapse
|
36
|
Chrono-Aerobic Exercise Optimizes Metabolic State in DB/DB Mice through CLOCK–Mitophagy–Apoptosis. Int J Mol Sci 2022; 23:ijms23169308. [PMID: 36012573 PMCID: PMC9408978 DOI: 10.3390/ijms23169308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
Although the benefits of aerobic exercise on obesity and type 2 diabetes are well-documented, the pathogenesis of type 2 diabetes and the intervention mechanism of exercise remain ambiguous. The correlation between mitochondrial quality and metabolic diseases has been identified. Disruption of the central or peripheral molecular clock can also induce chronic metabolic diseases. In addition, the interactive effects of the molecular clock and mitochondrial quality have attracted extensive attention in recent years. Exercise and a high-fat diet have been considered external factors that may change the molecular clock and metabolic state. Therefore, we utilized a DB/DB (BSK.Cg-Dock7m +/+ Leprdb/JNju) mouse model to explore the effect of chrono-aerobic exercise on the metabolic state of type 2 diabetic mice and the effect of timing exercise as an external rhythm cue on liver molecular clock-mitochondrial quality. We found that two differently timed exercises reduced the blood glucose and serum cholesterol levels in DB/DB mice, and compared with night exercise (8:00 p.m., the active period of mice), morning exercise (8:00 a.m., the sleeping period of mice) significantly improved the insulin sensitivity in DB/DB mice. In contrast, type 2 diabetes mellitus (T2DM) increased the expression of CLOCK and impaired the mitochondrial quality (mitochondrial networks, OPA1, Fis1, and mitophagy), as well as induced apoptosis. Both morning and night exercise ameliorated impaired mitochondrial quality and apoptosis induced by diabetes. However, compared with morning exercise, night exercise not only decreased the protein expression of CLOCK but also decreased excessive apoptosis. In addition, the expression of CLOCK was negatively correlated with the expression of OPA1 and Fis1. In summary, our research suggests that morning exercise is more beneficial for increasing insulin sensitivity and promoting glucose transport in T2DM, whereas night exercise may improve lipid infiltration and mitochondrial abnormalities through CLOCK–mitophagy–apoptosis in the liver, thereby downregulating glucose and lipid disorders. In addition, CLOCK-OPA1/Fis1–mitophagy might be novel targets for T2DM treatment.
Collapse
|
37
|
Xiao F, Zhang R, Wang L. Inhibitors of Mitochondrial Dynamics Mediated by Dynamin-Related Protein 1 in Pulmonary Arterial Hypertension. Front Cell Dev Biol 2022; 10:913904. [PMID: 35846374 PMCID: PMC9280643 DOI: 10.3389/fcell.2022.913904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a chronic, lethal pulmonary disease characterized by pulmonary vascular remodeling. It leads to malignant results, such as rupture of pulmonary arterial dissection, dyspnea, right heart failure, and even death. Previous studies have confirmed that one of the main pathological changes of this disease is abnormal mitochondrial dynamics, which include mitochondrial fission, fusion, and autophagy that keep a dynamic balance under certain physiological state. Dynamin-related protein 1 (Drp1), the key molecule in mitochondrial fission, mediates mitochondrial fission while also affecting mitochondrial fusion and autophagy through numerous pathways. There are various abnormalities of Drp1 in PAH pathophysiology, including Drp1 overexpression and activation as well as an upregulation of its outer mitochondrial membrane ligands. These aberrant alterations will eventually induce the development of PAH. With the process of recent studies, the structure and function of Drp1 have been gradually revealed. Meanwhile, inhibitors targeting this pathway have also been discovered. This review aims to shed more light on the mechanism of Drp1 and its inhibitors in the abnormal mitochondrial dynamics of PAH. Furthermore, it seeks to provide more novel insights to clinical therapy.
