1
|
The TOG protein Stu2 is regulated by acetylation. PLoS Genet 2022; 18:e1010358. [PMID: 36084134 PMCID: PMC9491610 DOI: 10.1371/journal.pgen.1010358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 09/21/2022] [Accepted: 07/27/2022] [Indexed: 11/27/2022] Open
Abstract
Stu2 in S. cerevisiae is a member of the XMAP215/Dis1/CKAP5/ch-TOG family of MAPs and has multiple functions in controlling microtubules, including microtubule polymerization, microtubule depolymerization, linking chromosomes to the kinetochore, and assembly of γ-TuSCs at the SPB. Whereas phosphorylation has been shown to be critical for Stu2 localization at the kinetochore, other regulatory mechanisms that control Stu2 function are still poorly understood. Here, we show that a novel form of Stu2 regulation occurs through the acetylation of three lysine residues at K252, K469, and K870, which are located in three distinct domains of Stu2. Alteration of acetylation through acetyl-mimetic and acetyl-blocking mutations did not impact the essential function of Stu2. Instead, these mutations lead to a decrease in chromosome stability, as well as changes in resistance to the microtubule depolymerization drug, benomyl. In agreement with our in silico modeling, several acetylation-mimetic mutants displayed increased interactions with γ-tubulin. Taken together, these data suggest that Stu2 acetylation can govern multiple Stu2 functions, including chromosome stability and interactions at the SPB. Microtubules are proteinaceous polymers that play several important roles in cell division and segregation of the genetic material to each daughter cell. The functions of microtubules are critically dependent upon their dynamic properties in which tubulin subunits are added or removed from the microtubule end, allowing microtubules to grow or shorten in length. These dynamic properties are controlled by several types of microtubule associated proteins. In this study using bakers yeast, we describe our discovery of a previously unappreciated way to regulate the microtubule associated protein Stu2 by a modification called acetylation. When we created mutations in the Stu2 protein that can’t be properly acetylated, the cell lost some of its chromosomes. Some of these mutations actually caused the microtubules to be resistant to drugs that normally disassemble the microtubule polymer. As similar versions of the Stu2 protein are found in diverse organisms that range from yeast and fungus, to plants, insects, mammals and humans, our work could provide unique insights into how microtubules malfunction in some human diseases. With further studies, this may provide a new understanding of chromosome loss in birth defects and/or cancer.
Collapse
|
2
|
Two XMAP215/TOG Microtubule Polymerases, Alp14 and Dis1, Play Non-Exchangeable, Distinct Roles in Microtubule Organisation in Fission Yeast. Int J Mol Sci 2019; 20:ijms20205108. [PMID: 31618856 PMCID: PMC6834199 DOI: 10.3390/ijms20205108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/12/2019] [Accepted: 10/12/2019] [Indexed: 12/29/2022] Open
Abstract
Proper bipolar spindle assembly underlies accurate chromosome segregation. A cohort of microtubule-associated proteins orchestrates spindle microtubule formation in a spatiotemporally coordinated manner. Among them, the conserved XMAP215/TOG family of microtubule polymerase plays a central role in spindle assembly. In fission yeast, two XMAP215/TOG members, Alp14 and Dis1, share essential roles in cell viability; however how these two proteins functionally collaborate remains undetermined. Here we show the functional interplay and specification of Alp14 and Dis1. Creation of new mutant alleles of alp14, which display temperature sensitivity in the absence of Dis1, enabled us to conduct detailed analyses of a double mutant. We have found that simultaneous inactivation of Alp14 and Dis1 results in early mitotic arrest with very short, fragile spindles. Intriguingly, these cells often undergo spindle collapse, leading to a lethal “cut” phenotype. By implementing an artificial targeting system, we have shown that Alp14 and Dis1 are not functionally exchangeable and as such are not merely redundant paralogues. Interestingly, while Alp14 promotes microtubule nucleation, Dis1 does not. Our results uncover that the intrinsic specification, not the spatial regulation, between Alp14 and Dis1 underlies the collaborative actions of these two XMAP215/TOG members in mitotic progression, spindle integrity and genome stability.