Collapse
|
38
|
Jiang Y, Krantz S, Qin X, Li S, Gunasekara H, Kim YM, Zimnicka A, Bae M, Ma K, Toth PT, Hu Y, Shajahan-Haq AN, Patel HH, Gentile S, Bonini MG, Rehman J, Liu Y, Minshall RD. Caveolin-1 controls mitochondrial damage and ROS production by regulating fission - fusion dynamics and mitophagy. Redox Biol 2022; 52:102304. [PMID: 35413643 PMCID: PMC9018165 DOI: 10.1016/j.redox.2022.102304] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/23/2022] [Indexed: 12/22/2022] Open
Abstract
As essential regulators of mitochondrial quality control, mitochondrial dynamics and mitophagy play key roles in maintenance of metabolic health and cellular homeostasis. Here we show that knockdown of the membrane-inserted scaffolding and structural protein caveolin-1 (Cav-1) and expression of tyrosine 14 phospho-defective Cav-1 mutant (Y14F), as opposed to phospho-mimicking Y14D, altered mitochondrial morphology, and increased mitochondrial matrix mixing, mitochondrial fusion and fission dynamics as well as mitophagy in MDA-MB-231 triple negative breast cancer cells. Further, we found that interaction of Cav-1 with mitochondrial fusion/fission machinery Mitofusin 2 (Mfn2) and Dynamin related protein 1 (Drp1) was enhanced by Y14D mutant indicating Cav-1 Y14 phosphorylation prevented Mfn2 and Drp1 translocation to mitochondria. Moreover, limiting mitochondrial recruitment of Mfn2 diminished formation of the PINK1/Mfn2/Parkin complex required for initiation of mitophagy resulting in accumulation of damaged mitochondria and ROS (mtROS). Thus, these studies indicate that phospho-Cav-1 may be an important switch mechanism in cancer cell survival which could lead to novel strategies for complementing cancer therapies.
Collapse
Affiliation(s)
- Ying Jiang
- Departments of Pharmacology, University of Illinois at Chicago, Chicago, IL, 60612, USA; Center for Informational Biology, University of Electronic Science and Technology of China, 610054, China
| | - Sarah Krantz
- Departments of Pharmacology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Xiang Qin
- Center for Informational Biology, University of Electronic Science and Technology of China, 610054, China
| | - Shun Li
- Center for Informational Biology, University of Electronic Science and Technology of China, 610054, China
| | | | - Young-Mee Kim
- Departments of Pharmacology, University of Illinois at Chicago, Chicago, IL, 60612, USA; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Adriana Zimnicka
- Departments of Pharmacology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Misuk Bae
- Anesthesiology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ke Ma
- Research Resources Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Peter T Toth
- Departments of Pharmacology, University of Illinois at Chicago, Chicago, IL, 60612, USA; Research Resources Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ying Hu
- Chemistry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ayesha N Shajahan-Haq
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Hemal H Patel
- VA San Diego Health System and Department of Anesthesiology, University of California at San Diego, San Diego, CA, 92161, USA
| | - Saverio Gentile
- Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Marcelo G Bonini
- Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60614, USA
| | - Jalees Rehman
- Departments of Pharmacology, University of Illinois at Chicago, Chicago, IL, 60612, USA; Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Yiyao Liu
- Center for Informational Biology, University of Electronic Science and Technology of China, 610054, China
| | - Richard D Minshall
- Departments of Pharmacology, University of Illinois at Chicago, Chicago, IL, 60612, USA; Anesthesiology, University of Illinois at Chicago, Chicago, IL, 60612, USA; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
39
|
Soares ES, de Souza ACG, Zanella CA, Carmichael RE, Henley JM, Wilkinson KA, Cimarosti HI. Effects of amyloid-β on protein SUMOylation and levels of mitochondrial proteins in primary cortical neurons. IBRO Neurosci Rep 2022; 12:142-148. [PMID: 35746977 PMCID: PMC9210492 DOI: 10.1016/j.ibneur.2022.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/26/2022] Open
Abstract
Defining the molecular changes that underlie Alzheimer's disease (AD) is an important question in neuroscience. Here, we examined changes in protein SUMOylation, and proteins involved in mitochondrial dynamics, in an in vitro model of AD induced by application of amyloid-β 1-42 (Aβ1-42) to cultured neurons. We observed Aβ1-42-induced decreases in global SUMOylation and in levels of the SUMO pathway enzymes SENP3, PIAS1/2, and SAE2. Aβ exposure also decreased levels of the mitochondrial fission proteins Drp1 and Mff and increased activation of caspase-3. To examine whether loss of SENP3 is cytoprotective we knocked down SENP3, which partially prevented the Aβ1-42-induced increase in caspase-3 activation. Together, these data support the hypothesis that altered SUMOylation may play a role in the mechanisms underlying AD.
Collapse
Affiliation(s)
- Ericks S. Soares
- Postgraduate Program in Pharmacology, Federal University of Santa Catarina, Brazil
| | - Ana C. Guerra de Souza
- Postgraduate Program in Pharmacology, Federal University of Santa Catarina, Brazil
- School of Biochemistry, University of Bristol, UK
| | - Camila A. Zanella
- Postgraduate Program in Pharmacology, Federal University of Santa Catarina, Brazil
- School of Biochemistry, University of Bristol, UK
| | | | | | | | - Helena I. Cimarosti
- Postgraduate Program in Pharmacology, Federal University of Santa Catarina, Brazil
- Postgraduate Program in Neuroscience, Federal University of Santa Catarina, Brazil
| |
Collapse
|
40
|
Kanithi M, Junapudi S, Shah SI, Matta Reddy A, Ullah G, Chidipi B. Alterations of Mitochondrial Network by Cigarette Smoking and E-Cigarette Vaping. Cells 2022; 11:1688. [PMID: 35626724 PMCID: PMC9139349 DOI: 10.3390/cells11101688] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
Toxins present in cigarette and e-cigarette smoke constitute a significant cause of illnesses and are known to have fatal health impacts. Specific mechanisms by which toxins present in smoke impair cell repair are still being researched and are of prime interest for developing more effective treatments. Current literature suggests toxins present in cigarette smoke and aerosolized e-vapor trigger abnormal intercellular responses, damage mitochondrial function, and consequently disrupt the homeostasis of the organelle's biochemical processes by increasing reactive oxidative species. Increased oxidative stress sets off a cascade of molecular events, disrupting optimal mitochondrial morphology and homeostasis. Furthermore, smoking-induced oxidative stress may also amalgamate with other health factors to contribute to various pathophysiological processes. An increasing number of studies show that toxins may affect mitochondria even through exposure to secondhand or thirdhand smoke. This review assesses the impact of toxins present in tobacco smoke and e-vapor on mitochondrial health, networking, and critical structural processes, including mitochondria fission, fusion, hyper-fusion, fragmentation, and mitophagy. The efforts are focused on discussing current evidence linking toxins present in first, second, and thirdhand smoke to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Manasa Kanithi
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA;
| | - Sunil Junapudi
- Department of Pharmaceutical Chemistry, Geethanjali College of Pharmacy, Cherryal, Keesara, Medchalmalkajgiri District, Hyderabad 501301, India;
| | | | - Alavala Matta Reddy
- Department of Zoology, School of Life and Health Sciences, Adikavi Nannaya University, Rajahmundry 533296, India;
| | - Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, FL 33620, USA;
| | - Bojjibabu Chidipi
- Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
41
|
The Role of Mitochondrial Dynamin in Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2504798. [PMID: 35571256 PMCID: PMC9106451 DOI: 10.1155/2022/2504798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/17/2022] [Indexed: 11/25/2022]
Abstract
Stroke is one of the leading causes of death and disability in the world. However, the pathophysiological process of stroke is still not fully clarified. Mitochondria play an important role in promoting nerve survival and are an important drug target for the treatment of stroke. Mitochondrial dysfunction is one of the hallmarks of stroke. Mitochondria are in a state of continuous fission and fusion, which are termed as mitochondrial dynamics. Mitochondrial dynamics are very important for maintaining various functions of mitochondria. In this review, we will introduce the structure and functions of mitochondrial fission and fusion related proteins and discuss their role in the pathophysiologic process of stroke. A better understanding of mitochondrial dynamin in stroke will pave way for the development of new therapeutic options.