Collapse
|
3
|
Cook BD, Chang F, Flor-Parra I, Al-Bassam J. Microtubule polymerase and processive plus-end tracking functions originate from distinct features within TOG domain arrays. Mol Biol Cell 2019; 30:1490-1504. [PMID: 30969896 PMCID: PMC6724690 DOI: 10.1091/mbc.e19-02-0093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
XMAP215/Stu2/Alp14 accelerates tubulin polymerization while processively tracking microtubule (MT) plus ends via tumor overexpressed gene (TOG) domain arrays. It remains poorly understood how these functions arise from tubulin recruitment, mediated by the distinct TOG1 and TOG2 domains, or the assembly of these arrays into large square complexes. Here, we describe a relationship between MT plus-end tracking and polymerase functions revealing their distinct origin within TOG arrays. We study Alp14 mutants designed based on structural models, with defects in either tubulin recruitment or self-organization. Using in vivo live imaging in fission yeast and in vitro MT dynamics assays, we show that tubulins recruited by TOG1 and TOG2 serve concerted, yet distinct, roles in MT plus-end tracking and polymerase functions. TOG1 is critical for processive plus-end tracking, whereas TOG2 is critical for accelerating tubulin polymerization. Inactivating interfaces that stabilize square complexes lead to defects in both processive MT plus-end tracking and polymerase. Our studies suggest that a dynamic cycle between square and unfurled TOG array states gives rise to processive polymerase activity at MT plus ends.
Collapse
Affiliation(s)
- Brian D Cook
- Department of Molecular Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Fred Chang
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| | - Ignacio Flor-Parra
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/Junta de Andalucía, 41013 Seville, Spain
| | - Jawdat Al-Bassam
- Department of Molecular Cellular Biology, University of California, Davis, Davis, CA 95616
| |
Collapse
|
4
|
Kume K, Kaneko S, Nishikawa K, Mizunuma M, Hirata D. Role of nucleocytoplasmic transport in interphase microtubule organization in fission yeast. Biochem Biophys Res Commun 2018; 503:1160-1167. [PMID: 29958883 DOI: 10.1016/j.bbrc.2018.06.135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 06/24/2018] [Indexed: 11/25/2022]
Abstract
The proper organization of microtubules is essential for many cellular functions. Microtubule organization and reorganization are highly regulated during the cell cycle, but the underlying mechanisms remain elusive. Here we characterized unusual interphase microtubule organization in fission yeast nuclear export mutant crm1-124. The mutant cells have an intranuclear microtubule bundle during interphase that pushes the nuclear envelope to assume a protruding morphology. We showed that the formation of this protruding microtubule bundle requires the nuclear accumulation of two microtubule-associated proteins (MAPs), Alp14/TOG and Mal3/EB1. Interestingly, the forced accumulation of Alp14 in the nucleus of wild type cells is sufficient to form the intranuclear microtubule bundle. Furthermore, the frequency of the intranuclear microtubule formation by Alp14 accumulated in the nucleus is prominently increased by a reduction in the nucleation activity of interphase cytoplasmic microtubules. We propose that properly regulated nucleocytoplasmic transport and maintained activity of cytoplasmic microtubule nucleation during interphase are important for the proper organization of interphase cytoplasmic microtubules.
Collapse
Affiliation(s)
- Kazunori Kume
- Hiroshima Research Center for Healthy Aging, Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan.
| | - Sayuri Kaneko
- Hiroshima Research Center for Healthy Aging, Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Kenji Nishikawa
- Hiroshima Research Center for Healthy Aging, Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Masaki Mizunuma
- Hiroshima Research Center for Healthy Aging, Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Dai Hirata
- Hiroshima Research Center for Healthy Aging, Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan; Asahi-Shuzo Sake Brewing Co., Ltd., 880-1 Asahi, Nagaoka, 949-5494, Japan
| |
Collapse
|
5
|
Greenlee M, Alonso A, Rahman M, Meednu N, Davis K, Tabb V, Cook R, Miller RK. The TOG protein Stu2/XMAP215 interacts covalently and noncovalently with SUMO. Cytoskeleton (Hoboken) 2018; 75:290-306. [PMID: 29729126 PMCID: PMC6712953 DOI: 10.1002/cm.21449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 01/21/2023]
Abstract
Stu2p is the yeast member of the XMAP215/Dis1/ch‐TOG family of microtubule‐associated proteins that promote microtubule polymerization. However, the factors that regulate its activity are not clearly understood. Here we report that Stu2p in the budding yeast Saccharomyces cerevisiae interacts with SUMO by covalent and noncovalent mechanisms. Stu2p interacted by two‐hybrid analysis with the yeast SUMO Smt3p, its E2 Ubc9p, and the E3 Nfi1p. A region of Stu2p containing the dimerization domain was both necessary and sufficient for interaction with SUMO and Ubc9p. Stu2p was found to be sumoylated both in vitro and in vivo. Stu2p copurified with SUMO in a pull‐down assay and vice versa. Stu2p also bound to a nonconjugatable form of SUMO, suggesting that Stu2p can interact noncovalently with SUMO. In addition, Stu2p interacted with the STUbL enzyme Ris1p. Stu2p also copurified with ubiquitin in a pull‐down assay, suggesting that it can be modified by both SUMO and ubiquitin. Tubulin, a major binding partner of Stu2p, also interacted noncovalently with SUMO. By two‐hybrid analysis, the beta‐tubulin Tub2p interacted with SUMO independently of the microtubule stressor, benomyl. Together, these findings raise the possibility that the microtubule polymerization activities mediated by Stu2p are regulated through sumoylation pathways.
Collapse
Affiliation(s)
- Matt Greenlee
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078
| | - Annabel Alonso
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078
| | - Maliha Rahman
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078
| | - Nida Meednu
- Department of Biology, University of Rochester, Rochester, New York, 14627
| | - Kayla Davis
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078
| | - Victoria Tabb
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078
| | - River Cook
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078
| | - Rita K Miller
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078
| |
Collapse
|
6
|
Bao XX, Spanos C, Kojidani T, Lynch EM, Rappsilber J, Hiraoka Y, Haraguchi T, Sawin KE. Exportin Crm1 is repurposed as a docking protein to generate microtubule organizing centers at the nuclear pore. eLife 2018; 7:e33465. [PMID: 29809148 PMCID: PMC6008054 DOI: 10.7554/elife.33465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/21/2018] [Indexed: 01/04/2023] Open
Abstract
Non-centrosomal microtubule organizing centers (MTOCs) are important for microtubule organization in many cell types. In fission yeast Schizosaccharomyces pombe, the protein Mto1, together with partner protein Mto2 (Mto1/2 complex), recruits the γ-tubulin complex to multiple non-centrosomal MTOCs, including the nuclear envelope (NE). Here, we develop a comparative-interactome mass spectrometry approach to determine how Mto1 localizes to the NE. Surprisingly, we find that Mto1, a constitutively cytoplasmic protein, docks at nuclear pore complexes (NPCs), via interaction with exportin Crm1 and cytoplasmic FG-nucleoporin Nup146. Although Mto1 is not a nuclear export cargo, it binds Crm1 via a nuclear export signal-like sequence, and docking requires both Ran in the GTP-bound state and Nup146 FG repeats. In addition to determining the mechanism of MTOC formation at the NE, our results reveal a novel role for Crm1 and the nuclear export machinery in the stable docking of a cytoplasmic protein complex at NPCs.
Collapse
Affiliation(s)
- Xun X Bao
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Christos Spanos
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Tomoko Kojidani
- Advanced ICT Research Institute KobeNational Institute of Information and Communications TechnologyKobeJapan
- Department of Chemical and Biological Sciences, Faculty of ScienceJapan Women’s UniversityTokyoJapan
| | - Eric M Lynch
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
- Department of BioanalyticsInstitute of Biotechnology, Technische Universität BerlinBerlinGermany
| | - Yasushi Hiraoka
- Advanced ICT Research Institute KobeNational Institute of Information and Communications TechnologyKobeJapan
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Tokuko Haraguchi
- Advanced ICT Research Institute KobeNational Institute of Information and Communications TechnologyKobeJapan
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Kenneth E Sawin
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
7
|
The XMAP215 Ortholog Alp14 Promotes Microtubule Nucleation in Fission Yeast. Curr Biol 2018; 28:1681-1691.e4. [PMID: 29779879 DOI: 10.1016/j.cub.2018.04.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/19/2018] [Accepted: 04/03/2018] [Indexed: 12/18/2022]
Abstract
The organization and number of microtubules (MTs) in a cell depend on the proper regulation of MT nucleation. Currently, the mechanism of nucleation is the most poorly understood aspect of MT dynamics. XMAP215/chTOG/Alp14/Stu2 proteins are MT polymerases that stimulate MT polymerization at MT plus ends by binding and releasing tubulin dimers. Although these proteins also localize to MT organizing centers and have nucleating activity in vitro, it is not yet clear whether these proteins participate in MT nucleation in vivo. Here, we demonstrate that in the fission yeast Schizosaccharomyces pombe, the XMAP215 ortholog Alp14 is critical for efficient MT nucleation in vivo. In multiple assays, loss of Alp14 function led to reduced nucleation rate and numbers of interphase MT bundles. Conversely, activation of Alp14 led to increased nucleation frequency. Alp14 associated with Mto1 and γ-tubulin complex components, and artificially targeting Alp14 to the γ-tubulin ring complexes (γ-TuRCs) stimulated nucleation. In imaging individual nucleation events, we found that Alp14 transiently associated with a γ-tubulin particle shortly before the appearance of a new MT. The transforming acidic coiled-coil (TACC) ortholog Alp7 mediated the localization of Alp14 at nucleation sites but not plus ends, and was required for efficient nucleation but not for MT polymerization. Our findings provide the strongest evidence to date that Alp14 serves as a critical MT nucleation factor in vivo. We suggest a model in which Alp14 associates with the γ-tubulin complex in an Alp7-dependent manner to facilitate the assembly or stabilization of the nascent MT.