Collapse
|
42
|
Romero-Morales AI, Gama V. Revealing the Impact of Mitochondrial Fitness During Early Neural Development Using Human Brain Organoids. Front Mol Neurosci 2022; 15:840265. [PMID: 35571368 PMCID: PMC9102998 DOI: 10.3389/fnmol.2022.840265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial homeostasis -including function, morphology, and inter-organelle communication- provides guidance to the intrinsic developmental programs of corticogenesis, while also being responsive to environmental and intercellular signals. Two- and three-dimensional platforms have become useful tools to interrogate the capacity of cells to generate neuronal and glia progeny in a background of metabolic dysregulation, but the mechanistic underpinnings underlying the role of mitochondria during human neurogenesis remain unexplored. Here we provide a concise overview of cortical development and the use of pluripotent stem cell models that have contributed to our understanding of mitochondrial and metabolic regulation of early human brain development. We finally discuss the effects of mitochondrial fitness dysregulation seen under stress conditions such as metabolic dysregulation, absence of developmental apoptosis, and hypoxia; and the avenues of research that can be explored with the use of brain organoids.
Collapse
Affiliation(s)
| | - Vivian Gama
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
43
|
Carmona-Carmona CA, Dalla Pozza E, Ambrosini G, Errico A, Dando I. Divergent Roles of Mitochondria Dynamics in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14092155. [PMID: 35565283 PMCID: PMC9105422 DOI: 10.3390/cancers14092155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma is one of the most lethal neoplasia due to the lack of early diagnostic markers and effective therapies. The study of metabolic alterations of PDAC is of crucial importance since it would open the way to the discovery of new potential therapies. Mitochondria represent key organelles that regulate energy metabolism, and they remodel their structure by undergoing modifications by fusing with other mitochondria or dividing to generate smaller ones. The alterations of mitochondria arrangement may influence the metabolism of PDAC cells, thus supporting the proliferative needs of cancer. Shedding light on this topic regarding cancer and, more specifically, PDAC may help identify new potential strategies that hit cancer cells at their “core,” i.e., mitochondria. Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive tumors; it is often diagnosed at an advanced stage and is hardly treatable. These issues are strictly linked to the absence of early diagnostic markers and the low efficacy of treatment approaches. Recently, the study of the metabolic alterations in cancer cells has opened the way to important findings that can be exploited to generate new potential therapies. Within this scenario, mitochondria represent important organelles within which many essential functions are necessary for cell survival, including some key reactions involved in energy metabolism. These organelles remodel their shape by dividing or fusing themselves in response to cellular needs or stimuli. Interestingly, many authors have shown that mitochondrial dynamic equilibrium is altered in many different tumor types. However, up to now, it is not clear whether PDAC cells preferentially take advantage of fusion or fission processes since some studies reported a wide range of different results. This review described the role of both mitochondria arrangement processes, i.e., fusion and fission events, in PDAC, showing that a preference for mitochondria fragmentation could sustain tumor needs. In addition, we also highlight the importance of considering the metabolic arrangement and mitochondria assessment of cancer stem cells, which represent the most aggressive tumor cell type that has been shown to have distinctive metabolic features to that of differentiated tumor cells.
Collapse
Affiliation(s)
| | | | | | | | - Ilaria Dando
- Correspondence: (C.A.C.-C.); (I.D.); Tel.: +39-045-802-7174 (C.A.C.-C.); +39-045-802-7169 (I.D.)