Collapse
|
8
|
Yukawa M, Kawakami T, Okazaki M, Kume K, Tang NH, Toda T. A microtubule polymerase cooperates with the kinesin-6 motor and a microtubule cross-linker to promote bipolar spindle assembly in the absence of kinesin-5 and kinesin-14 in fission yeast. Mol Biol Cell 2017; 28:3647-3659. [PMID: 29021344 PMCID: PMC5706992 DOI: 10.1091/mbc.e17-08-0497] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/26/2017] [Accepted: 10/03/2017] [Indexed: 12/16/2022] Open
Abstract
Kinesin-5 is required for bipolar spindle assembly; yet in the absence of kinesins-5 and -14, cells can form spindles. In fission yeast, three distinct pathways compensate for their loss. Microtubule polymerase, kinesin-6, and microtubule cross-linker execute individual roles in concert at different mitotic stages in place of the two kinesins. Accurate chromosome segregation relies on the bipolar mitotic spindle. In many eukaryotes, spindle formation is driven by the plus-end–directed motor kinesin-5 that generates outward force to establish spindle bipolarity. Its inhibition leads to the emergence of monopolar spindles with mitotic arrest. Intriguingly, simultaneous inactivation of the minus-end–directed motor kinesin-14 restores spindle bipolarity in many systems. Here we show that in fission yeast, three independent pathways contribute to spindle bipolarity in the absence of kinesin-5/Cut7 and kinesin-14/Pkl1. One is kinesin-6/Klp9 that engages with spindle elongation once short bipolar spindles assemble. Klp9 also ensures the medial positioning of anaphase spindles to prevent unequal chromosome segregation. Another is the Alp7/TACC-Alp14/TOG microtubule polymerase complex. Temperature-sensitive alp7cut7pkl1 mutants are arrested with either monopolar or very short spindles. Forced targeting of Alp14 to the spindle pole body is sufficient to render alp7cut7pkl1 triply deleted cells viable and promote spindle assembly, indicating that Alp14-mediated microtubule polymerization from the nuclear face of the spindle pole body could generate outward force in place of Cut7 during early mitosis. The third pathway involves the Ase1/PRC1 microtubule cross-linker that stabilizes antiparallel microtubules. Our study, therefore, unveils multifaceted interplay among kinesin-dependent and -independent pathways leading to mitotic bipolar spindle assembly.
Collapse
Affiliation(s)
- Masashi Yukawa
- Hiroshima Research Center for Healthy Aging, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan .,Laboratory of Molecular and Chemical Cell Biology, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Tomoki Kawakami
- Hiroshima Research Center for Healthy Aging, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan.,Laboratory of Molecular and Chemical Cell Biology, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Masaki Okazaki
- Hiroshima Research Center for Healthy Aging, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan.,Laboratory of Molecular and Chemical Cell Biology, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Kazunori Kume
- Hiroshima Research Center for Healthy Aging, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan.,Laboratory of Cell Biology, Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Ngang Heok Tang
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Takashi Toda
- Hiroshima Research Center for Healthy Aging, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan .,Laboratory of Molecular and Chemical Cell Biology, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| |
Collapse
|
9
|
Lu A, Zhou CJ, Wang DH, Han Z, Kong XW, Ma YZ, Yun ZZ, Liang CG. Cytoskeleton-associated protein 5 and clathrin heavy chain binding regulates spindle assembly in mouse oocytes. Oncotarget 2017; 8:17491-17503. [PMID: 28177917 PMCID: PMC5392264 DOI: 10.18632/oncotarget.15097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/24/2017] [Indexed: 11/25/2022] Open
Abstract
Mammalian oocyte meiotic maturation is the precondition of early embryo development. Lots of microtubules (MT)-associated proteins participate in oocyte maturation process. Cytoskeleton-associated protein 5 (CKAP5) is a member of the XMAP215 family that regulates microtubule dynamics during mitosis. However, its role in meiosis has not been fully studied. Here, we investigated the function of CKAP5 in mouse oocyte meiotic maturation and early embryo development. Western blot showed that CKAP5 expression increased from GVBD, maintaining at high level at metaphase, and decreased after late 1-cell stage. Confocal microscopy showed there is no specific accumulation of CKAP5 at interphase (GV, PN or 2-cell stage). However, once cells enter into meiotic or mitotic division, CKAP5 was localized at the whole spindle apparatus. Treatment of oocytes with the tubulin-disturbing reagents nocodazole (induces MTs depolymerization) or taxol (prevents MTs depolymerization) did not affect CKAP5 expression but led to a rearrangement of CKAP5. Further, knock-down of CKAP5 resulted in a failure of first polar body extrusion, serious defects in spindle assembly, and failure of chromosome alignment. Loss of CKAP5 also decreased early embryo development potential. Furthermore, co-immunoprecipitation showed that CKAP5 bound to clathrin heavy chain 1 (CLTC). Taken together, our results demonstrate that CKAP5 is important in oocyte maturation and early embryo development, and CKAP5 might work together with CLTC in mouse oocyte maturation.
Collapse
Affiliation(s)
- Angeleem Lu
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| | - Cheng-Jie Zhou
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| | - Dong-Hui Wang
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| | - Zhe Han
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| | - Xiang-Wei Kong
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| | - Yu-Zhen Ma
- Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, People's Republic of China
| | - Zhi-Zhong Yun
- Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, People's Republic of China
| | - Cheng-Guang Liang
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| |
Collapse
|
10
|
Cavanaugh AM, Jaspersen SL. Big Lessons from Little Yeast: Budding and Fission Yeast Centrosome Structure, Duplication, and Function. Annu Rev Genet 2017; 51:361-383. [PMID: 28934593 DOI: 10.1146/annurev-genet-120116-024733] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Centrosomes are a functionally conserved feature of eukaryotic cells that play an important role in cell division. The conserved γ-tubulin complex organizes spindle and astral microtubules, which, in turn, separate replicated chromosomes accurately into daughter cells. Like DNA, centrosomes are duplicated once each cell cycle. Although in some cell types it is possible for cell division to occur in the absence of centrosomes, these divisions typically result in defects in chromosome number and stability. In single-celled organisms such as fungi, centrosomes [known as spindle pole bodies (SPBs)] are essential for cell division. SPBs also must be inserted into the membrane because fungi undergo a closed mitosis in which the nuclear envelope (NE) remains intact. This poorly understood process involves events similar or identical to those needed for de novo nuclear pore complex assembly. Here, we review how analysis of fungal SPBs has advanced our understanding of centrosomes and NE events.
Collapse
Affiliation(s)
- Ann M Cavanaugh
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA;
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; .,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
11
|
Alp7/TACC-Alp14/TOG generates long-lived, fast-growing MTs by an unconventional mechanism. Sci Rep 2016; 6:20653. [PMID: 26864000 PMCID: PMC4749977 DOI: 10.1038/srep20653] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/17/2015] [Indexed: 01/15/2023] Open
Abstract
Alp14 is a TOG-family microtubule polymerase from S. pombe that tracks plus ends and accelerates their growth. To interrogate its mechanism, we reconstituted dynamically unstable single isoform S. pombe microtubules with full length Alp14/TOG and Alp7, the TACC-family binding partner of Alp14. We find that Alp14 can drive microtubule plus end growth at GTP-tubulin concentrations at least 10-fold below the usual critical concentration, at the expense of increased catastrophe. This reveals Alp14 to be a highly unusual enzyme that biases the equilibrium for the reaction that it catalyses. Alp7/TACC enhances the effectiveness of Alp14, by increasing its occupancy. Consistent with this, we show in live cells that Alp7 deletion produces very similar MT dynamics defects to Alp14 deletion. The ability of Alp7/14 to accelerate and bias GTP-tubulin exchange at microtubule plus ends allows it to generate long-lived, fast-growing microtubules at very low cellular free tubulin concentrations.