| |
Collapse
|
44
|
Jetto CT, Nambiar A, Manjithaya R. Mitophagy and Neurodegeneration: Between the Knowns and the Unknowns. Front Cell Dev Biol 2022; 10:837337. [PMID: 35392168 PMCID: PMC8981085 DOI: 10.3389/fcell.2022.837337] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Macroautophagy (henceforth autophagy) an evolutionary conserved intracellular pathway, involves lysosomal degradation of damaged and superfluous cytosolic contents to maintain cellular homeostasis. While autophagy was initially perceived as a bulk degradation process, a surfeit of studies in the last 2 decades has revealed that it can also be selective in choosing intracellular constituents for degradation. In addition to the core autophagy machinery, these selective autophagy pathways comprise of distinct molecular players that are involved in the capture of specific cargoes. The diverse organelles that are degraded by selective autophagy pathways are endoplasmic reticulum (ERphagy), lysosomes (lysophagy), mitochondria (mitophagy), Golgi apparatus (Golgiphagy), peroxisomes (pexophagy) and nucleus (nucleophagy). Among these, the main focus of this review is on the selective autophagic pathway involved in mitochondrial turnover called mitophagy. The mitophagy pathway encompasses diverse mechanisms involving a complex interplay of a multitude of proteins that confers the selective recognition of damaged mitochondria and their targeting to degradation via autophagy. Mitophagy is triggered by cues that signal the mitochondrial damage such as disturbances in mitochondrial fission-fusion dynamics, mitochondrial membrane depolarisation, enhanced ROS production, mtDNA damage as well as developmental cues such as erythrocyte maturation, removal of paternal mitochondria, cardiomyocyte maturation and somatic cell reprogramming. As research on the mechanistic aspects of this complex pathway is progressing, emerging roles of new players such as the NIPSNAP proteins, Miro proteins and ER-Mitochondria contact sites (ERMES) are being explored. Although diverse aspects of this pathway are being investigated in depth, several outstanding questions such as distinct molecular players of basal mitophagy, selective dominance of a particular mitophagy adapter protein over the other in a given physiological condition, molecular mechanism of how specific disease mutations affect this pathway remain to be addressed. In this review, we aim to give an overview with special emphasis on molecular and signalling pathways of mitophagy and its dysregulation in neurodegenerative disorders.
Collapse
Affiliation(s)
- Cuckoo Teresa Jetto
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Akshaya Nambiar
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
- *Correspondence: Ravi Manjithaya,
| |
Collapse
|
45
|
Chen Y, Culetto E, Legouis R. The strange case of Drp1 in autophagy: Jekyll and Hyde? Bioessays 2022; 44:e2100271. [PMID: 35166388 DOI: 10.1002/bies.202100271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/27/2022]
Abstract
There is a debate regarding the function of Drp1, a GTPase involved in mitochondrial fission, during the elimination of mitochondria by autophagy. A number of experiments indicate that Drp1 is needed to eliminate mitochondria during mitophagy, either by reducing the mitochondrial size or by providing a noncanonical mitophagy function. Yet, other convincing experimental results support the conclusion that Drp1 is not necessary. Here, we review the possible functions for Drp1 in mitophagy and autophagy, depending on tissues, organisms and stresses, and discuss these apparent discrepancies. In this regard, it appears that the reduction of mitochondria size is often required for mitophagy but not always in a Drp1-dependent manner. Finally, we speculate on Drp1-independent mitochondrial fission mechanism that may take place during mitophagy and on noncanonical roles, which Drp1 may play such as modulating organelle contact sites dynamic during the autophagosome formation.
Collapse
Affiliation(s)
- Yanfang Chen
- College of Life Sciences, Animal Ressources Center, Nankai University, Tianjin, China
| | - Emmanuel Culetto
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, Paris, France.,INSERM, U1280, Gif-sur-Yvette, France
| | - Renaud Legouis
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, Paris, France.,INSERM, U1280, Gif-sur-Yvette, France
| |
Collapse
|
46
|
Waters E, Wilkinson KA, Harding AL, Carmichael RE, Robinson D, Colley HE, Guo C. The SUMO protease SENP3 regulates mitochondrial autophagy mediated by Fis1. EMBO Rep 2022; 23:e48754. [PMID: 34994490 PMCID: PMC8811651 DOI: 10.15252/embr.201948754] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/31/2021] [Accepted: 11/24/2021] [Indexed: 11/09/2022] Open
Abstract
Mitochondria are unavoidably subject to organellar stress resulting from exposure to a range of reactive molecular species. Consequently, cells operate a poorly understood quality control programme of mitophagy to facilitate elimination of dysfunctional mitochondria. Here, we used a model stressor, deferiprone (DFP), to investigate the molecular basis for stress-induced mitophagy. We show that mitochondrial fission 1 protein (Fis1) is required for DFP-induced mitophagy and that Fis1 is SUMOylated at K149, an amino acid residue critical for Fis1 mitochondrial localization. We find that DFP treatment leads to the stabilization of the SUMO protease SENP3, which is mediated by downregulation of the E3 ubiquitin (Ub) ligase CHIP. SENP3 is responsible for Fis1 deSUMOylation and depletion of SENP3 abolishes DFP-induced mitophagy. Furthermore, preventing Fis1 SUMOylation by conservative K149R mutation enhances Fis1 mitochondrial localization. Critically, expressing a Fis1 K149R mutant restores DFP-induced mitophagy in SENP3-depleted cells. Thus, we propose a model in which SENP3-mediated deSUMOylation facilitates Fis1 mitochondrial localization to underpin stress-induced mitophagy.