Collapse
|
12
|
Koliou X, Fedonidis C, Kalpachidou T, Mangoura D. Nuclear import mechanism of neurofibromin for localization on the spindle and function in chromosome congression. J Neurochem 2015; 136:78-91. [PMID: 26490262 DOI: 10.1111/jnc.13401] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 12/28/2022]
Abstract
Neurofibromatosis type-1 (NF-1) is caused by mutations in the tumor suppressor gene NF1; its protein product neurofibromin is a RasGTPase-activating protein, a property that has yet to explain aneuploidy, most often observed in astrocytes in NF-1. Here, we provide a mechanistic model for the regulated nuclear import of neurofibromin during the cell cycle and for a role in chromosome congression. Specifically, we demonstrate that neurofibromin, phosphorylated on Ser2808, a residue adjacent to a nuclear localization signal in the C-terminal domain (CTD), by Protein Kinase C-epsilon (PKC-ε), accumulates in a Ran-dependent manner and through binding to lamin in the nucleus at G2 in glioblastoma cells. Furthermore, we identify CTD as a tubulin-binding domain and show that a phosphomimetic substitution of its Ser2808 results in a predominantly nuclear localization. Confocal analysis shows that endogenous neurofibromin localizes on the centrosomes at interphase, as well as on the mitotic spindle, through direct associations with tubulins, in glioblastoma cells and primary astrocytes. More importantly, analysis of mitotic phenotypes after siRNA-mediated depletion shows that acute loss of this tumor suppressor protein leads to aberrant chromosome congression at the metaphase plate. Therefore, neurofibromin protein abundance and nuclear import are mechanistically linked to an error-free chromosome congression. Concerned with neurofibromin's, a tumor suppressor, mechanism of action, we demonstrate in astrocytic cells that its synthesis, phosphorylation by Protein Kinase C-ε on Ser2808 (a residue adjacent to a nuclear localization sequence), and nuclear import are cell cycle-dependent, being maximal at G2. During mitosis, neurofibromin is an integral part of the spindle, while its depletion leads to aberrant chromosome congression, possibly explaining the development of chromosomal instability in Neurofibromatosis type-1. Read the Editorial Highlight for this article on page 11. Cover Image for this issue: doi: 10.1111/jnc.13300.
Collapse
Affiliation(s)
- Xeni Koliou
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Constantinos Fedonidis
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Theodora Kalpachidou
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dimitra Mangoura
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
13
|
Lorenz A. New cassettes for single-step drug resistance and prototrophic marker switching in fission yeast. Yeast 2015; 32:703-10. [PMID: 26305038 DOI: 10.1002/yea.3097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/10/2015] [Accepted: 08/10/2015] [Indexed: 11/05/2022] Open
Abstract
Construction of multiply mutated strains for genetic interaction analysis and of strains carrying different epitope tags at multiple open reading frames for testing protein localization, abundance and protein-protein interactions is hampered by the availability of a sufficient number of different selectable markers. Moreover, strains with single gene deletions or tags often already exist in strain collections; for historical reasons these will mostly carry the ura4(+) gene or the G418-resistance kanMX as marker. Because it is rather cumbersome to produce multiply deleted or tagged strains using the same marker, or to completely reconstruct a particular strain with a different marker, single-step exchange protocols of markers are a time-saving alternative. In recent years, dominant drug resistance markers (DDRMs) against clonNAT, hygromycin B and bleomycin have been adapted and successfully used in Schizosaccharomyces pombe. The corresponding DDRM cassettes, natMX, hphMX and bleMX, carry the TEF promotor and terminator sequences from Ashbya gossypii as kanMX; this provides flanking homologies to enable single-step marker swapping by homologous gene targeting. To expand this very useful toolset for single-step marker exchange, I constructed MX cassettes containing the nutritional markers arg3(+), his3(+), leu1(+) and ura4(+). Furthermore, a set of constructs was created to enable single-step exchange of ura4(+) to kanMX6, natMX4 and hphMX4. The functionality of the cassettes is demonstrated by successful single-step marker swapping at several loci. These constructs allow straightforward and rapid remarking of existing ura4(+) - and MX-deleted and -tagged strains.
Collapse
|
14
|
Kakui Y, Sato M. Differentiating the roles of microtubule-associated proteins at meiotic kinetochores during chromosome segregation. Chromosoma 2015; 125:309-20. [PMID: 26383111 DOI: 10.1007/s00412-015-0541-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/06/2015] [Accepted: 09/08/2015] [Indexed: 11/30/2022]
Abstract
Meiosis is a specialised cell division process for generating gametes. In contrast to mitosis, meiosis involves recombination followed by two consecutive rounds of cell division, meiosis I and II. A vast field of research has been devoted to understanding the differences between mitotic and meiotic cell divisions from the viewpoint of chromosome behaviour. For faithful inheritance of paternal and maternal genetic information to offspring, two events are indispensable: meiotic recombination, which generates a physical link between homologous chromosomes, and reductional segregation, in which homologous chromosomes move towards opposite poles, thereby halving the ploidy. The cytoskeleton and its regulators play specialised roles in meiosis to accomplish these divisions. Recent studies have shown that microtubule-associated proteins (MAPs), including tumour overexpressed gene (TOG), play unique roles during meiosis. Furthermore, the conserved mitotic protein kinase Polo modulates MAP localisation in meiosis I. As Polo is a well-known regulator of reductional segregation in meiosis, the evidence suggests that Polo constitutes a plausible link between meiosis-specific MAP functions and reductional segregation. Here, we review the latest findings on how the localisation and regulation of MAPs in meiosis differ from those in mitosis, and we discuss conservation of the system between yeast and higher eukaryotes.