Collapse
Affiliation(s)
- Emily Waters
- School of BiosciencesUniversity of SheffieldSheffieldUK
| | | | - Amy L Harding
- School of Clinical DentistryUniversity of SheffieldSheffieldUK
| | | | | | - Helen E Colley
- School of Clinical DentistryUniversity of SheffieldSheffieldUK
| | - Chun Guo
- School of BiosciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
47
|
Liou YH, Personnaz J, Jacobi D, Knudsen NH, Chalom MM, Starost KA, Nnah IC, Lee CH. Hepatic Fis1 regulates mitochondrial integrated stress response and improves metabolic homeostasis. JCI Insight 2022; 7:150041. [PMID: 35015731 PMCID: PMC8876406 DOI: 10.1172/jci.insight.150041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 01/06/2022] [Indexed: 11/17/2022] Open
Abstract
Mitophagy and mitochondrial integrated stress response (ISR) are 2 primary protective mechanisms to maintain functional mitochondria. Whether these 2 processes are coordinately regulated remains unclear. Here we show that mitochondrial fission 1 protein (Fis1), which is required for completion of mitophagy, serves as a signaling hub linking mitophagy and ISR. In mouse hepatocytes, high fat diet (HFD) feeding induces unresolved oxidative stress, defective mitophagy and enhanced type I interferon (IFN-I) response implicated in promoting metabolic inflammation. Adenoviral-mediated acute hepatic Fis1 overexpression is sufficient to reduce oxidative damage and improve glucose homeostasis in HFD-fed mice. RNA-Seq analysis reveals that Fis1 triggers a retrograde mitochondria-to-nucleus communication upregulating ISR genes encoding anti-oxidant defense, redox homeostasis, and proteostasis pathways. Fis1-mediated ISR also suppresses expression of IFN-I–stimulated genes through activating transcription factor 5 (Atf5), which inhibits the transactivation activity of interferon regulatory factor 3 (Irf3) known to control IFN-I production. Metabolite analysis demonstrates that Fis1 activation leads to accumulation of fumarate, a TCA cycle intermediate capable of increasing Atf5 activity. Consequently, hepatic Atf5 overexpression or monomethyl fumarate (MMF) treatment improves glucose homeostasis in HFD-fed mice. Collectively, these results support the potential use of small molecules targeting the Fis1-Atf5 axis, such as MMF, to treat metabolic diseases.
Collapse
Affiliation(s)
- Yae-Huei Liou
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, United States of America
| | - Jean Personnaz
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, United States of America
| | - David Jacobi
- Inserm UMR 1087, l'institut du thorax, Nantes, France
| | - Nelson H Knudsen
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, United States of America
| | - Mayer M Chalom
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, United States of America
| | - Kyle A Starost
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, United States of America
| | - Israel C Nnah
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, United States of America
| | - Chih-Hao Lee
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, United States of America
| |
Collapse
|
48
|
Chiaratti MR. Uncovering the important role of mitochondrial dynamics in oogenesis: impact on fertility and metabolic disorder transmission. Biophys Rev 2021; 13:967-981. [PMID: 35059021 PMCID: PMC8724343 DOI: 10.1007/s12551-021-00891-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Oocyte health is tightly tied to mitochondria given their role in energy production, metabolite supply, calcium (Ca2+) buffering, and cell death regulation, among others. In turn, mitochondrial function strongly relies on these organelle dynamics once cyclic events of fusion and fission (division) are required for mitochondrial turnover, positioning, content homogenization, metabolic flexibility, interaction with subcellular compartments, etc. Importantly, during oogenesis, mitochondria change their architecture from an "orthodox" elongated shape characterized by the presence of numerous transversely oriented cristae to a round-to-oval morphology containing arched and concentrically arranged cristae. This, along with evidence showing that mitochondrial function is kept quiescent during most part of oocyte development, suggests an important role of mitochondrial dynamics in oogenesis. To investigate this, recent works have downregulated/upregulated in oocytes the expression of key effectors of mitochondrial dynamics, including mitofusins 1 (MFN1) and 2 (MFN2) and the dynamin-related protein 1 (DRP1). As a result, both MFN1 and DRP1 were found to be essential to oogenesis and fertility, while MFN2 deletion led to offspring with increased weight gain and glucose intolerance. Curiously, neither MFN1/MFN2 deficiency nor DRP1 overexpression enhanced mitochondrial fragmentation, indicating that mitochondrial size is strictly regulated in oocytes. Therefore, the present work seeks to discuss the role of mitochondria in supporting oogenesis as well as recent findings connecting defective mitochondrial dynamics in oocytes with infertility and transmission of metabolic disorders.
Collapse
Affiliation(s)
- Marcos Roberto Chiaratti
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, 13565-905 Brazil
| |
Collapse
|
49
|
New perspectives on cytoskeletal dysregulation and mitochondrial mislocalization in amyotrophic lateral sclerosis. Transl Neurodegener 2021; 10:46. [PMID: 34789332 PMCID: PMC8597313 DOI: 10.1186/s40035-021-00272-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by selective, early degeneration of motor neurons in the brain and spinal cord. Motor neurons have long axonal projections, which rely on the integrity of neuronal cytoskeleton and mitochondria to regulate energy requirements for maintaining axonal stability, anterograde and retrograde transport, and signaling between neurons. The formation of protein aggregates which contain cytoskeletal proteins, and mitochondrial dysfunction both have devastating effects on the function of neurons and are shared pathological features across several neurodegenerative conditions, including ALS, Alzheimer's disease, Parkinson's disease, Huntington's disease and Charcot-Marie-Tooth disease. Furthermore, it is becoming increasingly clear that cytoskeletal integrity and mitochondrial function are intricately linked. Therefore, dysregulations of the cytoskeletal network and mitochondrial homeostasis and localization, may be common pathways in the initial steps of neurodegeneration. Here we review and discuss known contributors, including variants in genetic loci and aberrant protein activities, which modify cytoskeletal integrity, axonal transport and mitochondrial localization in ALS and have overlapping features with other neurodegenerative diseases. Additionally, we explore some emerging pathways that may contribute to this disruption in ALS.
Collapse
|
50
|
Waddell J, Banerjee A, Kristian T. Acetylation in Mitochondria Dynamics and Neurodegeneration. Cells 2021; 10:cells10113031. [PMID: 34831252 PMCID: PMC8616140 DOI: 10.3390/cells10113031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are a unique intracellular organelle due to their evolutionary origin and multifunctional role in overall cellular physiology and pathophysiology. To meet the specific spatial metabolic demands within the cell, mitochondria are actively moving, dividing, or fusing. This process of mitochondrial dynamics is fine-tuned by a specific group of proteins and their complex post-translational modifications. In this review, we discuss the mitochondrial dynamics regulatory enzymes, their adaptor proteins, and the effect of acetylation on the activity of fusion and fission machinery as a ubiquitous response to metabolic stresses. Further, we discuss the role of intracellular cytoskeleton structures and their post-translational modifications in the modulation of mitochondrial fusion and fission. Finally, we review the role of mitochondrial dynamics dysregulation in the pathophysiology of acute brain injury and the treatment strategies based on modulation of NAD+-dependent deacetylation.
Collapse
Affiliation(s)
- Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.W.); (A.B.)
| | - Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.W.); (A.B.)
| | - Tibor Kristian
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, USA
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence: ; Tel.: +1-410-706-3418
| |
Collapse
|