Collapse
Affiliation(s)
- Yasutaka Kakui
- Chromosome Segregation Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK.
| | - Masamitsu Sato
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku, Tokyo, 162-0056, Japan.
| |
Collapse
|
15
|
Spatiotemporal Regulation of Nuclear Transport Machinery and Microtubule Organization. Cells 2015; 4:406-26. [PMID: 26308057 PMCID: PMC4588043 DOI: 10.3390/cells4030406] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/30/2015] [Accepted: 08/19/2015] [Indexed: 12/23/2022] Open
Abstract
Spindle microtubules capture and segregate chromosomes and, therefore, their assembly is an essential event in mitosis. To carry out their mission, many key players for microtubule formation need to be strictly orchestrated. Particularly, proteins that assemble the spindle need to be translocated at appropriate sites during mitosis. A small GTPase (hydrolase enzyme of guanosine triphosphate), Ran, controls this translocation. Ran plays many roles in many cellular events: nucleocytoplasmic shuttling through the nuclear envelope, assembly of the mitotic spindle, and reorganization of the nuclear envelope at the mitotic exit. Although these events are seemingly distinct, recent studies demonstrate that the mechanisms underlying these phenomena are substantially the same as explained by molecular interplay of the master regulator Ran, the transport factor importin, and its cargo proteins. Our review focuses on how the transport machinery regulates mitotic progression of cells. We summarize translocation mechanisms governed by Ran and its regulatory proteins, and particularly focus on Ran-GTP targets in fission yeast that promote spindle formation. We also discuss the coordination of the spatial and temporal regulation of proteins from the viewpoint of transport machinery. We propose that the transport machinery is an essential key that couples the spatial and temporal events in cells.
Collapse
|
16
|
Targeting of γ-tubulin complexes to microtubule organizing centers: conservation and divergence. Trends Cell Biol 2015; 25:296-307. [DOI: 10.1016/j.tcb.2014.12.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/25/2014] [Accepted: 12/01/2014] [Indexed: 11/29/2022]
|
17
|
Aoi Y, Kawashima SA, Simanis V, Yamamoto M, Sato M. Optimization of the analogue-sensitive Cdc2/Cdk1 mutant by in vivo selection eliminates physiological limitations to its use in cell cycle analysis. Open Biol 2015; 4:rsob.140063. [PMID: 24990387 PMCID: PMC4118601 DOI: 10.1098/rsob.140063] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Analogue-sensitive (as) mutants of kinases are widely used to selectively inhibit a single kinase with few off-target effects. The analogue-sensitive mutant cdc2-as of fission yeast (Schizosaccharomyces pombe) is a powerful tool to study the cell cycle, but the strain displays meiotic defects, and is sensitive to high and low temperature even in the absence of ATP-analogue inhibitors. This has limited the use of the strain for use in these settings. Here, we used in vivo selection for intragenic suppressor mutations of cdc2-as that restore full function in the absence of ATP-analogues. The cdc2-asM17 underwent meiosis and produced viable spores to a similar degree to the wild-type strain. The suppressor mutation also rescued the sensitivity of the cdc2-as strain to high and low temperature, genotoxins and an anti-microtubule drug. We have used cdc2-asM17 to show that Cdc2 activity is required to maintain the activity of the spindle assembly checkpoint. Furthermore, we also demonstrate that maintenance of the Shugoshin Sgo1 at meiotic centromeres does not require Cdc2 activity, whereas localization of the kinase aurora does. The modified cdc2-asM17 allele can be thus used to analyse many aspects of cell-cycle-related events in fission yeast.
Collapse
Affiliation(s)
- Yuki Aoi
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | - Shigehiro A Kawashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | - Viesturs Simanis
- EPFL SV ISREC UPSIM SV2.1830, Station 19, Lausanne 1015, Switzerland
| | - Masayuki Yamamoto
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan Laboratory of Cell Responses, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Masamitsu Sato
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan PRESTO, Japan Science and Technology Agency, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480, Japan
| |
Collapse
|
18
|
Tang NH, Toda T. Alp7/TACC recruits kinesin-8-PP1 to the Ndc80 kinetochore protein for timely mitotic progression and chromosome movement. J Cell Sci 2014; 128:354-63. [PMID: 25472718 PMCID: PMC4294777 DOI: 10.1242/jcs.160036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Upon establishment of proper kinetochore–microtubule attachment, the spindle assembly checkpoint (SAC) must be silenced to allow onset of anaphase, which is when sister chromatids segregate equally to two daughter cells. However, how proper kinetochore–microtubule attachment leads to timely anaphase onset remains elusive. Furthermore, the molecular mechanisms of chromosome movement during anaphase A remain unclear. In this study, we show that the fission yeast Alp7/TACC protein recruits a protein complex consisting of the kinesin-8 (Klp5–Klp6) and protein phosphatase 1 (PP1) to the kinetochore upon kinetochore–microtubule attachment. Accumulation of this complex at the kinetochore, on the one hand, facilitates SAC inactivation through PP1, and, on the other hand, accelerates polewards chromosome movement driven by the Klp5–Klp6 motor. We identified an alp7 mutant that had specific defects in binding to the Klp5–Klp6–PP1 complex but with normal localisation to the microtubule and kinetochore. Consistent with our proposition, this mutant shows delayed anaphase onset and decelerated chromosome movement during anaphase A. We propose that the recruitment of kinesin-8–PP1 to the kinetochore through Alp7/TACC interaction plays a crucial role in regulation of timely mitotic progression and chromosome movement during anaphase A.
Collapse
Affiliation(s)
- Ngang Heok Tang
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Takashi Toda
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| |
Collapse
|
19
|
The kinetochore protein Kis1/Eic1/Mis19 ensures the integrity of mitotic spindles through maintenance of kinetochore factors Mis6/CENP-I and CENP-A. PLoS One 2014; 9:e111905. [PMID: 25375240 PMCID: PMC4222959 DOI: 10.1371/journal.pone.0111905] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/06/2014] [Indexed: 12/14/2022] Open
Abstract
Microtubules play multiple roles in a wide range of cellular phenomena, including cell polarity establishment and chromosome segregation. A number of microtubule regulators have been identified, including microtubule-associated proteins and kinases, and knowledge of these factors has contributed to our molecular understanding of microtubule regulation of each relevant cellular process. The known regulators, however, are insufficient to explain how those processes are linked to one another, underscoring the need to identify additional regulators. To find such novel mechanisms and microtubule regulators, we performed a screen that combined genetics and microscopy for fission yeast mutants defective in microtubule organization. We isolated approximately 900 mutants showing defects in either microtubule organization or the nuclear envelope, and these mutants were classified into 12 categories. We particularly focused on one mutant, kis1, which displayed spindle defects in early mitosis. The kis1 mutant frequently failed to assemble a normal bipolar spindle. The responsible gene encoded a kinetochore protein, Mis19 (also known as Eic1), which localized to the interface of kinetochores and spindle poles. We also found that the inner kinetochore proteins Mis6/CENP-I and Cnp1/CENP-A were delocalized from kinetochores in the kis1 cells and that kinetochore-microtubule attachment was defective. Another mutant, mis6, also displayed similar spindle defects. We conclude that Kis1 is required for inner kinetochore organization, through which Kis1 ensures kinetochore-microtubule attachment and spindle integrity. Thus, we propose an unexpected relationship between inner kinetochore organization and spindle integrity.
Collapse
|
20
|
Tang NH, Okada N, Fong CS, Arai K, Sato M, Toda T. Targeting Alp7/TACC to the spindle pole body is essential for mitotic spindle assembly in fission yeast. FEBS Lett 2014; 588:2814-21. [PMID: 24937146 PMCID: PMC4158419 DOI: 10.1016/j.febslet.2014.06.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/12/2014] [Accepted: 06/03/2014] [Indexed: 01/09/2023]
Abstract
The conserved TACC protein family localises to the centrosome (the spindle pole body, SPB in fungi) and mitotic spindles, thereby playing a crucial role in bipolar spindle assembly. However, it remains elusive how TACC proteins are recruited to the centrosome/SPB. Here, using fission yeast Alp7/TACC, we have determined clustered five amino acid residues within the TACC domain required for SPB localisation. Critically, these sequences are essential for the functions of Alp7, including proper spindle formation and mitotic progression. Moreover, we have identified pericentrin-like Pcp1 as a loading factor to the mitotic SPB, although Pcp1 is not a sole platform.
Collapse
Affiliation(s)
- Ngang Heok Tang
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Naoyuki Okada
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | - Chii Shyang Fong
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Kunio Arai
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan; Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Center for Advanced Biomedical Sciences (TWIns), 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480, Japan
| | - Masamitsu Sato
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan; Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Center for Advanced Biomedical Sciences (TWIns), 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takashi Toda
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.
| |
Collapse
|